
Risk and ruin theory features of actuar
Christophe Dutang

Université Paris Dauphine

Vincent Goulet
Université Laval

Mathieu Pigeon
Université du Québec à Montréal

1 Introduction
Risk theory refers to a body of techniques to model and measure the risk as-
sociated with a portfolio of insurance contracts. A first approach consists in
modeling the distribution of total claims over a fixed period of time using the
classical collective model of risk theory. A second input of interest to the actu-
ary is the evolution of the surplus of the insurance company over many periods
of time. In ruin theory, the main quantity of interest is the probability that the
surplus becomes negative, in which case technical ruin of the insurance com-
pany occurs.

The interested reader can read more on these subjects in Klugman et al.
(2012); Gerber (1979); Denuit andCharpentier (2004); Kaas et al. (2008), among
others.

The current version of actuar (Dutang et al., 2008) contains four visible
functions related to the above problems: two for the calculation of the aggregate
claim amount distribution and two for ruin probability calculations.

2 The collective risk model
Let random variable 𝑆 represent the aggregate claim amount (or total amount
of claims) of a portfolio of independent risks over a fixed period of time, ran-
dom variable 𝑁 represent the number of claims (or frequency) in the portfolio

1

over that period, and random variable 𝐶𝑗 represent the amount of claim 𝑗 (or
severity). Then, we have the random sum

𝑆 = 𝐶1 +⋯+ 𝐶𝑁 , (1)

where we assume that 𝐶1, 𝐶2,… are mutually independent and identically dis-
tributed random variables each independent of 𝑁. The task at hand consists in
evaluating numerically the cdf of 𝑆, given by

𝐹𝑆(𝑥) = Pr[𝑆 ≤ 𝑥]

=
∞
∑
𝑛=0

Pr[𝑆 ≤ 𝑥|𝑁 = 𝑛]𝑝𝑛

=
∞
∑
𝑛=0

𝐹∗𝑛𝐶 (𝑥)𝑝𝑛, (2)

where 𝐹𝐶(𝑥) = Pr[𝐶 ≤ 𝑥] is the common cdf of 𝐶1,… , 𝐶𝑛, 𝑝𝑛 = Pr[𝑁 = 𝑛] and
𝐹∗𝑛𝐶 (𝑥) = Pr[𝐶1+⋯+𝐶𝑛 ≤ 𝑥] is the 𝑛-fold convolution of 𝐹𝐶(⋅). If 𝐶 is discrete
on 0, 1, 2,… , one has

𝐹∗𝑘𝐶 (𝑥) =
⎧
⎨
⎩

𝐼{𝑥 ≥ 0}, 𝑘 = 0
𝐹𝐶(𝑥), 𝑘 = 1
∑𝑥

𝑦=0 𝐹
∗(𝑘−1)
𝐶 (𝑥 − 𝑦)𝑓𝐶(𝑦), 𝑘 = 2, 3,… ,

(3)

where 𝐼{𝒜} = 1 if 𝒜 is true and 𝐼{𝒜} = 0 otherwise.

3 Discretization of claim amount distributions
Some numerical techniques to compute the aggregate claim amount distribu-
tion (see section 4) require a discrete arithmetic claim amount distribution; that
is, a distribution defined on 0, ℎ, 2ℎ,… for some step (or span, or lag) ℎ. The
package provides function discretize to discretize a continuous distribution.
(The function can also be used to modify the support of an already discrete dis-
tribution, but this requires additional care.)

Let 𝐹(𝑥) denote the cdf of the distribution to discretize on some interval
(𝑎, 𝑏) and 𝑓𝑥 denote the probability mass at 𝑥 in the discretized distribution.
Currently, discretize supports the following four discretization methods.

1. Upper discretization, or forward difference of 𝐹(𝑥):

𝑓𝑥 = 𝐹(𝑥 + ℎ) − 𝐹(𝑥) (4)

for 𝑥 = 𝑎, 𝑎 + ℎ,… , 𝑏 − ℎ. The discretized cdf is always above the true cdf.

2

2. Lower discretization, or backward difference of 𝐹(𝑥):

𝑓𝑥 = {𝐹(𝑎), 𝑥 = 𝑎
𝐹(𝑥) − 𝐹(𝑥 − ℎ), 𝑥 = 𝑎 + ℎ,… , 𝑏.

(5)

The discretized cdf is always under the true cdf.

3. Rounding of the random variable, or the midpoint method:

𝑓𝑥 = {𝐹(𝑎 + ℎ/2), 𝑥 = 𝑎
𝐹(𝑥 + ℎ/2) − 𝐹(𝑥 − ℎ/2), 𝑥 = 𝑎 + ℎ,… , 𝑏 − ℎ.

