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Abstract

This manuscript introduces the bdsm package, which enables Bayesian model averaging
for dynamic panels with weakly exogenous regressors — a methodology developed by Moral-
Benito (2016). The package allows researchers to simultaneously address model uncertainty
and reverse causality. The manuscript includes a hands-on tutorial accessible to users unfa-
miliar with this approach. In addition to calculating the model space and providing key BMA
statistics, the package offers flexible options for specifying model priors, or including a dilu-
tion prior that accounts for multicollinearity. It also provides graphical tools for visualizing
prior and posterior model probabilities, as well as functions for plotting histograms and kernel
densities of the estimated coefficients. Furthermore, the package enables researchers to com-
pute jointness measures and perform Bayesian model selection to examine the most probable
models based on posterior model probabilities.
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1 Introduction

Since the seminal works of Leamer (1978); Leamer & Leonard (1981); Leamer (1983, 1985),
there has been an increased focus on reporting the fragility of regression estimates. Leamer
(1983) proposed Extreme Bounds Analysis (EBA) as a remedy for addressing the sensitivity of
empirical research findings1. In economics, growth regressions (Barro, 1991) became a central
focus of research on economic growth during the 1990s. However, the credibility of these results
was challenged when Levine & Renelt (1992) applied EBA to cross-country economic growth
data. The authors found that investment as a share of GDP was the only variable robust
to changes in model specification. In response, EBA was criticized for being too stringent2,
leading to the proposal of alternative approaches (Sala-I-Martin, 1997).

Bayesian model averaging (BMA) emerged as a preferred method during a period when
studies of economic growth advanced alongside methodological innovations (Fernández et al.,
2001a,b; Sala-I-Martin et al., 2004; Eicher et al., 2007; Ley & Steel, 2012; Moser & Hofmarcher,
2014; Fernández et al., 2001a,b; Arin et al., 2019). As a result, BMA became a widely used
technique for assessing the robustness of regressors in economics3 (e.g., Liu & Maheu (2009);
Ductor & Leiva-Leon (2016); Figini & Giudici (2017); Beck (2022); D’Andrea (2022); Horvath
et al. (2024)), as well as in other fields (e.g., Sloughter et al. (2013); Baran & Möller (2015);
Aller et al. (2021); Guliyev (2024); Payne et al. (2024); Beck et al. (2025)). Moreover, the
growing interest in BMA was fueled by the availability of R packages such as BMA (Raftery
et al., 2005), BAS (Clyde et al., 2011), and BMS (Feldkircher & Zeugner, 2015), along with the
gretl BMA package developed by Błażejowski & Kwiatkowski (2015).

The primary issue with the Bayesian model averaging in the aforementioned studies was
its reliance on the assumption of exogenous regressors. In many contexts, particularly in
economics, this premise is unsuitable. Instead, the assumption of endogenous variables within a
simultaneous equations framework is more fitting. Consequently, a new line of research relaxed
the assumption of exogenous regressors Lenkoski et al. (2014); León-González & Montolio
(2015); Mirestean & Tsangarides (2016); Moral-Benito (2016); Chen et al. (2018). However,
these methods have not found their way into mainstream research. The code to implement
them is only available upon request from the authors and is provided exclusively for MATLAB

and GAUSS.
The bdsm package was developed to address this gap. It offers tools for performing Bayesian

model averaging on dynamic panels with weakly exogenous regressors. As a result, it enables
researchers to address both model uncertainty and reverse causality. The core of the code is
based on the methodological approach developed by Moral-Benito (2012, 2013, 2016). While
the main aspects of the method are described in the manuscript, interested readers should
refer to the original articles for further details. In addition to the key features developed by
Moral-Benito (2016), the bdsm package offers a wide range of additional functionalities. The
package enables users to employ flexible model prior options, along with a dilution prior, which
helps account for multicollinearity. The bdsm package provides users with graphical options
for plotting prior and posterior model probabilities across model sizes and the model space.
Additionally, users can utilize Bayesian model selection to thoroughly examine the best models
based on posterior model probability. The package calculates jointness measures developed
by Doppelhofer & Weeks (2009); Ley & Steel (2007); Hofmarcher et al. (2018). Finally, it
offers users the option to plot histograms or kernel densities of the estimated coefficients for
the examined regressors.

The remainder of the manuscript is structured as follows. Section 2 describes the dynamic
panel setup considered by Moral-Benito (2013) and outlines the Bayesian model averaging
approach used in the package. Data preparation is detailed in Section 3, while Section 4
addresses the estimation of the model space. Section 5 provides an overview of the bdsm

functions related to performing Bayesian model averaging, calculating jointness measures, and
presenting the estimation results. The details of the model prior choices are described in
Section 6. Finally, Section 7 offers some concluding remarks.

1Hlavac (2016) developed an R package for EBA.
2Granger & Uhlig (1990) proposed a less restrictive variant of EBA.
3For a detailed review of BMA applications in economics, see Moral-Benito (2015); Steel (2020).
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2 Model setup and Bayesian model averaging

This section outlines the model setup, describes the approach to Bayesian model averaging
implemented in the package, summarizes the main BMA statistics, and discusses model priors
and jointness measures.

2.1 Model setup

Moral-Benito (2016) considers the following model specification:

yit = αyit−1 + βxit + ηi + ζt + vit (1)

where yit is the dependent variable, i (= 1, ..., N) indexes entity (ex. country), t (= 1, ..., T )
indexes time, xit is a matrix of growth determinants, β is a parameter vector, ηi is an entity
specific fixed effect, ζt is a period-specific shock and vit is a shock to the dependent variable. To
address the issue of reverse causality the model is build on the assumption of weak exogeneity,
that can be formalized as

E(vi,t|y
t−1
t , x

t
i, ηi) = 0 (2)

where yt−1
t = (yi,0, ..., yi,t−1)′ and xt

i = (xi,0, ..., xi,t)
′. Accordingly, weak exogeneity implies

that the current values of the regressors, lagged dependent variable, and fixed effects are
uncorrelated with the current shocks, while they are all allowed to be correlated with each other
at the same time. On the assumption of weakly exogenous regressors, Moral-Benito (2013)
augmented equation (1) with additional reduced-form equations capturing the unrestricted
feedback process:

xit = γt0yi0 + ... + γtt−1yit−1 + Λt1xi1 + ... + Λtt−1xit−1 + ctηi + ϑit (3)

where t = 2, . . . , T ; ct is the k × 1 vector of parameters. For h < t, γth is a k × 1 vector
(y1

th, . . . , yk
th)′ h = 0, . . . , T − 1; Λth is a k × k matrix of parameters, and ϑit is a k × 1 of

prediction errors. The initial observations are defined with

yi0 = c0ηi + υit (4)

xi1 = γ10yi0 + c1ηi + ϑit (5)

where c0 is a scalar, c1 and γ10 are k × 1 vectors and ηi are the individual effects. The mean
vector and the covariance matrix of the joint distribution of the initial observations and the
individual effects are unrestricted.4 For the model setup given in equations (1) and (3-5),
Moral-Benito (2013) derived the log-likelihood function:

log f(data|θ) ∝
N

2
log det(B−1

DΣD
′
B

′−1) −
1

2

N∑

i=1

{R
′
i(B

−1
DΣD

′
B

′−1)−1
Ri} (6)

where θ denotes parameters to be estimated, Ri = (yio, x′
i1, yi1, . . . , x′

iT , yiT )′ are vectors of
observed variables, and Σ = diag[σ2

η, σ2
υ0

, Σϑ1
, σ2

υ1
, ..., ΣϑT

, σ2
υT

] is the block-diagonal variance-
covariance matrix. Matrix B is given by:

B =




1 0 0 0 0 . . . 0 0 0
−γ10 Ik 0 0 0 . . . 0 0 0
−α −β′ 1 0 0 . . . 0 0 0

−γ20 −Λ21 −γ21 Ik 0 . . . 0 0 0

0 0 −α −β′ 1 . . .
...

...
...

...
...

...
...

