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1 Introduction

Anaerobic digestion is a popular technology for production of renewable en-
ergy and stabilisation of organic wastes, and research on the topic is carried
out in laboratories in many countries. Transformation of raw data collected in
laboratory experiments into quantities and rates of methane (CH4) production
requires a sequence of simple calculations. Although conceptually simple, these
steps are time-consuming, and seldom described in detail in publications, so
results may not be reproducible among laboratories or experiments. We devel-
opped the biogas package to address these issues. This document provides a
brief introduction to the biogas package for new users. We have assumed that
readers are familiar with biogas data collection and R.

2 Overview of functions

The package includes several “low-level” functions (Table 1) and “high-level”
functions (Table 2). To go from data collected in the laboratory to biogas and
methane (CH4) production or biochemical methane potential (BMP), two high-
level functions are needed: cumBg() (now replaced by calcBg*() functions) and
summBg(). Comparing results to theory is facilitated by the remaining high-level
function: predBg(). The low-level functions support the calculations carried out
by the high-level functions, and may also be useful for some simple operations
(e.g., converting reported biogas volumes to different standard conditions). This
document describes the use of the high-level functions.

This vignette does not cover the latest developments in the package, but still
provides a good overview. The newer calcBg*() functions are described in in-
dividual vignettes for the volumetric (calcBgVol) and manometric (calcBgMan)
alternatives. The gravimetric version (calcBgGrav) is only described in its help
file so far.
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Table 1: Operations done with the low-level functions in the biogas package.
All functions are vectorized. See help files for more details.

Operation Function
Standardise gas volume stdVol()

Interpolate composition etc. interp()

Calculate oxygen demand of a compound calcCOD()

Calculate molar mass of a compound molMass()

Calculate biogas volume from mass loss mass2vol()

Calculate mass loss from biogas volume vol2mass()

Convert gas volume to moles vol2mol()

Table 2: Operations done with the high-level functions in the biogas package.
The cumBg() and summBg() functions can handle data from any number of
bottles. predBg() is vectorized.

Operation Function
Calculate cumulative CH4 production and rates from volume (mass), composition cumBg()

Calculate biochemical methane potential, summarise cumulative production or rates summBg()

Predict biogas production based on substrate composition predBg()

3 An example: calculation and prediction of bio-
chemical methane potential

Calculation of biochemical methane potential (BMP) typically requires three
data frames: initial mass, biogas quantity (volume, pressure, or bottle mass
loss), and biogas composition. Input data may be structured in one of three
ways: “long”, “wide”, or “combined”. In a “long” format (data.struct =

’long’, the default), the measured variable (e.g., biogas volume) is in a single
column (Fig. 1). In this case columns with unique bottle IDs and time allow
the biogas functions to link observations in the two data frames1. Any order
of observations can be used in input data frames.

The third data frame on initial conditions is used by the summBg() function.
It should contain at least a bottle ID column and a description of the bottle
contents. If the contribution of an inoculum is to be subtrated (as in the BMP
test), the mass of inoculum added should be included here. Any measurements
to be used to normalise biogas or CH4 production are included here, using a
“wide” format (Fig. 2). Note that there is no time column in this data frame–
these values are independent of time.

1But observations need not be for the same times. Interpolation by interp takes care of
this. Note that the time columns can be date/time objects as well as numeric or integer.
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Response variable
Reactor ID Time (volume or mass)

R1 1 y1,1
R2 1 y2,1
... ... ...
Rn 1 yi,1
R1 2 y1,2
R2 2 y2,2
Rn 2 yi,2
... ... ...
Rn tk yn,k

Response variable
Reactor ID Time (Composition)

R1 2 y1,2
R2 2 y2,2
... ... ...
Rn 2 yn,2
... ... ...
Rn tk yn,k

Figure 1: General structure of time-dependent data frames for the dat (left)
and comp (right) arguments to the cumBg() function.

With the “wide” data structure (data.struct = ’wide’) the biogas quan-
tity data frame contains a separate column for each bottle. And in the “com-
bined” option (data.struct = ’longcombo’) a single data frame contains both
biogas quantity and composition in a “long” structure.