(6)

The true cdf passes exactly midway through the steps of the discretized cdf.

4. Unbiased, or local matching of the first moment method:

𝑓𝑥 =
⎧⎪
⎨
⎪
⎩

𝐸[𝑋 ∧ 𝑎] − 𝐸[𝑋 ∧ 𝑎 + ℎ]
ℎ + 1 − 𝐹(𝑎), 𝑥 = 𝑎

2𝐸[𝑋 ∧ 𝑥] − 𝐸[𝑋 ∧ 𝑥 − ℎ] − 𝐸[𝑋 ∧ 𝑥 + ℎ]
ℎ , 𝑎 < 𝑥 < 𝑏

𝐸[𝑋 ∧ 𝑏] − 𝐸[𝑋 ∧ 𝑏 − ℎ]
ℎ − 1 + 𝐹(𝑏), 𝑥 = 𝑏.

(7)

The discretized and the true distributions have the same total probability
and expected value on (𝑎, 𝑏).

Figure 1 illustrates the four methods. It should be noted that although very
close in this example, the rounding and unbiased methods are not identical.

Usage of discretize is similar to R’s plotting function curve. The cdf to
discretize and, for the unbiased method only, the limited expected value func-
tion are passed to discretize as expressions in x. The other arguments are
the upper and lower bounds of the discretization interval, the step ℎ and the
discretization method. For example, upper and unbiased discretizations of a
Gamma(2, 1) distribution on (0, 17)with a step of 0.5 are achieved with, respec-
tively,

> fx <- discretize(pgamma(x, 2, 1), method = "upper",
+ from = 0, to = 17, step = 0.5)
> fx <- discretize(pgamma(x, 2, 1), method = "unbiased",
+ lev = levgamma(x, 2, 1),
+ from = 0, to = 17, step = 0.5)

Function discretize is written in a modular fashion making it simple to
add other discretization methods if needed.

3

0 1 2 3 4 5

0.
0

0.
4

0.
8

Upper

x

F
(x

)

0 1 2 3 4 5

0.
0

0.
4

0.
8

Lower

x

F
(x

)

0 1 2 3 4 5

0.
0

0.
4

0.
8

Rounding

x

F
(x

)

0 1 2 3 4 5

0.
0

0.
4

0.
8

Unbiased

x

F
(x

)

Figure 1: Comparison of four discretization methods

4 Calculation of the aggregate claim amount distribu-
tion

Function aggregateDist serves as a unique front end for various methods to
compute or approximate the cdf of the aggregate claim amount randomvariable
𝑆. Currently, five methods are supported.

1. Recursive calculation using the algorithm of Panjer (1981). This requires the
severity distribution to be discrete arithmetic on 0, 1, 2,… ,𝑚 for somemone-
tary unit and the frequency distribution to be amember of either the (𝑎, 𝑏, 0)
or (𝑎, 𝑏, 1) class of distributions (Klugman et al., 2012). (These classes con-
tain the Poisson, binomial, negative binomial and logarithmic distributions
and their zero-truncated and zero-modified extensions allowing for a zero

4

or arbitrary mass at 𝑥 = 0.) The general recursive formula is:

𝑓𝑆(𝑥) =
(𝑝1 − (𝑎 + 𝑏)𝑝0)𝑓𝐶(𝑥) +∑min(𝑥,𝑚)

𝑦=1 (𝑎 + 𝑏𝑦/𝑥)𝑓𝐶(𝑦)𝑓𝑆(𝑥 − 𝑦)
1 − 𝑎𝑓𝐶(0)

,

with starting value 𝑓𝑆(0) = 𝑃𝑁(𝑓𝐶(0)), where 𝑃𝑁(⋅) is the probability gener-
ating function of𝑁. Probabilities are computed until their sum is arbitrarily
close to 1.
The recursions are done in C to dramatically increase speed. One difficulty
the programmer is facing is the unknown length of the output. This was
solved using a common, simple and fast technique: first allocate an arbitrary
amount of memory and double this amount each time the allocated space
gets full.

2. Exact calculation by numerical convolutions using (2) and (3). This also
requires a discrete severity distribution. However, there is no restriction on
the shape of the frequency distribution. The package merely implements
the sum (2), the convolutions being computed with R’s function convolve,
which in turn uses the Fast Fourier Transform. This approach is practical
for small problems only, even on today’s fast computers.

