
Enumeration and Simulation of Random Tree

Topologies
Emmanuel Paradis

December 10, 2024

Contents

1 Theoretical Background 1

2 Simulating Trees with ape 6

2.1 The function rtree . 6
2.2 The new function rtopology . 8
2.3 Tests . 8
2.4 Summary . 10

3 Enumerating Topologies Beyond Large Values 10

3.1 Labeled Topologies . 11
3.2 Unlabeled Topologies . 11

References 14

This document describes how phylogenetic trees are simulated in ape and discusses some
issues related to solving multichotomies.

1 Theoretical Background

We use here the term topology to mean the shape of a tree without consideration of its
branch lengths. The number of possible topologies for n tips (or leaves), denoted as Nn, is
notoriously large. This has been studied by Felsenstein [1] and later reviewed in his book
[2]. A particularly relevant case is that of rooted, binary, labeled trees where the number of
possible topologies is given by the double factorial:

Nn = (2n− 3)!! = 1× 3× 5× · · · × 2n− 3. (1)

The function howmanytrees in ape calculates the number of possible topologies with re-
spect to three criteria: rooted vs. unrooted, binary vs. multichotomous, and labeled vs. un-
labeled. These three options should make eight possible cases, but the number of unlabeled
topologies can be computed only for rooted, binary trees, so only five cases are effectively
considered. The returned number is obviously an integer which grows dramatically with n:1

> library(ape)

> n <- 1:10

> data.frame(N.topo = sapply(n, howmanytrees))

N.topo

1 1

2 1

3 3

1This function is not vectorized, so we use here sapply. We could also use Vectorize(howmanytrees)(n).

1

4 15

5 105

6 945

7 10395

8 135135

9 2027025

10 34459425

With ten labeled tips, a rooted, binary phylogenetic tree has more than 34 million possible
topologies. Suppose we analyze a sample of n = 25 sequences (a very modest sample size in
today’s standards), this number would be:

> howmanytrees(25)

[1] 1.192568e+30

Imagine we want to print each of these topologies on an A4 paper sheet and arrange them
side by side to make a (huge) poster. This would require (in meters):

> howmanytrees(25) * 0.21

[1] 2.504393e+29

The diameter of the observable Universe2 is estimated to be ≈ 8.8× 1026 m, so it would not
be wide enough to display our trees.

The number of topologies grows much more gently if they are unlabeled, but still reaching
huge values if n is moderately large:

> data.frame(N.topo = sapply(n, howmanytrees, labeled = FALSE))

N.topo

1 1

2 1

3 1

4 2

5 3

6 6

7 11

8 23

9 46

10 98

> n2 <- c(50, 100, 200)

> data.frame(N.topo = sapply(n2, howmanytrees, labeled = FALSE),

+ row.names = n2)

N.topo

50 5.150149e+16

100 1.019560e+36

200 1.141703e+75

The formula is more complicated than for the labeled cases and is computed by recursion
setting N1 = 1:

2https://en.wikipedia.org/wiki/Observable_universe

2

Nn =











N1Nn−1 +N2Nn−2 + · · ·+
N2

n/2 + 1

2
n even

N1Nn−1 +N2Nn−2 + · · ·+N(n−1)/2N(n+1)/2 n odd

These numbers are so large that the probability to randomly draw twice the same topol-
ogy when drawing randomly (and independently) two trees is very close to zero:

> 1 / howmanytrees(50)

[1] 3.632505e-77

However, for small values of n, this is clearly not negligible:

> 1 / sapply(n, howmanytrees)

[1] 1.000000e+00 1.000000e+00 3.333333e-01 6.666667e-02 9.523810e-03

[6] 1.058201e-03 9.620010e-05 7.400007e-06 4.933338e-07 2.901964e-08

These probabilities are of course larger if the topologies are unlabeled:

> 1 / sapply(n, howmanytrees, labeled = FALSE)

[1] 1.00000000 1.00000000 1.00000000 0.50000000 0.33333333 0.16666667

[7] 0.09090909 0.04347826 0.02173913 0.01020408

The potential problem is when sampling a large number of trees, their topologies might not
be represented adequately if the algorithm does not draw them with equal probability.

phangorn has the function allTrees, but, very wisely, it accepts only values of n ≤ 9 (or
10 if the trees are unrooted, which is the default for this function). We consider here n = 4,
so there are 15 possible labeled topologies and 2 possible unlabeled topologies:

> library(phangorn)

> TR <- allTrees(4, rooted = TRUE)

> TR

15 phylogenetic trees

> layout(matrix(1:15, 3, 5))

> par(mar = rep(1.5, 4), xpd = TRUE)

> for (i in 1:15) plot(TR[[i]], "c", cex = 1.2, font = 1)

3

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

t1

t2

t3

t4

This shows that the two unlabeled topologies do not have the same number of labeled cases:
there are 12 for the unbalanced topologies, and 3 for the balanced one. Thus, if we sample
the unlabeled topologies with equal probabilities, the labeled ones will not be represented
in equal frequencies. However, we have seen above that the probability to draw twice the
same topology is very small if n is sufficiently large, but this will also depend on the number
of trees sampled, denoted here as K.

