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applyCut Apply Cut Points to Vector

Description

Applies cut points to vector.

Usage

applyCut(col, cuts, infinite_bounds, labels)

Arguments

col input vector with data.

cuts vector with cutpoints. There are several special values defined: NULL indicates
that no discretization will be performed, but the value will be converted to factor
"All" indicates all values will be merged into one.

infinite_bounds

a logical indicating how the bounds on the extremes should look like. If set to
FALSE, the leftmost/rightmost intervals will be bounded by the minimum and
maximum in the respective column. If set to TRUE, the leftmost/rightmost inter-
vals will be bounded by negative and positive infinity.

labels a logical indicating whether the bins of the discretized data should be repre-
sented by integer codes or as interval notation using (a;b] when set to TRUE.
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Value

Vector with discretized data.

See Also

applyCuts

Examples

applyCut(datasets::iris[[1]], c(3,6), TRUE, TRUE)

applyCuts Apply Cut Points to Data Frame

Description

Applies cut points to input data frame.

Usage

applyCuts(df, cutp, infinite_bounds, labels)

Arguments

df input data frame.

cutp a list of vectors with cutpoints (for more information see applyCut).
infinite_bounds

a logical indicating how the bounds on the extremes should look like (for more
information see applyCut)

labels a logical indicating whether the bins of the discretized data should be repre-
sented by integer codes or as interval notation using (a;b] when set to TRUE.

Value

discretized data. If there was no discretization specified for some columns, these are returned as is.

See Also

applyCut

Examples

applyCuts(datasets::iris, list(c(5,6), c(2,3), "All", NULL, NULL), TRUE, TRUE)
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cba CBA Classifier

Description

Learns a CBA rule set from supplied dataframe.

Usage

cba(datadf, classAtt, rulelearning_options = NULL, pruning_options = NULL)

Arguments

datadf a data frame with data.

classAtt the name of the class attribute.
rulelearning_options

custom options for the rule learning algorithm overriding the default values. If
not specified, the the topRules function is called and defaults specified there are
used
target_rule_count (int) mining stops when the resulting rule set contains this
number of rules;
trim (boolean) if set to TRUE and more than target_rule_count is discov-
ered, only first target_rule_count rules will be returned.
minsupp (float) minimum support threshold
minconf (float) minimum confidence threshold
minlen (int) minimum length of rules, minlen=1 corresponds to rule with empty
antecedent and one item in consequent. In general, rules with empty antecedent
are not desirable for the subsequent pruning algorithm, therefore the value of
this parameter should be set at least to value 2.
maxlen (int) maximum length of rules, should be equal or higher than minlen. A
higher value may decrease the number of iterations to obtain target_rule_count
rules, but it also increases the risk of initial combinatorial explosion and subse-
quent memory crash of the apriori rule learner.
maxtime (int) maximum number of seconds it should take ‘apriori‘ to obtain
rules.
find_conf_supp_thresholds (boolean) whether to use automatic threshold
detection or not.

pruning_options

custom options for the pruning algorithm overriding the default values.

Value

Object of class CBARuleModel.
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Examples

# Example using automatic threshold detection
cba(datasets::iris, "Species", rulelearning_options = list(target_rule_count = 50000))
# Example using manually set confidence and support thresholds
rm <- cba(datasets::iris, "Species", rulelearning_options = list(minsupp=0.01,
minconf=0.5, minlen=1, maxlen=5, maxtime=1000, target_rule_count=50000, trim=TRUE,
find_conf_supp_thresholds=FALSE))

inspect(rm@rules)

cbaCSV Example CBA Workflow with CSV Input

Description

Learns a CBA rule set and saves the resulting rule set back to csv.

Usage

cbaCSV(
path,
outpath = NULL,
classAtt = NULL,
idcolumn = NULL,
rulelearning_options = NULL,
pruning_options = NULL

)

Arguments

path path to csv file with data.

outpath path to write the rule set to.

classAtt the name of the class attribute.

idcolumn the name of the id column in the dataf ile.
rulelearning_options

custom options for the rule learning algorithm overriding the default values.
pruning_options

custom options for the pruning algorithm overriding the default values.