Reactor ID Description Substrate VS mass Inoculum total mass ...
R1 Substrate A 10.2 302 ...
R2 Substrate A 9.85 301 ...
R3 Substrate A 10.3 298 ...
R4 Substrate B 8.5 300 ...
... ... ... ... ...
R6 Inoculum only 502 ...
... ... ... ... ...
Rn ... ... ... ...

Figure 2: General structure of initial conditions data frame for the setup argu-
ment to the summBg() function.
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In this example, we will use the example data sets included with the package:
vol for biogas volumes, comp for composition, and setup for grouping and
substrate and inoculum masses. These data are from a BMP test that was
carried out on two different substrates A and B, and cellulose (included as a
“control”). The experiment included 12 batch bottles:

� 3 bottles with substrate A and inoculum

� 3 bottles with substrate B and inoculum

� 3 bottles with cellulose and inoculum

� 3 bottles with inoculum only

Reactors consisted of 500 mL or 1.0 L glass bottles, and were sealed with a
butyl rubber septum and a screw cap. Initial substrate and inoculum masses
were determined. A typical volumetric method was used to measure biogas pro-
duction: accumulated biogas was measured and removed intermittently using
syringes, and composition was measured for some of these samples.

library(biogas)

data("vol")

dim(vol)

## [1] 288 4

head(vol)

## id date.time days vol

## 1 2_1 2014-06-07 07:00:00 1.98 393

## 2 2_1 2014-06-08 07:00:00 2.98 260

## 3 2_1 2014-06-09 07:00:00 3.98 245

## 4 2_1 2014-06-10 07:00:00 4.98 225

## 5 2_1 2014-06-11 07:00:00 5.98 200

## 6 2_1 2014-06-12 08:00:00 7.02 175

summary(vol)

## id date.time days

## 2_1 : 24 Min. :2014-06-07 07:00:00.0 Min. : 1.98

## 2_2 : 24 1st Qu.:2014-06-13 20:00:00.0 1st Qu.: 8.52

## 2_3 : 24 Median :2014-06-28 06:00:00.0 Median : 22.94

## 2_4 : 24 Mean :2014-07-16 15:29:22.5 Mean : 41.33

## 2_5 : 24 3rd Qu.:2014-07-25 22:45:00.0 3rd Qu.: 50.63

## 2_6 : 24 Max. :2014-12-19 04:30:00.0 Max. :196.92

## (Other):144
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## vol

## Min. : 98.0

## 1st Qu.:171.5

## Median :225.0

## Mean :271.7

## 3rd Qu.:300.0

## Max. :840.0

##

data("comp")

dim(comp)

## [1] 132 4

head(comp)

## id date.time days xCH4

## 516 2_1 2014-06-12 08:00:00 7.02 0.7104731

## 519 2_1 2014-06-19 08:00:00 14.02 0.7024937

## 522 2_1 2014-06-26 05:00:00 20.90 0.6659919

## 524 2_1 2014-07-03 04:00:00 27.85 0.6789466

## 525 2_1 2014-07-10 03:00:00 34.81 0.6951429

## 528 2_1 2014-07-24 04:00:00 48.85 0.6693053

summary(comp)