What is the probability P to have at least twice the same unlabeled topology when
drawing K trees assuming equal probability of sampling? We have seen above that the
probability to draw a specific topology is the inverse of the possible number of topologies, so
the number of times any topology is drawn out of K draws follows a binomial distribution
with parameters K and 1/Nn. The probability to have at least twice this topology is one
minus the probability to have it zero time and minus the probability to have it once. Let’s
calculate this for n = 50 and K = 100:

> K <- 100

> n <- 50

> N <- howmanytrees(n, labeled = FALSE)

> p <- 1/N

> 1 - (dbinom(0, K, p) + dbinom(1, K, p))

[1] 0

These calculations are very close to the numerical precision of most computers, which may
result in (very small) negative probabilities, for instance, if we omit the parentheses in the
last expression:

> 1 - dbinom(0, K, p) - dbinom(1, K, p)

[1] -5.431212e-17

We now assess these probabilities for a range of values of n and K:

4

> f <- function(n, K) {

+ N <- howmanytrees(n, labeled = FALSE)

+ p <- 1/N

+ 1 - (dbinom(0, K, p) + dbinom(1, K, p))

+ }

> DF <- expand.grid(n = 4:20, K = c(2, 5, 10, 100, 1e3, 1e4))

> DF$P <- mapply(f, n = DF$n, K = DF$K)

> library(lattice)

> xyplot(P ~ n, DF, groups = K, panel = panel.superpose,

+ type = "b", auto.key = list(x = .8, y = .9, title = "K"))

n

P

0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20

K
2
5
10
100
1000
10000

We can print the probabilities for a specific value n, or calculate them for other values of n
and K:

> subset(DF, n == 20)

n K P

17 20 2 1.160494e-11

34 20 5 1.160491e-10

51 20 10 5.222149e-10

68 20 100 5.743191e-08

85 20 1000 5.783570e-06

102 20 10000 5.671842e-04

5

> f(20, 1e5)

[1] 0.04638755

> f(30, 1e6)

[1] 2.525152e-07

If the number of tips is small (n < 20), we cannot ignore the probability to draw more
than once the same topology unless a small number of trees are sampled (e.g., K < 10
for n = 10). On the other hand, if n ≥ 20 it is unlikely to draw twice the same topology
even when sampling 10,000 trees. We have to keep in mind that these results were obtained
assuming that each unlabeled topology has the same probability to be sampled.

2 Simulating Trees with ape

There are five functions to simulate trees in ape 5.4:

rtree random topology with fixed n and random branch lengths
rcoal random coalescent tree with fixed n
rphylo random birth–death tree with fixed n
rbdtree random birth–death tree with fixed time and only the surviving lineages
rlineage random birth–death tree with fixed time and all lineages

rcoal, rphylo, and rbdtree always generate ultrametric trees (also rlineage if the death
rate is equal to zero). All functions generate fully binary trees.3

2.1 The function rtree

We focus on the function rtree since it is the most general one (the other functions have
an underlying evolutionary model). Its algorithm is [3]:

1. Draw randomly an integer a on the interval [1, n− 1]. Set b = n− a.

2. If a > 1, apply (recursively) step 1 after substituting n by a.

3. Repeat step 2 with b in place of a.

4. Assign randomly the n tip labels to the tips.

These recursions are used to build the successive splits generating sister-clades. This al-
gorithm is thus well-suited to simulate rooted trees. One of its side-effects is to produce
topologies in unequal frequencies. The reason for this is how the integer a is drawn. Sup-
pose that n = 4 (we detailed both the labeled and the unlabeled cases above), then during
the first iteration a takes the value 1, 2, or 3 with equal probabilities (13). Obviously, if
a = 2 a balanced topology will be generated, otherwise the topology will be unbalanced.
Consequently, the expected frequencies of these two are 1

3 and 2
3 instead of 1

2 and 1
2 . This

also does not agree with the proportions of labeled topologies which should be 1
5 and 4

5 of
the unlabeled ones.

