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1 Introduction

R includes functions to compute the probability density function (pdf) or the
probability mass function (pmf), the cumulative distribution function (cdf) and
the quantile function, as well as functions to generate variates from a fair num-
ber of continuous and discrete distributions. For some root foo, the support
functions are named dfoo, pfoo, gfoo and rfoo, respectively.

Package actuar provides d, p, q and r functions for a large number of con-
tinuous size distributions useful for loss severity modeling; for phase-type dis-
tributions used in computation of ruin probabilities; for zero-truncated and
zero-modified extensions of the discrete distributions commonly used in loss
frequency modeling; for the heavy tailed Poisson-inverse Gaussian discrete dis-
tribution. The package also introduces support functions to compute raw mo-
ments, limited moments and the moment generating function (when it exists)
of continuous distributions.



2 Additional continuous size distributions

The package provides support functions for all the probability distributions
found in Appendix A of Klugman et al. (2012) and not already present in base R,
excluding the log-t, but including the loggamma distribution (Hogg and Klug-
man, 1984), as well as for the Feller-Pareto distribution and related Pareto dis-
tributions with a location parameter (Arnold, 2015). These distributions mostly
fall under the umbrella of extreme value or heavy tailed distributions.

Table 1 lists the distributions supported by actuar along with the root names
of the R functions. Appendix A details the formulas implemented and the name
of the argument corresponding to each parameter. By default, all functions (ex-
cept those for the Pareto distribution) use a rate parameter equal to the inverse
of the scale parameter. This differs from Klugman et al. (2012) but is better in
line with the functions for the gamma, exponential and Weibull distributions
in base R.

We mostly use the nomenclature of Klugman et al. (2012) to classify the con-
tinuous distributions supported by actuar. However, following Arnold (2015),
we regroup distributions of the transformed beta family and variants of the
Pareto distribution inside the larger Feller-Pareto family of distributions. Fig-
ure 1 shows the relationships between the distributions of the Feller-Pareto and
transformed beta families. Figure 2 does the same for the distributions of the
transformed gamma and inverse transformed gamma families.

In addition to the d, p, g and r functions, actuar introduces m, Lev and mgf
functions to compute, respectively, the theoretical raw moments

my. = E[X*],
the theoretical limited moments
E[(X A x)¥] = E[min(X, x)¥]
and the moment generating function
Mx(t) = E[e'¥],

when it exists. Every distribution of Table 1 is supported, along with the follow-
ing distributions of base R: beta, exponential, chi-square, gamma, lognormal,
normal (no lev), uniform and Weibull.

The mand lev functions are especially useful for estimation methods based
on the matching of raw or limited moments; see the Llossdist vignette for their
empirical counterparts. The mgf functions come in handy to compute the ad-
justment coefficient in ruin theory; see the risk vignette.



Family Distribution Root

Feller—Pareto Feller—Pareto fpareto
Pareto IV pareto4
Pareto III pareto3
Pareto 11 pareto2
Transformed beta trbeta
Burr burr
Loglogistic llogis
Paralogistic paralogis
Generalized Pareto genpareto
Pareto pareto
Single-parameter Pareto paretol
Inverse Burr invburr
Inverse Pareto invpareto
Inverse paralogistic invparalogis

Transformed gamma Transformed gamma trgamma
Inverse transformed gamma invtrgamma
Inverse gamma invgamma
Inverse Weibull invweibull
Inverse exponential invexp

Other Loggamma lgamma
Gumbel gumbel
Inverse Gaussian invgauss
Generalized beta genbeta

Table 1: Probability distributions supported by actuar classified by family and
root names of the R functions.
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Figure 1: Interrelations between distributions of the Feller-Pareto family. This
diagram is an extension of Figure 5.2 of Klugman et al. (2012).
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Figure 2: Interrelations between distributions of the transformed gamma and
inverse transformed gamma families. Diagrams derived from Figure 5.3 of
Klugman et al. (2012).



3 Phase-type distributions

In addition to the 19 distributions of Table 1, the package provides support for
a family of distributions deserving a separate presentation. Phase-type distribu-
tions (Neuts, 1981) are defined as the distribution of the time until absorption
of continuous time, finite state Markov processes with m transient states and
one absorbing state. Let

T t
= 1
o7 ] 8
be the transition rates matrix (or intensity matrix) of such a process and let
(7, ,,41) be the initial probability vector. Here, T is an m X m non-singular
matrix with t; < Ofori =1,...,mandt;; > Ofori # j,t = —Teandeisa

column vector with all components equal to 1. Then the cdf of the time until
absorption random variable with parameters zz and T is

T x=0
F(x) = m+1» ’ 2
) {1—7z'eTxe, x>0, @
where
o0 Mn
M= — 3)
n=0 :

is the matrix exponential of matrix M.

