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Abstract

This introduction to the R package archetypes is a (slightly) modified version of Eu-
gster and Leisch (2009), published in the Journal of Statistical Software.

Archetypal analysis has the aim to represent observations in a multivariate data set
as convex combinations of extremal points. This approach was introduced by Cutler and
Breiman (1994); they defined the concrete problem, laid out the theoretical foundations
and presented an algorithm written in Fortran. In this paper we present the R package
archetypes which is available on the Comprehensive R Archive Network. The package
provides an implementation of the archetypal analysis algorithm within R and different
exploratory tools to analyze the algorithm during its execution and its final result. The
application of the package is demonstrated on two examples.
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1. Introduction

The Merriam-Webster Online Dictionary (2008) defines an archetype as the original pattern
or model of which all things of the same type are representations or copies. The aim of
archetypal analysis is to find “pure types”, the archetypes, within a set defined in a specific
context. The concept of archetypes is used in many different areas, the set can be defined in
terms of literature, philosophy, psychology and also statistics. Here, the concrete problem is to
find a few, not necessarily observed, points (archetypes) in a set of multivariate observations
such that all the data can be well represented as convex combinations of the archetypes. The
title of this article illustrates the concept of archetypes on the basis of archetypes in literature:
the Spider-Man personality belongs to the generic Hero archetype, and archetypal analysis
tries to find this coherence.

In statistics archetypal analysis was first introduced by Cutler and Breiman (1994). In their
paper they laid out the theoretical foundations, defined the concrete problem as a nonlinear
least squares problem and presented an alternating minimizing algorithm to solve it. It has
found applications in different areas, with recently grown popularity in economics, e.g., Li,
Wang, Louviere, and Carson (2003) and Porzio, Ragozini, and Vistocco (2008). In spite of the
rising interest in this computer-intensive but numerically sensitive method, no “easy-to-use”
and freely available software package has been developed yet. In this paper we present the
software package archetypes within the R statistical environment (R Development Core Team
2008) which provides an implementation of the archetypal analysis algorithm. Additionally,
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the package provides exploratory tools to visualize the algorithm during the minimization
steps and its final result. The newest released version of archetypes is always available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/package=archetypes.

The paper is organized as follows: In Section 2 we outline the archetypal analysis with its
different conceptual parts. We present the theoretical background as far as we need it for a
sound introduction of our implementation; for a complete explanation we refer to the original
paper. Section 3 demonstrates how to use archetypes based on a simple artificial data set,
with details about numerical problems and the behavior of the algorithm. Section 4 presents
a simulation study to show how the implementation scales with numbers of observations, at-
tributes and archetypes. In Section 5 we show a real word example — the archetypes of human
skeletal diameter measurements. Section 6 concludes the article with future investigations.

2. Archetypal analysis

Given is an n X m matrix X representing a multivariate data set with n observations and
m attributes. For a given k the archetypal analysis finds the matrix Z of & m-dimensional
archetypes according to the two fundamentals:

(1) The data are best approximated by convex combinations of the archetypes, i.e., they
minimize
RSS = || X —aZ|;
with «, the coefficients of the archetypes, an n x k matrix; the elements are required
to be greater equal 0 and their sum must be 1, i.e., Zkﬂ aj;j = 1 with a;; > 0 and

J
i=1,...,n. | -||2 denotes an appropriate matrix norm.

(2) The archetypes are convex combinations of the data points:
Z=X'"8

with 3, the coefficients of the data set, a n X k matrix where the elements are required
to be greater equal 0 and their sum must be 1, ie., >i" 8 = 1 with 8;; > 0 and
j=1,... k.

These two fundamentals also define the basic principles of the estimation algorithm: it alter-
nates between finding the best a for given archetypes Z and finding the best archetypes Z
for given «; at each step several convex least squares problems are solved, the overall RSS is
reduced successively.

With a view to the implementation, the algorithm consists of the following steps:

Given the number of archetypes k:

1. Data preparation and initialization: scale data, add a dummy row (see below) and ini-
tialize 5 in a way that the the constraints are fulfilled to calculate the starting archetypes
Z.

