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Vignette for ‘blocksdesign’ package  
 

Summary 

Randomized complete blocks are the designs of choice for small or medium sized experiments. For 

large experiments, however, a randomized complete blocks design may contain too many plots to give 

good control of plot-to-plot variability and then a resolvable incomplete blocks design with a single 

set of incomplete blocks nested within main blocks may be a better choice. Incomplete block designs 

with a single level of nesting can provide improved designs for medium size experiments but for large 

experiments with many plots, multi-level nesting is required to provide the range of block sizes 

needed to control variability over a range of scales of measurement. This vignette discusses an R 

software package for multi-level nesting in general block designs. 

Introduction 

Comparative experiments often involve estimation of treatment effects against a background of high 

non-treatment variability and effective control of background variability is essential for good 

treatment estimation. The most common designs for field trials are randomized complete block 

designs in which every treatment is represented in every block in proportion to its replication. 

Randomized complete block designs can be very effective against a range of nuisance effects such as 

patchy fertility, row-and-column effects or even the residual effects of previous treatments but for 

large designs with many treatments, complete randomized blocks may be too large to give good 

control of non-treatment variability. In that situation, incomplete blocks containing fewer than a 

complete set of treatments in each block may give improved control of non-treatment variability. 

Incomplete block designs with a single level of nesting assume that heterogeneous background 

variation can be partitioned between a single set of nested blocks. For large experiments with many 

treatments, however, heterogeneity of variability may occur over a wide range of scales of 

measurement and then designs with a single level of nesting may not be adequate. In that situation, 

repeated or multi-level nesting may be needed to capture all the non-treatment sources of variability. 

Experiments in agriculture and biology can involve qualitative treatment comparisons such as variety 

comparisons or can involve quantitative comparisons such as rates of fertilizer application. Choice of 

the treatment design for qualitative treatments is usually pre-determined by the requirements of the 

experiment but the best choice of design for quantitative treatments can be complex and may require 

computer methods for optimum treatment design. Good design of nested incomplete blocks also 

requires computer methods and the ‘blocksdesign’ package provides an integrated general purpose 

design package for both treatment and block design, especially for field and crop experiments. 

Multi-level nesting  

The purpose of multi-level nesting is to provide a range of choices of block structures and block sizes 

at the analysis stage of an experiment. In general, block models should be based only on block 

structures that were built into the design at the design stage, as it is not normally advisable to make 
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post hoc searches for block structures that were not envisaged at the design stage. In this section, we 

discuss methods for incorporating a range of block structures and sizes at the design stage of an 

experiment.  

Design 

Let 𝐓𝑓 be a treatment factor allocating treatment factor levels to plots and let 𝐁1, …,𝐁u be a set of u 

block factors allocating block levels to plots. Let  𝐃f = (𝐁1, ⋯ , 𝐁u) be a data frame containing the 

nested block factors in decreasing order of nesting. Then the allocation of treatments to plots can be 

optimized by the 'blocksdesign' function: 𝑑𝑒𝑠𝑖𝑔𝑛(𝐓𝑓, 𝐃𝑓 ).                                                   

The design algorithm optimizes the allocation of treatments to blocks by conditionally swapping pairs 

of rows of 𝐓𝑓 for each set of blocks in 𝐁i, i = 1 … 𝑢, taken one at a time, until no further improvement 

is possible. Conditional swapping means that improving swaps for each nested block factor 𝐁j, j =

2 … 𝑢, are restricted within the levels of all previous blocks, 𝐁i, i = 1 … 𝑗 − 1. Essentially, this means 

that the blocks of each successive set must be nested within, or crossed with, the blocks of all 

previous sets. In particular, the algorithm cannot work if successive blocks are grouping factors for 

previous blocks in the sequence, which means that the algorithm cannot be used for agglomerating 

smaller blocks into larger blocks. 

For crossed blocks designs, the relative importance of the various factorial block interaction effects 

must also be considered and the 𝑏𝑙𝑜𝑐𝑘𝑠𝑑𝑒𝑠𝑖𝑔𝑛 ∷ 𝑑𝑒𝑠𝑖𝑔𝑛() function has a parameter 0 ≤ 𝑤 ≤ 1  that 

differentially down-weights the relative importance of 2-factor interactions versus factorial main 

effects. Provided that the interaction effects are estimable, w weights the relative importance of the 2-

factor interaction effects such that  𝑤 = 0 gives main effects optimization only, 𝑤 = 1 gives main 

effects and 2-factor interaction effects optimization equally while 0 < 𝑤 < 1 gives an intermediate 

design where the information on the 2-factor block interaction effects is down-weighted according to 

the square of w. See library('blocksdesign') and help(design) for full details and examples of the use 

of 'blocksdesign' and for applications of the weighting option. 

