Package 'absorber'

February 23, 2024

Type Package Title Variable Selection in Nonparametric Models using B-Splines Version 1.0 **Date** 2024-02-22 Author Mary E. Savino [aut, cre], Celine Levy-Leduc [ctb] Maintainer Mary E. Savino <mary.savino@outlook.fr> Description A variable selection method using B-Splines in multivariate nOnparametric Regression models Based on partial dErivatives Regularization (ABSORBER) implements a novel variable selection method in a nonlinear multivariate model using B-splines. For further details we refer the reader to the paper Savino, M. E. and Lévy-Leduc, C. (2024), <https://hal.science/hal-04434820>. License GPL-2 **Encoding** UTF-8 LazyData true **Depends** R (>= 3.5.0), Matrix, sparsegl, fda, parallel Imports ggplot2, MASS, irlba Suggests knitr, markdown VignetteBuilder knitr NeedsCompilation no **Repository** CRAN Date/Publication 2024-02-23 18:50:08 UTC

R topics documented:

absorber-package	
absorber	
plot_selection	
x_obs	
y_obs	4
	5

Index

absorber-package

Description

absorber consists of two functions: "absorber.R" and "plot_selection.R". For further information on how to use these functions, we refer the reader to the vignette of the package.

Details

Two datasets are also provided within this package and used as examples of this manual and in the vignette.

Author(s)

Mary E. Savino

Maintainer: Mary E. Savino <mary.savino@outlook.fr>

References

Savino, M. E. and Lévy-Leduc, C. (2024) A novel variable selection method in nonlinear multivariate models using B-splines with an application to geoscience. https://hal.science/hal-04434820>.

absorber

Variable selection in nonparametric models

Description

This function implements the method described in Savino, M. E. and Levy-Leduc, C (2024) for variable selection in nonlinear multivariate settings where observations are assumed to satisfy a nonparametric regression model. Each observation point should belong to $[0, 1]^p$.

Usage

```
absorber(x, y, M = 3, K = 1, all.variables = NULL, parallel = FALSE, nbCore = 1)
```

Arguments

х	matrix of p columns containing the input values of the observations, each observation belonging to $[0, 1]^p$.
У	vector containing the corresponding response variable associated to the input values x.
Μ	order of the B-spline basis used in the regression model. Default is 3 (quadratic B-splines).
К	number of evenly spaced knots to use in the B-spline basis. Default value is 1.

plot_selection

all.variables	list of characters or integers, labels of the variables. Default is NULL.
parallel	logical, if TRUE then a parallelized version of the code is used. Default is FALSE.
nbCore	numerical, number of cores used for parallelization, if parallel is set to TRUE.

Value

selec.var	list of vectors of the selected variables, one vector for each penalization param-
	eter.
aic.var	vector of variables selected using AIC.

Examples

```
# --- Loading values of x --- #
data('x_obs')
# --- Loading values of the corresponding y --- #
data('y_obs')
x_trunc = x_obs[1:70,,drop=FALSE]
y_trunc = y_obs[1:70]
# --- Variable selection of f1 --- #
absorber(x=x_trunc, y=y_trunc, M = 3)
# --- Parallel computing --- #
absorber(x=x_trunc, y=y_trunc, M = 3, parallel = TRUE, nbCore = 2)
```

plot_selection Visualization of the selected variables

Description

This function produces a histogram of the variable selection percentage for each variable on which f depends. It also displays the results obtained with the AIC.

Usage

```
plot_selection(object)
```

Arguments

object output obtained with absorber().

Value

This function produces a ggplot2::ggplot() plot to visualize the variables selected with absorber().

Examples

```
# --- Loading values of x --- #
data('x_obs')
# --- Loading values of the corresponding y --- #
data('y_obs')
x_trunc = x_obs[1:70,,drop=FALSE]
y_trunc = y_obs[1:70]
# --- Variable selection of f1 --- #
res = absorber(x=x_trunc, y=y_trunc, M = 3)
plot_selection(res)
```

x_obs

Observation matrix x of five variables

Description

An example of 700 observations for the variable selection of function f_1 (see Savino and Lévy-Leduc (2024) for more details) with five input variables.

Usage

data("x_obs")

Format

Numeric matrix of 700 rows and 5 columns.

y_obs	Values of the response	variable of the	noisy observ	ation set of fiv	ve
	input variables				

Description

An example of noisy observations obtained by adding a Gaussian noise to $f_1(x_i)$ associated to the input values contained in x_obs.rda. See Savino and Lévy-Leduc (2024) for the expression of f_1 .

Usage

data("y_obs")

Format

Numeric vector of 700 values.

4

Index

* **package** absorber-package, 2

absorber, 2
absorber(), 3
absorber-package, 2

ggplot2::ggplot(), 3

 $plot_selection, 3$

x_obs, 4

y_obs, 4