2. Loop until RSS reduction is sufficiently small or the number of maximum iterations is
reached:
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2.1. Find best « for the given set of archetypes Z: solve n convex least squares problems
(t=1,...,n)
1 k
Héiin §||Xz — Zail|2 subject to a; > 0 and Zlaij = 1.
]:

2.2. Recalculate archetypes Z: solve system of linear equations X = aZ .

2.3. Find best 3 for the given set of archetypes Z: solve k convex least squares problems
(j=1,...,k)

1 - n
I%IH§HZ] - XB]HQ subject to ﬁj >0 and Z’Bﬂ = 1.
J =1

2.4. Recalculate archetypes Z: Z = Xf5.

2.5. Calculate residual sum of squares RSS.

3. Post-processing: remove dummy row and rescale archetypes.

The algorithm has to deal with several numerical problems, i.e. systems of linear equations
and convex least squares problems. In the following we explain each step in detail.

Solving the convex least squares problems: In Step 2.1 and 2.3 several convex least
squares problems have to be solved. Cutler and Breiman (1994) use a penalized version of
the non-negative least squares algorithm by Lawson and Hanson (1974) (as general reference
see,e.g., Luenberger 1984). In detail, the problems to solve are of the form ||u—Tw||2 with u, w
vectors and T a matrix, all of appropriate dimensions, and the non-negativity and equality
constraints. The penalized version adds an extra element M to u and to each observation of
T'; then
lu = Twlls + M1 = w]l3

is minimized under non-negativity restrictions. For large M, the second term dominates
and forces the equality constraint to be approximately satisfied while maintaining the non-

negativity constraint. The hugeness of the value M varies from problem to problem and thus
can be seen as a hyperparameter of the algorithm. Default value in the package is 200.

Solving the system of linear equations: In Step 2.2 the system of linear equations
Z=a'X
has to be solved. A lot of methods exist, one approach is the Moore-Penrose pseudoinverse
which provides an approximated unique solution by a least squares approach: given the
pseudoinverse a of
Z=a"X,
is solved. Another approach is the usage of QR decomposition: o = QR, where @ is an
orthogonal and R an upper triangular matrix, then

Z=Q"'XR™,
is solved. Default approach in the package is the QR decomposition using the solve()
function.
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Calculating the residual sum of squares: In Step 2.5 the RSS is calculated. It uses
the spectral norm (see, e.g., Golub and Loan 1996). The spectral norm of a matrix X is the
largest singular value of X or the square root of the largest eigenvalue of X*X,

HXH2 = )‘maw(X*X)a

where X* is the conjugate transpose of X.

Avoiding local minima: Cutler and Breiman (1994) show that the algorithm converges
in all cases, but not necessarily to a global minimum. Hence, the algorithm should be started
several times with different initial archetypes. It is important that these are not too close
together, this can cause slow convergence or convergence to a local minimum.

Choosing the correct number of archetypes: As in many cases there is no rule for
the correct number of archetypes k. A simple method the determine the value of k is to run
the algorithm for different numbers of k and use the “elbow criterion” on the RSS where a
“flattening” of the curve indicates the correct value of k.

Approximation of the convex hull: Through the definition of the problem, archetypes
lie on the boundary of the convex hull of the data. Let N be the number of data points
which define the boundary of the convex hull, then Cutler and Breiman (1994) showed: if
1 < k < N, there are k archetypes on the boundary which minimize RSS; if £k = N, exactly
the data points which define the convex hull are the archetypes with RSS = 0; and if £ =1,
the sample mean minimizes the RSS. In practice, these theoretical results can not always be
achieved as we will see in the following two sections.

3. Using package archetypes
The package is loaded into R using the library() or require() command:

R> library("archetypes")
Loading required package: nnls

It requires the packages nnls (Mullen and van Stokkum 2007) for solving the convex least
squares problems.

We use a simple artificial two-dimensional data set to explain the usage of the implementation,
and the behavior of the archetypal analysis at all. The advantage is that we can imagine the
results and simply visualize them, Section 5 then shows a more realistic example. Note that
in the following the plot commands do not produce exactly the shown graphics concerning
primitives coloring, width, etc.; to increase readability we have reduced the presented com-
mands to the significant arguments. E.g., if we use a different plotting symbol in a scatter
plot the corresponding (pch = ...) will be omitted.

R> data("toy")
R> plot(toy)
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Figure 1: Data set toy.

Data set toy consists of the two attributes  and y, and 250 observations. According to
the shape of the data, it seems to be a good idea to apply archetypal analysis with k = 3
archetypes.