Optimization criterion 

The optimization criterion used by 'blocksdesign' is D-optimality which maximizes the determinant of 

the treatment information matrix or, equivalently, minimizes the determinant of the treatment variance 

matrix. D-optimality is widely used and has the important property of scale-invariance, which means 

that it can be used for any design including designs with a range of quantitative and qualitative 

treatments, see Mitchell (1974) and Atkinson et. al. (2007). An alternative criterion is A-optimality, 

(see John and Williams 1998, Chapter 2) which minimizes the average variance of pairwise treatment 

differences, assuming equal treatment replication. Some authors, e.g. Jones et. al. (2020), consider 

that A-optimality is a better criterion for unstructured treatment sets than D-optimality but A-

optimality is not currently an option in 'blocksdesign'. 

Treatment design 

Unstructured treatments 

Unstructured treatments have no underlying treatment model and the only meaningful comparisons 

are pairwise differences between individual treatments. Treatment design for unstructured treatments 

is chiefly concerned with the choice of individual treatments and the individual treatment replication 
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and these choices usually depend on the purposes and economics of a trial. Replication need not be 

equal for all treatments and often it is desirable to increase the replication on certain individual 

treatments, for example when certain treatments are controls or standards against which the remaining 

treatments are to be compared. Sometimes, some treatments are un-replicated (conventionally they 

have a single ‘replication’). Usually, the choice of replication will be decided by the experimenter on 

pragmatic grounds and it is important that any good block design algorithm should be able to provide 

an efficient block design whatever the choice of treatment replication.  

Example 

The following example shows a simple basic design for a set of 12 unstructured treatments numbered 

1 to 12 each with 4 replicates and a single control treatment, numbered 13, with 8 replicates arranged 

in four randomized complete blocks. Unstructured treatment designs with equal or near-equal block 

sizes can be constructed by the blocks() function as follows:  

******************************************************************************** 

Example 1 

******************************************************************************** 

blocks(treatments = c(12,1),replicates = c(4,8), blocks=4) 

Output 
 

$Blocks_model 

  Level Blocks D-Efficiency A-Efficiency A-Bound 

1     1      4            1            1      1 

 

 

The design() function is more general than the blocks() function and provides more control over the 

choice of block sizes and the choice of treatment design but requires a more detailed set of input 

parameters. For the previous example, the design() function can be used as follows: 

******************************************************************************* 

Example 2 

**************************************************************************************** 

 

design(treatments = factor(c(1:12,13,13)),  

blocks = factor(rep(1:4,each = 14))) 

 

Output 

 
$Blocks_model 

  Level Blocks D-Efficiency A-Efficiency A-Bound 

1     1      4            1            1      1 

 

 

The output shows the block efficiency table for the design where the column labelled 'Level' indicates 

the depth of nesting. In this case, there is just one set of complete randomized blocks with a single set 

of blocks. The A-efficiency bound is only available for equi-replicate designs with equal block sizes. 
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Structured treatments 

Structured treatments have an underlying model such as a response surface for quantitative level 

factors or a factorial model for qualitative level factors. Response surfaces and factorial designs 

assume an empirical linear model for treatment effects and efficient design usually requires the 

optimization of a design criterion derived from the information matrix of the design matrix. The most 

general design criterion is D-optimality (see Atkinson et. al. 2007), which maximizes the determinant 

of the design information matrix and D-optimality is the criterion used by ‘blocksdesign’ for the 

numerical optimization of all structured, non-orthogonal, treatment designs.  

The treatment design algorithm selects an optimal set of treatment combinations from a candidate set 

of treatments. The candidate set contains all the feasible treatment combinations that might occur in 

the final optimized design and the design algorithm selects those combinations that optimize the 

treatment information matrix. The treatments are selected from the candidate set without replacement, 

which means that the final selected design can contain, at most, only a single copy of any particular 

candidate in the candidate set. The candidate set must be at least as large as the required treatment 

design and if a treatment set is supplied that is smaller than the required design, the algorithm will 

replicate the supplied set a sufficient number of times to cover the required size of design. If the 

candidate set contains replicates of individual treatments, then the final optimized design can replicate 

each treatment up to the number of replicates of that treatment in the candidate set. The optimization 

of designs with quantitative level treatment factors may depend on the available number of replicates 

in the candidate set so exploration of the effects of different sizes of candidate sets is recommended.    