3. Normal approximation of the cdf, that is

𝐹𝑆(𝑥) ≈ Φ (𝑥 − 𝜇𝑆
𝜎𝑆

) , (8)

where 𝜇𝑆 = 𝐸[𝑆] and 𝜎2𝑆 = Var[𝑆]. For most realistic models, this approxi-
mation is rather crude in the tails of the distribution.

4. Normal Power II approximation of the cdf, that is

𝐹𝑆(𝑥) ≈ Φ(− 3
𝛾𝑆

+
√

9
𝛾2𝑆

+ 1 + 6
𝛾𝑆

𝑥 − 𝜇𝑆
𝜎𝑆

) , (9)

where 𝛾𝑆 = 𝐸[(𝑆 − 𝜇𝑆)3]/𝜎3/2𝑆 . The approximation is valid for 𝑥 > 𝜇𝑆 only
and performs reasonably well when 𝛾𝑆 < 1. See Daykin et al. (1994) for
details.

5. Simulation of a random sample from 𝑆 and approximation of 𝐹𝑆(𝑥) by the
empirical cdf

𝐹𝑛(𝑥) =
1
𝑛

𝑛
∑
𝑗=1

𝐼{𝑥𝑗 ≤ 𝑥}. (10)

5

The simulation itself is done with function simul (see the "simulation"
vignette). This function admits very general hierarchicalmodels for both the
frequency and the severity components.

Here also, adding other methods to aggregateDist is simple due to its
modular conception.

The arguments of aggregateDist differ according to the chosen calcula-
tion method; see the help page for details. One interesting argument to note is
x.scale to specify themonetary unit of the severity distribution. This way, one
does not have to mentally do the conversion between the support of 0, 1, 2,…
assumed by the recursive and convolution methods, and the true support of 𝑆.

The recursive method fails when the expected number of claims is so large
that 𝑓𝑆(0) is numerically equal to zero. One solution proposed by Klugman
et al. (2012) consists in dividing the appropriate parameter of the frequency
distribution by 2𝑛, with 𝑛 such that 𝑓𝑆(0) > 0 and the recursions can start.
One then computes the aggregate claim amount distribution using the recur-
sive method and then convolves the resulting distribution 𝑛 times with itself
to obtain the final distribution. Function aggregateDist supports this proce-
dure through its argument convolve.

A common problem with the recursive method is failure to obtain a cumu-
lative distribution function that reaching (close to) 1. This is usually due to too
coarse a discretization of the severity distribution. One shouldmake sure to use
a small enough discretization step and to discretize the severity distribution far
in the right tail.

The function aggregateDist returns an object of class "aggregateDist"
inheriting from the "function" class. Thus, one can use the object as a func-
tion to compute the value of 𝐹𝑆(𝑥) in any 𝑥.

For illustration purposes, consider the following model: the distribution
of 𝑆 is a compound Poisson with parameter 𝜆 = 10 and severity distribution
Gamma(2, 1). To obtain an approximation of the cdf of 𝑆 we first discretize the
gamma distribution on (0, 22) with the unbiased method and a step of 0.5, and
then use the recursive method in aggregateDist:

> fx <- discretize(pgamma(x, 2, 1), method = "unbiased",
+ from = 0, to = 22, step = 0.5,
+ lev = levgamma(x, 2, 1))
> Fs <- aggregateDist("recursive", model.freq = "poisson",
+ model.sev = fx, lambda = 10,
+ x.scale = 0.5)
> summary(Fs)

6

Aggregate Claim Amount Empirical CDF:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 14.5 19.5 20.0 25.0 71.0

Although useless here, the following is essentially equivalent, except in the
far right tail for numerical reasons:

> Fsc <- aggregateDist("recursive", model.freq = "poisson",
+ model.sev = fx, lambda = 5,
+ convolve = 1, x.scale = 0.5)
> summary(Fsc)
Aggregate Claim Amount Empirical CDF:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0 14.5 19.5 20.0 25.0 103.0

We return to object Fs. It contains an empirical cdf with support

> knots(Fs)
[1] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

[10] 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
[19] 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0
[28] 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5
[37] 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0
[46] 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5
[55] 27.0 27.5 28.0 28.5 29.0 29.5 30.0 30.5 31.0
[64] 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5
[73] 36.0 36.5 37.0 37.5 38.0 38.5 39.0 39.5 40.0
[82] 40.5 41.0 41.5 42.0 42.5 43.0 43.5 44.0 44.5
[91] 45.0 45.5 46.0 46.5 47.0 47.5 48.0 48.5 49.0