For larger values of n, these expected frequencies can be calculated in a straightforward
way thanks to the recursive nature of the algorithm. If n = 5, there are three possible
unlabeled topologies:

> txt <- c("((,),((,),));", "(((,),(,)),);", "((((,),),),);")

> TR5 <- read.tree(text = txt)

3The function stree generates trees with specific shapes, including multichotomies.

6

> layout(matrix(1:3, 1))

> for (i in 1:3) plot(TR5[[i]], "c", cex = 1.2, main = LETTERS[i])

A B C

During the first iteration, a takes the value 1, 2, 3, or 4 with equal probabilities (14): a = 2
or 3 leads to topology A, so that it will occur in proportion 1

2 . On the other hand, if a = 1 or
4, the above reasoning for n = 4 can be applied so that topology B will appear in expected
proportion 1

2 ×
2
3 = 1

3 , and topology C in proportion 1
2 ×

1
3 = 1

6 . Since there are 105 labeled
topologies with n = 5, we skip their detailed analysis.

In ape 5.4-1, the option equiprob was introduced to rtree to generate topologies in
equal proportions.4 The modification was simple: in step 1 a is drawn uniformly on the
interval [1, ⌊n/2⌋]. If n = 4, a now takes the value 1 or 2 with equal probabilities (12), so
the two unlabeled topologies are generated in equal proportions. However, if n = 5, a takes
the same values in the same probabilities leading to incorrect proportions: the draw a = 1
should happen twice more frequently than a = 2 because the former leads to two different
topologies in the following iteration (because b = 4) of the algorithm whereas the latter
always result in topology A. The solution is to weigh the probabilities by the number of
possible topologies for associated to each (a, b) so that those resulting in higher number of
topologies will be more likely to be drawn. For n = 5, the two possible pairs are (1, 4) and
(2, 3); the product of the number of unlabeled topologies gives the correct weights:

> howmanytrees(1, labeled = FALSE) * howmanytrees(4, labeled = FALSE)

[1] 2

> howmanytrees(2, labeled = FALSE) * howmanytrees(3, labeled = FALSE)

[1] 1

For instance, if n = 803 it will be necessary to calculate the following quantity during the
first iteration:

> howmanytrees(400, labeled = FALSE) * howmanytrees(403, labeled = FALSE)

[1] Inf

4The default of this option is FALSE because several packages use rtree() with set.seed() in their

examples.

7

Section 3 explains how these large numbers can be handled. This scheme has been incor-
porated into ape 5.5. These probabilities are passed to the function sample and its option
prob to generate the values of a.

2.2 The new function rtopology

ape 5.5 introduces rtopology in order to provide an alternative to the above functions. The
implemented algorithm is as follows:

1. Initialize an unrooted tree with k = 3 tips. Set the number of branches to 3.

2. Select randomly one branch of the tree and graft onto it one terminal branch. Incre-
ment k by 1 tip and the number of branches by 2.

3. Repeat step 2 until k = n.

This algorithm is particularly efficient to generate unrooted trees (this is the default of the
function). A rooted tree is generated with one additional step:

4. Select randomly one branch of the tree and add an internal node on it.

Some calculations are simplified compared to rtree: it is possible to generate all needed
random numbers at once since it is known in advance that we will need to select among
3, 5, 7, . . . branches in step 2. Additionally, the tip labels are permuted at the start of
the simulation so they are added in random order during step 2. However, rtree is faster
than rtopology because the latter requires to reorder the tree edges after the simulation
algorithm is performed.

What are the expected frequencies of the different topologies under this algorithm? Let’s
consider n = 4. Step 1 generates a tree with three terminal branches, then step 2 adds the
last terminal branch on any of these three, so that the three possible unrooted, labeled
topologies are produced with equal probabilities. The final unrooted tree has five branches:
one internal and four terminal. If it is rooted (step 4), then the root node is added randomly
on any of these branches, therefore resulting in the balanced topology in 20% of the cases,
and one of the unbalanced topologies in the remaining 80%. This conforms to the numbers
of labelled topologies found above.

2.3 Tests

The code below is a simple example of testing the frequencies of topologies generated by the
above question considering rooted trees with n = 4. We first simulate 1000 trees without
branch lengths using the three algorithms detailed above:

> TR <- list(rmtopology(1000, 4, TRUE, br = NULL),

+ rmtree(1000, 4, TRUE, br = NULL),

+ rmtree(1000, 4, TRUE, br = NULL, equiprob = TRUE))

We then build a function to extract the unique topologies and compute their frequencies.
The returned value is the χ2-test for equal frequencies. An option controls whether to
consider the toplogies as labeled (the default) or not:

> foo.test <- function(x, labeled = TRUE) {

+ uTR <- unique(x, use.tip.label = labeled)

+ f <- integer(length(uTR))

+ for (j in seq_along(uTR)) {

+ for (i in seq_along(x)) {

+ if (all.equal(x[[i]], uTR[[j]], use.tip.label = labeled))

8

+ f[j] <- f[j] + 1L

+ }

+ }

+ print(f)

+ chisq.test(f)

+ }

We now apply the function to the list of simulated trees.