## id date.time days

## 2_1 :11 Min. :2014-06-12 08:00:00.00 Min. : 7.02

## 2_2 :11 1st Qu.:2014-06-26 05:00:00.00 1st Qu.: 20.90

## 2_3 :11 Median :2014-07-24 04:00:00.00 Median : 48.85

## 2_4 :11 Mean :2014-07-31 07:47:43.64 Mean : 56.01

## 2_5 :11 3rd Qu.:2014-08-28 04:00:00.00 3rd Qu.: 83.85

## 2_6 :11 Max. :2014-10-13 07:00:00.00 Max. :129.98

## (Other):66

## xCH4

## Min. :0.5647

## 1st Qu.:0.6393

## Median :0.6598

## Mean :0.6587

## 3rd Qu.:0.6786

## Max. :0.7115

##
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data("setup")

setup

## id descrip msub minoc mvs.sub mvs.inoc mcod.sub mcod.inoc

## 1 2_1 A 178.96 328.82 3.839567 12.92268 5.527522 19.09109

## 5 2_2 A 178.58 350.90 3.831414 13.79043 5.515785 20.37305

## 6 2_3 A 178.58 326.61 3.831414 12.83583 5.515785 18.96278

## 7 2_4 B 40.21 465.32 5.333816 18.28716 8.325115 27.01620

## 8 2_5 B 40.04 461.90 5.311266 18.15275 8.289918 26.81764

## 9 2_6 B 40.13 475.61 5.323204 18.69156 8.308551 27.61363

## 10 2_7 cellu 5.75 500.94 5.507470 19.68703 7.762500 29.08428

## 11 2_8 cellu 5.76 498.10 5.517048 19.57542 7.776000 28.91939

## 12 2_9 cellu 5.71 504.65 5.469157 19.83283 7.708500 29.29968

## 2 2_10 inoc 501.50 501.50 19.709037 19.70904 29.116792 29.11679

## 3 2_11 inoc 502.27 502.27 19.739298 19.73930 29.161498 29.16150

## 4 2_12 inoc 502.12 502.12 19.733403 19.73340 29.152789 29.15279

## m.tot mvs.tot mcod.tot

## 1 657.78 16.76225 24.61862

## 5 679.79 17.62184 25.88883

## 6 654.68 16.66724 24.47857

## 7 655.22 23.62097 35.34132

## 8 652.56 23.46402 35.10756

## 9 665.76 24.01476 35.92219

## 10 656.68 25.19450 36.84678

## 11 653.02 25.09246 36.69539

## 12 659.28 25.30199 37.00818

## 2 652.07 19.70904 29.11679

## 3 752.37 19.73930 29.16150

## 4 650.66 19.73340 29.15279

3.1 Cumulative production

The first step in processing these data is to calculate cumulative production
of biogas and CH4 and production rates. We can do this with the cumBg()

function, using vol and comp data frames as input. The arguments for the
function are:

args(cumBg)

## function (dat, dat.type = "vol", comp = NULL, temp = NULL, pres = NULL,

## interval = TRUE, data.struct = "long", id.name = "id", time.name = "time",

## dat.name = dat.type, comp.name = "xCH4", pres.resid = NULL,

## temp.init = NULL, pres.init = NULL, rh.resid = NULL, rh.resid.init = 1,

## headspace = NULL, vol.hs.name = "vol.hs", headcomp = "N2",
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## absolute = TRUE, pres.amb = NULL, mol.f.name = NULL, vol.syr = NULL,

## cmethod = "removed", imethod = "linear", extrap = FALSE,

## addt0 = TRUE, showt0 = TRUE, dry = FALSE, empty.name = NULL,

## std.message = !quiet, check = TRUE, temp.std = getOption("temp.std",

## as.numeric(NA)), pres.std = getOption("pres.std", as.numeric(NA)),

## unit.temp = getOption("unit.temp", "C"), unit.pres = getOption("unit.pres",

## "atm"), quiet = FALSE)

## NULL

Most of the arguments have default values, but to calculate CH4 production
we must provide values for at least dat (we will use vol), comp (we will use
comp), temp (biogas temperature), and pres (biogas pressure)2, along with the
names of a few columns in our input data frames. We need to specify the name
of the time column in vol and comp using the time.name argument. This name
must be the same in both data frames. Similarly, there is an id.name argument
for the bottle ID column (used to match up volume and composition data),
but we can use the default value ("id") here because it matches the column
name in vol and comp. And, the comp.name argument is used to indicate which
column within the comp data frame contains the CH4 content (as mole fraction
in dry biogas, normalised so the sum of mole fractions of CH4 and CO2 sum
to unity). We can use the default ("xCH4") because it matches the name in
comp. Lastly, the name of the column that contains the response variable in
the dat data frame (vol here) can be specified with the dat.name argument.
Here too we can use the default ("vol" for volumetric measurements or "mass"
for gravimetric). By default (cmethod = "removed") the function calculates
volumes following [2] as the product of standardised volume of biogas removed
and normalised CH4 content.

cum.prod <- cumBg(vol, comp = comp, time.name = "days", temp = 35, pres = 1,

extrap = TRUE)

## Biogas composition is interpolated.

## Working with volume data, applying volumetric method.

## Using a standard pressure of 1 atm and standard temperature of 0

C for standardizing volume.

Note the message about standard temperature and pressure–it is important
to make sure these values are correct, therefore users are reminded by a mes-
sage3. The output looks like this:

2By default, temperature is in ◦C and pressure in atm, but these can be changed in the
function call with the temp.unit and pres.unit arguments, or globally with options.