The treatments model is a character vector containing one or more nested treatments formula, where 

each nested formula taken in order must contain at least one additional treatment factor. The 

treatments model is optimized sequentially for each formula with the additional treatment factors in 

each formula optimized while all previous treatment factors are held constant. Sequential treatment 

model fitting can provide flexibility for fitting factors or variables of different status or importance.  

The following example shows two alternative treatment designs for 4 varieties with 3 levels of N and 

3 levels of K assuming a degree-2 fertilizer response surface and a design with two blocks each of 

size 12.  

Example 3 shows a design for the full treatment model fitted simultaneously using a single treatment 

model formula. This design gives a very unequal division of the 24 plots between the four variety 

levels and, in this particular realization, variety 1 has 6 plots, variety 2 has 5 plots, variety 3 has 8 

plots and variety 4 has 5 plots. 
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******************************************************************************* 

Example 3 

******************************************************************************* 

 
treatments = list(Variety = factor(1:4), N = 1:3, K = 1:3)  

blocks = data.frame(main = gl(2,12))  

model =  ~ (Variety + N + K)^2 + I(N^2) + I(K^2) 

design(treatments, blocks, treatments_model = model, searches=10) 

 

Output 
 

$Design 

   main Variety N K 

1     1       1 2 3 

2     1       4 3 3 

3     1       3 3 3 

4     1       1 3 1 

5     1       2 1 3 

6     1       2 3 1 

7     1       1 1 3 

8     1       3 1 1 

9     1       2 2 2 

10    1       4 1 1 

11    1       3 1 2 

12    1       3 3 2 

13    2       4 3 1 

14    2       1 1 1 

15    2       2 1 1 

16    2       4 1 3 

17    2       1 3 3 

18    2       2 3 3 

19    2       3 3 1 

20    2       1 3 2 

21    2       4 2 2 

22    2       3 2 1 

23    2       3 2 3 

24    2       3 1 3 

 
$Treatments_model 

                            Treatment.model Model.DF D.Efficiency 

1  ~ (Variety + N + K)^2  + I(N^2) + I(K^2)       14     1.052045 

 

 

$Blocks_model 

     Level Blocks D.Efficiency A.Efficiency Bound 

main     1      2    0.9940052    0.9937659     1 

 

********************************************************************************** 

Example 4 shows the same design fitted to the same basic treatment model but this time using a 

treatment model formula with sequential terms where each term is fitted sequentially and conditional 

on all previously fitted terms. In this example, the first part of the formula fits the Variety model alone 

and the second part then fits the full combined treatment model for Variety and fertilizer effects.  

conditional on the fitted Variety effects. Example 4 is slightly less efficient overall than Example 3 
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but gives an equal division of the 24 factor combinations into 6 combination for each level of variety, 

which most research workers would regard as a necessary requirement for a good design.  

 

******************************************************************************** 

Example 4 

********************************************************************************** 
 

treatments = list(Variety = factor(1:4), N = 1:3, K = 1:3) 

blocks = data.frame(main = gl(2,12)) 

model = list(~Variety, ~Variety + (Variety + N + K)^2 + I(N^2) + I(K^2)) 

design(treatments, blocks, treatments_model = model, searches=10)  

 

Output 
 

$Design 

   main Variety N K 

1     1       4 1 1 

2     1       3 1 1 

3     1       4 1 3 

4     1       1 2 1 

5     1       2 2 1 

6     1       4 3 2 

7     1       3 1 2 

8     1       1 3 3 

9     1       3 3 3 

10    1       2 1 3 

11    1       2 3 1 

12    1       1 1 3 

13    2       2 3 3 

14    2       3 3 2 

15    2       1 1 1 

16    2       2 2 3 

17    2       2 1 1 

18    2       4 3 3 

19    2       1 2 3 

20    2       3 3 1 

21    2       4 1 2 

22    2       1 3 1 

23    2       3 1 3 

24    2       4 3 1 

 

$Treatments_model 

                                      Treatment.model Model.DF D.Efficiency 

1                                          ~ Variety         3            1 

2  ~ Variety + (Variety + N + K)^2  + I(N^2) + I(K^2)       14     1.043662 

 

$Blocks_model 

     Level Blocks D.Efficiency A.Efficiency Bound 

main     1      2    0.9916222    0.9911504     1 

 

********************************************************************************** 



7 
 

Multi-level nesting 

Complete replicate blocks with a single level of nesting are widely used in practical research. 