Value

Object of class CBARuleModel

Examples

# cbaCSV("path-to-.csv")
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cbaIris Test CBA Workflow on Iris Dataset

Description

Test workflow on iris dataset: learns a cba classifier on one "train set" fold , and applies it to the
second "test set" fold.

Usage

cbaIris()

Value

Accuracy.

cbaIrisNumeric Test CBA Workflow on Iris Dataset with numeric target

Description

Test workflow on iris dataset: learns a cba classifier on one "train set" fold, and applies it to the
second "test set" fold.

Usage

cbaIrisNumeric()

Value

Accuracy.

CBARuleModel-class CBARuleModel

Description

This class represents a rule-based classifier.

Slots

rules an object of class rules from arules package
cutp list of cutpoints
classAtt name of the target class attribute
attTypes attribute types
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CBARuleModelAccuracy Prediction Accuracy

Description

Compares predictions with true labels and outputs accuracy.

Usage

CBARuleModelAccuracy(prediction, groundtruth)

Arguments

prediction vector with predictions

groundtruth vector with true labels

Value

Accuracy

cba_manual CBA Classifier from provided rules

Description

Learns a CBA rule set from supplied rules

Usage

cba_manual(
datadf_raw,
rules,
txns,
rhs,
classAtt,
cutp,
pruning_options = list(input_list_sorted_by_length = FALSE)

)



8 cba_manual

Arguments

datadf_raw a data frame with raw data (numeric attributes are not discretized).

rules Rules class instance output by the apriori package

txns Transactions class instance passed to the arules method invocation. Transac-
tions are created over discretized data frame - numeric values are replaced with
intervals such as "(13;45]".

rhs character vectors giving the labels of the items which can appear in the RHS
($rhs element of the APappearance class instance passed to the arules call)

classAtt the name of the class attribute.

cutp list of cutpoints used to discretize data (required for application of the model on
continuous data)

pruning_options

custom options for the pruning algorithm overriding the default values.

Value

Object of class CBARuleModel.

Examples

data(humtemp)
data_raw<-humtemp
data_discr <- humtemp

#custom discretization
data_discr[,1]<-cut(humtemp[,1],breaks=seq(from=15,to=45,by=5))
data_discr[,2]<-cut(humtemp[,2],breaks=c(0,40,60,80,100))

#change interval syntax from (15,20] to (15;20], which is required by MARC
data_discr[,1]<-as.factor(unlist(lapply(data_discr[,1], function(x) {gsub(",", ";", x)})))
data_discr[,2]<-as.factor(unlist(lapply(data_discr[,2], function(x) {gsub(",", ";", x)})))
data_discr[,3] <- as.factor(humtemp[,3])

#mine rules
classAtt="Class"
appearance <- getAppearance(data_discr, classAtt)
txns_discr <- as(data_discr, "transactions")
rules <- apriori(txns_discr, parameter =
list(confidence = 0.5, support= 3/nrow(data_discr), minlen=1, maxlen=5), appearance=appearance)
inspect(rules)

rmCBA <- cba_manual(data_raw, rules, txns_discr, appearance$rhs,
classAtt, cutp= list(), pruning_options=NULL)
inspect (rmCBA@rules)
prediction <- predict(rmCBA,data_discr,discretize=FALSE)
acc <- CBARuleModelAccuracy(prediction, data_discr[[classAtt]])
print(paste("Accuracy:",acc))
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discretizeUnsupervised

Unsupervised Discretization

Description

Discretizes provided numeric vector.

Usage

discretizeUnsupervised(
data,
labels = FALSE,
infinite_bounds = FALSE,
categories = 3,
method = "cluster"

)

Arguments

data input numeric vector.

labels a logical indicating whether the bins of the discretized data should be repre-
sented by integer codes or as interval notation using (a;b] when set to TRUE.

infinite_bounds

a logical indicating how the bounds on the extremes should look like.

categories number of categories (bins) to produce.

method clustering method, one of "interval" (equal interval width), "frequency" (equal
frequency), "cluster" (k-means clustering). See also documentation of the discretize
function from the arules package.

Value

Discretized data. If there was no discretization specified for some columns, these are returned as is.