3Remember that standard conditions can be set in the function call with temp.std and
pres.std, or globally with options().
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head(cum.prod)

## id date.time days vol xCH4 temperature pressure vBg

## 1 2_1 <NA> 0.00 NA NA NA NA 0.0000

## 2 2_1 2014-06-07 07:00:00 1.98 393 0.7104731 35 1 328.9470

## 3 2_1 2014-06-08 07:00:00 2.98 260 0.7104731 35 1 217.6240

## 4 2_1 2014-06-09 07:00:00 3.98 245 0.7104731 35 1 205.0687

## 5 2_1 2014-06-10 07:00:00 4.98 225 0.7104731 35 1 188.3284

## 6 2_1 2014-06-11 07:00:00 5.98 200 0.7104731 35 1 167.4031

## vCH4 cvBg cvCH4 rvBg rvCH4

## 1 0.0000 0.0000 0.0000 NA NA

## 2 233.7080 328.9470 233.7080 166.1348 118.0343

## 3 154.6160 546.5710 388.3240 217.6240 154.6160

## 4 145.6958 751.6397 534.0198 205.0687 145.6958

## 5 133.8023 939.9681 667.8221 188.3284 133.8023

## 6 118.9354 1107.3712 786.7574 167.4031 118.9354

dim(cum.prod)

## [1] 300 13

The data frame that is returned has all the original columns in vol, plus
others. In these columns, v stands for (standardised) volume, cv (standardised)
cumulative volume, rv stands for (standardised) volume production rate, and Bg

and CH4 for biogas and methane. So cvCH4 contains standardised cumulative
CH4 production. It is probably easier to understand the data in the output
graphically. Here we’ll use the qplot function from the ggplot2 package to
plot it.

library(ggplot2)

qplot(x = days, y = cvCH4, data = cum.prod, xlab = "Time (d)",

ylab = "Cumulative methane production (mL)", color = id,

geom = "line")

## Warning: ‘qplot()‘ was deprecated in ggplot2 3.4.0.

## This warning is displayed once every 8 hours.

## Call ‘lifecycle::last lifecycle warnings()‘ to see where this warning

was

## generated.
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3.2 Other data structures

As of biogas version 1.5.0, the ”long” data structures described above is not the
only option. In addition, ”wide” and combined ”long” structures are possible.
We can compare the three possible approaches using the same dataset.

Let’s load data on biogas production from three bottles with wastewater
sludge.

data("s3voll")

data("s3compl")

data("s3volw")

data("s3compw")

data("s3lcombo")

The ”long” structure described above looks like this:

s3voll

## id time.d vol.ml cvol.ml

## 1 D 0.9438 103 103

## 2 E 0.9451 106 106

## 3 F 0.9472 107 107

## 4 D 2.9060 192 295

## 5 E 2.9090 181 287

## 6 F 2.9100 203 310

## 7 D 5.8860 141 436
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## 8 E 5.8880 133 420

## 9 F 5.8900 140 450

## 10 D 10.0000 112 548

## 11 E 10.0000 111 531

## 12 F 10.0100 110 560

## 13 D 23.1000 200 748

## 14 E 23.1000 190 721

## 15 F 23.1000 200 760

## 16 D 34.0100 109 857

## 17 E 34.0100 110 831

## 18 F 34.0100 112 872

## 19 D 57.8400 146 1003

## 20 E 57.8400 136 967

## 21 F 57.8400 138 1010

s3compl

## id time.d xCH4

## 1 D 2.906 0.6983

## 2 E 2.909 0.6817

## 3 F 2.910 0.6869

## 4 D 10.000 0.6646

## 5 E 10.000 0.6644

## 6 F 10.010 0.6632

## 7 D 23.100 0.6946

## 8 E 23.100 0.6871

## 9 F 23.100 0.6829

## 10 D 34.010 0.6626

## 11 E 34.010 0.6556

## 12 F 34.010 0.6527

## 13 D 57.840 0.6651

## 14 E 57.840 0.6600

The ”wide” format contains (mostly) the same data, but there are separate
columns for each bottle.