...
. . . 0 0 0

−γT 0 −ΛT 1 −γT 1 −ΛT 2 −γT 2 . . . −γT T −1 Ik 0
0 0 0 0 0 . . . −α −β′ 1




(7)

and matrix D is given by:

D =
[
(c0 c′

1 1 c′
2 1 . . . c′

T 1)′ IT (k+1)+1

]
. (8)

The model setup in equations (1) and (3-5) requires that in addition to the parameters of
interest α and β, the parameters γij and Λkm need to be estimated. To make the optimization

4The method outperforms the Arellano–Bond estimator (Moral-Benito et al., 2019).
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of likelihood computationally feasible, Moral-Benito (2013) developed Simultaneous Equations
Model (SEM) setup where the parameters of non-central interest are incorporated in the
variance-covariance matrix. In the SEM setup, the model is defined by 1 + (T − 1)k + T

equations:





ηi = ϕiyi0 + x′
i1ϕ1 + ϵi

xit = πt0yi0 + πt1xi1 + πw
t xi1 + ξit, t = 2, ..., T

yit = αyit−1 + x′
itβ + ϕ0yi0 + x′

i1ϕ1 + w′
iδ + ϵi + vit, t = 1, ..., T

(9)

This setup can be rewritten in a matrix form:

BRi = Czi + Ui, (10)

where:
zi = [yi0, x

′
i1, w

′
i]

′ (11)

is the vector of strictly exogenous variables,

Ri = [yi1, yi2, ..., yiT , x
′
i2, x

′
i3, ..., x

′
iT ]′, (12)

Ui = [ϵi + vi1, ϵi + vi2, ..., ϵi + viT , ξ
′
i2, ξ

′
i3, ..., ξ

′
iT ]′ (13)

and matrices B and C contain coefficients α, β, ϕ0, ϕ1. Since these matrices are not connected
to the error, we simply note that they are defined in such a way that the equation (10) is
equivalent to the SEM setup. The main difference of the SEM setup is that equations for xit

now depend only on yi0 and xi1 and not on yis and xis for other periods s.
Following Moral-Benito (2013), we can then define the likelihood function as:

L ∝ −
N

2
log det Ω(θ) −

1

2
tr{Ω(θ)−1(R − ZΠ(θ))′(R − ZΠ(θ))} (14)

where R and Z are matrices containing vectors Ri and zi respectively and:

Π(θ) = B
−1

C (15)

U
∗
i (θ) = B

−1
Ui (16)

Ω(θ) = V ar(U∗
i ) = B

−1 · V ar(Ui) · B
′−1 = B

−1ΣB
′−1 (17)

It is possible to find analytical solution for MLE for some of the parameters. Then the formula
for the likelihood function can be simplified to:

L(θ) ∝ −
N

2
log det Σ11 −

1

2
tr{Σ−1

11 U
′
1U1} −

N

2
log det(

H

N
) (18)

where U1 is a matrix of errors connected only to dependent variables, Σ11 is a part of
the Σ matrix:

Σ = var(Ui) = var

(
Ui1

Ui2

)
=

[
Σ11 Σ12

Σ21 Σ22

]
. (19)

and H = (R2 + U1F12)′Q(R2 + U1F12) with R2 being a matrix of regressor vectors
[x′

i2, x′
i3, ..., x′

iT ] and F12 = −Σ−1
11 Σ12.

2.2 Bayesian model averaging

Given the likelihood function in (18), henceforth denoted as L(data|θi, Mi) for a specific
model i, it is possible to utilize Bayesian model averaging5 (BMA). To achieve that, we
first estimate all possible variants of equation:

Y = f(X, θ, v) (20)

where Y is a vector of dependent variable, X is a matrix of potential determinants,
θ is a parameter vector, and v is a stochastic term. All the variants include a lagged
dependent variable; therefore, with K regressors, there are 2K possible models that

5For an introduction to BMA see Raftery (1995); Raftery et al. (1997); Kass & Raftery (1995); Doppelhofer &
Weeks (2009); Amini & Parmeter (2011); Beck (2017); Fragoso et al. (2018).
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can be estimated. Each of these models can be assigned a posterior model probability;
however, the marginal (integrated) likelihood, L(data|Mi), must first be computed.
Moral-Benito (2012) utilizes approach of developed by Raftery (1995) and Sala-I-Martin
et al. (2004) based on the Bayesian information criterion (BIC) approximation.

The Bayes factor for models Mi and Mi, Bij = L(data|Mi)
L(data|Mj) , can be approximated

using Schwartz criterion:

S = log L(data | θ̂i, Mi) − log L(data|θ̂j , Mj) −
ki − kj

2
log(N) (21)

where L(data|θ̂i, Mi) and L(data|θ̂j , Mj) are the maximum likelihood values for models
i and j, respectively. The terms ki and kj denote the number of regressors in models i
and j. Bayesian information criterion is given by:

BIC = −2S = −2 log Bij . (22)

Given null model M0

Bij =
L(y|Mi)

L(y|Mj)
=

L(y|Mi)
L(y|M0)

L(y|Mj)
L(y|M0)

=
Bi0

Bj0
=

B0j

B0i

(23)

and
2 log Bij = 2[log B0j − log B0i] = BICj − BICi. (24)

The posterior model probability (PMP) of model j given the data is

P(Mj |y) =
L(data|Mj)P(Mj)

∑2K

i=1 L(data|Mi)P(Mi)
(25)

where P(Mj) denotes prior model probability. In other words, the PMP represents the
share of model j in the total posterior probability mass. Combining, equations (22-25)
we get:

P(Mj |y) =
L(data|Mj)P(Mj)

∑2K

i=1
L(data|Mi)P(Mi)

=

L(data|Mj )

L(data|M0)
L(data|M0)P(Mj)

∑2K

i=1

L(data|Mi)
L(data|M0)

L(data|M0)P(Mi)

=
Bj0L(data|M0)P(Mj)

∑2K

i=1
Bi0L(data|M0)P(Mi)

=
L(data|M0)Bj0P(Mj)

L(data|M0)
∑2K

i=1
Bi0P(Mi)

=
Bj0P(Mj)

∑2K

i=1
Bi0P(Mi)

(26)

Finally, using the result that

Bj0 = exp (−
1

2
BICj) (27)

we can calculate posterior model probability as

P(Mj |data) =
exp (− 1

2 BICj)P(Mj)
∑2K

i=1 exp (− 1
2 BICi)P(Mi)

. (28)

2.3 BMA statistics

With PMPs, we can calculate useful BMA statistics. Let’s denote by πk the random
variable which is equal to one if the kth regressor should be considered as the deter-
minant of the dependent variable. The posterior inclusion probability (PIP) for the
regressor is given by:

P(πk = 1|data) =

2K∑

j=1

1(kth regressor is in model Mj) · P(Mj |data) (29)
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where the indicator function 1 is equal to one if the regressor is part of the model Mj

and zero otherwise. In other words, the PIP tells us how likely it is that the given
regressor has impact on the variable of interest.

Another interesting statistic is the posterior mean (PM) of a given parameter β.
Let’s denote by πβ the random variable which is equal to one if the given parameter is
present in the model, and zero otherwise. The posterior mean of β is given by:

E(β|data) =

2K∑

j=1

β̂j · P(Mj , πβ = 1|data) (30)

where β̂j is the value of the coefficient β in model j. It tells us what is the mean (or
expected) value for the parameter taking into account all considered models. Note that

if β is not present in the given model j we can assign any value to β̂j , because the
probability P(Mj , πβ = 1|data) wil be zero anyway.