Treatment information is estimated both within and between blocks and a full analysis requires the 

combination of block treatment information using a mixed-model analysis, Piepho and Edmondson 

(2018). The aim of good block design is to maximize the precision of estimation of treatment effects 

and, for a single level of nesting, block designs can be optimized by maximizing the information 

content of the incomplete blocks design. Various design criteria have been considered for block 

designs (John & Williams 1998) but the most general design criterion is D-optimality. The D-

optimality criterion maximizes the determinant of the design information matrix and is the criterion of 

choice used by the ‘blocksdesign’ algorithm. 

Although resolvable block designs with a single level of nesting work well for small or moderate 

numbers of experimental units, a single level of nesting may not be adequate for large experiments 

such as field variety trials which may involve scores or hundreds of treatments. Multi-level nesting 

gives a mixed model in which the block variability is allowed to change with block size. Mixed model 

analysis is straightforward using modern software such as lme4 and allows a proper weighted 

combination of treatment information from each block size.  

The blocks() function of 'blocksdesign' is a special recursive function for simple multi-level nested 

block designs for unstructured treatment sets. The function generates designs for treatments with 

arbitrary levels of replication and arbitrary depth of nesting and each successive set of blocks is 

optimized within the levels of each preceding set of blocks using conditional D-optimality. The 

outputs from the blocks function include a data frame showing the allocation of treatments to blocks 

for each plot of the design and a table showing the achieved D- and A-efficiency factors for each set 

of nested blocks together with A-efficiency upper bounds, where available. See John and Williams 

(1998) for a definition of A-efficiency.   

Example 5, show a nested blocks design for four replicates of 100 treatments with four complete 

replicate main blocks and two levels of nesting where the first level of nesting has 10 sub-blocks of 

size 10 nested within each main block and the second level of nesting has two sub-sub-blocks of size 

5 nested within each sub-block.  

 

******************************************************************************* 

Example 5 

******************************************************************************* 

 

blocks(100, 4, list(4,10,2)) 

 

Output 
 

$Blocks_model 

  Level Blocks D-Efficiency A-Efficiency   A-Bound 

1     1      4    1.0000000    1.0000000 1.0000000 

2     2     40    0.9006742    0.8918919 0.8918919 

3     3     80    0.7847727    0.7594912 0.7632672 

 

******************************************************************************** 
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In Example 5, the A-efficiency of the sub-blocks is optimal because the sub-blocks are lattice blocks 

based on a pair of orthogonal 10 x 10 Latin squares. The A-efficiency of the sub-sub-blocks is close to 

the theoretical upper A-bound, which shows that the constraints of multi-level nesting have not 

significantly reduced the efficiency of the sub-sub-blocks design.  

Factorial nested block designs 

Sometimes it can be advantageous to use a fully crossed factorial blocks design in field trials. For 

example, factorial row-and-column blocks are sometimes used to accommodate physical row and 

column effects in a field layout. Factorial block designs are often assumed to fit a simple additive 

main effects model but additivity of main effects is a very strong assumption and may not be fully 

valid for blocks with many crossed levels. For that reason, the 'blocksdesign' algorithm can fit block 

main effects and block 2-factor interaction effects weighted by an assumed model for the relative 

importance of main effects versus 2-factor interaction effects, assuming all effects are estimable. 

Weighted factorial treatment models 

Let 𝐓 be a matrix of contrasts for a set of treatments factors and let 𝐁𝟏 and 𝐁𝟐 be contrast matrices for 

the additive effects of two sets of crossed block factors. Let 𝐁𝟐:𝟏 be the matrix of two-factor 

interactions between 𝐁𝟏 and 𝐁𝟐. Then the full block and treatment design matrix is: 

𝐓 + 𝐁𝟏 + 𝐁𝟐 + 𝐁𝟐:𝟏 

Assume 𝐁 = (𝐁𝟏, 𝐁𝟐, 𝐁𝟐:𝟏) is of full rank and assume a singular value decomposition  𝐁 = 𝐐𝐑 where 

𝐐 = (𝐐𝟏, 𝐐𝟐, 𝐐𝟐:𝟏) is a conformal orthogonal basis for 𝐁. Since 𝐐′𝐐 = 𝐈 and (𝐑′𝐑)−𝟏 = 𝐑−𝟏𝐑′−𝟏, 

the block adjusted treatment information matrix 𝐓′(𝐈 − 𝐁(𝐁′𝐁)−𝟏𝐁′)𝐓  can be re-written as:  

𝐓′(𝐈 − 𝐐𝟏𝐐𝟏
′ − 𝐐𝟐𝐐𝟐

′ − 𝐐𝟐:𝟏𝐐𝟐:𝟏
′)𝐓   

The 'blocksdesign' algorithm optimizes a weighted treatment information matrix: 

𝐓′(𝐈 − 𝐐𝟏𝐐𝟏
′ − 𝐐𝟐𝐐𝟐

′ − 𝑤𝟐 × 𝐐𝟐:𝟏𝐐𝟐:𝟏
′
)𝐓   

where the two-factor interaction term 𝐐𝟐:𝟏𝐐𝟐:𝟏
′
 is down-weighted by an arbitrary scalar 𝑤2 for 0 ≤

𝑤 ≤ 1. 