s3volw

## time.d D E F

## 1 0.9438 103 106 107

## 2 2.9060 192 181 203

## 3 34.0100 109 110 112

## 4 5.8860 141 133 140

## 5 10.0000 112 111 110

## 6 23.1000 200 190 200

## 7 57.8400 146 136 138
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s3compw

## time.d D E F

## 1 2.906 0.6983 0.6817 0.6869

## 2 34.010 0.6626 0.6556 0.6527

## 3 10.000 0.6646 0.6644 0.6632

## 4 23.100 0.6946 0.6871 0.6829

## 5 57.840 0.6651 0.6600 NA

Note the missing composition value in s3compw. With the ”long” structure,
a row was simply omitted. Both approaches will result in the same output
though. With the ”wide” approach all bottles must be measured at the same
times.

Finally, in the combined approach both volume and composition are in the
same ”long” data frame.

s3lcombo

## id time.d vol.ml xCH4

## 1 D 0.9438 103 NA

## 2 E 0.9451 106 NA

## 3 F 0.9472 107 NA

## 4 D 2.9060 192 0.6983

## 5 E 2.9090 181 0.6817

## 6 F 2.9100 203 0.6869

## 7 D 5.8860 141 0.6800

## 8 E 5.8880 133 0.6800

## 9 F 5.8900 140 0.6800

## 10 D 10.0000 112 0.6646

## 11 E 10.0000 111 0.6644

## 12 F 10.0100 110 0.6632

## 13 D 23.1000 200 0.6946

## 14 E 23.1000 190 0.6871

## 15 F 23.1000 200 0.6829

## 16 D 34.0100 109 0.6626

## 17 E 34.0100 110 0.6556

## 18 F 34.0100 112 0.6527

## 19 D 57.8400 146 0.6651

## 20 E 57.8400 136 0.6600

## 21 F 57.8400 138 NA

Each of these structures can be used by cumBg by changing the comp argu-
ment.

cpl <- cumBg(s3lcombo, comp = s3compl, temp = 25, pres = 1,

id.name = ’id’, time.name = ’time.d’,
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dat.name = ’vol.ml’, comp.name = ’xCH4’,

extrap = TRUE)

## Biogas composition is interpolated.

## Working with volume data, applying volumetric method.

## Using a standard pressure of 1 atm and standard temperature of 0

C for standardizing volume.

cpw <- cumBg(s3volw, comp = s3compw, temp = 25, pres = 1,

time.name = ’time.d’,

data.struct = ’wide’,

dat.name = ’D’, comp.name = ’D’,

extrap = TRUE)

## Biogas composition is interpolated.

## Working with volume data, applying volumetric method.

## Using a standard pressure of 1 atm and standard temperature of 0

C for standardizing volume.

cpc <- cumBg(s3lcombo, temp = 25, pres = 1,

id.name = ’id’, time.name = ’time.d’,

data.struct = ’longcombo’,

dat.name = ’vol.ml’, comp.name = ’xCH4’,

extrap = TRUE)

## Biogas composition is interpolated.

## Working with volume data, applying volumetric method.

## Using a standard pressure of 1 atm and standard temperature of 0

C for standardizing volume.

Output is nearly identical here. The small differences result from the use of
unique times for each bottle in the long formats.

head(cpl)

## id time.d vol.ml xCH4 temperature pressure vBg vCH4

## 1 D 0.0000 NA NA NA NA 0.00000 0.00000

## 2 D 0.9438 103 0.6983000 25 1 91.40334 63.82696

## 3 D 2.9060 192 0.6983000 25 1 170.38293 118.97840

## 4 D 5.8860 141 0.6841435 25 1 125.12497 85.60344

## 5 D 10.0000 112 0.6646000 25 1 99.39004 66.05462

## 6 D 23.1000 200 0.6946000 25 1 177.48222 123.27915

## cvBg cvCH4 rvBg rvCH4

## 1 0.00000 0.00000 NA NA

## 2 91.40334 63.82696 96.84609 67.627628

## 3 261.78628 182.80536 86.83260 60.635206

## 4 386.91124 268.40879 41.98824 28.725985
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## 5 486.30129 334.46342 24.15898 16.056058

## 6 663.78351 457.74257 13.54826 9.410622

head(cpw)