The exponential distribution, the Erlang (gamma with integer shape param-
eter) and discrete mixtures thereof are common special cases of phase-type dis-
tributions.

The package provides d, p, r, m and mgf functions for phase-type distribu-
tions. The root is phtype and parameters 7 and T are named prob and rates,
respectively; see also Appendix B.

For the package, function pphtype is central to the evaluation of the ruin
probabilities; see ?ruin and the risk vignette.

4 Extensions to standard discrete distributions

The package introduces support functions for counting distributions commonly
used in loss frequency modeling. A counting distribution is a discrete distribu-
tion defined on the non-negative integers 0,1, 2, ... .

Let N be the counting random variable. We denote p; the probability that
the random variable N takes the value k, that is:

px = Pr[N = k].



Klugman et al. (2012) classify counting distributions in two main classes.
First, a discrete random variable is a member of the (a, b, 0) class of distributions
if there exists constants a and b such that

Pk b

Pk-1 k
The probability at zero, p, is set such that Z,io Pr = 1. The members of this
class are the Poisson, the binomial, the negative binomial and its special case,
the geometric. These distributions are all well supported in base R with d, p, g
and r functions.

The second class of distributions is the (a, b, 1) class. A discrete random
variable is a member of the (a, b, 1) class of distributions if there exists constants
a and b such that

Pk b

Pk—1 k’

One will note that recursion starts at k = 2 for the (a, b, 1) class. Therefore, the
probability at zero can be any arbitrary number 0 < py < 1.

Setting po = 0 defines a subclass of so-called zero-truncated distributions.
The members of this subclass are the zero-truncated Poisson, the zero-truncated
binomial, the zero-truncated negative binomial and the zero-truncated geomet-
ric.

Let pl denote the probability mass in k for a zero-truncated distribution.
As above, p; denotes the probability mass for the corresponding member of
the (a, b, 0) class. We have

0, k=0
, k=1,2,....

Moreover, let P(k) denotes the cumulative distribution function of a mem-
ber of the (a, b, 0) class. Then the cdf PT (k) of the corresponding zero-truncated

distribution is
P(k) — P(0) _ P(k) — p

Ty —
PO=T"50 = 1-5
for all k = 0,1,2, .... Alternatively, the survival function PT(k) = 1 — PT(k) is
) Pk) Pk
PT(k) = —= = —~,
©=50 " 1T-p

Package actuar provides d, p, g and r functions for the all the zero-truncated
distributions mentioned above. Table 2 lists the root names of the functions; see
Appendix C for additional details.



Distribution Root

Zero-truncated Poisson ztpois
Zero-truncated binomial ztbinom
Zero-truncated negative binomial ztnbinom
Zero-truncated geometric ztgeom
Logarithmic logarithmic
Zero-modified Poisson zmpois
Zero-modified binomial zmbinom
Zero-modified negative binomial ~ zmnbinom
Zero-modified geometric zmgeom
Zero-modified logarithmic zmlogarithmic

Table 2: Members of the (a, b, 1) class of discrete distributions supported by
actuar and root names of the R functions.

An entry of Table 2 deserves a few additional words. The logarithmic (or
log-series) distribution with parameter 6 has pmf

ab*
pk_T’ k—1,2,...,

with a = —1/1log(1—6) and for 0 < 6 < 1. This is the standard parametrization
in the literature (Johnson et al., 2005).

The logarithmic distribution is always defined on the strictly positive in-
tegers. As such, it is not qualified as “zero-truncated”, but it nevertheless be-
longs to the (a, b, 1) class of distributions, more specifically to the subclass with
Po = 0. Actually, the logarithmic distribution is the limiting case of the zero-
truncated negative binomial distribution with size parameter equal to zero and
0 = 1 — p, where p is the probability of success for the zero-truncated negative
binomial. Note that this differs from the presentation in Klugman et al. (2012).

Another subclass of the (a, b, 1) class of distributions is obtained by setting
po to some arbitrary number p} subject to 0 < p}f < 1. The members of this
subclass are called zero-modified distributions. Zero-modified distributions are
discrete mixtures between a degenerate distribution at zero and the correspond-
ing distribution from the (a, b, 0) class.