For 𝑤 = 0, the weighted information matrix gives the usual additive crossed blocks model whereas if 

𝑤 = 1, the weighted information matrix gives a full factorial blocks model. Intermediate values of 𝑤, 

down-weight the block interaction effects according to the square of w. The best choice of  𝑤 will be 

unknown, but the effects of different choices on the attained efficiency factors of the various factorial 

block effects can be found by trial error at the design stage. 

Example 6-8, show crossed blocks design for 4 replicates of 12 treatments with 4 main rows and 4 

main columns with blocks of size 3 nested within each row-by-column intersection. The row blocks 

are added first and will always comprise complete replicate blocks. The column blocks are added after 

the row blocks and the efficiency of the column block main effects and the row-by-column interaction 

block effects will depend on the choice of weighting. The three examples show the effects of three 

different choices of weighting parameter on the relative importance of the 2-factor row-by-column 

interaction effects.  
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********************************************************************************* 

Example 6 

********************************************************************************** 
 

treatments = factor(1:12) 

blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48)) 

design(treatments, blocks, searches=200, weighting=0) 

 

Output 

 
$Blocks_model 

  First_order effects D.Effic A.Effic  Second_order effects D.Effic A.Effic 

1      (Rows)       3       1       1      (Rows)^2       3      NA      NA 

2 (Rows+Cols)       6       1       1 (Rows+Cols)^2      15      NA      NA 

 
 

********************************************************************************** 

 

In Example 6, the weighting is zero and additive column block effects are orthogonal and are 

estimated with full efficiency but the rows-by-columns block interaction effects have low efficiency 

(singular in this example). 

 

********************************************************************************** 

Example 7 

********************************************************************************** 
 

treatments = factor(1:12) 

blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48)) 

design(treatments, blocks, searches=200,weighting=0.5) 

 

Output 
 

$Blocks_model 

First_order effects D.Effic A.Effic  Second_order effects  D.Effic  A.Effic 

     (Rows)       3       1       1      (Rows)^2       3       NA     NA 

(Rows+Cols)       6       1       1 (Rows+Cols)^2      15 0.717671 0.709677 

 

********************************************************************************** 

 

In Example 7, the weighting is 0.5 and the rows-by-columns block effects are estimated with 

improved efficiency relative to Example 6 while the additive column block effects remain orthogonal. 
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********************************************************************************** 

Example 8 

********************************************************************************** 
 

treatments = factor(1:12) 

blocks = data.frame(Rows = gl(4,12), Cols = gl(4,3,48)) 

design(treatments, blocks, searches=200, weighting=1) 

 

Output 
 

$Blocks_model 

First_order effects D.Effic A.Effic  Second_order effects  D.Effic  A.Effic 

    (Rows)       3 1.000000 1.00000      (Rows)^2       3       NA       NA 

(Rows+Cols)      6 0.880561 0.87041 (Rows+Cols)^2      15 0.717671 0.709677 

 

********************************************************************************** 

 

In Example 8, the weighting is 1 and the rows-by-columns block interaction effects are estimated with 

the best possible efficiency. However, the additive column blocks are no longer orthogonal so there 

will be a loss of efficiency on the estimation of the block main effects.  

Note that Example 7 gives a fully orthogonal set of main column blocks and fully efficient rows-by-

columns design compared with Example 8 which has full weighting on the rows-by-columns 

interaction effects.    

Usually, not all rows, columns and rows-by-columns effects can be optimized simultaneously for a 

crossed blocks design but this example is a special design called a Trojan square (Edmondson 1998) 

which has the property that the main rows and columns blocks design and the rows-by-columns 

interaction design can all be optimized simultaneously. This exemplifies the utility of the weighting 

method for designs with estimable crossed blocks interaction effects. In the general case, trial and 

error methods can be used to find a good choice of weighting that gives a good compromise design 

with good efficiencies on all the required block structures.  