[100] 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5
[109] 54.0 54.5 55.0 55.5 56.0 56.5 57.0 57.5 58.0
[118] 58.5 59.0 59.5 60.0 60.5 61.0 61.5 62.0 62.5
[127] 63.0 63.5 64.0 64.5 65.0 65.5 66.0 66.5 67.0
[136] 67.5 68.0 68.5 69.0 69.5 70.0 70.5 71.0
A nice graph of this function is obtained with a method of plot (see Fig-

ure 2):

> plot(Fs, do.points = FALSE, verticals = TRUE,
+ xlim = c(0, 60))

The package defines a few summary methods to extract information from
"aggregateDist" objects. First, there are methods of mean and quantile to

7

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Aggregate Claim Amount Distribution

x

F
S
(x

)
Recursive method approximation

Figure 2: Graphic of the empirical cdf of 𝑆 obtained with the recursive method

easily compute the mean and obtain the quantiles of the approximate distribu-
tion:

> mean(Fs)
[1] 20
> quantile(Fs)
25% 50% 75% 90% 95% 97.5% 99% 99.5%

14.5 19.5 25.0 30.5 34.0 37.0 41.0 43.5
> quantile(Fs, 0.999)
99.9%
49.5
Second, a method of diff gives easy access to the underlying probability

mass function:

8

> diff(Fs)
[1] 6.293e-05 8.934e-05 1.767e-04 2.954e-04
[5] 4.604e-04 6.811e-04 9.662e-04 1.324e-03
[9] 1.760e-03 2.282e-03 2.893e-03 3.594e-03

[13] 4.387e-03 5.269e-03 6.235e-03 7.280e-03
[17] 8.395e-03 9.570e-03 1.079e-02 1.205e-02
[21] 1.333e-02 1.462e-02 1.590e-02 1.715e-02
[25] 1.837e-02 1.953e-02 2.063e-02 2.166e-02
[29] 2.259e-02 2.343e-02 2.417e-02 2.479e-02
[33] 2.531e-02 2.570e-02 2.598e-02 2.614e-02
[37] 2.618e-02 2.612e-02 2.594e-02 2.567e-02
[41] 2.530e-02 2.484e-02 2.431e-02 2.370e-02
[45] 2.303e-02 2.230e-02 2.153e-02 2.072e-02
[49] 1.988e-02 1.901e-02 1.813e-02 1.725e-02
[53] 1.636e-02 1.547e-02 1.460e-02 1.374e-02
[57] 1.290e-02 1.208e-02 1.128e-02 1.052e-02
[61] 9.780e-03 9.074e-03 8.401e-03 7.761e-03
[65] 7.155e-03 6.583e-03 6.044e-03 5.538e-03
[69] 5.065e-03 4.623e-03 4.213e-03 3.831e-03
[73] 3.478e-03 3.152e-03 2.851e-03 2.575e-03
[77] 2.321e-03 2.090e-03 1.878e-03 1.685e-03
[81] 1.509e-03 1.350e-03 1.205e-03 1.075e-03
[85] 9.571e-04 8.510e-04 7.556e-04 6.699e-04
[89] 5.931e-04 5.244e-04 4.630e-04 4.083e-04
[93] 3.596e-04 3.162e-04 2.778e-04 2.437e-04
[97] 2.135e-04 1.869e-04 1.633e-04 1.426e-04

[101] 1.243e-04 1.083e-04 9.423e-05 8.189e-05
[105] 7.108e-05 6.164e-05 5.339e-05 4.619e-05
[109] 3.993e-05 3.447e-05 2.973e-05 2.562e-05
[113] 2.205e-05 1.896e-05 1.629e-05 1.398e-05
[117] 1.199e-05 1.027e-05 8.786e-06 7.512e-06
[121] 6.416e-06 5.476e-06 4.668e-06 3.977e-06
[125] 3.385e-06 2.878e-06 2.445e-06 2.076e-06
[129] 1.761e-06 1.492e-06 1.263e-06 1.069e-06
[133] 9.035e-07 7.632e-07 6.441e-07 5.432e-07
[137] 4.577e-07 3.854e-07 3.243e-07 2.726e-07
[141] 2.290e-07 1.923e-07 1.613e-07
Of course, this is defined (and makes sense) for the recursive, direct convo-

lution and simulation methods only.

9

Third, the package introduces the generic functions VaR and CTE (with alias
TVaR) with methods for objects of class "aggregateDist". The former com-
putes the value-at-risk VaR𝛼 such that

Pr[𝑆 ≤ VaR𝛼] = 𝛼, (11)

where 𝛼 is the confidence level. Thus, the value-at-risk is nothing else than a
quantile. As for themethod of CTE, it computes the conditional tail expectation
(also called Tail Value-at-Risk)

CTE𝛼 = 𝐸[𝑆|𝑆 > VaR𝛼]. (12)

Here are examples using object Fs obtained above:

> VaR(Fs)
90% 95% 99%

30.5 34.0 41.0
> CTE(Fs)
90% 95% 99%

35.42 38.55 45.01
To conclude on the subject, Figure 3 shows the cdf of 𝑆 using five of the

many combinations of discretization and calculation method supported by ac-
tuar.