The posterior variance of the parameter β is equal to:

V ar(β|data) =
2K∑

j=1

V ar(βj |data, Mj) · P(Mj , πβ = 1|data)

+

2K∑

j=1

[
β̂j − E(β|data)

]2

· P(Mj , πβ = 1|data)

(31)

where V ar(βj |data, Mj) denotes the conditional variance of the coefficient β in model
Mj (in other words assuming that the model Mj is the true model). Posterior standard
deviation (PSD) of β is then defined as the square root of the variance:

SD(β|data) =
√

V ar(β|data) (32)

Alternatively, one might be interested in the values of the mean and variance on the
condition of inclusion of a given parameter, i.e. assuming that it is definitely a part of
the model. Note that this is usually determined by the presence of a related regressor.
The conditional posterior mean (PMcon) for a parameter β is given by:

E(β|πβ = 1, data) =
E(β|data)

P(πβ = 1|data)
. (33)

Similarly, the conditional variance is:

V ar(β|πβ = 1, data) =
V ar(β|data) + E(β|data)2

P(πβ = 1|data)
− E(β|πβ = 1, data)2 (34)

and so the conditional standard deviation (PSDcon) is:

SD(β|πk = 1, data) =
√

V ar(β|πk = 1, data) (35)

The BMA statistics allow the assessment of the robustness of the examined regres-
sors. Raftery (1995), classifies a variable as weak, positive, strong, and very strong
when the posterior inclusion probability (PIP) is between 0.5 and 0.75, between 0.75
and 0.95, between 0.95 and 0.99, and above 0.99, respectively. Raftery (1995) also
refers to the variable as robust when the absolute value of the ratio of posterior mean
(PM) to posterior standard deviation (PSD) is above 1, indicating that the regressor
improves the power of the regression. Masanjala & Papageorgiou (2008) propose a
more stringent criterion, where they require the statistic to be higher than 1.3, while
Sala-I-Martin et al. (2004) argue for 2, corresponding to 90% and 95%, respectively.
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2.4 Model priors and jointness

To perform BMA one needs to specify prior model probability6. The package offers
two main options. The first is binomial model prior (Sala-I-Martin et al., 2004):

P(Mj) = (
EMS

K
)kj (1 −

EMS

K
)K−kj (36)

where EMS is the expected model size and kj is a number of regressors in model j. If
EMS = K

2 , the binomial model prior simplifies to a uniform model prior with P(Mj) =
1

2K for every j, meaning that all models are assumed to have equal probabilities. The
second is binomial-beta model prior Ley & Steel (2009) given by:

P(Mj) ∝ Γ(1 + kj) · Γ(
K − EMS

EMS
+ K − kj). (37)

where Γ is the gamma function. In the context of the binomial-beta prior EMS = K
2

corresponds to equal probabilities on model sizes.
In order to account for potential multicolinearity between regressors one can use

dilution prior introduced by George (2010). The dilution prior involves augmenting
the model prior (binomial or binomial-beta) with a function that accounts for multi-
collinearity:

PD(Mj) ∝ P(Mj)|CORj |ω (38)

where PD(Mj) is the diluted model prior, |CORj | is the determinant of the corre-
lation matrix of regressors in model j, and ω is the dilution parameter. The lower the
correlation between regressors, the closer |CORj | is to one, resulting in a smaller degree
of dilution.

To determine whether regressors are substitutes or complements, various authors
have developed jointness measures7. Assuming two different covariates a and b, let
P(a ∩ b) be the posterior probability of the inclusion of both variables, P(a ∩ b) the
posterior probability of the exclusion of both variables, P(a ∩ b) and P(a ∩ b) denote
the posterior probability of including each variable separately. The first measure of
jointness is simply P(a ∩ b). However, this measure ignores much of the information
about the relationships between the regressors. Doppelhofer & Weeks (2009) measure
is defined as:

JDW = log

[
P(a ∩ b) · P(a ∩ b)

P(a ∩ b) · P(a ∩ b)

]
. (39)

If JDW < −2, −2 < JDW < −1, −1 < JDW < 1, 1 < JDW < 2, and JDW > 2,
the authors classify the regressors as strong substitutes, significant substitutes, not
significantly related, significant complements, and strong complements, respectively.
Jointness measure proposed by Ley & Steel (2007) is given by:

JLS =
P(a ∩ b)

P(a ∩ b) + P(a ∩ b)
. (40)

The measure takes values in the range [0, ∞), with higher values indicating a stronger
complementary relationship. Finally, Hofmarcher et al. (2018) measure of jointness is:

JHCGHM =
(P(a ∩ b) + ρ) · P(a ∩ b) + ρ) − (P(a ∩ b) + ρ) · P(a ∩ b) + ρ)

(P(a ∩ b) + ρ) · P(a ∩ b) + ρ) + (P(a ∩ b) + ρ) · P(a ∩ b) + ρ) + ρ
. (41)

Hofmarcher et al. (2018) advocate the use of the Jeffreys (1946) prior, which results
in ρ = 1

2 . The measure takes values from -1 to 1, where values close to -1 indicate
substitutes, and those close to 1 complements.

6For a thorough discussion of model priors see Sala-I-Martin et al. (2004); Ley & Steel (2009); George (2010);
Eicher et al. (2011).

7To learn more about jointness measures, we recommend reading Doppelhofer & Weeks (2009); Ley & Steel
(2007); Hofmarcher et al. (2018) in that order.
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3 Data preparation

This section demonstrates how to prepare the data for estimation. The first step in-
volves installing the package and subsequently loading it into the R session.

> install.packages("bdsm")

> library(bdsm)

Throughout the manuscript, we use the data from Moral-Benito (2016) on the de-
terminants of economic growth. The package includes the data along with a detailed
description of all variables.

> economic_growth[1:12,1:10]

# A tibble: 12 × 10

year country gdp ish sed pgrw pop ipr opem gsh

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1960 1 8.25 NA NA NA NA NA NA NA

2 1970 1 8.37 0.122 0.139 0.0235 10.9 61.1 1.08 0.191

3 1980 1 8.54 0.207 0.141 0.0300 13.9 92.3 1.06 0.203

4 1990 1 8.63 0.203 0.28 0.0303 18.9 100. 0.898 0.232

5 2000 1 8.66 0.115 0.774 0.0215 25.3 81.2 0.636 0.219

6 1960 2 8.97 NA NA NA NA NA NA NA

7 1970 2 9.19 0.164 0.604 0.0152 20.6 103. 0.0823 0.184

8 1980 2 9.30 0.185 0.792 0.0167 24.0 112. 0.0786 0.164

9 1990 2 9.01 0.145 1.09 0.0154 28.4 73.8 0.104 0.174

10 2000 2 9.34 0.148 1.57 0.0130 33.0 82.6 0.180 0.174

11 1960 3 9.29 NA NA NA NA NA NA NA

12 1970 3 9.60 0.258 2.60 0.0219 10.3 87.4 0.215 0.143

Since it is common for researchers to store their data in an alternative format:

> original_economic_growth[1:12,1:10]

# A tibble: 12 × 10

country year gdp lag_gdp ish sed pgrw pop ipr opem

<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 1 1970 8.37 8.25 0.122 0.139 0.0235 10.9 61.1 1.08

2 1 1980 8.54 8.37 0.207 0.141 0.0300 13.9 92.3 1.06

3 1 1990 8.63 8.54 0.203 0.28 0.0303 18.9 100. 0.898

4 1 2000 8.66 8.63 0.115 0.774 0.0215 25.3 81.2 0.636

5 2 1970 9.19 8.97 0.164 0.604 0.0152 20.6 103. 0.0823

6 2 1980 9.30 9.19 0.185 0.792 0.0167 24.0 112. 0.0786

7 2 1990 9.01 9.30 0.145 1.09 0.0154 28.4 73.8 0.104

8 2 2000 9.34 9.01 0.148 1.57 0.0130 33.0 82.6 0.180

9 3 1970 9.60 9.29 0.258 2.60 0.0219 10.3 87.4 0.215

10 3 1980 9.77 9.60 0.236 2.94 0.0143 12.7 119. 0.233

11 3 1990 9.92 9.77 0.238 2.90 0.0142 14.6 106. 0.266

12 3 2000 10.2 9.92 0.234 3 0.0125 16.9 95.6 0.380

where there is an already existing column with the lagged dependent variable, we pro-
vide the join_lagged_col function to transform the data into the desired format. The
user needs to specify the dependent variable column (col), the lagged dependent vari-
able column (col_lagged), the column identifying the cross-sections (entity_col), the
column with the time index (timestamp_col), and the change in the number of time
units from period to period (timestep).

> economic_growth <- join_lagged_col(

+ df = original_economic_growth,

+ col = gdp,
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+ col_lagged = lag_gdp,

+ timestamp_col = year,

+ entity_col = country,

+ timestep = 10

+ )

Once the data is in the correct format, the user can perform further data prepa-
ration using the feature_standardization function. It allows to perform demeaning
(entity/time effects) or scaling (standardization) as needed. Often there are columns
to which the transformation should not be applied. These can be specified with the
excluded_cols. It is also possible to group elements of the data frame with respect
to a given column with the gropu_by_col. Finally, with the scale parameter we can
decide whether we want to apply both demeaning and scaling or just demeaning.