Response surface designs 
 

Quantitative level factors such as rates of application of a fertilizer are often combined with 

qualitative level factors such as type of fertilizer or variety of treated crop, as discussed in the 

previous examples, but sometimes designs contain just quantitative level factors all with the same 

number of levels and then simple response surface designs with special properties of balance can be 

useful.  

The following examples show how 'blocksdesign' can be used to construct efficient response surface 

designs for three, 3-level quantitative factors assuming a second-order (quadratic) response surface 

model. A full 33 factorial design has 27 points arranged as a 3 × 3 × 3 cube with 8 corner points, 12 

edge centre points, 6 face centre points and 1 centre point and a plausible quadratic response surface 

design could be based on the 21 support points comprising the 8 corner points, the 12 edge centre 

points and the centre point. Example 9 shows the D-optimal design found by 'blocksdesign assuming 

21 support points. 
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********************************************************************************** 

Example 9 

********************************************************************************** 
 
treatments = list(V1 = 1:3, V2 = 1:3, V3 = rep(1:3,2)) 

blocks = data.frame(main = gl(1,21)) 

model =  ~ (V1 + V2 + V3)^2 + I(V1^2) + I(V2^2) + I(V3^2) 

design(treatments,blocks,treatments_model=model,searches=20) 

 

Output 

$Replication 

   V1 V2 V3 freq 

1   1  1  1    1 

2   1  1  2    1 

3   1  1  3    1 

4   1  2  1    1 

5   1  2  3    1 

6   1  3  1    1 

7   1  3  2    1 

8   1  3  3    1 

9   2  1  1    1 

10  2  1  3    1 

11  2  2  2    1 

12  2  3  1    1 

13  2  3  3    1 

14  3  1  1    1 

15  3  1  2    1 

16  3  1  3    1 

17  3  2  1    1 

18  3  2  3    1 

19  3  3  1    1 

20  3  3  2    1 

21  3  3  3    1 

 

$Treatments_model 

                                  Treatment.model Model.DF D.Efficiency 

1 ~(V1 + V2 + V3)^2 + I(V1^2) + I(V2^2) + I(V3^2)        9     1.055267 

 

********************************************************************************** 
 

The treatments candidate set is of double length which allows any support point to be included in the 

design twice but, in this example, the overall optimum D-optimum design includes each of the 21 

support points once only. The optimum support points do, indeed, comprise the 8 corner points, the 12 

edge centre points and the centre point. 

The example can be taken further by assuming an optimum design based on 30 support points where 

each corner point and the centre point could be replicated twice. Example 10 shows the D-optimal 

design found by 'blocksdesign assuming 30 support points. 
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********************************************************************************** 

Example 10 

********************************************************************************** 
 
treatments = list( V1 = 1:3, V2 = 1:3, V3 = rep(1:3,2)) 

blocks = data.frame(main = gl(1,30)) 

model =  ~ (V1 + V2 + V3)^2 + I(V1^2) + I(V2^2) + I(V3^2) 

design(treatments,blocks,treatments_model=model,searches=20) 

 

 
$Replication 

   V1 V2 V3 freq 

1   1  1  1    2 

2   1  1  2    1 

3   1  1  3    2 

4   1  2  1    1 

5   1  2  3    1 

6   1  3  1    2 

7   1  3  2    1 

8   1  3  3    2 

9   2  1  1    1 

10  2  1  3    1 

11  2  2  2    2 

12  2  3  1    1 

13  2  3  3    1 

14  3  1  1    2 

15  3  1  2    1 

16  3  1  3    2 

17  3  2  1    1 

18  3  2  3    1 

19  3  3  1    2 

20  3  3  2    1 

21  3  3  3    2 

 

$Treatments_model 

                                  Treatment.model Model.DF D.Efficiency 

1 ~(V1 + V2 + V3)^2 + I(V1^2) + I(V2^2) + I(V3^2)        9     1.072603 

********************************************************************************** 

Example 10 does, indeed, show double replication on each of the eight corner points and double 

replication on the centre point accounting for all 30 support points. Presumably, the corner points and 

the centre point are so important for the design that reinforcing these points gives a better 

improvement in efficiency than would the inclusion of any other design points. 

Practical designs for real experiments are likely to be more complex and further examination of 

designs with 4 or 5-levels which allow proper goodness of fit tests is advisable. Furthermore, blocks 

will be required for large designs but these will not be discussed further here. 
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MOLS and lattice block designs 

Mutually orthogonal Latin squares (MOLS) can be used for constructing a range of square and 

rectangular lattice block designs, (Cochran and Cox. 1992). Square lattice designs have v*v equally 

replicated treatments in v sets of incomplete blocks of size v nested within complete replicate blocks. 