5 The continuous time ruin model
We now turn to the multi-period ruin problem. Let 𝑈(𝑡) denote the surplus of
an insurance company at time 𝑡, 𝑐(𝑡) denote premiums collected through time 𝑡,
and 𝑆(𝑡) denote aggregate claims paid through time 𝑡. If 𝑢 is the initial surplus
at time 𝑡 = 0, then a mathematically convenient definition of 𝑈(𝑡) is

𝑈(𝑡) = 𝑢 + 𝑐(𝑡) − 𝑆(𝑡). (13)

Asmentioned previously, technical ruin of the insurance company occurswhen
the surplus becomes negative. Therefore, the definition of the infinite time
probability of ruin is

𝜓(𝑢) = Pr[𝑈(𝑡) < 0 for some 𝑡 ≥ 0]. (14)

We define some other quantities needed in the sequel. Let 𝑁(𝑡) denote the
number of claims up to time 𝑡 ≥ 0 and 𝐶𝑗 denote the amount of claim 𝑗. Then

10

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Aggregate Claim Amount Distribution

x

F
S
(x

)

recursive + unbiased
recursive + upper
recursive + lower
simulation
normal approximation

Figure 3: Comparison between the empirical or approximate cdf of 𝑆 obtained
with five different methods

the definition of 𝑆(𝑡) is analogous to (1):

𝑆(𝑡) = 𝐶1 +⋯+ 𝐶𝑁(𝑡), (15)

assuming𝑁(0) = 0 and 𝑆(𝑡) = 0 as long as𝑁(𝑡) = 0. Furthermore, let𝑇𝑗 denote
the time when claim 𝑗 occurs, such that 𝑇1 < 𝑇2 < 𝑇3 < … Then the random
variable of the interarrival (or wait) time between claim 𝑗 − 1 and claim 𝑗 is
defined as𝑊1 = 𝑇1 and

𝑊 𝑗 = 𝑇𝑗 − 𝑇𝑗−1, 𝑗 ≥ 2. (16)

For the rest of this discussion, we make the following assumptions:

1. premiums are collected at a constant rate 𝑐, hence 𝑐(𝑡) = 𝑐𝑡;

2. the sequence {𝑇𝑗}𝑗≥1 forms anordinary renewal process, with the consequence
that randomvariables𝑊1,𝑊2,… are independent and identically distributed;

11

3. claim amounts 𝐶1, 𝐶2,… are independent and identically distributed.

6 Adjustment coefficient
The quantity known as the adjustment coefficient 𝜌 hardly has any physical
interpretation, but it is useful as an approximation to the probability of ruin
since we have the inequality

𝜓(𝑢) ≤ 𝑒−𝜌𝑢, 𝑢 ≥ 0.

The adjustment coefficient is defined as the smallest strictly positive solution
(if it exists) of the Lundberg equation

ℎ(𝑡) = 𝐸[𝑒𝑡𝐶−𝑡𝑐𝑊] = 1, (17)

where the premium rate 𝑐 satisfies the positive safety loading constraint 𝐸[𝐶 −
𝑐𝑊] < 0. If 𝐶 and 𝑊 are independent, as in the most common models, then
the equation can be rewritten as

ℎ(𝑡) = 𝑀𝐶(𝑡)𝑀𝑊 (−𝑡𝑐) = 1. (18)

Function adjCoef of actuar computes the adjustment coefficient 𝜌 from
the following arguments: either the two moment generating functions 𝑀𝐶(𝑡)
and 𝑀𝑊 (𝑡) (thereby assuming independence) or else function ℎ(𝑡); the pre-
mium rate 𝑐; the upper bound of the support of𝑀𝐶(𝑡) or any other upper bound
for 𝜌.