> lapply(TR, foo.test)

[1] 76 81 64 65 68 72 67 73 70 68 51 60 66 50 69

[1] 59 59 53 62 136 48 59 62 53 48 97 59 111 49 45

[1] 41 166 161 165 42 41 43 53 43 55 52 35 31 33 39

[[1]]

Chi-squared test for given probabilities

data: f

X-squared = 14.39, df = 14, p-value = 0.4211

[[2]]

Chi-squared test for given probabilities

data: f

X-squared = 147.35, df = 14, p-value < 2.2e-16

[[3]]

Chi-squared test for given probabilities

data: f

X-squared = 542.9, df = 14, p-value < 2.2e-16

> lapply(TR, foo.test, labeled = FALSE)

[1] 793 207

[1] 656 344

[1] 508 492

[[1]]

Chi-squared test for given probabilities

data: f

X-squared = 343.4, df = 1, p-value < 2.2e-16

[[2]]

Chi-squared test for given probabilities

9

data: f

X-squared = 97.344, df = 1, p-value < 2.2e-16

[[3]]

Chi-squared test for given probabilities

data: f

X-squared = 0.256, df = 1, p-value = 0.6129

The results agree with the above analysis. The same simulation study with n = 5 would
require larger sample sizes because of the much larger numbers of possible topologies.

2.4 Summary

1. rtree simulates topologies in unequal frequencies. The differences in expected frequen-
cies are important for small values of n (see above for n = 4 and n = 5). For larger
values of n, it is practically impossible to determine these frequencies because of the
large number of possible topologies. However, it seems these frequencies are sufficiently
low that the above analysis assuming equal probabilities might be a good approxima-
tion. For instance, rmtree(1000, 20) returns 1000 unique unlabeled topologies (not
shown here to avoid long computations in this vignette).

2. rtree(, equiprob = TRUE) simulates unlabeled topologies in equal frequencies (from
ape 5.5).

3. rtopology simulates labeled topologies with equal probabilities. This is the function
now called by multi2di(, equiprob = TRUE).

3 Enumerating Topologies Beyond Large Values

The function howmanytrees, like most functions in R, works with double precision floating
point numbers, so the largest value which can be returned is:

> .Machine$double.xmax

[1] 1.797693e+308

This value is reached with n = 151 or 792 for labeled or unlabeled topologies, respectively:

> howmanytrees(151)

[1] 3.753274e+306

> howmanytrees(792, labeled = FALSE)

[1] 1.029038e+308

This section shows how larger values are handled in ape 5.5.

10

3.1 Labeled Topologies

It is possible to write equation 1 using standard factorial (this uses the fact that 2n − 3 is
always an odd integer):

(2n− 3)!! =
(2n− 3)!

2n−2(n− 2)!
n ≥ 2.

A log-transformation of both sides leads to:

ln[(2n− 3)!!] = ln[(2n− 3)!]− (n− 2) ln 2− ln[(n− 2)!]. (2)

R has the function lfactorial making possible to calculate this expression with large values
of n.5 Obviously, if we try to compute the exponential of the result, we will again obtain
Inf. Instead, we can use the fact that an expression such as ab can be expressed with a
power of ten:

ab = x× 10n,

with x a real number and n an integer. We do a log10-transformation of both sides:

b× log10 a = log10 x+ n.

This is solved with n = ⌊b× log10 a⌋ and x = 10c, c = b× log10 a−n. This can be used with
a = e (≈ 2.718) and b = ln[(2n− 3)!!] calculated with equation 2.

Let’s find how many possible trees there are for the number of living species on Earth
using an estimate of two million species:6

> (N <- howmanytrees(2e6))

approximately 3.692364 * 10^12335524

How many digits are needed to print this number?

> N[2] + 1

n

12335525

How many pages to print it (assuming 3000 characters per page)?