Examples

discretizeUnsupervised(datasets::iris[[1]])
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discrNumeric Discretize Numeric Columns In Data frame

Description

Can discretize both predictor columns in data frame – using supervised algorithm MDLP (Fayyad
& Irani, 1993) – and the target class – using unsupervised algorithm (k-Means). This R file contains
fragments of code from the GPL-licensed R discretization package by HyunJi Kim.

Usage

discrNumeric(
df,
classAtt,
min_distinct_values = 3,
unsupervised_bins = 3,
discretize_class = FALSE

)

Arguments

df a data frame with data.

classAtt name the class attribute in df
min_distinct_values

the minimum number of unique values a column needs to have to be subject to
supervised discretization.

unsupervised_bins

number of target bins for discretizing the class attribute. Ignored when the class
attribute is not numeric or when discretize_class is set to FALSE.

discretize_class

logical value indicating whether the class attribute should be discretized. Ig-
nored when the class attribute is not numeric.

Value

list with two slots: $cutp with cutpoints and $Disc.data with discretization results

References

Fayyad, U. M. and Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes
for classification learning, Artificial intelligence 13, 1022–1027

Examples

discrNumeric(datasets::iris, "Species")
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getAppearance Method that generates items for values in given data frame column.

Description

Method that generates items for values in given data frame column.

Usage

getAppearance(df, classAtt)

Arguments

df a data frame contain column classAtt.

classAtt name of the column in df to generate items for.

Value

appearance object for mining classification rules

Examples

getAppearance(datasets::iris,"Species")

getConfVectorForROC Returns vector with confidences for the positive class (useful for ROC
or AUC computation)

Description

Methods for computing ROC curves require a vector of confidences of the positive class, while in
CBA, the confidence returned by predict with outputProbabilies = TRUE returns confidence for the
predicted class. This method converts the values to confidences for the positive class

Usage

getConfVectorForROC(confidences, predictedClass, positiveClass)

Arguments

confidences Vector of confidences

predictedClass Vector with predicted classes

positiveClass Positive class (String)
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Value

Vector of confidence values

Examples

predictedClass = c("setosa","virginica")
confidences = c(0.9,0.6)
baseClass="setosa"
getConfVectorForROC(confidences,predictedClass,baseClass)

# Further examples showing how ROC curve and AUC values can be computed
# using this function are available at project's GitHub homepage.

humtemp Comfort level based on temperature and humidity of the environment

Description

A syntetic toy dataset. The variables are as follows:

Usage

data(humtemp)

Format

A data frame with 34 rows and 3 variables

Details

• Temperature.

• Humidity.

• Class. Comfort level

mdlp2 Supervised Discretization

Description

Performs supervised discretization of numeric columns, except class, on the provided data frame.
Uses the Minimum Description Length Principle algorithm (Fayyed and Irani, 1993) as imple-
mented in the discretization package.
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Usage

mdlp2(
df,
cl_index = NULL,
handle_missing = FALSE,
labels = FALSE,
skip_nonnumeric = FALSE,
infinite_bounds = FALSE,
min_distinct_values = 3

)

Arguments

df input data frame.

cl_index index of the class variable. If not specified, the last column is used as the class
variable.

handle_missing Setting to TRUE activates the following behaviour: if there are any missing
observations in the column processed, the input for discretization is a subset
of data containing this column and target with rows containing missing values
excuded.

labels A logical indicating whether the bins of the discretized data should be repre-
sented by integer codes or as interval notation using (a;b] when set to TRUE.

skip_nonnumeric

If set to TRUE, any non-numeric columns will be skipped.
infinite_bounds

A logical indicating how the bounds on the extremes should look like.
min_distinct_values

If a column contains less than specified number of distinct values, it is not dis-
cretized.

Value

Discretized data. If there were any non-numeric input columns they are returned as is. All returned
columns except class are factors.

References

Fayyad, U. M. and Irani, K. B. (1993). Multi-interval discretization of continuous-valued attributes
for classification learning, Artificial intelligence 13, 1022–1027

Examples

mdlp2(datasets::iris) #gives the same result as mdlp(datasets::iris) from discretize package
#uses Sepal.Length as target variable
mdlp2(df=datasets::iris, cl_index = 1,handle_missing = TRUE, labels = TRUE,
skip_nonnumeric = TRUE, infinite_bounds = TRUE, min_distinct_values = 30)
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predict.CBARuleModel Apply Rule Model

Description

Method that matches rule model against test data.