For example, if 𝑊 and 𝐶 are independent and each follow an exponential
distribution, 𝑊 with parameter 2 and 𝐶 with parameter 1, and the premium
rate is 𝑐 = 2.4 (for a safety loading of 20% using the expected value premium
principle), then the adjustment coefficient is

> adjCoef(mgf.claim = mgfexp(x), mgf.wait = mgfexp(x, 2),
+ premium.rate = 2.4, upper = 1)
[1] 0.1667
The function also supports models with proportional or excess-of-loss rein-

surance (Centeno, 2002). Under the first type of treaty, an insurer pays a pro-
portion 𝛼 of every loss and the rest is paid by the reinsurer. Then, for fixed 𝛼
the adjustment coefficient is the solution of

ℎ(𝑡) = 𝐸[𝑒𝑡𝛼𝐶−𝑡𝑐(𝛼)𝑊] = 1. (19)

12

Under an excess-of-loss treaty, the primary insurer pays each claim up to a limit
𝐿. Again, for fixed 𝐿, the adjustment coefficient is the solution of

ℎ(𝑡) = 𝐸[𝑒𝑡min(𝐶,𝐿)−𝑡𝑐(𝐿)𝑊] = 1. (20)

Formodelswith reinsurance, adjCoef returns an object of class"adjCoef"
inheriting from the "function" class. One can then use the object to compute
the adjustment coefficient for any retention rate 𝛼 or retention limit 𝐿. The
package also defines a method of plot for these objects.

For example, using the same assumptions as above with proportional rein-
surance and a 30% safety loading for the reinsurer, the adjustment coefficient
as a function of 𝛼 ∈ [0, 1] is (see Figure 4 for the graph):
> mgfx <- function(x, y) mgfexp(x * y)
> p <- function(x) 2.6 * x - 0.2
> rho <- adjCoef(mgfx, mgfexp(x, 2), premium = p,
+ upper = 1, reins = "prop",
+ from = 0, to = 1)
> rho(c(0.75, 0.8, 0.9, 1))
[1] 0.1905 0.1862 0.1765 0.1667
> plot(rho)

7 Probability of ruin
In this subsection, we always assume that interarrival times and claim amounts
are independent.

The main difficulty with the calculation of the infinite time probability of
ruin lies in the lack of explicit formulas except for themost simplemodels. If in-
terarrival times are Exponential(𝜆) distributed (Poisson claim number process)
and claim amounts are Exponential(𝛽) distributed, then

𝜓(𝑢) = 𝜆
𝑐𝛽 𝑒

−(𝛽−𝜆/𝑐)𝑢. (21)

If the frequency assumption of thismodel is defensible, the severity assumption
can hardly be used beyond illustration purposes.

Fortunately, phase-type distributions have come to the rescue since the early
1990s. Asmussen and Rolski (1991) first show that in the classical Cramér–
Lundbergmodelwhere interarrival times areExponential(𝜆)distributed, if claim

13

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

Adjustment Coefficient

x

R
(x

)
Proportional reinsurance

Figure 4: Adjustment coefficient as a function of the retention rate

amounts are Phase-type(𝝅, 𝐓) distributed, then 𝜓(𝑢) = 1 − 𝐹(𝑢), where 𝐹 is
Phase-type(𝝅+, 𝐐) with

𝝅+ = −𝜆𝑐 𝝅𝐓
−1

𝐐 = 𝐓 + 𝐭𝝅+,
(22)

and 𝐭 = −𝐓𝐞, 𝐞 is a column vector with all components equal to 1; see the
"lossdist" vignette for details.

In the more general Sparre Andersen model where interarrival times can
have any Phase-type(𝝂, 𝐒) distribution, Asmussen and Rolski (1991) also show
that using the same claim severity assumption as above, one still has 𝜓(𝑢) =
1 − 𝐹(𝑢) where 𝐹 is Phase-type(𝝅+, 𝐐), but with parameters

𝝅+ = 𝐞′(𝐐 − 𝐓)
𝑐𝐞′𝐭 (23)

14

and 𝐐 solution of

𝐐 = Ψ(𝐐)
= 𝐓 − 𝐭𝝅 [(𝐈𝑛 ⊗ 𝝂)(𝐐 ⊕ 𝐒)−1(𝐈𝑛 ⊗ 𝐬)] . (24)

In the above, 𝐬 = −𝐒𝐞, 𝐈𝑛 is the 𝑛 × 𝑛 identity matrix, ⊗ denotes the usual
Kronecker product between two matrices and⊕ is the Kronecker sum defined
as

𝐀𝑚×𝑚 ⊕𝐁𝑛×𝑛 = 𝐀⊗ 𝐈𝑛 + 𝐁⊗ 𝐈𝑚. (25)

Function ruin of actuar returns a function object of class "ruin" to com-
pute the probability of ruin for any initial surplus 𝑢. In all cases except the expo-
nential/exponential model where (21) is used, the output object calls function
pphtype to compute the ruin probabilities.