R> suppressWarnings (RNGversion("3.5.0"))
R> set.seed(1986)
R> a <- archetypes(toy, 3, verbose = TRUE)

1: rss = 0.01676035, improvement = 0.06191059
2: rss = 0.01159216, improvement = 0.00516819
3: rss = 0.00926030, improvement = 0.00233186
4: rss = 0.00788877, improvement = 0.00137153
5: rss = 0.00734550, improvement = 0.00054327
6: rss = 0.00748457, improvement = -0.00013907

During the fit, the function reports its improvement and stops after a maximum number
of iterations (default is maxIterations = 100) or if the improvement is less than a defined
value (default is minImprovement = sqrt(.Machine$double.eps)). As basis for our further
research, the implementation is a flexible framework where the problem solving mechanisms
of the individual steps can be exchanged. The default values are the “original ones” described
in the previous section (family = archetypesFamily()). The result is an S3 archetypes
object,

R> a
Archetypes object

archetypes(data = toy, k = 3, verbose = TRUE)
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Convergence after 6 iterations
with RSS = 0.007484568.

containing the three final archetypes:

R> parameters(a)

X y
[1,] 14.733401 2.315634
[2,] 2.859105 9.905305
[3,] 18.695236 18.673817

The plot ) function visualizes archetypes for two-dimensional data sets; for higher-dimensional
data sets parallel coordinates are used.

R> xyplot(a, toy, chull = chull(toy))
R> xyplot(a, toy, adata.show = TRUE)
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Figure 2: Visualization of three archetypes.

The left plot of Figure 2 shows the archetypes, their approximation of the convex hull (red
dots and lines) and the convex hull (black dots and lines) of the data. The right plot of
Figure 2 additionally shows the approximation of the data through the archetypes and the
corresponding « values (green symbols, and grey connection lines); as we can see, all data
points outside the approximated convex hull are mapped on its boundary. This plot is based
on an idea and MATLAB source code of Pailthorpe (2008).

With saveHistory = TRUE (which is set per default) each step of the execution is saved
and we can examine the archetypes in each iteration using the a$history memento object;
the initial archetypes, for example, are a$history$get (0). This can be used to create an
“evolution movie” of the archetypes,
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R> movieplot(a, toy)

Figure 3: Visualization of the algorithm iterations.

The figure shows the plots of the seven steps (the random initialization and the six iterations)
from top to bottom and left to right. In each step the three archetypes move further to
the three corners of the data set. A movie of the approximated data is shown when setting
parameter show = "adata"!.

In the previous section we mentioned that the algorithm should be started several times
to avoid local minima. This is done using the stepArchetypes() function; it passes all
arguments to the archetypes() function and additionally has the argument nrep which
specifies the number of repetitions.

R> set.seed(1986)
R> a4 <- stepArchetypes(data = toy, k = 3, verbose = FALSE, nrep = 4)

The result is an S3 stepArchetypes object,

R> a4

StepArchetypes object

stepArchetypes(data = toy, k = 3, nrep = 4, verbose = FALSE)

where summary () provides an overview of each repetition by showing the final residual sum
of squares and number of iterations:

'Real animations are as Flash movies along with this paper and available from http://www.jstatsoft.
org/v30/i08/.
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R> summary (a4)

StepArchetypes object

stepArchetypes(data = toy, k = 3, nrep = 4, verbose = FALSE)

k=3:

Convergence after 6 iterations
with RSS = 0.007484568.
Convergence after 19 iterations
with RSS = 0.007269786.
Convergence after 14 iterations
with RSS = 0.007269673.
Convergence after 13 iterations
with RSS = 0.007274116.

There are no huge differences in the residual sum of squares, thus if there are different local
minima then they are all equally good. But the following plot shows that the repetition starts
all nearly found the same final archetypes (and thus the same local minima),

R> xyplot(a4, toy)
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Figure 4: Visualization of different repetitions.

However, the model of repetition 3 has the lowest residual sum of squares and is the best

model:

R> bestModel (a4)

Convergence after 14 iterations
with RSS = 0.007269673.
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At the beginning of the example we decided by looking at the data that three archetypes
may be a good choice. Visual inspection does not necessarly lead to the best choice, and
is not an option for higher-dimensional data sets. As already mentioned in the previous
section, one simple way to choose a good number of archetypes is to run the algorithm for
different numbers of k£ and use the “elbow criterion” on the residual sum of squares. The
stepArchetypes () function allows a vector as value of argument k£ and executes for each k;
the archetypes () function nrep times.