Usage

## S3 method for class 'CBARuleModel'
predict(
object,
data,
discretize = TRUE,
outputFiringRuleIDs = FALSE,
outputConfidenceScores = FALSE,
confScoreType = "ordered",
positiveClass = NULL,
...

)

Arguments

object a CBARuleModel class instance

data a data frame with data

discretize boolean indicating whether the passed data should be discretized using informa-
tion in the passed @cutp slot of the ruleModel argument.

outputFiringRuleIDs

if set to TRUE, instead of predictions, the function will return one-based IDs of
rules used to classify each instance (one rule per instance).

outputConfidenceScores

if set to TRUE, instead of predictions, the function will return confidences of the
firing rule

confScoreType applicable only if ‘outputConfidenceScores=TRUE‘, possible values ‘ordered‘
for confidence computed only for training instances reaching this rule, or ‘global‘
for standard rule confidence computed from the complete training data

positiveClass This setting is only used if ‘outputConfidenceScores=TRUE‘. It should be used
only for binary problems. In this case, the confidence values are recalculated so
that these are not confidence values of the predicted class (default behaviour of
‘outputConfidenceScores=TRUE‘) but rather confidence values associated with
the class designated as positive

... other arguments (currently not used)

Value

A vector with predictions.
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See Also

cbaIris

Examples

set.seed(101)
allData <- datasets::iris[sample(nrow(datasets::iris)),]
trainFold <- allData[1:100,]
testFold <- allData[101:nrow(allData),]
#increase for more accurate results in longer time
target_rule_count <- 1000
classAtt <- "Species"
rm <- cba(trainFold, classAtt, list(target_rule_count = target_rule_count))
prediction <- predict(rm, testFold)
acc <- CBARuleModelAccuracy(prediction, testFold[[classAtt]])
message(acc)
# get rules responsible for each prediction
firingRuleIDs <- predict(rm, testFold, outputFiringRuleIDs=TRUE)
# show rule responsible for prediction of test instance no. 28
inspect(rm@rules[firingRuleIDs[28]])
# get prediction confidence (three different versions)
rm@rules[firingRuleIDs[28]]@quality$confidence
rm@rules[firingRuleIDs[28]]@quality$orderedConf
rm@rules[firingRuleIDs[28]]@quality$cumulativeConf

prune Classifier Builder

Description

An implementation of the CBA-CB M1 algorithm (Liu et al, 1998) adapted for R and arules package
apriori implementation in place of CBA-RG.

Usage

prune(
rules,
txns,
classitems,
default_rule_pruning = TRUE,
rule_window = 50000,
greedy_pruning = FALSE,
input_list_sorted_by_length = TRUE,
debug = FALSE

)
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Arguments

rules object of class rules from arules package

txns input object with transactions.

classitems a list of items to appear in the consequent (rhs) of the rules.
default_rule_pruning

boolean indicating whether default pruning should be performed. If set to TRUE,
default pruning is performed as in the CBA algorithm. If set to FALSE, default
pruning is not performed i.e. all rules surviving data coverage pruning are kept.
In either case, a default rule is added to the end of the classifier.

rule_window the number of rules to precompute for CBA data coverage pruning. The default
value can be adjusted to decrease runtime.

greedy_pruning setting to TRUE activates early stopping condition: pruning will be stopped on
first rule on which total error increases.

input_list_sorted_by_length

indicates by default that the input rule list is sorted by antecedent length (as
output by arules), if this param is set to false, the list will be resorted

debug output debug messages.

Value

Returns an object of class rules. Note that ‘rules@quality‘ slot has been extended with additional
measures, specifically ‘orderedConf‘, ‘orderedSupp‘, and ‘cumulativeConf‘. The rules are output
in the order in which they are assumed to be applied in classification. Only the first applicable rule
is used to classify the instance. As a result, in addition to rule confidence – which is computed over
the whole training dataset – it makes sense to define order-sensitive confidence, which is computed
only from instances reaching the given rule as a/(a + b), where a is the number of instances
matching both the antecedent and consequent (available in slot ‘orderedSupp‘) and b is the number
of instances matching the antecedent, but not matching the consequent of the given rule. The
cumulative confidence is an experimental measure, which is computed as the accuracy of the rule
list comprising the given rule and all higher priority rules (rules with lower index) with uncovered
instances excluded from the computation.