For example, we can first standardize all features:

> data_standardized_features <- feature_standardization(

+ df = economic_growth,

+ excluded_cols = c(country, year, gdp)

+ )

and then apply cross-sectional demeaning (fixed time effects):

> data_prepared <- feature_standardization(

+ df = data_standardized_features,

+ group_by_col = year,

+ excluded_cols = country,

+ scale = FALSE

+ )

Note that the example below is the data preparation scheme which was used in Moral-
Benito (2016). There is no need to apply panel demeaning (entity fixed effects) in this
framework as can be seen in Equation 13.8.

4 Estimation of the model space

To perform a BMA analysis, we need values of the parameters as well as various statis-
tics for each considered model as explained in section 2. We refer to the object that
consolidates both the parameters and the statistics as the model space. The core
function of the package, optim_model_space, is used to estimate the optimal model
space using numerical optimization:

> full_model_space <- optim_model_space(

+ df = data_prepared,

+ dep_var_col = gdp,

+ timestamp_col = year,

+ entity_col = country,

+ init_value = 0.5

+ )

The function returns a list with two named arguments which are explained in the
subsections below. A progress bar is displayed to easily track the ongoing computation.

Since the MLEs for the parameters are found through numerical optimization, more
advanced users can use the control parameter to control the way the optimization is
performed. We refer to the function manual for more details and stats package for
more details.

8In theory the results should be the same with entity fixed effects. However, because we use numerical methods
some discrepancies might occur
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4.1 Model space parameters

The first element of the list contains the estimated MLEs of the parameters for each
considered model. Each column represents a single model, and rows correspond to the
parameters. For example, to display the first 10 parameters for 5 models we can call:

> full_model_space$params[1:10, 1:5]

[,1] [,2] [,3] [,4] [,5]

alpha 1.07363364 1.03344912 1.09574517 1.06485291 1.052220471

phi_0 -0.06454031 -0.05569000 -0.11962603 -0.10712296 -0.063889054

err_var 0.08606937 0.05232421 0.07119496 0.03386629 0.079839641

dep_var_1 0.19790693 0.16634377 0.19955965 0.17079249 0.192242066

dep_var_2 0.17972240 0.18704391 0.18080905 0.18915478 0.179134292

dep_var_3 0.16957836 0.17031073 0.17108302 0.17151302 0.169506131

dep_var_4 0.16571417 0.16983749 0.16787694 0.17307424 0.166100258

beta_ish NA 0.11977476 NA 0.12432446 NA

beta_sed NA NA -0.01749211 -0.01550517 NA

beta_pgrw NA NA NA NA 0.008691847

NA value means that the corresponding parameter is not present in the given model.

4.2 Model space statistics

The second element of the list provides:

• the values of the likelihood function at the estimated MLE (first row),

• the Bayesian information criterion (second row),

• and the standard errors for the parameters describing linear relations, i.e. the beta
parameters from Equation 9, for each model (remaining rows).

> full_model_space$stats[, 1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] -4.051098e+02 -318.60686706 -3.331683e+02 -241.96639826 -3.365332e+02

[2,] 3.741268e-03 0.01176953 9.641166e-03 0.03234636 9.206855e-03

[3,] 8.262068e-02 0.08064768 9.877394e-02 0.09718422 7.893101e-02

[4,] 0.000000e+00 0.02916014 0.000000e+00 0.02968243 0.000000e+00

[5,] 0.000000e+00 0.00000000 6.332605e-02 0.06307532 0.000000e+00

[6,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 3.613016e-02

[7,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[8,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[9,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[10,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[11,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[12,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[13,] 7.252645e-02 0.13234297 1.332476e-01 0.19940063 7.915948e-02

[14,] 0.000000e+00 0.07633770 0.000000e+00 0.07675534 0.000000e+00

[15,] 0.000000e+00 0.00000000 1.019922e-01 0.10854325 0.000000e+00

[16,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 6.201372e-02

[17,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[18,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[19,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[20,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[21,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

[22,] 0.000000e+00 0.00000000 0.000000e+00 0.00000000 0.000000e+00

Again, each column represents a single considered model.
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Two types of standard errors are provided, both derived from the Hessian of the
maximized log-likelihood function. The first type consists of the regular standard errors,
calculated using the inverse of the observed information matrix:

I(θ̂) = −
∂2l(θ̂)

∂θ∂θ′
(42)

where θ̂ are the estimated MLE parameters, I(θ̂) is the information matrix and l(θ̂) =

log L(θ̂) is the natural logarithm of the likelihood function. The variance covariance
matrix is given by:

V ar(θ̂) = I(θ̂)−1, (43)

and the standard errors by

SE(θ̂) =

√
diag(V ar(θ̂)). (44)

where the square root is obviously applied separately to each coordinate of the vector
with diagonal values. The second type are the robust standard errors or heteroscedas-
ticity consistent standard errors. To understand how they work, we first have to rewrite
the equation Equation 18 in a form which will display the contribution of each entity
on the likelihood value. First note that:

L(θ) ∝ −
1

2
tr{Σ−1

11 U ′
1U1} −

N∑

i=1

1

2
log det Σ11 −

1

2
log det(

H

N
) (45)

Now, because of the cyclic property of the trace we can rewrite the first term as:

−
1

2
tr{Σ−1

11 U ′
1U1} = −

1

2
tr{U1Σ−1

11 U ′
1} = −

1

2

N∑

i=1

uiΣ
−1
11 u′

i (46)

where ui is a row vector corresponding to the data relating to the single entity i.
Hence, the entire likelihood function can be rewritten as a sum of contributions from
each entity:

L(θ) ∝

N∑

i=1

−
1

2
(log det Σ11 + log det(

H

N
) + uiΣ

−1
11 u′

i) (47)

From there we can see that the contribution of a single entity i is:

li(θ) ∝ −
1

2
(log det Σ11 + log det(

H

N
) + uiΣ

−1
11 u′

i). (48)

Now if we consider a multivariate function l(θ) of all such contributions (with single

contributions as its coordinates), we can find it’s gradient at the MLE: G(θ̂) = l(θ̂)
∂θ

.
Then the robust variance is:

V arR(θ̂) = I(θ̂)−1 · G′(θ̂)G(θ̂) · I(θ̂)−1 (49)

and the robust standard errors are given by:

SER(θ̂) =

√
diag(V̂R(θ̂)). (50)

where the square root is again applied to each coordinate separately.
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4.3 Parallelization

The optim_model_space function is the most computationally intensive part of the
package. Therefore, the function provides an option for parallel computing. If the
user’s data contains only a few regressors, the sufficient option is

> model_space <- optim_model_space(

+ df = data_prepared,

+ dep_var_col = gdp,

+ timestamp_col = year,

+ entity_col = country,

+ init_value = 0.5

+ )

However, for larger datasets, it is better to take advantage of parallel computing. Then
the numerical optimization used to find MLEs can be computed on separate threads
for each model. To do this, first load the parallel package and set up a cluster.

> library(parallel)

> # Here we try to use all available cores on the system.

> # You might want to lower the number of cores depending on your needs.

> cores <- detectCores()

> cl <- makeCluster(cores)

> setDefaultCluster(cl)

Then the user just needs to provide this cluster to the function:

> model_space <- optim_model_space(

+ df = data_prepared,

+ dep_var_col = gdp,

+ timestamp_col = year,

+ entity_col = country,

+ init_value = 0.5,

+ cl = cl

+ )

4.4 Precomputed model spaces

Even with parallelization, optim_model_space call may be time-consuming. Hence, for
users who want to quickly start practicing using the bdsm, we provide already computed
model space objects included with the package:

• full_model_space is the model space built with the entire data used by Moral-
Benito (2016),

• small_model_space is a smaller model space built with only a subset of regressors.

5 Performing Bayesian model averaging

5.1 Bayesian model averaging: The bma function

The bma function enables users to perform Bayesian model averaging using the object
obtained with the optim_model_space function. The round parameter specifies the
decimal place to which the BMA statistics should be rounded in the results.