R> set.seed(1986)
R> as <- stepArchetypes(data = toy, k = 1:10, verbose = FALSE, nrep = 4)

There were 23 warnings (use warnings() to see)

The occurred warnings indicate that errors occured during the execution, in this case, singular
matrices in solving the linear equation system in Step 2.2 as from k = 4:

R> warnings ()

Warnings:
1: In archetypes(..., k = k[i], verbose = verbose)

k=4: Error in qr.solve(alphas %*% t(alphas)): singular matrix 'a' in solve
2: In archetypes(..., k = k[i], verbose = verbose)

k=5: Error in qr.solve(alphas %xJ t(alphas)): singular matrix 'a' in solve
3: In archetypes(..., k = k[i], verbose = verbose)

k=5: Error in qr.solve(alphas %xJ t(alphas)): singular matrix 'a' in solve

[...]

In these cases the residual sum of squares is NA:

R> rss(as)

rl r2 r3 rd
k1 0.075569637 0.075569637 0.075569637 0.075569637
k2 0.047510401 0.047510402 0.047510404 0.047510417
k3 0.007370771 0.007370765 0.007370774 0.007565407

k4 0.005124791 NA 0.004826269 0.004970543
k5 0.005241236 NA NA NA
k6 NA NA NA NA
k7 NA 0.001216349 NA NA
k8 NA NA NA NA
k9 NA NA NA NA
k10 NA NA NA NA

And all errors occured during the first iteration,

R> t(sapply(as, function(a) sapply(a, '[[', 'iters')))
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which is an indication for an afflicted random initialisation. If warnings occur within repeti-
tions for k; archetypes, the pretended meaningful solutions (according to the RSS) have to
be examined carefully; Section 3.1 illustrates a pretended meaningful solution where the plot
then uncovers problems. But up to k = 5 there is always at least one start with a meaningful
result and the residual sum of squares curve of the best models shows that by the “elbow
criterion” three or maybe seven is the best number of archetypes:

R> screeplot(as)

RSS

0.08

0.06

0.04

0.02

0.00

Archetypes

Figure 5: Screeplot of the residual sum of squares.

We already have seen the three archetypes in detail; the seven archetypes of the best repetition
and their approximation of the data are:

R> a7 <- bestModel(as[[71])

R> xyplot (a7, toy, chull

R> xyplot(a7, toy, adata.show

chull (toy))

= TRUE)
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Figure 6: Visualization of seven archetypes.
The approximation of the convex hull is now clearly visible.

3.1. Alternative numerical methods

As we mentioned in Section 2, there are many ways to solve linear equation systems. One
other possibility is the Moore-Penrose pseudoinverse:

R> set.seed(1986)
R> gas <- stepArchetypes(data = toy, k = 1:10,

+ family = archetypesFamily("original",
+ zalphasfn = archetypes:::ginv.zalphasfn),
+ verbose = FALSE, nrep = 4)

Loading required package: MASS
There were 23 warnings (use warnings() to see)

We use the ginv() function from the MASS package to calculate the pseudoinverse. The
function ignores ill-conditioned matrices and “just solves the linear equation system”, but
the archetypes function throws warnings of ill-conditioned matrices if the matrix condition
number « is bigger than an upper bound (default is maxKappa = 1000):

R> warnings ()

Warnings:

1: In archetypes(..., k = k[i], verbose = verbose)
k=4: alphas > maxKappa

2: In archetypes(..., k = k[i], verbose
k=5: alphas > maxKappa

verbose)
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3: In archetypes(..., k = k[i], verbose
k=5: alphas > maxKappa

[...]

In comparison with the QR decomposition, the warnings occured for the same number of
archetypes k; during the same repetition. In most of these cases the residual sum of squares

is about 12,

R> rss(gas)

verbose)

rl r2 r3 rd
k1 0.075569637 0.075569637 0.075569637 0.075569637
k2 0.047510401 0.047510402 0.047510404 0.047510417
k3 0.007370771 0.007370765 0.007370774 0.007565407
k4 0.005124791 0.138175069 0.004826269 0.004970543
k5 0.005241236 0.005368693 0.123865741 0.005121524
k6 0.005394369 0.112792685 0.004796068 0.139178053
k7 0.110619177 0.001216349 0.001182433 0.004105327
k8 0.150224057 0.077879794 0.089314053 0.143895541
k9 0.100961722 0.128683441 0.124951030 0.005207711
k10 0.083541636 0.127415685 0.056179555 0.145506957

and the randomly chosen initial archetypes “collapse” to the center of the data as we exem-

plarily see for k=9, r = 3:

R> movieplot(gas[[9]1]1[[3]], toy)

1. o ‘-’ﬁ'
o? '};.:"'.
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'... o:’.: o0
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Figure 7: Visualization of algorithm iterations until “collapsing”.