References

Ma, Bing Liu Wynne Hsu Yiming. Integrating classification and association rule mining. Proceed-
ings of the fourth international conference on knowledge discovery and data mining. 1998.

See Also

topRules

Examples

#Example 1
txns <- as(discrNumeric(datasets::iris, "Species")$Disc.data,"transactions")
appearance <- getAppearance(datasets::iris,"Species")
rules <- apriori(txns, parameter = list(confidence = 0.5,
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support= 0.01, minlen= 2, maxlen= 4),appearance = appearance)
prune(rules,txns, appearance$rhs)
inspect(rules)

#Example 2
utils::data(Adult) # this dataset comes with the arules package
classitems <- c("income=small","income=large")
rules <- apriori(Adult, parameter = list(supp = 0.3, conf = 0.5,
target = "rules"), appearance=list(rhs=classitems, default="lhs"))
# produces 25 rules
rulesP <- prune(rules,Adult,classitems)
rulesP@quality # inspect rule quality measured including the new additions
# Rules after data coverage pruning: 8
# Performing default rule pruning.
# Final rule list size: 6

topRules Rule Generation

Description

A wrapper for the apriori method from the arules package that iteratively changes mining param-
eters until a desired number of rules is obtained, all options are exhausted or a preset time limit is
reached. Within the arc package, this function serves as a replacement for the CBA Rule Genera-
tion algorithm (Liu et al, 1998) – without pessimistic pruning – with general apriori implementation
provided by existing fast R package arules.

Usage

topRules(
txns,
appearance = list(),
target_rule_count = 1000,
init_support = 0,
init_conf = 0.5,
conf_step = 0.05,
supp_step = 0.05,
minlen = 2,
init_maxlen = 3,
iteration_timeout = 2,
total_timeout = 100,
max_iterations = 30,
trim = TRUE,
debug = FALSE

)
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Arguments

txns input transactions.

appearance object named list or APappearance object (refer to arules package)

target_rule_count

the main stopping criterion, mining stops when the resulting rule set contains
this number of rules.

init_support initial support.

init_conf initial confidence.

conf_step confidence will be changed by steps defined by this parameter.

supp_step support will be changed by steps defined by this parameter.

minlen minimum length of rules, minlen=1 corresponds to rule with empty antecedent
and one item in consequent. In general, rules with empty antecedent are not
desirable for the subsequent pruning algorithm, therefore the value of this pa-
rameter should be set at least to value 2.

init_maxlen maximum length of rules, should be equal or higher than minlen. A higher value
may decrease the number of iterations to obtain target_rule_count rules, but it
also increases the risk of initial combinatorial explosion and subsequent memory
crash of the apriori rule learner.

iteration_timeout

maximum number of seconds it should take apriori to obtain rules with current
configuration/

total_timeout maximum number of seconds the mining should take.

max_iterations maximum number of iterations.

trim if set to TRUE and more than target_rule_count is discovered, only first
target_rule_count rules will be returned.

debug boolean indicating whether to output debug messages.

Value

Returns an object of class rules.

References

Ma, Bing Liu Wynne Hsu Yiming. Integrating classification and association rule mining. Proceed-
ings of the fourth international conference on knowledge discovery and data mining. 1998.

See Also

prune
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Examples

# Example 1
utils::data(Adult)
rules <- topRules(Adult, appearance = list(), target_rule_count = 100,
init_support = 0.5,init_conf = 0.9, minlen = 1, init_maxlen = 10)

# Example 2
rules <- topRules(as(discrNumeric(datasets::iris, "Species")$Disc.data,"transactions"),
getAppearance(datasets::iris,"Species"))

# Example 3
utils::data(datasets::iris)
appearance <- list(rhs = c("Species=setosa", "Species=versicolor",
"Species=virginica"), default="lhs")
data <- sapply(datasets::iris,as.factor)
data <- data.frame(data, check.names=FALSE)
txns <- as(data,"transactions")
rules <- topRules(txns, appearance)
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