Let pﬁ” and PM(k) denote the pmf and cdf of a zero-modified distribution.
Written as a mixture, the pmf is

1-pg' 1-pg'
M=(1- 0)11 —oy + O p. 4)
P ( 1-p, ) *=9" 1T, Pk
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Alternatively, we have

L k=0
Py =y1—p¥
, k=1,2,
T Pk

and

k) —
PMG0 = pif + (1 - i) T

M, 11— pé)w
=po + 31—~ (P(k) = po)
Do
= paf + (1 — pd") PT(k)
forallk =0,1,2,.... The survival function is

5 P(k)y 1-p) _ _
PM()y =1 - pM) —= = —=2 P(k) = (1 — p¥) PT (k).
(0= (=P 50 = T PO = (L= PO PT(R)
Therefore, we can also write the pmf of a zero-modified distribution as a mix-
ture of a degenerate distribution at zero and the corresponding zero-truncated
distribution:

Py = p§M =0y + (1 — p0") pf. (5)

The members of the subclass are the zero-modified Poisson, zero-modified
binomial, zero-modified negative binomial and zero-modified geometric, to-
gether with the zero-modified logarithmic as a limiting case of the zero-modified
negative binomial. Table 2 lists the root names of the support functions pro-
vided in actuar; see also Appendix C.

Quite obviously, zero-truncated distributions are zero-modified distributions
with p)! = 0. However, using the dedicated functions in R will be more effi-
cient.

5 Poisson-inverse Gaussian distribution

The Poisson-inverse Gaussian (PIG) distribution results from the continuous
mixture between a Poisson distribution and an inverse Gaussian. That is, the
Poisson-inverse Gaussian is the (marginal) distribution of the random variable
X when the conditional random variable X|A = 1 is Poisson with parameter 4
and the random variable A is inverse Gaussian with parameters u and ¢.



The literature proposes many different expressions for the pmf of the PIG
(Holla, 1966; Shaban, 1981; Johnson et al., 2005; Klugman et al., 2012). Using
the parametrization for the inverse Gaussian found in Appendix A, we have:

-1 —(x—%)
2e(¢,u) 1
Px=\/——!< 26(1+3 )
¢ x ( ¢M> ©)
2 1
K( a(“—zwz))’

forx=0,1,...,u > 0,¢ > 0 and where

-V

(o]
K,(ax) = aT f fr-lez(t+at™i2gs 27 5 0 (7)
0

is the modified Bessel function of the third kind (Bateman, 1953; Abramowitz
and Stegun, 1972).

One may compute the probabilities p,, x = 0,1, ... recursively using the
following equations:

Po = exp{# (1 -1+ 2¢/,¢2)}

u

pp = ——=D
T2 (8)
_ 2¢/"2 ( 3 ) qu 1 B
Dx = 1+ 2¢u2 1 x DPx—1 T T+ 282 x(x — 1) Px—2, X=2,3,....

The first moment of the distribution is . The second and third central mo-
ment are, respectively,

Py = 0% = U+ du’
M3 = p + 3pu*a’.
For the limiting case © = o0, the underlying inverse Gaussian has an in-
verse chi-squared distribution. The latter has no finite strictly positive, integer

moments and, consequently, neither does the Poisson-inverse Gaussian. See
subsection C.4 for the formulas in this case.

6 Special integrals

Many of the cumulative distribution functions of Appendix A are expressed in
terms of the incomplete gamma function or the incomplete beta function.



From a probability theory perspective, the incomplete gamma function is
usually defined as

X
1
I'(a; x) = mf t*le7tdt, a>0,x>0, 9)
0

with o
I'a) = f %~ le~t dt,
0

whereas the (regularized) incomplete beta function is defined as

1

X
B(a,b;x) = b fta-l(l —)P1dt, a>0,b>0,0<x<1, (10)
0

with
1

— a—1 b-1 _ F(a)r(b)
B(a,b) _‘é A =) Hdt = Ta+b)

Now, there exist alternative definitions of the these functions that are valid
for negative values of the parameters. Klugman et al. (2012) introduce them to
extend the range of admissible values for limited expected value functions.

First, following Abramowitz and Stegun (1972, Section 6.5), we define the
“extended” incomplete gamma function as

G(oc;x)=f t“ et dt (11)
X

for a real and x > 0. When a > 0, we clearly have
G(a; x) =T(a)[1 — T'(e; x)]. (12)

The integral is also defined for a < 0.
As outlined in Klugman et al. (2012, Appendix A), integration by parts of
(11) yields the relation

oce—x

G(a; x) = 2

1
— 1;x).
+ocG(a+ ;%)

This process can be repeated until « + k is a positive number, in which case the
right hand side can be evaluated with (12). If &« = 0, —1, —2, ... , this calculation
requires the value of

e

G(0;x) = f % dt = E;(x),

10



which is known in the literature as the exponential integral (Abramowitz and
Stegun, 1972, Section 5.1).

Second, as seen in Abramowitz and Stegun (1972, Section 6.6), we have the
following relation for the integral on the right hand side of (10):

X

a
0

where
I(c) < Ta+kro+kz*

Fabies) = rorey &4~ Te+h) K

is the Gauss hypergeometric series. With the above definition, the incomplete
beta function also admits negative, non integer values for parameters a and b.
Now, let

X
B(a,b;x) =T(a+b) f 1211 — t)b1dt (13)
0
fora>0,b # —1,-2,... and 0 < x < 1. Again, it is clear that when b > 0,
B(a, b; x) = T(a)T'(b)B(a, b; x).