> bma_results <- bma(full_model_space, df = data_prepared, round = 3)

The bma function returns a list containing 16 elements. However, most of these
elements are only required for other functions. The main objects of interest are the two
tables with the BMA statistics. The results obtained with binomial model prior are
first on the list.
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> bma_results[[1]]

PIP PM PSD PSDR PMcon PSDcon PSDRcon %(+)

gdp_lag NA 0.919 0.077 0.109 0.919 0.077 0.109 100.000

ish 0.773 0.063 0.045 0.062 0.082 0.034 0.059 100.000

sed 0.717 0.030 0.057 0.074 0.042 0.064 0.084 69.922

pgrw 0.714 0.018 0.030 0.052 0.025 0.033 0.060 99.609

pop 0.990 0.119 0.065 0.082 0.121 0.064 0.081 100.000

ipr 0.656 -0.034 0.033 0.044 -0.051 0.027 0.046 0.000

opem 0.766 0.034 0.030 0.033 0.044 0.026 0.031 100.000

gsh 0.751 -0.015 0.041 0.091 -0.020 0.046 0.104 30.859

lnlex 0.864 0.088 0.075 0.098 0.102 0.071 0.099 100.000

polity 0.678 -0.057 0.046 0.053 -0.084 0.030 0.044 0.000

PIP denotes the posterior inclusion probability, PM denotes the posterior mean,
PSD denotes the posterior standard deviation, and PSDR denotes the posterior stan-
dard deviation calculated using robust standard errors. These are the four main results
of BMA with respect to the assessment of individual regressors. PMcon, PSDcon,
and PSDRcon denote the posterior mean, posterior standard deviation, and posterior
standard deviation based on robust standard errors, respectively, conditional on the
inclusion of the variable. Users should base their interpretation of the results on condi-
tional BMA statistics only when they believe that certain regressors must be included.
Finally, for a given parameter we can consider all models that include this parameter,
and check if it has a positive or negative value. %(+) denotes the percentage of models
with positive value for a given parameter across all models that include that parameter.
A value of %(+) equal to 0% or 100% indicates coefficient sign stability.

The PIP for all the regressors shows that none of them can be considered very strong
according to the classification by Raftery (1995). This also applies to the population
variable (pop), which has a PIP of 0.990 due solely to approximation. These results are
corroborated by the ratios of PM to PSD and PSDR. In particular, for the absolute value
of the PM to PSDR ratio, only the population variable exceeds 1.3, while investment
(ish) and the democracy index (polity) are above 1. This finding led Moral-Benito
(2016) to emphasize the fragility of economic growth determinants. The only variable
that can be considered robust across all metrics is the lagged GDP (gdp_lag). However,
the results change when using the binomial-beta model prior, which is included as the
second object in the bma list.

> bma_results[[2]]

PIP PM PSD PSDR PMcon PSDcon PSDRcon %(+)

gdp_lag NA 0.943 0.078 0.130 0.943 0.078 0.130 100.000

ish 0.954 0.076 0.036 0.066 0.079 0.032 0.065 100.000

sed 0.938 0.035 0.063 0.094 0.037 0.064 0.097 69.922

pgrw 0.938 0.024 0.033 0.059 0.026 0.033 0.061 99.609

pop 0.998 0.080 0.062 0.083 0.080 0.062 0.083 100.000

ipr 0.924 -0.050 0.030 0.052 -0.054 0.027 0.052 0.000

opem 0.952 0.041 0.026 0.034 0.043 0.025 0.034 100.000

gsh 0.948 -0.034 0.049 0.120 -0.036 0.049 0.123 30.859

lnlex 0.974 0.134 0.069 0.105 0.138 0.066 0.104 100.000

polity 0.929 -0.084 0.038 0.053 -0.090 0.031 0.049 0.000

In the case of the binomial-beta model prior, the PIPs for all the regressors increase.
Population is classified as very strong, while all other regressors are classified as strong
or positive according to posterior inclusion probabilities. There are also considerable
changes in the PM to PSD and PSD_R ratios. The absolute value of the PM to PSD ra-
tio exceeds two for investment and the democracy index, and is above 1.3 for population,
investment price (ipr), trade openness (open), and life expectancy (lnlex). However,
these results are less pronounced when using robust standard errors, with only popula-
tion, trade openness, and the democracy index remaining above 1.3. Consequently, the
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results are not robust with respect to the choice of prior model specification. The rea-
sons behind these differences will become clear once other functionalities of the package
are explored.

The last object in the list is a table containing the prior and posterior expected model
sizes for the binomial and binomial-beta model priors. Importantly, these numbers
reflect only the number of regressors in a model and do not include the lagged dependent
variable, which is present in every model by construction.

> bma_results[[16]]

Prior models size Posterior model size

Binomial 4.5 6.908

Binomial-beta 4.5 8.556

The results show that, after observing the data, the researcher should expect around
seven and eight and a half regressors in the model under the binomial and binomial-beta
model priors, respectively. These numbers may seem high; however, they are driven
by relatively substantial PIPs. This illustrates the importance of focusing on both
posterior inclusion probabilities and the ratios of posterior mean to posterior standard
deviation when assessing the robustness of the regressors.

5.2 Prior and posterior model probabilities

The model_pmp function allows the user to compare prior and posterior model proba-
bilities over the entire model space in the form of a graph. The models are ranked from
the one with the highest to the one with the lowest posterior model probability. The
function returns a list with three objects:

1. a graph for the binomial model prior;

2. a graph for the binomial-beta model prior;

3. a combined graph for both binomial and binomial-beta model priors.

The user can retrieve each graph separately from the list; however, the function auto-
matically displays a combined graph.

> for_models <- model_pmp(bma_results)
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The graphs demonstrate that most of the posterior probability mass is concentrated
within just a couple of models. To view the results for only the best models, the user
can use the top parameter.

> for_models <- model_pmp(bma_results, top = 10)
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The last graph for the binomial-beta prior is particularly illuminating in terms of
explaining the very high values of posterior inclusion probabilities. Almost 70% of
the posterior probability mass is concentrated in just one model; therefore, variables
included in this model will have very high PIP values. The model in question will
be identified after implementing model_sizes (and best_models, which is covered in
subsection 5.3). Nevertheless, the results from the graph suggest that the best model
is the one that includes all the regressors or none (because the prior value is around 1

9
on the plot).

The model_sizes function displays prior and posterior model probabilities on a
graph for models of different sizes. The graphs exclude the lagged dependent variable;
therefore, the model with zero regressors still includes the lagged dependent variable.
Similarly to the model_pmp function is returns a list with three objects:

1. a graph for the binomial model prior;

2. a graph for the binomial-beta model prior;

3. a combined graph for both binomial and binomial-beta model priors.

Again, the user can retrieve each graph separately from the list; however, the function
automatically displays a combined graph.

> size_graphs <- model_sizes(bma_results)
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The graph in panel b) again explains why PIPs are so high in the case of the
binomial-beta model prior. The model with all the regressors accounts for almost 70%
of the total posterior probability mass, while the remaining portion is concentrated on
models with a high number of regressors. In contrast, the posterior probability mass for
the binomial model prior is centered around models with seven regressors. This graph
clearly illustrates the impact of changes in the model prior on posterior probabilities.

5.3 Selecting the best models

The best_models function allows the user to view a chosen number of the best models
in terms of posterior model probability. The function returns a list containing nine
objects:

1. An inclusion table stored as an array object;

2. A table with estimation results using regular standard errors, stored as an array
object;

3. A table with estimation results using robust standard errors, stored as an array
object;

4. An inclusion table stored as a knitr object;

5. A table with estimation results using regular standard errors, stored as a knitr
object;

6. A table with estimation results using robust standard errors, stored as a knitr
object;

7. An inclusion table stored as a gTree object;

8. A table with estimation results using regular standard errors, stored as a gTree
object;
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9. A table with estimation results using robust standard errors, stored as a gTree
object;

The parameters estimate and robust pertain only to the results that will be auto-
matically displayed after running the function. The parameter criterion determines
whether the models should be ranked according to posterior model probabilities calcu-
lated using the binomial (1) or binomial-beta (2) model prior. To obtain the inclusion
array for the 10 best models ranked with the binomial model prior, the user needs to
run:

> best_8_models <- best_models(bma_results, criterion = 1, best = 8)

> best_8_models[[1]]

'No. 1' 'No. 2' 'No. 3' 'No. 4' 'No. 5' 'No. 6' 'No. 7' 'No. 8'

gdp_lag 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ish 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000

sed 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000

pgrw 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000

pop 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ipr 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

opem 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000

gsh 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000

lnlex 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

polity 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000

PMP 0.089 0.044 0.042 0.036 0.035 0.029 0.026 0.025

1 indicates the presence of a given regressor in a model, while the last row displays
the posterior model probability of that model. To obtain a knitr table with estimation
output with regular standard errors for best 3 models ranked with binomial-beta model
prior, the user needs to run:

> best_3_models <- best_models(bma_results, criterion = 2, best = 3)

> best_3_models[[5]]

| | 'No. 1' | 'No. 2' | 'No. 3' |

|:-------|:-----------------:|:-----------------:|:-----------------:|

|gdp_lag | 0.954 (0.076)*** | 0.878 (0.071)*** | 0.92 (0.055)*** |

|ish | 0.079 (0.032)** | 0.091 (0.029)*** | 0.055 (0.029)* |

|sed | 0.034 (0.065) | 0.013 (0.058) | 0.08 (0.049) |

|pgrw | 0.025 (0.033) | 0.017 (0.032) | 0.037 (0.032) |

|pop | 0.065 (0.056) | 0.147 (0.052)*** | 0.106 (0.053)** |

|ipr | -0.056 (0.027)** | NA | -0.061 (0.023)*** |

|opem | 0.043 (0.025)* | 0.031 (0.023) | 0.041 (0.022)* |

|gsh | -0.043 (0.05) | -0.023 (0.04) | -0.022 (0.045) |

|lnlex | 0.151 (0.06)** | 0.048 (0.058) | 0.131 (0.054)** |

|polity | -0.092 (0.032)*** | -0.091 (0.028)*** | NA |

|PMP | 0.69 | 0.038 | 0.036 |

The comparison of the last two tables further highlights the importance of the model
prior. The best model under the binomial model prior accounts for around 9% of the
posterior probability mass, while the best model under the binomial-beta model prior
accounts for over 69%. Finally, to obtain a gTree table with estimation output using
robust standard errors for the top 3 models ranked by the binomial-beta model prior,
the user needs to run:

> best_3_models <- best_models(bma_results, criterion = 2, best = 3)

> best_3_models[[9]]

gTree[GRID.gTree.2013]
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'No. 1'

0.954 (0.137)***gdp_lag

'No. 2'

0.079 (0.067)ish

'No. 3'

0.034 (0.103)sed

0.025 (0.061)pgrw

0.065 (0.08)pop

−0.056 (0.054)ipr

0.043 (0.035)opem

−0.043 (0.131)gsh

0.151 (0.104)lnlex

−0.092 (0.051)***polity

0.69PMP

0.878 (0.09)***

0.091 (0.053)***

0.013 (0.076)

0.017 (0.058)

0.147 (0.071)***

NA

0.031 (0.024)

−0.023 (0.078)

0.048 (0.072)

−0.091 (0.041)***

0.038

0.92 (0.089)***

0.055 (0.052)

0.08 (0.071)

0.037 (0.06)

0.106 (0.073)

−0.061 (0.045)***

0.041 (0.03)

−0.022 (0.108)

0.131 (0.098)

NA

0.036

The comparison of the last two tables and the estimation outputs with regular and
robust standard errors demonstrates how the results change when switching between
these two variance estimators.

5.4 Calculating jointness measures

Within the BMA framework, it is possible to establish the nature of the relationship
between pairs of examined regressors using the jointness measures. This can be ac-
complished using the jointness function. The latest jointness measure, introduced by
Hofmarcher et al. (2018), has been shown to outperform older alternatives developed
by Ley & Steel (2007) and Doppelhofer & Weeks (2009)9. Therefore, the Hofmarcher
et al. (2018) measure is the default option in the jointness function.

> jointness(bma_results)

ish sed pgrw pop ipr opem gsh lnlex polity

ish NA 0.216 0.207 0.530 0.150 0.262 0.243 0.366 0.181

sed 0.805 NA 0.154 0.421 0.115 0.199 0.189 0.288 0.125

pgrw 0.805 0.778 NA 0.416 0.124 0.198 0.186 0.283 0.131

pop 0.905 0.874 0.874 NA 0.304 0.517 0.489 0.711 0.346

ipr 0.781 0.756 0.758 0.845 NA 0.153 0.138 0.209 0.102

opem 0.829 0.801 0.802 0.902 0.780 NA 0.241 0.372 0.169

gsh 0.821 0.794 0.794 0.893 0.772 0.819 NA 0.340 0.154

lnlex 0.864 0.835 0.835 0.944 0.810 0.863 0.853 NA 0.227

polity 0.790 0.763 0.764 0.855 0.744 0.787 0.779 0.817 NA

Above the main diagonal the user can find the results for the binomial model prior,
and below the results for the binomial-beta model prior. All the values in the table are

9See section 2.4 for the interpretations of jointness measures.
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positive, indicating complementary relationships between the regressors. Notably, the
values for the binomial-beta prior are substantially higher than those for the binomial
prior. This result is not surprising, as the model with all the regressors accounts for
almost 70% of the total posterior probability mass.

To obtain the results for the Ley & Steel (2007) measure, the user should run:

> jointness(bma_results, measure = "LS")

ish sed pgrw pop ipr opem gsh lnlex polity

ish NA 1.468 1.446 3.282 1.228 1.677 1.601 2.211 1.323

sed 9.498 NA 1.248 2.465 1.089 1.422 1.376 1.810 1.140

pgrw 9.486 8.237 NA 2.435 1.098 1.415 1.366 1.789 1.145

pop 20.153 14.861 14.872 NA 1.874 3.161 2.932 5.980 2.061

ipr 8.341 7.399 7.449 11.957 NA 1.222 1.176 1.475 1.013

opem 10.982 9.309 9.324 19.436 8.261 NA 1.582 2.211 1.290

gsh 10.434 8.948 8.960 17.727 7.953 10.286 NA 2.059 1.240

lnlex 14.018 11.361 11.361 34.916 9.691 13.825 12.889 NA 1.565

polity 8.729 7.642 7.680 12.808 6.975 8.580 8.246 10.144 NA

The values corroborate the results obtained using the Hofmarcher et al. (2018) measure.
All the regressors exhibit complementary relationships, which are visibly stronger under
the binomial-beta model prior.

However, the Doppelhofer & Weeks (2009) measure yields a slightly different out-
come:

> jointness(bma_results, measure = "DW")

ish sed pgrw pop ipr opem gsh lnlex polity

ish NA 0.050 0.019 0.004 0.016 0.030 0.007 -0.005 0.067

sed 0.983 NA -0.024 -0.030 0.003 -0.010 -0.001 0.004 -0.026

pgrw 0.969 0.900 NA -0.002 0.046 -0.001 -0.001 -0.009 0.008

pop 1.013 0.952 0.982 NA -0.019 -0.023 0.048 0.153 0.012

ipr 0.979 0.925 0.974 0.968 NA 0.048 0.018 0.023 0.035

opem 1.007 0.932 0.944 0.986 1.001 NA 0.032 0.139 0.029

gsh 0.967 0.925 0.935 1.036 0.956 0.986 NA 0.034 0.000

lnlex 0.978 0.952 0.948 1.167 0.979 1.100 0.995 NA -0.056

polity 1.008 0.896 0.933 0.989 0.962 0.971 0.928 0.900 NA

In this case, some pairs of regressors have negative values of the jointness measure
under the binomial model prior; however, these values are very close to zero, indicating
unrelated variables. Once again, the values for the binomial-beta model prior are higher,
demonstrating how the results are influenced by the choice of model prior.

5.5 Visualizing model coefficients

The coef_hist function allows the user to plot the distribution of estimated coefficients.
It returns a list containing a number of objects equal to the number of regressors plus
one. The first object in the list is a graph of the coefficients for the lagged dependent
variable, while the remaining objects are graphs of the coefficients for the other regres-
sors. The graph for the lagged dependent variable collects coefficients from the entire
model space, whereas the graphs for the other regressors only collect coefficients from
the models that include the given regressor (half of the model space).

There are two main options for visualizing the coefficient distributions. The first
option uses a histogram. The coef_hist function provides the user with options for
controlling the bin widths of the histogram (BW, binW, BN, and num). The default is
BW = FD, which selects bin widths using the Freedman-Diaconis method.

> coef_plots <- coef_hist(bma_results)

> coef_plots[[1]]
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The second option allows the user to plot kernel densities.