The figure shows the four steps (from left to right), the random initialization and the three
iterations until all archetypes are in the center of the data.

All other residual sum of squares are nearly equivalent to the ones calculated with QR decom-
position. Further investigations would show that three or maybe seven is the best number of
archetypes, and in case of k = 3 nearly the same three points are the best archetypes. An
interesting exception is the case k = 7,r = 2; the residual sum of squares is exactly the same,
but not the archetypes. The plots of the archetypes and their approximation of the data:
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R> ga7 <- bestModel(gas[[7]1])
R> xyplot(ga7, toy, chull = chull(toy))
R> xyplot(ga7, toy, adata.show = TRUE)
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Figure 8: Visualization of seven archetypes; one archetype “collapsed”.

Interesting is the one archetype in the center of the data set and especially the approximation
of the data in the right area of it. As the data are approximated by a linear combination of
archetypes and non-negative «, the only possibility for this kind of approximation is when «
for this archetype is always zero:

R> apply(coef(ga7, 'alphas'), 2, range)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
[2,] 0 0.9999845 0.9548158 0.9999926 0.9789887 0.9999594 0.9940115

As we can see, « of archetype 1 (column one) is 0 for all data points. Theoretically, this is not
possible, but ill-conditioned matrices during the fit process lead to such results in practice.
The occurred warnings (k=7: alphas > max.kappa) notify that solving the convex least
squares problems lead to the ill-conditioned matrices. Our simulations showed that this
behavior mostly appears when requesting a relatively large number of archetypes in relation
to size of the data set.

4. Computational complexity

In Section 1 we stated that the archetypal analysis algorithm is computer-intensive; in this
section we now present a simulation to show how the implementation scales with numbers of
observations, attributes and archetypes. In general, the speed of the algorithm is determined

13
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by the efficiency of the convex least squares method. The penalized non-negative least squares
method is quite slow, but is appealing because it can be used when the number of attributes
is larger than the number of observations (according to Cutler and Breiman 1994).

The simulation setup is the following (cf. the simulation problem by Hothorn, Leisch, Zeileis,
and Hornik 2005): we consider the multivariate standard normal distribution as data generat-
ing process (spherical data). A data set is generated for each combination of m = 5,10, 25, 50
attributes, n = 100, 1000, 10000, 10000 observations and 20 replications in each case. On each
dataset £k = 1,...,10 archetypes are fitted; stop criteria are 100 iterations or an improvement
less than sqrt(.Machine$double.eps). Each m,n, k configuration is fitted with randomly
chosen initial archetypes. For each of the m x n x k x 20 fits the computation time and the
number of iterations until convergence are measured.

We present two main results of the simulation: (1) the computation time per iteration, i.e.,
focus on the efficiency of the convex least squares methods; (2) the computation time per fit,
where the convergence behavior matters. The results are presented in Figure 9 and Figure 10,
respectively. Both show four panels, one for each possible number of observations and each
panel contains four lines, one for each possible number of attributes. The z-axis is the number
of archetypes and the y-axis the measured value; notice that the scale of the y-axis varies
between the panels.

Figure 9 shows the computation time per iteration in seconds, i.e., the computation time
per fit divided by the number of iterations until convergence. In general the behavior is as
expected: in case of fixed n and m (each individual line), increasing number of archetypes
imply a linear increase of the computation time. Similarly, in case of fixed k& and m (dots of
same color and x-axis position, different panels), increasing observations imply approximately
10 times more computation time. And in the case of fixed k and n (dots of different colors,
same z-axis position and panel), increasing attributes indicate a polynomial increase of the
computation time. Noticeable is that in high dimensions (n = 10000,100000 and m = 50)
two, three and four archetypes need more computation time than the remaining numbers of
archetypes.