Of more interest here is the case where b < 0,b # —1,-2,... anda > 1+ |—b]|.
Integration by parts of (13) yields

B(a,b;x) = —I'(a + b) x4l 1-x)P  (a—1)x22(1 — x)bt!

b b(b+1)
(@=1)-(a—rxi"11 - x)b*
+o b(b+1)---(b+r) (14)

(a=1)--(a—r—-1)
b(b+1)---(b+7r)
xI'(b+r+1)B(a—r—1,b+r+1;x),

Fla—r—-1)

where r = |—b]|. For the needs of actuar, we dubbed (13) the beta integral.

Package actuar includes a C implementation of (14) and imports function-
alities of package expint (Goulet, 2019) to compute the incomplete gamma
function (11) at the C level. The routines are used to evaluate the limited ex-
pected value for distributions of the Feller-Pareto and transformed gamma fam-
ilies.

11



7 Package API: accessing the C routines

The actual workhorses behind the R functions presented in this document are
C routines that the package exposes to other packages through an API. The
header file ‘include/actuarAPlL.h’ in the package installation directory contains
declarations for the continuous distributions of Appendix A, the phase-type
distributions of Appendix B, the discrete distributions of Appendix C, and the
beta integral of section 6.

The prototypes of the C routines for probability distributions all follow the
same pattern modeled after those of base R (R Core Team, 2020, Chapter 6). As
an example, here are the prototypes for the Pareto distribution:

double dpareto(double x, double shape, double scale,
int give_log);
double ppareto(double g, double shape, double scale,
int lower_tail, int log_p);
double gpareto(double p, double shape, double scale,
int lower_tail, int log_p);
double rpareto(double shape, double scale);
double mpareto(double order, double shape, double scale,
int give_log);
double levpareto(double 1imit, double shape, double scale,
double order, int give_log);

For the beta integral (14), the frontend is a routine betaint that returns NA
or NaN for out-of-range arguments, but actual computation is done by routine
betaint_raw. Both are exposed as follows in the API:

double betaint(double x, double a, double b);
double betaint_raw(double x, double a, double b,
double x1m);

The developer of some package pkg who wants to use a routine — say
dpareto — in her code should proceed as follows.

1. Add actuar to the Imports and LinkingTo directives of the ‘DESCRIPTION’
file of pkg;

2. Add an entry import(actuar) in the ‘NAMESPACE’ file of pkg;

3. Define the routine with a call to R_GetCCallable in the initialization rou-
tine R_init_pkg of pkg (R Core Team, 2020, Section 5.4). For the current
example, the file ‘src/init.c’ of pkg would contain the following code:

12



void R_init_pkg(DllInfo =d11)
{
R_registerRoutines( /* native routine registration =/ );
pkg_dpareto = (double(*)(double,int,int))
R_GetCCallable("actuar", "dpareto");
}

4. Define a native routine interface that will call dpareto, say pkg_dpareto
to avoid any name clash, in ‘src/init.c’ as follows:

I double(*pkg_dpareto)(double,double,double,int);

5. Declare the routine in a header file of pkg with the keyword extern to
expose the interface to all routines of the package. In our example, file
‘src/pkg.h’ would contain:

I extern double(*pkg_dpareto)(double,double,double,int);

6. Include the package header file ‘pkg.h’ in any C file making use of routine
pkg_dpareto.

The companion package expint (Goulet, 2019) ships with a complete test
package implementing the above. See the vignette of the latter package for more
information.

8 Implementation details

The cdf of the continuous distributions of Table 1 use pbeta and pgamma to
compute the incomplete beta and incomplete gamma functions, respectively.
Functions dinvgauss, pinvgauss and ginvgauss rely on C implementations
of functions of the same name from package statmod (Giner and Smyth, 2016).

The matrix exponential C routine needed in dphtype and pphtype is based
on expm from package Matrix (Bates and Maechler, 2016).

The C code to compute the beta integral (14) was written by the second
author.

For all but the trivial input values, the pmf, cdf and quantile functions for
the zero-truncated and zero-modified distributions of Table 2 use the internal
R functions for the corresponding standard distribution.

13



Generation of random variates from zero-truncated distributions uses the
following simple inversion algorithm on a restricted range (Dalgaard, 2005; Tho-
mopoulos, 2013). Let u be a random number from a uniform distribution on
(po» 1). Then x = P~!(u) is distributed according to the zero-truncated version
of the distribution with cdf P(k).