> coef_plots2 <- coef_hist(bma_results, kernel = 1)

> coef_plots2[[1]]
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The choice of appropriate plotting options is left to the user’s preferences regarding
the style of presentation and the size of the model space.

> library(gridExtra)

> grid.arrange(coef_plots[[1]], coef_plots[[2]], coef_plots2[[1]],

+ coef_plots2[[2]], nrow = 2, ncol = 2)
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6 Changes in model priors

This section provides a more detailed description of the available model prior options.
Subsection 6.1 discusses the consequences of changes in the expected model size, while
subsection 6.2 describes the dilution prior.

6.1 Changing expected model size

The bma function calculates BMA statistics using both the binomial and binomial-
beta model priors. By default, the bma function sets the expected model size (EMS)
to K/2, where K denotes the total number of regressors. The binomial model prior
with EMS = K/2 leads to a uniform model prior, assigning equal probabilities to all
models. In contrast, the binomial-beta model prior with EMS = K/2 assumes equal
probabilities across all model sizes. However, the user can modify the prior model
specification by changing the EMS parameter.

First, consider the consequence of concentrating prior probability mass on small
models by setting EMS = 2.

> bma_results2 <- bma(full_model_space, df = data_prepared, round = 3, EMS = 2)

Before turning to the main BMA results, let us focus on the changes in the posterior
probability mass with respect to model sizes.

> bma_results2[[16]]

Prior models size Posterior model size

Binomial 2 4.560

Binomial-beta 2 7.499
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The results show that decreasing the prior expected model size led to a considerable
decline in the posterior expected model size. The consequences of this change in the
prior expected model size are best illustrated using the prior and posterior probability
mass over model sizes.

> size_graphs2 <- model_sizes(bma_results2)
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For both the binomial and binomial-beta model priors, the prior probability mass
is more concentrated on small model sizes. However, for the binomial model prior,
the center of the posterior probability mass shifted to medium-sized models, while it
remained on large models for the binomial-beta model prior. Nevertheless, the poste-
rior model probability for the model with all regressors decreased from nearly 0.7 for
EMS = 4.5 to less than 0.3. There are also substantial changes in the distribution of
the posterior probability mass over the model space.

> model_graphs2 <- model_pmp(bma_results2)
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Both panels of the graph show that the prior and posterior model probabilities have
substantially decoupled from each other. This strongly indicates that the prior and the
data are suggesting vastly different model choices. The tall blue spike represents the
model with no regressors. The main BMA posterior statistic for the binomial model
prior also experienced a significant change.

> bma_results2[[1]]

PIP PM PSD PSDR PMcon PSDcon PSDRcon %(+)

gdp_lag NA 0.922 0.081 0.102 0.922 0.081 0.102 100.000

ish 0.483 0.042 0.050 0.059 0.088 0.034 0.057 100.000

sed 0.420 0.015 0.046 0.057 0.036 0.065 0.084 69.922

pgrw 0.414 0.009 0.025 0.040 0.023 0.034 0.061 99.609

pop 0.964 0.144 0.066 0.082 0.149 0.061 0.079 100.000

ipr 0.344 -0.019 0.031 0.037 -0.055 0.028 0.045 0.000

opem 0.468 0.024 0.032 0.033 0.052 0.026 0.030 100.000

gsh 0.459 -0.003 0.032 0.071 -0.007 0.047 0.105 30.859

lnlex 0.637 0.051 0.068 0.087 0.081 0.069 0.097 100.000

polity 0.372 -0.029 0.042 0.046 -0.079 0.031 0.043 0.000

Posterior inclusion probabilities drop considerably for all the regressors, except for
population, which remains almost unchanged. Interestingly, the ratios for all variables
declined, with population being the exception. The ratio for population remains above
two for regular standard errors and 1.7 for robust standard errors. This outcome
indicates that population performs relatively better in smaller models. The results
for binomial-beta model prior are given below.

> bma_results2[[2]]

PIP PM PSD PSDR PMcon PSDcon PSDRcon %(+)
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gdp_lag NA 0.927 0.078 0.117 0.927 0.078 0.117 100.000

ish 0.838 0.067 0.042 0.064 0.081 0.033 0.062 100.000

sed 0.796 0.032 0.059 0.081 0.040 0.064 0.089 69.922

pgrw 0.795 0.020 0.031 0.055 0.026 0.033 0.060 99.609

pop 0.992 0.106 0.066 0.084 0.107 0.066 0.084 100.000

ipr 0.754 -0.039 0.033 0.047 -0.052 0.027 0.048 0.000

opem 0.833 0.036 0.028 0.033 0.043 0.026 0.032 100.000

gsh 0.822 -0.021 0.044 0.101 -0.026 0.048 0.111 30.859

lnlex 0.902 0.104 0.076 0.102 0.115 0.071 0.102 100.000

polity 0.769 -0.066 0.045 0.055 -0.086 0.031 0.046 0.000

The change in PIPs is again significant, though not as pronounced as in the case of
the binomial model prior. Changes in the ratios are relatively small and irregular for
both regular and robust standard errors. The most pronounced change is the drop in
the value of the ratios for the democracy index (polity), indicating that this regressor
performs better in larger models.

It is also very instructive to examine the jointness measures calculated under the
new prior specification.

> jointness(bma_results2, measure = "HCGHM", rho = 0.5, round = 3)

ish sed pgrw pop ipr opem gsh lnlex polity

ish NA 0.021 0.008 -0.030 0.003 0.002 0.001 -0.012 0.021

sed 0.440 NA 0.017 -0.146 0.043 0.007 0.011 -0.036 0.026

pgrw 0.436 0.389 NA -0.155 0.053 0.012 0.011 -0.041 0.037

pop 0.666 0.585 0.582 NA -0.281 -0.057 -0.072 0.253 -0.230

ipr 0.390 0.354 0.360 0.502 NA 0.021 0.023 -0.065 0.072

opem 0.482 0.429 0.429 0.656 0.390 NA 0.010 0.022 0.020

gsh 0.466 0.418 0.417 0.635 0.377 0.463 NA -0.012 0.019

lnlex 0.558 0.496 0.494 0.792 0.437 0.561 0.537 NA -0.072

polity 0.412 0.363 0.367 0.531 0.339 0.403 0.389 0.452 NA

On the one hand, the results obtained with the binomial-beta model prior did not
change in any significant manner. On the other hand, the results obtained with the
binomial model prior changed substantially. The measure indicates that population is
a substitute for both the investment price (ipr) and the democracy index, as well as,
to a lesser extent, secondary education (sed) and population growth (pgrw).

Next, to consider the consequences of concentrating prior probability mass on large
models, EMS was set to eight.

> bma_results8 <- bma(full_model_space, df = data_prepared, round = 3, EMS = 8)

> bma_results8[[16]]

Prior models size Posterior model size

Binomial 8 8.664

Binomial-beta 8 8.944

The posterior model size increased for the binomial prior; however, it remained almost
unchanged for the binomial-beta model prior. The most interesting aspect is the new
graphs of prior and posterior probability mass over the model sizes.

> size_graphs8 <- model_sizes(bma_results8)
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In both cases, the posterior probability mass has concentrated near the models with
all the regressors. However, in the case of the binomial-beta model prior, the model
with all the regressors captures most of the posterior probability mass (almost 96%).
This conclusion is further supported by the graphs of posterior model probability across
the entire model space.

> model_graphs8 <- model_pmp(bma_results8)

27



0.0

0.2

0.4

0.6

0 100 200 300 400 500
Model number in the ranking

P
rio

r, 
P

os
te

rio
r

Results with binomial model prior (EMS = 8)a)

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400 500
Model number in the ranking

P
rio

r, 
P

os
te

rio
r

Results with binomial−beta model prior (EMS = 8)b)

Probability Posterior Prior

Panel (a) demonstrates that the change in the expected model size led to a sub-
stantial increase in the posterior model probability for the model with all regressors
under the binomial model prior. It now accounts for over 70% of the total posterior
probability mass. The increase in the expected model size also influenced the main
BMA statistics.