Figure 10 shows the (median) computation time per fit in seconds. The figure shows that an
increasing number of observations approximately imply a linear increase of the computation
time. By contrast, for fixed n the computation time is approximately constant in k. Except
from n = 100000 the peak at two archetypes is strongly distinct. Currently we have no
reasonable explanation and more detailed simulations need to be done.
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Figure 9: Computation time per iteration in seconds.
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Figure 10: Computation time per fit in seconds.
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5. Example: Skeletal archetypes

In this section we apply archetypal analysis on an interesting real world example: in Heinz,
Peterson, Johnson, and Kerk (2003) the authors took body girth measurements and skele-
tal diameter measurements, as well as age, weight, height and gender on 247 men and 260
women in their twenties and early thirties, with a scattering of older man and woman, and
all physically active. The full data are available within the package as data("body"), but
we are only interested in a subset, the skeletal measurements and the height (all measured in
centimeters),

R> data("skel")
R> skel2 <- subset(skel, select = -Gender)

The skeletal measurements consist of nine diameter measurements: biacromial (Biac), shoul-
der diameter; biiliac (Biil), pelvis diameter; bitrochanteric (Bitro) hip diameter; chest depth
between spine and sternum at nipple level, mid-expiration (ChestDp); chest diameter at nip-
ple level, mid-expiration (ChestDiam); elbow diameter, sum of two elbows (ElbowDiam); wrist
diameter, sum of two wrists (WristDiam); knee diameter, sum of two knees (KneeDiam); ankle
diameter, sum of two ankles (AnkleDiam). See the original publication for a full anatomi-
cal explanation of the skeletal measurements and the process of measuring. We use basic
elements of Human Modeling and Animation to model the skeleton and create a schematic
representation of an individual, e.g., skeletonplot(skel2[1, ]) for observation number
one. The function jd() (for “John Doe”) uses this plot and shows a generic individual with
explanations of the measurements:

R> jd()
o
w p—
. Height
o
S Diameter between
o shoulders (biacromial)
q- —
s | Depth of chest /
. - Diameter of chest
EL s | Diameter of elbow
f» Diimeter of pelvis
o 3 - = 4 (biiliac)
Diameter of wrist
8 Diameter between <
hips (bitrochanteric)
Diameter of knee
o _|
(aV]
o — ) <— Diameter of ankle

Figure 11: Generic skeleton with explanations of the measurements.
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For visualizing the full data set, parallel coordinates with axes arranged according to the

“natural order” are used,

R> pcplot(skel2)

172 243 133 330 347 187 358 275 474 1948
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Figure 12: Parallel coordinates of the skel2 data set.

At first view no patterns are visible and it is difficult to guess a meaningful number of
archetypes. Therefore, we calculate the archetypes for £ = 1,...,15 with three repetitions

each time,

R> set.seed(1981)
R> as <- stepArchetypes(skel2, k = 1:15, verbose = FALSE, nrep = 3)

There were 12 warnings (use warnings() to see)
The warnings indicate ill-conditioned matrices as from k = 11, but, not as in the previous
section, the residual sum of squares contains no NA values. The corresponding curve of the

best model in each case is:

R> screeplot(as)
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Figure 13: Screeplot of the residual sum of squares.

And according to the “elbow criterion” k = 3 or maybe k = 7 is the best number of archetypes.
Corresponding to Occam’s razor we proceed with three archetypes,

R> a3 <- bestModel(as[[3]1])

The three archetypes are (transposed for better readability):

R> t(parameters(a3))

[,1] [,2] [,3]
AnkleDiam 13.184998 15.96133 12.022492
KneeDiam 18.590612 21.04518 16.435389
WristDiam  9.764051 12.23784  9.284341
Bitro 34.451169 34.45469 27.264701
Biil 31.222383 29.34122 22.522171
ElbowDiam 12.230591 15.74044 11.291717
ChestDiam 26.150773 32.77958 24.304209
ChestDp 18.392200 22.90516 15.952083
Biac 36.312352 43.88833 34.582899
Height 167.007496 186.68539 157.801659

Or as a barplot in relation to the original data:

R> barplot (a3, skel2, percentiles = TRUE)
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Figure 14: Barplot visualizing the three archetypes.