Some thought went into the interface of ruin. Obviously, all models can be
specified using phase-type distributions, but the authors wanted users to have
easy access to the most common models involving exponential and Erlang dis-
tributions. Hence, one first states the claim amount and interarrival timesmod-
els with any combination of "exponential", "Erlang" and "phase-type".
Then, one passes the parameters of each model using lists with components
named after the corresponding parameters of dexp, dgamma and dphtype. If a
component "weights" is found in a list, the model is a mixture of exponential
or Erlang (mixtures of phase-type are not supported). Every component of the
parameter lists is recycled as needed.

The following examples should make the matter clearer. (All examples use
𝑐 = 1, the default value in ruin.) First, for the exponential/exponential model,
one has

> psi <- ruin(claims = "e", par.claims = list(rate = 5),
+ wait = "e", par.wait = list(rate = 3))
> psi
function (u, survival = FALSE,

lower.tail = !survival)
{

res <- 0.6 * exp(-(2) * u)
if (lower.tail)

res
else 0.5 - res + 0.5

}
<environment: 0x122c0c348>

15

attr(,"class")
[1] "ruin" "function"
> psi(0:10)
[1] 6.000e-01 8.120e-02 1.099e-02 1.487e-03
[5] 2.013e-04 2.724e-05 3.687e-06 4.989e-07
[9] 6.752e-08 9.138e-09 1.237e-09
Second, for a mixture of two exponentials claim amount model and expo-

nential interarrival times, the simplest call to ruin is

> ruin(claims = "e",
+ par.claims = list(rate = c(3, 7), weights = 0.5),
+ wait = "e",
+ par.wait = list(rate = 3))
function (u, survival = FALSE,

lower.tail = !survival)
pphtype(u, c(0.5, 0.214285714285714
), c(-1.5, 3.5, 0.642857142857143,
-5.5), lower.tail = !lower.tail)
<environment: 0x132c63330>
attr(,"class")
[1] "ruin" "function"
Finally, one will obtain a function to compute ruin probabilities in a model

with phase-type claim amounts and mixture of exponentials interarrival times
with

> prob <- c(0.5614, 0.4386)
> rates <- matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2)
> ruin(claims = "p",
+ par.claims = list(prob = prob, rates = rates),
+ wait = "e",
+ par.wait = list(rate = c(5, 1), weights = c(0.4, 0.6)))
function (u, survival = FALSE,

lower.tail = !survival)
pphtype(u, c(0.146595513877824,
0.761505562273639), c(-7.66616600130962,
0.246715940794557, 7.05568145018379,
-0.338063471100003), lower.tail = !lower.tail)
<environment: 0x123aafee0>

16

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

Probability of Ruin

u

ψ
(u

)

Figure 5: Graphic of the probability of ruin as a function of the initial surplus 𝑢

attr(,"class")
[1] "ruin" "function"
To ease plotting of the probability of ruin function, the package provides a

method of plot for objects returned by ruin that is a simple wrapper for curve
(see Figure 5):

> psi <- ruin(claims = "p",
+ par.claims = list(prob = prob, rates = rates),
+ wait = "e",
+ par.wait = list(rate = c(5, 1),
+ weights = c(0.4, 0.6)))
> plot(psi, from = 0, to = 50)

17

8 Approximation to the probability of ruin
When the model for the aggregate claim process (15) does not fit nicely into the
framework of the previous section, one can compute ruin probabilities using
the so-called Beekman’s convolution formula (Beekman, 1968; Kass, 2004).

Let the surplus process and the aggregate claim amount process be defined
as in (13) and (15), respectively, and let {𝑁(𝑡)} be a Poisson process withmean 𝜆.
As before, claim amounts𝐶1, 𝐶2,… are independent and identically distributed
with cdf 𝑃(⋅) and mean 𝜇 = 𝐸[𝐶1]. Then the infinite time probability of ruin is
given by

𝜓(𝑢) = 1 − 𝐹(𝑢), (26)
where 𝐹(⋅) is Compound Geometric(𝑝,𝐻) with

𝑝 = 1 − 𝜆𝜇
𝑐 (27)

and
𝐻(𝑥) = ∫

𝑥

0

1 − 𝑃(𝑦)
𝜇 𝑑𝑦. (28)

In other words, we have (compare with (2)):

𝜓(𝑢) = 1 −
∞
∑
𝑛=0

𝐻∗𝑛(𝑢)𝑝(1 − 𝑝)𝑛. (29)

Inmost practical situations, numerical evaluation of (29) is done using Pan-
jer’s recursive formula. This usually requires discretization of 𝐻(⋅). In such
circumstances, Beekman’s formula yields approximate ruin probabilities.