For zero-modified distributions, we generate variates from the discrete mix-
ture (4) when p}! > po. When p} < p,, we can use either of two methods:

1. the classical rejection method with an envelope that differs from the target
distribution only at zero (meaning that only zeros are rejected);

2. generation from the discrete mixture (5) with the corresponding zero-truncated
distribution (hence using the inversion method on a restricted range explained
above).

Which approach is faster depends on the relative speeds of the standard ran-
dom generation function and the standard quantile function, and also on the
proportion of zeros that are rejected using the rejection algorithm. Based on
the difference p, — p}, we determined (empirically) distribution-specific cut-
off points between the two methods.

Finally, computation of the Poisson-inverse Gaussian pmf uses the recur-
sive equations (8). Versions of actuar prior to 3.0-0 used the direct expression
(6) and the C level function bessel_k part of the R API. However, the latter
overflows for large values of v and this caused NaN results for the value of

50k @i9)

x!
and, therefore, for the Poisson-inverse Gaussian pmf.

A Continuous distributions

This appendix gives the root name and the parameters of the R support func-
tions for the distributions of Table 1, as well as the formulas for the pdf, the
cdf, the raw moment of order k and the limited moment of order k using the
parametrization of Klugman et al. (2012) and Hogg and Klugman (1984).

In the following, I'(ct; x) is the incomplete gamma function (9), S(a, b; x) is
the incomplete beta function (10), G(c; x) is the “extended” incomplete gamma
function (11), B(a, b; x) is the beta integral (13) and K,,(x) is the modified Bessel
function of the third kind (7).

Unless otherwise stated, all parameters are finite and strictly positive, and
the functions are defined for x > 0.

14



A.1 Feller-Pareto family
A.1.1 Feller-Pareto

Root: fpareto

Parameters: min (—oo < u < o), shapel (), shape2 (y), shape3 (7), rate
(A =1/6),scale (H)

_oyutd —u)® v (X —
0= s “=1ro °=(
F(x) = ﬁ(f a;u)

25 ( ) k-jgi L@+ JMT(a = jly)

integer 0 < k < ay

P NENG I
< B(t + jly,a—jly;w)
BL(X A )] = Jzo( ) sy Bt

+xK[1 - B(r,a;u)], integerk >0, a—jly#—1,—

A.1.2 ParetolV

Root: paretos

Parameters: min (—oco < § < o0), shapel (a), shape2 (y), rate (A = 1/6),
scale ()

ayu®(1 —u) 1 X —py

J)= c-p T 1+v v=( ] ) *H

F(x)=1-u"
k

E[X¥] = Z(S‘) k=jgi F(1+]/17:2£§a ]/Y), integer 0 < k < ay
Jj=0
k (k B(1+ jly,a—jly;1—u)

k1 — k—jgi 2 :
E[(X A x)¥] Z:;)() 6 T(a)

j
+ xku®, integerk >0 a—j/y #-1,-2,

A.1.3 Pareto III

Root: pareto3
Parameters: min (—oo < 4 < ), shape (y), rate (1 =1/6), scale (6)

15



yu(l —uw) % X—u
0= *=rr °=(
F(x)=u

E[x¥] =] (I]{.)Mk_jej L1+ j/y)rQA—jly), integer0<k<y

E[X Ax)K] = (I;)uk‘fef B(1+j/y,1— jly;u)
J
+x*(1 —u), integerk>0 1-—j/y#—1,-2,...

A.1.4 Pareto Il

Root: pareto2
Parameters: min (—oo < 4 < ), shape (), rate (1 = 1/6), scale (6)

_au®*(1—u) 1 X—u
f(x) Gom  YTTye VT YUH
Fx)=1-u“*
K\ . . TAQ+j)l(x—j) .
E[X¥] = ke , integer0 <k <a
k . .
k\ _i.iBA+j,a—j1—u)
k1 = k—jgJ
E[(X A x)¥] g()u 6 @
+ xku®, integerk >0 a—j#-1,-2,..

A.1.5 Transformed beta

Root: trbeta, pearson6
Parameters: shapel («), shape2 (y), shape3 (1), rate (1 = 1/6), scale (0)

_ (1 — w® = -(3)
f(x)_W’ u—1+v’ U_<6)
F(x) = B(z,a;u)
_ @kF(T + k/y)I'(a—kly)
E[X*] = T(@)T(7) sk
_ 6"B(r + kly,a —kly;u)
E[(X A Xx)K] = I'(a)I'(7)

+ x[1 - B(r,;u)], k> -ty
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A.1.6 Burr

Root: burr
Parameters: shapel (), shape2 (y), rate (1 = 1/60), scale (6)

ayu®(1 —u) 1 _(xy
f()_ X ’ _]_+v’ U—(@)
F(x)=1-u"
_ O T(1 + k/y)T(a — k/y)
E[X¥] = ) , —v<k<ay
_ O*B(1 +kly,a—kly;1—u)
E[(X A x)*] = (@)