Archetype 2 (gray) represents individuals which are “huge” in all measurements; on the
other hand, archetype 3 (lightgray) represents individuals which are “small”. Archetype 1
(darkgray) represents individuals with average measures except the bitrochanteric and biiliac
— the meaning of this is best visible when looking at the data with gender information (men
are blue, women are green colored, with alpha transparency) and the archetypes (red),

R> pcplot(a3, skel2, data.col = as.numeric(skel$Gender))
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Figure 15: Parallel coordinates with colors related to the gender and the three archetypes.

Archetype 2 reflects the primary difference between men and women in body structure — the
comparatively wider hip and pelvis of women. A verification of this interpretation can be
done by looking at the coefficients o and see how much each archetype contributes to the
approximation of each individual observation. For three archetypes, a ternary plot is a usable
graphical representation (e.g., package ved by Meyer, Zeileis, and Hornik 2008):

R> ternaryplot(coef (a3, 'alphas'), col = as.numeric(skel$Gender))

Figure 16: Ternary plot visualizing the «, colored according to the gender.
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Clearly, males cluster close to archetype 2 and women mixes mainly the first and the third
archetype. Therefore, males are primarly approximated by archetype 2, women by linear
combination of archetypes 1 and 3. For more than three archetypes parallel coordinates with
an axis for each archetype projecting the corresponding coefficients (in range [0,1]) can be
used to investigate the coeflicients «.

Finally, the skeletonplot () visualizes the three skeleton archetypes:

R> skeletonplot (parameters(a3))
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Figure 17: Skeleton plot visualizing the three archetypes.

The left skeleton visualizes archetype 2 with the wider hip and pelvis; the middle skeleton
visualizes archetype 1 which is “huge”, the right skeleton visualizes archetype 3 which is
“small” in all measurements. Assume that we want to automatically fabricate blue worker
overalls from given templates (e.g., paper patterns). Combinations of archetypes 1 and 3
gives overalls in different sizes which each have similar width at shoulder and waist. If we
add archetype 2, we get overalls with a wider waist (compared to the shoulder).

6. Summary and outlook

In Section 2 we explained the different steps of the algorithms according to the original paper.
However, for each problem a number of methods exist and the choice of the right method often
depends on the concrete data set. In Section 3 we have already used the archetypesFamily ()
function to use different linear equations solver, but the function has to be extendend to allow
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abritary problem solving blocks for each step of the algorithm. Of primary interest is the usage
of different optimization methods to solve the optimization problem.

Additionally, the two fundamentals defined in Section 2 can be generalized to allow for example
arbitrary loss functions, arbitrary conditions on the coefficients a or arbitrary matrix norms.
As the algorithm strategy is similar to the least squares formulation of the k-means algorithm,
this leads to a general framework for this class of k-means-like algorithms (k-means, k-median,
Fuzzy k-means, etc.; see, e.g., Steinly 2006).

Altogether, the short-term goal for the package archetypes was the implementation of a
general framework with interchangeable blocks for the concrete problem solving mechanisms
of each algorithm step. Now, further work is the design of a clean archetypes family object,
especially with a view to our long-term goal, the generalization towards the class of k-means-
like algorithms.

Computational details

R> sessionInfo()

R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS

Matrix products: default
BLAS:  /usr/1lib/x86_64-linux-gnu/blas/libblas.s0.3.10.0
LAPACK: /usr/1ib/x86_64-1linux-gnu/lapack/liblapack.s0.3.10.0

Random number generation:
RNG: Mersenne-Twister
Normal: Inversion
Sample: Rounding

locale:
[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
[4] LC_COLLATE=C LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
[7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C

attached base packages:
[1] grid stats4 stats graphics grDevices utils datasets
[8] methods base

other attached packages:
[1] ved_1.4-13 archetypes_2.2-0.2 nnls_1.6 modeltools_0.2-2

loaded via a namespace (and not attached):
[1] zoo_1.8-14 colorspace_2.1-0 MASS_7.3-55 compiler_4.1.2
[56] tools_4.1.2 Imtest_0.9-40 lattice_0.20-45
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The newest released version of archetypes is always available from the Comprehensive R
Archive Network at http://CRAN.R-Project.org/package=archetypes. The development
version is hosted on R-Forge as project Archetypal Analysis (archetypes) and available from
http://r-forge.r-project.org/projects/archetypes. The source code is documented
using the Roxygen documentation system for R (Danenberg and Eugster 2008). An up-to-
date version of this manuscript is contained in the package as a vignette.
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