Rectangular lattice designs have v*(v-1) equally replicated treatments in v sets of incomplete blocks 

of size v-1 nested within complete replicate blocks. Square lattice designs for r replicates require r-2 

MOLS whereas rectangular lattice designs require r-1. The MOLS function can construct a complete 

set of (v-1) orthogonal Latin squares of size v x v whenever v is a prime or a prime power while the 

GraecoLatin function can construct a pair of MOLS for any odd v or any even v < 30 (except 6).  

Prime power MOLS 

The MOLS function has three parameters, p, q and r, and constructs r sets of mutually orthogonal 

Latin squares (MOLS) of dimension p**q for prime p and integer power q where r < p**q. Memory 

issues mean that the maximum size of the exponent q for specific p is restricted to the values shown in 

the table below:  

Table 1 Primes p and upper bounds q for MOLS of size p^q 

Prime p 2 3 5 7 11 13 ≤ 23 29 ≤ 97 97 ≤ 

Maximum q 13 8 6 5 4 3 2 1 

 

The MOLS are generated by cyclic permutation of a basic Latin square constructed from a vector of 

ordered elements of a prime-power finite field of size p**q (see Chapter 1 of Raghavarao 1971). 

The primitive polynomials were extracted from the Table of Primitive Polynomials given in the 

Supplement to Hansen and Mullen (1992). 

 The output is a single data frame of size (p**q) x (r+2) with a column for the rows classification and 

the columns classification of the design and a treatments classification for each MOL in the required 

set of r replicates. 

GraecoLatin MOLS 

The GraecoLatin function has a single parameter N for the required number of treatments and 

constructs pairs of mutually orthogonal Graeco-Latin squares for the following N: 

• any odd valued N 

• any prime-power N = p**q where p and q can be chosen from Table 1 

• any even valued N <= 30 except for 6 or 2 

The GraecoLatin function generates even valued, non-prime power Graeco-Latin squares for N <= 30 

by using the methods given by Street & Street (1987), Chapters 6 and 7. 

The output is a single data frame of size (p**q) x (r+2) with a column for the rows classification and a 

column for the columns classification of the design and a column for each treatment classification of 

each square of the required set of MOLS. 



14 
 

Lattice designs 

The 'blocksdesign' package constructs general designs by a random swapping algorithm except in the 

special case of square or rectangular lattice designs. Square lattices have v^2 treatments and blocks of 

size v where the number of replicates r must be not greater than the available number of MOLS plus 

2. Rectangular lattice designs have v*(v-1) treatments in blocks of size v where the number of 

replicates r must be not greater than the available number of MOLS plus 1. These designs are 

constructed algebraically by the methods given in Chapter 10 of Cochran and Cox (1992) and will 

always attain the theoretical efficiency bound whenever a suitable set of MOLS is available.  

Lattice designs are constructed automatically by the 'blocksdesign' algorithm and will always attain 

the A-efficiency upper-bound for suitable sets of block design parameters. However, 'blocksdesign' 

does not distinguish or otherwise designate a design as a lattice design. 

Tables 2 and 3 show the theoretical maximum number of replicates for square lattices with N <= 400 

or rectangular lattices with N <= 380. Any design constructed by 'blocksdesign' which is a square or 

rectangular lattice will attain the theoretical A-efficiency upper bound provided that the number of 

replicates does not exceed the theoretical bound.  

  Table 2 Available square lattices up to N = 400 and the maximum available number of 

replicates for each design 

v 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

N 9 16 25 36 49 64 81 100 121 144 169 196 225 256 289 324 361 400 

r 4 5 6 3 8 9 10 4 12 4 14 4 4 17 18 4 20 4 

 

  Table 3 Available rectangular lattices up to N = 380 and the maximum available number of 

replicates for each design 

v 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

N 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 380 

r 3 4 5 2 7 8 9 3 11 3 13 3 3 16 17 3 19 3 

 

In practice, the range of available lattice designs is highly restrictive and general block designs 

constructed by numerical optimization will usually be required for real experiments.      

Some additional examples  

Durban et.al. (2003) discussed an experiment with two replicates of 272 spring barley varieties 

arranged in an array of 34 columns (east-west) and 16 rows (north-south) subject to the constraint that 

rows 1-8 contained one complete set of treatment replicates and rows 9-16 contained the other. They 

showed that an analysis based on a conventional additive row-and-column model was inadequate due 

to residual trends within rows Under these circumstances, it is natural to consider modelling row and 

column effects using nested column blocks. 