+ xku®, k> -y

A.1.7 Loglogistic

Root: 1logis
Parameters: shape (y), rate (1 = 1/0), scale (6)

u(l—u v x\/
=TTyt ()
F(x)=u

E[X¥] = 6*T(1 + k/y)T(1 — k/y), -y <k<y
E[(X A x)¥] = 6¥B(1 + k/y,1 — k/y;u)
+xk(1—uw), k>-—y

A.1.8 Paralogistic

Root: paralogis
Parameters: shape (), rate (1 = 1/6), scale (6)

?u*(1 — u) 1 X\
f(x) = . , il prert v_(é)
F(x)=1-u"
E[X¥] = OkT(1 + kéo(zcg(oc - k/oc)’ C<k<a?
k o
E[(x A x)F] = 28U+ k/afzxa) k/eg 1 — u)

+xku®, k> -«
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A.1.9 Generalized Pareto

Root: genpareto
Parameters: shapel (a), shape2 (1), rate (A = 1/6), scale (6)

_ut(1—u)” v _Xx
Fe) = xp(a, 1)’ YEIiry °=5
F(x) = B(r,a;u)

_ OT(t + k)M — k)

E[X¥] = (@)D , —T<k<a
k I
BlG A ] = SRR LR

+xM[1 - B(r, )], k>-t

A.1.10 Pareto

Root: pareto
Parameters: shape (), scale (6)

_au®(1—u) 1 X
Fo) = X ’ T 140 -}
F(x)=1—-u“*
E[XK] = ¢fra +Fl(c;1)“(oc—k)’ ~1<k<a
k 1
E[(X A x)¥] = 0“B(1 + kf?a) k;1—u)

+ xku®, k> -1

A.1.11 Single-parameter Pareto (Pareto I)

Root: paretol
Parameters: shape (), min (6)

ab“
f(X) = W’ x>0
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k
ab ko< >0

B0 = 0 ~ G *2

Although there appears to be two parameters, only « is a true parameter. The
value of 0 is the minimum of the distribution and is usually set in advance.
A.1.12 Inverse Burr

Root: invburr
Parameters: shapel (1), shape2 (y), rate (1 = 1/6), scale (0)

Tyu (1 — u) v x\/
Fo) = X ’ T 1+v 0= (5>
F(x)=u"
E[x*] = OFI(z + kl/J(/l).;(l - k/y)’ Ly <k<ay
_ 6%B(t + k/y,1 — kly;u)

+xk(1-u"), k> -1y

A.1.13 Inverse Pareto

Root: invpareto
Parameters: shape (1), scale (6)

x
fe = X ’ “1+v ’=5
F(x)=u"

Fx = 2@ +F12)r(1 =B k<1

E[(X A )] = 0kr f YL - )k dy
0

+xk1-u"), k> -t

A.1.14 Inverse paralogistic

Root: invparalogis
Parameters: shape (1), rate (A = 1/6), scale (0)
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flx) = =, S, u=(_
F(x)=u"
E[X*] = L klizl)';(l - k/T)’ —?P<k<T
E[(X Ax)f] = 6"B(r + kI/“Er)l — k/T;u)

+xk¥1 —u?), k> —1?

A.2 Transformed gamma family
A.2.1 Transformed gamma

Root: trgamma
Parameters: shapel (a), shape2 (1), rate (A = 1/6), scale (6)

fe=2 = (%)

xI'(a) ’ 2]
F(x) =T(a;u)
E[X"] = —ekr(ﬁ‘(;)k/ D k> —ar
E[(X A x)K] = %F(cx + ki)

+xM[1-T(xu)], k>-ar

A.2.2 Inverse transformed gamma

Root: invtrgamma
Parameters: shapel (), shape2 (1), rate (A = 1/6), scale (0)

foy =D s (9)

xI'(a) ’ X
F(x)=1-T(a;u)
E[X] = —ekr(g(;)"/ D k<ar
E[(X A x)¥] = w + xkT(e;u), allk
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A.2.3 Inverse gamma

Root: invgamma
Parameters: shape (), rate (1 = 1/6), scale (6)

=225 u=
F(x)=1-T(a;u)
E[X¥] = % k<a
E[(X A x)K] = W + xkT(a;u), allk
M) = (=60 Ko (V=36)

A.2.4 Inverse Weibull

Root: invweibull, lgompertz
Parameters: shape (1), rate (A = 1/6), scale (0)

Flx) = Tue "= <9>T

x X
F(x)=e¢™
E[X¥]=6Fr(1 —k/t) k<t
E[(X Ax)¥] = 6¥G(1 — k/;u) + xK(1 —e™®), allk

A.2.5 Inverse exponential

Root: invexp
Parameters: rate (1 = 1/6), scale (6)

fo=2" u=?
F(x)=e™

E[XK]=6kra-k) k<1
E[(X Ax)¥] = 6KG(Q — k;u) + xkK(1 —e™%), allk
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A.3 Other distributions
A.3.1 Loggamma