> ceiling((N[2] + 1) / 3000)

n

4112

3.2 Unlabeled Topologies

In the unlabeled case, the formulas to calculate the number of topologies are more compli-
cated and do not allow the previous approach. However, there is an almost linear relationship
between n and Nn after log-transformation of the latter:

> n <- 1:792

> N <- howmanytrees(792, labeled = FALSE, detail = TRUE)

> lN <- log10(N)

> summary(lm(lN ~ n))

5phangorn has the function ldfactorial doing the same calculation based on lgamma.
6This returned Inf prior to ape 5.5.

11

Call:

lm(formula = lN ~ n)

Residuals:

Min 1Q Median 3Q Max

-0.25968 -0.21424 -0.08311 0.12406 2.82605

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.219e+00 2.258e-02 -142.5 <2e-16 ***

n 3.926e-01 4.934e-05 7956.3 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3175 on 790 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: 1

F-statistic: 6.33e+07 on 1 and 790 DF, p-value: < 2.2e-16

The linear approximation is good but it is still better for n > 700:

> s <- n > 700

> summary(lm(lN[s] ~ n[s]))

Call:

lm(formula = lN[s] ~ n[s])

Residuals:

Min 1Q Median 3Q Max

-0.0004133 -0.0003323 -0.0001032 0.0002834 0.0008197

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.153e+00 1.096e-03 -3788 <2e-16 ***

n[s] 3.941e-01 1.468e-06 268567 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.0003738 on 90 degrees of freedom

Multiple R-squared: 1, Adjusted R-squared: 1

F-statistic: 7.213e+10 on 1 and 90 DF, p-value: < 2.2e-16

The residuals are now almost equal to zero. We may thus write:

log10 Nn ≈ 0.3941× n− 4.153 n > 792.

Let’s evaluate the quality of this approximation for a few values:

> n <- 788:792

> log10(sapply(n, howmanytrees, labeled = FALSE))

[1] 306.4356 306.8298 307.2240 307.6182 308.0124

> 0.3941 * n - 4.153

[1] 306.3978 306.7919 307.1860 307.5801 307.9742

12

The approximation is not so good for smaller values of n and we use it only for n > 792.
This can be used to handle some of the calculations detailed in Section 2.1. The coefficient
(0.3941) is actually the difference between successive values of Nn on the logarithmic scale:

log10 Nn+1 − log10 Nn = 0.3941.

This is equivalent to a ratio of these successive values equal to Nn+1/Nn = 100.3941 =
2.477993. We denote this last number as ξ. This can help to find an approximation of the
sum of the Ni’s for i = 1, . . . , n, when n is large:

n
∑

i=1

Ni = N1 +N2 +N3 + · · ·+Nn

≈ N1 + ξN1 + ξ2N1 + · · ·+ ξn−1N1

= N1

n
∑

i=1

ξi−1.

This is a divergent geometric series (ξ > 1). Since N1 = 1, this first term can be ignored.
The logarithm of this sum may be approximated using the fact that log(x + δ) ≈ log(x) if
x >>> δ. More generally, if we have a series of numbers A, B, C, . . . , such that:

A > B > C > . . .

then the logarithm of their sum can be approximated with successive calculations (the base
of the logarithm is unimportant):

log(A+B + C + . . .) ≈ log(A)

≈ log(A+B)

≈ log(A+B + C)

≈ . . .

In other words, when calculating the logarithm of a sum, the largest terms will contribute
the most. It is possible to assess the convergence of the successive approximations.

log10

(

n
∑

i=1

Nn

)

≈ log10(ξ
n−1) = (n− 1) log10 ξ

≈ log10(ξ
n−2 + ξn−1) = (n− 2) log10 ξ + log10(1 + ξ)

≈ log10(ξ
n−3 + ξn−2 + ξn−1) = (n− 3) log10 ξ + log10(1 + ξ + ξ2)

≈ . . .

The kth approximation can be calculated directly with:

(n− k) log10 ξ + log10

(

k−1
∑

i=0

ξi

)

k > 1

This converges after a few iterations:

> xi <- 2.477993

> lxi <- log10(xi)

> n <- 1000

> (n - 1) * lxi # k = 1

13

[1] 393.706

> for (k in 2:11)

+ print((n - k) * lxi + log10(sum(xi^(0:(k - 1)))))

[1] 393.8532

[1] 393.9009

[1] 393.9187

[1] 393.9257

[1] 393.9285

[1] 393.9296

[1] 393.9301

[1] 393.9303

[1] 393.9304

[1] 393.9304

References

[1] J. Felsenstein. Number of evolutionary trees. Systematic Zoology, 27(1):27–33, 1978.

[2] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Sunderland, MA, 2004.

[3] E. Paradis. Analysis of Phylogenetics and Evolution with R (Second Edition). Springer,
New York, 2012.

14