## id time.d vol xCH4 temperature pressure vBg vCH4

## 1 D 0.0000 NA NA NA NA 0.00000 0.00000

## 2 D 0.9438 103 0.6983000 25 1 91.40334 63.82696

## 3 D 2.9060 192 0.6983000 25 1 170.38293 118.97840

## 4 D 5.8860 141 0.6841435 25 1 125.12497 85.60344

## 5 D 10.0000 112 0.6646000 25 1 99.39004 66.05462

## 6 D 23.1000 200 0.6946000 25 1 177.48222 123.27915

## cvBg cvCH4 rvBg rvCH4

## 1 0.00000 0.00000 NA NA

## 2 91.40334 63.82696 96.84609 67.627628

## 3 261.78628 182.80536 86.83260 60.635206

## 4 386.91124 268.40879 41.98824 28.725985

## 5 486.30129 334.46342 24.15898 16.056058

## 6 663.78351 457.74257 13.54826 9.410622

head(cpc)

## id time.d vol.ml xCH4 temperature pressure vBg vCH4

## 1 D 0.0000 NA NA NA NA 0.00000 0.00000

## 2 D 0.9438 103 0.6983 25 1 91.40334 63.82696

## 3 D 2.9060 192 0.6983 25 1 170.38293 118.97840

## 4 D 5.8860 141 0.6800 25 1 125.12497 85.08498

## 5 D 10.0000 112 0.6646 25 1 99.39004 66.05462

## 6 D 23.1000 200 0.6946 25 1 177.48222 123.27915

## cvBg cvCH4 rvBg rvCH4

## 1 0.00000 0.00000 NA NA

## 2 91.40334 63.82696 96.84609 67.627628

## 3 261.78628 182.80536 86.83260 60.635206

## 4 386.91124 267.89033 41.98824 28.552006

## 5 486.30129 333.94496 24.15898 16.056058

## 6 663.78351 457.22411 13.54826 9.410622

3.3 Calculating BMP from cumulative production

To calculate BMP we need to substract the contribution of the inoculum to
CH4 production for each bottle, normalise by substrate volatile solids (VS),
and calculate means and standard deviations. This is done by the summBg()

function using the results from cumBg(), along with the setup data frame. The
arguments for summBg() are:
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args(summBg)

## function (vol, setup, id.name = "id", time.name = "time", descrip.name = "descrip",

## inoc.name = NULL, inoc.m.name = NULL, norm.name = NULL, norm.se.name = NULL,

## vol.name = "cvCH4", imethod = "linear", extrap = FALSE, when = 30,

## when.min = 0, rate.crit = "net", show.obs = FALSE, show.rates = FALSE,

## show.more = FALSE, sort = TRUE, set.name = "set", quiet = FALSE)

## NULL

This is a flexible function, and is useful for more than just calculating BMP.
For example, to simply determine the mean cumulative CH4 production for each
substrate at 30 d, we could use:

summBg(cum.prod, setup = setup, time.name = "days", descrip.name = "descrip",

when = 30)

## Response variable (volume) is cum.prod$cvCH4.

## Inoculum contribution not subtracted.

## No normalization by substrate mass.

## descrip days mean se sd n

## 1 A 30 1608.362 22.06860 38.22393 3

## 2 B 30 2078.248 26.48733 45.87740 3

## 3 cellu 30 3686.127 33.35392 57.77069 3

## 4 inoc 30 1575.326 19.18801 33.23460 3

Here, the response variable was cvCH4 (cumulative CH4 production, the
default–but vol.name could be used to specify any column). The argument
descrip.name is the name of the column in setup that gives a description of
the bottle. Here it is used for grouping bottles. We could have used the default
value in this call.

To calculate BMP, we need to provide information on where inoculum and
substrate VS masses can be found. To subtract the inoculum contribution, we
need to provide a value for the inoc.name argument, which should be the value
in the setup$descrip.name column that indicates that the bottle contained
inoculum only. In our setup data frame, the value is "inoc". Inoculum mass
is given in the minoc column, and we need to provide this information using
the inoc.m.name argument (although here also, we could use the default value).
The last step is normalisation of cumulative CH4 production, based on substrate
VS mass. This mass must be stored in the setup data frame and the name of
column is given using the norm.name argument. Here, it is "mvs.sub". We
will evaluate CH4 production at at time selection by the function when relative
methane production drops below 1% of cumulative (after subtracting inoculum
production) per day for at least 3 days (when argument).
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BMP <- summBg(cum.prod, setup = setup, time.name = "days", inoc.name = "inoc",

inoc.m.name = "minoc", norm.name = "mvs.sub", when = "1p3d")