> bma_results8[[1]]

PIP PM PSD PSDR PMcon PSDcon PSDRcon %(+)

gdp_lag NA 0.943 0.078 0.131 0.943 0.078 0.131 100.000

ish 0.966 0.077 0.035 0.066 0.079 0.032 0.065 100.000

sed 0.953 0.035 0.063 0.095 0.037 0.064 0.097 69.922

pgrw 0.953 0.024 0.033 0.059 0.026 0.033 0.061 99.609

pop 0.999 0.078 0.061 0.082 0.078 0.061 0.082 100.000

ipr 0.941 -0.051 0.029 0.052 -0.054 0.027 0.052 0.000

opem 0.965 0.041 0.026 0.034 0.043 0.025 0.034 100.000

gsh 0.961 -0.035 0.049 0.121 -0.037 0.049 0.123 30.859

lnlex 0.981 0.136 0.067 0.104 0.139 0.065 0.104 100.000

polity 0.945 -0.085 0.037 0.052 -0.090 0.031 0.050 0.000

The PIPs increased considerably. Population is classified as very strong, while the other
regressors are classified as strong or positive. Interestingly, all the ratios have improved
as well, except for population. The change in the results for the binomial-beta model
prior is less pronounced.

> bma_results8[[2]]

PIP PM PSD PSDR PMcon PSDcon PSDRcon %(+)

gdp_lag NA 0.953 0.076 0.136 0.953 0.076 0.136 100.000

ish 0.994 0.079 0.032 0.067 0.079 0.032 0.067 100.000
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sed 0.992 0.034 0.065 0.101 0.034 0.065 0.102 69.922

pgrw 0.992 0.025 0.033 0.061 0.026 0.033 0.061 99.609

pop 1.000 0.067 0.057 0.080 0.067 0.057 0.080 100.000

ipr 0.990 -0.055 0.027 0.054 -0.056 0.027 0.054 0.000

opem 0.994 0.043 0.025 0.035 0.043 0.025 0.035 100.000

gsh 0.993 -0.041 0.050 0.129 -0.042 0.050 0.130 30.859

lnlex 0.997 0.149 0.061 0.105 0.149 0.061 0.104 100.000

polity 0.991 -0.091 0.033 0.052 -0.092 0.032 0.051 0.000

With the increase in expected model size, population is classified as very strong, and all
the other regressors are classified as strong in terms of the posterior inclusion probability
criterion. Similarly to the case of the binomial prior, all the ratios increased except for
population.

Again, it is instructive to examine the jointness measures.

> jointness(bma_results8, measure = "HCGHM", rho = 0.5, round = 3)

ish sed pgrw pop ipr opem gsh lnlex polity

ish NA 0.840 0.840 0.930 0.818 0.864 0.856 0.896 0.825

sed 0.975 NA 0.813 0.903 0.791 0.837 0.829 0.868 0.798

pgrw 0.975 0.971 NA 0.903 0.792 0.837 0.829 0.869 0.799

pop 0.988 0.984 0.984 NA 0.880 0.928 0.919 0.960 0.887

ipr 0.971 0.968 0.968 0.980 NA 0.815 0.807 0.846 0.777

opem 0.978 0.974 0.974 0.988 0.971 NA 0.853 0.893 0.822

gsh 0.977 0.973 0.973 0.987 0.970 0.977 NA 0.885 0.814

lnlex 0.983 0.979 0.979 0.993 0.975 0.983 0.981 NA 0.853

polity 0.972 0.969 0.969 0.981 0.966 0.972 0.971 0.976 NA

The values of the measures show that all the regressors exhibit a very strong com-
plementary relationship. This outcome, once again, underscores the importance of
carefully considering the prior when interpreting jointness measures.

6.2 Dilution prior

One of the main issues associated with identifying robust regressors is multicollinearity.
Some regressors may approximate the same underlying factor influencing the dependent
variable. Multicollinearity may result from the absence of observable variables associ-
ated with a specific theory or from a theory failing to provide a unique candidate for
a regressor. Moreover, some regressors may share a common determinant. Although
Moral-Benito (2013, 2016) addressed this issue to some extent, researchers have another
option to mitigate multicollinearity: the dilution prior proposed by George (2010) which
was described in detail in subsection 2.4.

To apply the dilution prior, the user must set dilution = 1 in the bma func-
tion. The user can also manipulate the dilution parameter ω. The default option
is dil.Par = 0.5, as recommended by George (2010).

> bma_results_dil <- bma(

+ model_space = full_model_space,

+ df = data_prepared,

+ round = 3,

+ dilution = 1

+ )

The effect of implementing the dilution prior is well depicted by the distribution of
prior probability mass over the model sizes.

> size_graphs_dil <- model_sizes(bma_results_dil)
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The change in the prior distribution is more visible for the binomial-beta model prior.
In panel b, the prior probability mass has decreased for larger models and increased for
smaller models. However, this change is not uniform, as models characterized by the
highest degree of multicollinearity are subject to the greatest penalty in terms of prior
probability mass.

Before moving to the BMA statistics, it is instructive to examine the change in the
dil.Par parameter.

> bma_results_dil01 <- bma(

+ model_space = full_model_space,

+ df = data_prepared,

+ round = 3,

+ dilution = 1,

+ dil.Par = 0.1

+ )

> size_graphs_dil01 <- model_sizes(bma_results_dil01)
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As we can see, decreasing the value of ω diminishes the impact of dilution on the model
prior. Conversely, raising the dil.Par parameter increases the degree of dilution.

> bma_results_dil2 <- bma(

+ model_space = full_model_space,

+ df = data_prepared,

+ round = 3,

+ dilution = 1,

+ dil.Par = 2

+ )

> size_graphs_dil2 <- model_sizes(bma_results_dil2)
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An especially strong impact can be seen for the binomial-beta prior.
However, even after giving such priority to the penalty for multicollinearity, the

main BMA statistics remain stable.

> bma_results_dil2[[2]]

PIP PM PSD PSDR PMcon PSDcon PSDRcon %(+)

gdp_lag NA 0.929 0.078 0.114 0.929 0.078 0.114 100.000

ish 0.735 0.057 0.044 0.062 0.077 0.034 0.060 100.000

sed 0.640 0.026 0.055 0.074 0.040 0.064 0.089 69.922

pgrw 0.687 0.019 0.031 0.052 0.028 0.033 0.061 99.609

pop 0.993 0.116 0.068 0.085 0.117 0.068 0.085 100.000

ipr 0.773 -0.041 0.033 0.047 -0.053 0.027 0.048 0.000

opem 0.824 0.038 0.029 0.034 0.047 0.026 0.031 100.000

gsh 0.840 -0.019 0.045 0.104 -0.022 0.048 0.113 30.859

lnlex 0.767 0.091 0.079 0.104 0.119 0.070 0.104 100.000

polity 0.613 -0.052 0.048 0.055 -0.084 0.031 0.047 0.000

Hence, we see that Moral-Benito (2016)’s claim about the fragility of growth regressors
withstands the test of various manipulations in the model prior.

7 Concluding remarks

This manuscript introduces the bdsm package, which enables Bayesian model averaging
for dynamic panels with weakly exogenous regressors — a methodology developed by
Moral-Benito (2012, 2013, 2016). This package allows researchers to simultaneously
address model uncertainty and reverse causality and is the only R package offering
these capabilities. It provides flexible options for specifying model priors, including
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dilution prior that accounts for multicollinearity. The package also includes graphical
tools for visualizing prior and posterior model probabilities across model space and
model sizes, as well as functions for plotting histograms and kernel densities of the
estimated coefficients. Additionally, it allows researchers to compute jointness measures
introduced by Doppelhofer & Weeks (2009); Ley & Steel (2007); Hofmarcher et al.
(2018) to assess whether pairs of regressors act as substitutes or complements. Users
can also perform Bayesian model selection to examine in detail the most probable
models based on posterior model probability.

The manuscript outlines the methodological approach, while the detailed expla-
nation can be found in Moral-Benito (2012, 2013, 2016). Users unfamiliar with this
approach can easily learn to apply it through the hands-on tutorial provided in the
manuscript. The package’s functionalities are illustrated using the original dataset
from Moral-Benito (2016) in the context of analyzing the determinants of economic
growth. The results of the examination illustrate that fragility of growth determinants
is a persistent feature of the data, confirming Moral-Benito (2016) claims. The various
empirical exercises underscore two important aspects of any BMA analysis. First, the
results should always be validated through extensive changes in prior specifications.
Second, the robustness of the regressors must be evaluated using both posterior in-
clusion probabilities and the ratios of the posterior mean to the posterior standard
deviation, as these measures can often lead to differing conclusions.
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