Root: 1gamma
Parameters: shapelog (a), ratelog (1)

_ 2#(Inx)*!
fx) = x/“‘l—l“(oc)’
F(x)=T(a;Alnx), x>1

E[X¥] = (/1’%{)0{ k<2

x>1

E[(X A )] = (/Tk)a et (A — K)In x)

+x¥1 -T(;Alnx)), k<A

A.3.2 Gumbel

Root: gumbel
Parameters: alpha (—oco < a < ), scale (6)

e—(u+e_“)

f(x):—e , uzx;oc’ —0 <X <o

F(x) = exp[—exp(—u)]
E[X]=a+70, y=~ 0.57721566490153
%62
6
M(t) = e*T(1 — 1)

Var[X] =

A.3.3 Inverse Gaussian

Root: invgauss
Parameters: mean (i), shape (1 = 1/¢), dispersion (¢)

1 \Y? (x/u — 1)
Fe) = (27tqu3) eXp{_ZgiT}

/u—1 x/u+1
F(x) = @ (x—) + G <__)
RN e

(k+i—1)! (gu\'
Zu(k—z—n'(?)’ k=1,2,..
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HXAX]=u[¢(2%£;)_eﬂwm¢<_i%£§)
+ x(1 — F(x))

M(t):exp{i(l—\ll—zwczt)}, t < 1

Pu 2¢u2

The limiting case u = oo is an inverse gamma distribution with « = 1/2 and
A = 2¢ (or inverse chi-squared).

A.3.4 Generalized beta

Root: genbeta
Parameters: shapel (a), shape2 (b), shape3 (1), rate (1 = 1/6), scale (6)

_u(1 —u)b! (XY
0= gan (&)
F(x) = B(a, b;u)

_ 0%B(a + k/z,b)

0<x<6

E[Xk] = W, k> —ar
_ 0%Bla+k/t,b) .
E[(X/\ X)k] = Wﬁ(a + k/T, b, u)

+ x¥[1 = B(a,b;u)], k> -1y

B Phase-type distributions

Consider a continuous-time Markov process with m transient states and one
absorbing state. Let
T t

be the transition rates matrix (or intensity matrix) of such a process and let
(7, m,41) be the initial probability vector. Here, T is an m X m non-singular
matrix with t;; <Ofori=1,...,mand¢;; > 0fori # j; wisan 1 X m vector of
probabilities such that ze + 7,,,; = 1;t = —Te; e = [1],,%; is a column vector
of ones.

Root: phtype
Parameters: prob (7;x,,), rates (Tyxm)
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l1—-7we x=0,
meTl*t, x>0

o]

F(x) 1— we, x=0,
X) =

1-—7eT™e, x>0
E[X¥] = k!z(-T) e

M(t) = (=1 = T) 't + (1 — 7e)

C Discrete distributions

This appendix gives the root name and the parameters of the R support func-
tions for the members of the (a, b, 0) and (a, b, 1) discrete distributions as de-
fined in Klugman et al. (2012); the values of a, b and p, in the representation;
the pmf; the relationship with other distributions, when there is one. The ap-
pendix also provides the main characteristics of the Poisson-inverse Gaussian
distribution.

C.1 The (a,b,0) class

The distributions in this section are all supported in base R. Their pmf can be
computed recursively by fixing p, to the specified value and then using p;, =
(a+ b/k)py_,,fork =1,2,....

All parameters are finite.

C.1.1 Poisson

Root: pois
Parameter: lambda (4 > 0)

a=0, b =4, Po=e¢€

e~k
Pk = T

C.1.2 Negative binomial

Root: nbinom
Parameters: size (r > 0), prob (0 < p < 1), mu (r(1 — p)/p)
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a=1-p, b=(r-11-p), Do=D
r+k—-1
pk=( " )pr(l—p)"

Special case: Geometric(p) when r = 1.

C.1.3 Geometric

Root: geom
Parameter: prob(0 < p <1)

a=1l-p, b=0, Do=Pp
pk = p(1 = p)*

C.1.4 Binomial

Root: binom
Parameters: size (n =0,1,2,...),prob(0< p<1)

1-p’ 1-p "’
Pk = (Z)pk(l —-pk k=1,2,..,n

p p=FVR gy

Special case: Bernoulli(p) when n = 1.

C.2 The zero-truncated (a, b, 1) class

Package actuar provides support for the distributions in this section. Zero-
truncated distributions have probability at zero p] = 0. Their pmf can be
computed recursively by fixing p; to the value specified below and then us-
ing px = (a + b/k)py_;, for k = 2,3,.... The distributions are all defined
onk=1,2,....