For example, let claim amounts have a Pareto(5, 4) distribution, that is

𝑃(𝑥) = 1 − (4
4 + 𝑥)

5

and 𝜇 = 1. Then

𝐻(𝑥) = ∫
𝑥

0
(4
4 + 𝑦)

5
𝑑𝑦

= 1 − (4
4 + 𝑥)

4
,

or else 𝐻 is Pareto(4, 4). Furthermore, we determine the premium rate 𝑐 with
the expected value premium principle and a safety loading of 20%, that is 𝑐 =
1.2𝜆𝜇. Thus, 𝑝 = 0.2/1.2 = 1/6.

18

One can get functions to compute lower bounds and upper bounds for 𝐹(𝑢)
with functions discretize and aggregateDist as follows:

> f.L <- discretize(ppareto(x, 4, 4), from = 0, to = 200,
+ step = 1, method = "lower")
> f.U <- discretize(ppareto(x, 4, 4), from = 0, to = 200,
+ step = 1, method = "upper")
> F.L <- aggregateDist(method = "recursive",
+ model.freq = "geometric",
+ model.sev = f.L, prob = 1/6)
> F.U <- aggregateDist(method = "recursive",
+ model.freq = "geometric",
+ model.sev = f.U, prob = 1/6)

Corresponding functions for the probability of ruin 𝜓(𝑢) lower and upper
bounds are (see Figure 6 for the graphic):

> psi.L <- function(u) 1 - F.U(u)
> psi.U <- function(u) 1 - F.L(u)
> u <- seq(0, 50, by = 5)
> cbind(lower = psi.L(u), upper = psi.U(u))

lower upper
[1,] 0.6719160 0.83333
[2,] 0.2892792 0.51572
[3,] 0.1361541 0.32938
[4,] 0.0662486 0.21200
[5,] 0.0329848 0.13700
[6,] 0.0167551 0.08877
[7,] 0.0086802 0.05764
[8,] 0.0045911 0.03749
[9,] 0.0024843 0.02443

[10,] 0.0013790 0.01595
[11,] 0.0007877 0.01043
> curve(psi.L, from = 0, to = 100, col = "blue")
> curve(psi.U, add = TRUE, col = "green")

One can make the bounds as close as one wishes by reducing the discretiza-
tion step.

19

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

ps
i.L

(x
)

Figure 6: Lower and upper bounds for the probability of ruin as determined
using Beekman’s convolution formula.

References
S. Asmussen and T. Rolski. Computational methods in risk theory: a matrix-
algorithmic approach. Insurance: Mathematics and Economics, 10:259–274,
1991.

J. A. Beekman. Collective risk results. Transactions of the Society of Actuaries,
20:182–199, 1968.

M. d. L. Centeno. Measuring the effects of reinsurance by the adjustment coeffi-
cient in the sparre-anderson model. Insurance: Mathematics and Economics,
30:37–49, 2002.

C.D. Daykin, T. Pentikäinen, and M. Pesonen. Practical Risk Theory for Actuar-
ies. Chapman & Hall, London, 1994. ISBN 0-4124285-0-4.

20

M.Denuit and A. Charpentier.Mathématiques de l’assurance non-vie, volume 1,
Principes fondamentaux de théorie du risque. Economica, Paris, 2004. ISBN
2-7178485-4-1.

CDutang, V. Goulet, andM. Pigeon. actuar: AnR package for actuarial science.
Journal of Statistical Software, 25(7), 2008. doi: 10.18637/jss.v025.i07. URL
https://doi.org/10.18637/jss.v025.i07.

H. U. Gerber. An Introduction to Mathematical Risk Theory. Huebner Founda-
tion, Philadelphia, 1979.

R. Kaas,M.Goovaerts, J. Dhaene, andM.Denuit.ModernActuarial Risk Theory.
Using R. Springer, 2 edition, 2008. ISBN 978-3-54070992-3.

R. Kass. Beekman’s convolution formula. In J. L. Teugels and B. Sundt, editors,
Encyclopedia of actuarial science, volume 1.Wiley, 2004. ISBN 0-4708467-6-3.

S. A. Klugman, H. H. Panjer, and G. Willmot. Loss Models: From Data to Deci-
sions. Wiley, New York, 4 edition, 2012. ISBN 978-1-118-31532-3.

H. H. Panjer. Recursive evaluation of a family of compound distributions.
ASTIN Bulletin, 12:22–26, 1981.

21

https://doi.org/10.18637/jss.v025.i07

	1 Introduction
	2 The collective risk model
	3 Discretization of claim amount distributions
	4 Calculation of the aggregate claim amount distribution
	5 The continuous time ruin model
	6 Adjustment coefficient
	7 Probability of ruin
	8 Approximation to the probability of ruin