## Response variable (volume) is cum.prod$cvCH4.

## Inoculum contribution subtracted based on setup$minoc.

## Response normalized by setup$mvs.sub.

BMP

## descrip days mean se sd n rate.crit.met

## 1 A 34.81 149.6533 4.146875 7.182599 3 TRUE

## 2 B 42.00 128.9929 6.916043 11.978937 3 TRUE

## 3 cellu 20.90 372.8132 6.598490 11.428920 3 TRUE

Note the messages–because any response variable could be used and subtrac-
tion of an inoculum contribution and normalisation are optional, it is important
to check these messages and be sure that summBg() did what you think it did.
Additionally, it is good practice to view and save results from individual bot-
tles, and check the apparent contribution of the inoculum to each bottle’s biogas
production. This additional information can be returned by setting show.obs

= TRUE.

3.4 Predicting methane production

The function predBg() provides a flexible approach for predicting methane po-
tential, and in our example can be used to quickly check our experimental
values. Predictions can be based on an empirical chemical formula, chemical
oxygen demand (COD), or macromolecule composition.

Our BMP test included cellulose as a control. Using its chemical formula
(C6H10O5), we can calculate theoretical methane potential to compare to our
measurements4.

predBg("C6H10O5")

## [1] 413.7274

So we see that theoretical methane potential of cellulose is 414 mL g−1.
Comparing expected cellulose BMP to measurements is an important way to
check BMP experiments. How does this compare to our measurements?

BMP

## descrip days mean se sd n rate.crit.met

## 1 A 34.81 149.6533 4.146875 7.182599 3 TRUE

## 2 B 42.00 128.9929 6.916043 11.978937 3 TRUE

## 3 cellu 20.90 372.8132 6.598490 11.428920 3 TRUE

4In this case, the calculation is based on Eq. (13.5) in Rittmann and McCarty [3]. When
the input is COD, it is based on the COD of CH4, as described in [3].
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The measured value is a bit lower, which is reasonable. It is common to
assume that 5− 10% of substrate is used to produce microbial biomass, and so
not converted to biogas. We can incorporate this assumption into our prediction
using the fs argument, which is the fraction of substrate electrons used for cell
synthesis.

predBg("C6H10O5", fs = 0.1)

## [1] 372.3547

Measured and predicted values are close after making this correction.
We don’t have empirical formulas for substrates A and B, but we can predict

theoretical potential by using the COD. Initial COD masses are in the setup

data frame, and from these we can calculate COD:VS ratios for substrates A
and B of 1.439 and 1.561 g g−1. Cellulose has a calculated oxygen demand
(COD′)5 of 1.184 g g−1. Predicted CH4 production per g VS is therefore:

predBg(COD = c(A = 1.439, B = 1.561, cellu = 1.184))

## [1] 502.7638 545.3887 413.6709

Measured BMP was substantially lower for substrates A and B, indicating
very low degradability. In fact, we could use predBg() to estimate effective
degradability (ignoring synthesis of microbial biomass).

BMP$mean/predBg(COD = c(A = 1.439, B = 1.561, cellu = 1.184))

## [1] 0.2976613 0.2365155 0.9012315

We see that substrates A and B had low degradability, while degradability of
cellulose was high. Both substrates A and B were digestate from digesters, i.e.,
they had already been anaerobically digested once before these measurements,
and so we should expect low degradability.

4 Continuing with the biogas package

The three functions demonstrated in this document can be used in other ways
not described here. For example, cumBg() can be used with measurements of
bottle mass over time to determine biogas production[1], summBg() can return
results for multiple times, and predBg() function can predict microbial nitrogen
requirements and biogas composition. More details can be found in the help
files for these functions, or, for predBg, in the predBg vignette. The low-level
functions are straight-forward to use, and details can also be found in the help
files.

5Oxygen demand can be calculated with the calcCOD function.
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To receive updates on the biogas package, you can subscribe to a mailing
list by sending an e-mail to either of us. And please send us a message if you
find a bug or have a suggestion for improving an existing function or adding a
new one.
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