The original barley variety trial was designed as a simple row-and-column design with 16 rows and 

34 columns but, for the purposes of this example, it is reasonable to assume a set of nested column 
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blocks imposed on the original design and to assume interacting row-and-column blocks. Example 11 

shows an analysis assuming a Rows factor with 16 levels crossed with three nested columns factors 

Col1, Col2 and Col3 with 4, 8 and 34 levels, respectively.  

********************************************************************************** 

Example 11 

********************************************************************************** 
 

treatments = factor(rep(1:272,2)) 

Reps = factor(rep(1:2,each=272)) 

Rows = factor(rep(1:16,each=34)) 

Col1 = factor(rep(rep(1:4,c(9,8,8,9)),16)) 

Col2 = factor(rep(rep(1:8,c(5,4,4,4,4,4,4,5)),16)) 

Col3 = factor(rep(1:34,16)) 

blocks = data.frame(Reps,Rows,Col1,Col2,Col3) 

design(treatments, blocks, searches=1) 

 

Output 
 

$Blocks_model 

 

                First_order effects  D.Effic  A.Effic                  

                     (Reps)       1 1.000000 1.000000                     

                (Reps+Rows)      15 0.965741 0.953584                 

           (Reps+Rows+Col1)      18 0.961411 0.948560            

      (Reps+Rows+Col1+Col2)      22 0.951867 0.936238       

 (Reps+Rows+Col1+Col2+Col3)      48 0.888650 0.852710  

 

 

        Second_order effects  D.Effic  A.Effic 

    (Reps)^2      1       NA       NA 

     (Reps+Rows)^2     15       NA       NA 

      (Reps+Rows+Col1)^2     63 0.843056 0.778352 

  Reps+Rows+Col1+Col2)^2    127 0.676124 0.538726 

 (Reps+Rows+Col1+Col2+Col3)^2    543       NA       NA 
 

********************************************************************************** 

 

A difficulty with the design in Example 11 is that, because the rows have 34 plots, not all of the 

nested column blocks can be of equal width within each level of nesting; two column blocks from 

each of Col1, Col2 and Col3 must be an extra plot wide.  An alternative design could have been based 

on rows with 32 plots which would have allowed nested column blocks of equal width within each 

level of nesting. However, this would have meant that two replicates of 272 treatments would have 

required 17 rows which would have meant that the design could not be split into two replicates based 

on complete rows.  

Example 12, shows how 'blocksdesign' can be used to construct a nested columns design with nested 

columns crossed with 17 rows of 32 plots where rows 1:8 and the first 16 plots of row 9 contain the 

first complete replicate and rows 10:17 and the last 16 plots of row 9 contain the second complete 

replicate. Note that the 'Reps' factor in Example 12 includes an additional factor level, Level 2, for 

row 9.  
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********************************************************************************** 

Example 12 

********************************************************************************** 

treatments = factor(rep(1:272,2)) 

Reps = factor(c(rep(1,256),rep(2,32),rep(3,256))) 

Rows = factor(rep(1:17,each=32)) 

Col1 = factor(rep(rep(1:4,each=8,17))) 

Col2 = factor(rep(rep(1:8,each=4,17))) 

Col3 = factor(rep(1:32,17)) 

blocks = data.frame(Reps,Rows,Col1,Col2,Col3) 

design(treatments, blocks, searches=1) 

 

Output 
 

$Blocks_model 

 

                 First_order effects  D.Effic  A.Effic                  

                      (Reps)       2 0.997552 0.996636                      

                 (Reps+Rows)      16 0.963344 0.950485                 

            (Reps+Rows+Col1)      19 0.959030 0.945510            

       (Reps+Rows+Col1+Col2)      23 0.949511 0.933271       

  (Reps+Rows+Col1+Col2+Col3)      47 0.891292 0.856549  

 

 

                 Second_order effects  D.Effic  A.Effic 

                     (Reps)^2      2       NA       NA 

                (Reps+Rows)^2     16       NA       NA 

           (Reps+Rows+Col1)^2     67 0.832584 0.762761 

      (Reps+Rows+Col1+Col2)^2    135 0.655904 0.513222 

 (Reps+Rows+Col1+Col2+Col3)^2    543       NA       NA 

 

 

*************************************************************************************** 
 

Example 12 is likely to give a better design for control of row-and-column block effects than Example 

11 and shows that the layout of row-and-column designs for multi-level nesting may require careful 

planning and some compromise for an effective design layout.     
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