The limiting case of zero-truncated distributions when p, is infinite is a
point mass in k = 1.

C.2.1 Zero-truncated Poisson

Root: ztpois
Parameter: lambda (4 > 0)
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T —1
/1k

Pk = - 1)

C.2.2 Zero-truncated negative binomial

Root: ztnbinom
Parameters: size (r > 0),prob(0 < p<1)

_rp"(1—p)

a=1-p, b=@F-11-Dp), D1 T—pr

r+k-—1 p’(l—p)k
Pk = o
k 1-p

Special cases: Logarithmic(l — p) when r = 0; Zero-truncated geometric(p)
whenr = 1.

C.2.3 Zero-truncated geometric

Root: ztgeom
Parameter: prob (0 < p <1)

a=1-p, b=0, p=p
pr = p(1 - p)!

C.2.4 Zero-truncated binomial

Root: ztbinom
Parameters: size (n =0,1,2,...),prob(0< p<1)

P - ntDp _np=p"
1-p’ 1-p° PTa-a-pr
k n—-k
_(n\p*(1 = p) _
pk—(k>—1—(1—p)"’ k=1,2,....,n

C.2.5 Logarithmic

Root: logarithmic
Parameter: prob(0 < p<1)
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a=p, b=-p, P =
k

“log(1 - p)
D
Pk = " ilog(1 = p)

C.3 The zero-modified (a, b, 1) class

Package actuar provides support for the distributions in this section. Zero-
modified distributions have an arbitrary probability at zero p}! # p,, where
Do is the probability at zero for the corresponding member of the (a, b, 0) class.
Their pmf can be computed recursively by fixing p; to the value specified below
and then using px = (a + b/k)py_;, for k = 2,3, .... The distributions are all
definedonk =0,1,2,....

The limiting case of zero-modified distributions when p;, is infinite is a dis-
crete mixture between a point mass in k = 0 (with probability p}) and a point
mass in k = 1 (with probability 1 — p}).

C.3.1 Zero-modified Poisson

Root: zmpois
Parameters: lambda (1 > 0), p0 (0 < p}f < 1)

1—pM
a=0, b=21, p1=—( P )A

et —1
(1 — py")A*
Pk =771 _ 1\
kl(et — 1)
C.3.2 Zero-modified negative binomial

Root: zmnbinom
Parameters: size (r > 0), prob(0 < p<1),p0 (0 < p¥ <1)

(1-pdHrp"(1 - p)
1-pr

a=1-p, b=(-11-p), p1 =

_(r+k-1\Q-p)Hp'a - pk
P = k 1-pr

Special cases: Zero-modified logarithmic(1 — p) when r = 0; Zero-modified
geometric(p) when r = 1.
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C.3.3 Zero-modified geometric

Root: zmgeom
Parameters: prob (0 < p < 1),p0 (0 < pM < 1)

a=1-p, b=0, p1=(1—p6"1)p
P = (1 — pgHp( — p)<?

C.3.4 Zero-modified binomial

Root: zmbinom
Parameters: size (n =0,1,2,...),prob (0 < p<1),p0 (0 <L pg’f <1)

_ b p_ (n+Dp v _ n—pgHp@ —p)"!
1-p’ 1-p B 1-(1-p)
_ (n\Q=pHp*a =p)"*
pk—<k) 1—(1—[))" , k—1,2,...,n
C.3.5 Zero-modified logarithmic
Root: zmlogarithmic
Parameters: prob (0 < p < 1), p0 (0 < pM < 1)
(1-psHp
a= s b = — , = -
P P T Mgt -p)

__a-ptHe*
Pl = "klog(1 - p)

C.4 Other distribution
C.4.1 Poisson-inverse Gaussian

Root: poisinvgauss, pig
Parameters: mean (4 > 0), shape (A = 1/¢), dispersion (¢ > 0)

-1 —(x—%)
2 e(dm) 1
Px=1\7g ( 2¢(”2¢u2))

2 1
XKx—l/Z( $(1+W>), x=0,1,..,
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Recursively:

Do = exp{# (1 -1+ 2q5/,£2)}

u

PL=—F—=PD
Y VTr2g2
2¢u* 3 12 1
= - =2,3,....
Px 1+2¢#2< Zx)px"1+1+2¢ﬂzx(x—1) Pr-z X =23,

In the limiting case 4 = o0, the pmf reduces to

¢ x!

2 1 _(x_1
Dy =+ | ——(/2¢) (x z)Kx_l(\/Z/qﬁ), x=0,1,...
2
and the recurrence relations become

Po = exp {—/2/¢}

1
Pl—\/ﬁpo

3 1 1
Px = (1 - E) Px—1+ 2% x(x—1) Px—2 X=2,3....
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