Package ‘UWHAM’

January 20, 2025
Type Package
Title Unbinned Weighted Histogram Analysis Method (UWHAM)
Version 1.1
Date 2022-05-19
Author Zhiqgiang Tan and Emilio Gallicchio

Maintainer Zhiqiang Tan <ztan@stat.rutgers.edu>

URL http://www.stat.rutgers.edu/~ztan,
https://www.compmolbiophysbc.org

Description A method for estimating log-normalizing constants (or free
energies) and expectations from multiple distributions (such as
multiple generalized ensembles).

Depends R (>=2.9.1), trust

License GPL (>=2)

Repository CRAN

Date/Publication 2022-05-20 14:00:02 UTC

NeedsCompilation no

Contents
UWHAM-package ittt e 2
cyclooctanol 2
histw L 3
INSEIT L o 5
ligand2.hardo 5
ligand2.soft 6
objfen . . . e 7
uwham. 8
uwham.boot 14
uwham.phi o 16

Index 18

http://www.stat.rutgers.edu/~ztan
https://www.compmolbiophysbc.org

2 cyclooctanol

UWHAM-package A R package for the unbinned weighted histogram analysis method
(UWHAM)

Description

UWHAM for estimating log-normalizing constants (or free energies) and expectations from multi-
ple distributions (such as multiple generalized ensembles).

Details

The R package UWHAM — version 1.0 can be used for two main tasks:

* to estimate log-normalizing constants (or free energies) from multiple distributions,

* to estimate expectations from multiple distributions.
There are 3 main functions:

* uwham(): to estimate free energies and associated variances,
* uwham.phi(): to estimate expectations and associated variances,

* uwham.boot(): to estimate variances based on block bootstrap.

The package also provides a function, histw(), for plotting weighted histograms.

cyclooctanol A simulated tempering dataset of interaction parameters and binding
energies

Description

Time series of interaction parameters and corresponding binding energies from a Hamiltonian hop-
ping simulation of molecular binding.

Usage

data(cyclooctanol)

Format

A data frame containing 2 columns and 35000 rows.

histw 3

Details

The dataset contains ligand-receptor interaction parameters (lambda) and binding energies for the
equivalent of an Hamiltonian hopping simulation of cyclooctanol binding to beta-cyclodextrin.
(Hamiltonian hopping is the same as simulated tempering except that potential parameters are var-
ied rather than temperature.) This illustrative dataset was constructed by concatenating the output of
some of the replicas of a Hamiltonian replica exchange simulation of the same complex (Wickstrom
et al. 2013). Harmless discontinuities may be observed at the joining points.

The dataset contains 2 columns and 3500 rows. Rows correspond to consecutive time points. The
first column cyclooctanol$V1 contains lambda values (24 discrete values between O and 1) and
the second column cyclooctanol$V2 records binding energy values in kcal/mol.

References

Wickstrom, L., Gallicchio, E., He, P., and Levy, R.M. (2013) "Large scale affinity calculations
of cyclodextrin host-guest complexes: Understanding the role of reorganization in the molecular
recognition process," Journal of Chemical Theory and Computation, submitted for publication.

histw Weighted histogram

Description

This function plots a weighted histogram.

Usage

histw(x, w, xaxis, xmin, xmax, ymax,
bar=TRUE, add=FALSE, col="black"”, dens=TRUE)

Arguments
X A data vector.
w A weight vector, which will be rescaled to sum up to one.
xaxis A vector of cut points.
xmin The minimum of x coordinate.
xmax The maximum of x coordinate.
ymax The maximum of y coordinate.
bar bar plot (if TRUE) or line plot.
add if TRUE, the plot is added to an existing plot.
col color of lines.

dens if TRUE, the histogram has a total area of one.

4 histw

References

Tan, Z., Gallicchio, E., Lapelosa, M., and Levy, R.M. (2012) "Theory of binless multi-state free
energy estimation with applications to protein-ligand binding," Journal of Chemical Physics, 136,
144102.

Examples

Boltzmann constant
bet <- 1.0/(0.001986209%300.0)

negative potential function
npot.fcn <- function(x, lam)
-bet*lamxx
read data (soft.core)
lam <- c(0.0, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.06, 0.1,
0.25, 0.5, 0.75, 0.9, 1.0)
m <- length(lam)

data(ligand2.soft)
lig.data <- ligand2.soft$V1

size <- rep(1000, m)
N <- sum(size)

compute negative potential
neg.pot <- matrix(@, N,m)

for (j in 1:length(lam))
neg.pot[,j] <- npot.fcn(x=lig.data, lam=lam[j])

estimate free energies
out <- uwham(logQ=neg.pot, size=size, fisher=TRUE)

-out$ze/bet + 0.71

sqrt(out$ve)/bet

the bins used to construct weighted histograms
bins <- seq(-35, 400, 2.5)

grid <- c(bins, 2e+3)

W <- out$W /N

par(mfrow=c(1,2))

Plot the weighted histograms at two lambdas
histw(lig.data, w=W[,8], xaxis=grid, xmin=-35, xmax=200, ymax=.1)

histw(lig.data, w=W[,10], xaxis=grid, xmin=-35, xmax=200, ymax=.1,
bar=0, add=TRUE, col="red")

insert

plot the raw histogram and weighted histogram
histw(lig.data[(5%1000+1):(6x1000) 1, w=rep(1,1000),
xaxis=grid, xmin=-35, xmax=200, ymax=.04)

histw(lig.data, w=W[,6], xaxis=grid, xmin=-35, xmax=200, ymax=.04,
bar=0, add=TRUE, col="red")

insert Inserting a value into a vector

Description

This inserts a value x@ at d-th position of x.

Usage

insert(x, d, x0 = 0)

Arguments

X A vector.

d A position in x.

X0 A value to be inserted.
Value

The resulting vector.

ligand2.hard A dataset of binding energies obtained with a conventional interaction
potential

Description

A dataset for protein-ligand binding with an unmodified energy function.

Usage
data(ligand2.hard)

Format

A data frame containing 1 column and 18000 rows.

6 ligand2.soft

Details

The dataset contains binding energies (in kcal/mol) for the ligand 2/FKBP complex with an unmod-
ified energy function, simulated using replica exchange with 18 lambda values (Tan et al. 2012).

Suppose that the dataset is converted to a 100@ x 18 matrix as follows.

data(ligand2.hard)
lig.data <- matrix(ligand2.hard$V1l, nrow=1000)

The 18 columns of 1ig.data correspond to the raw output of the 18 replicas. A replica is defined
as a continuous replica exchange molecular dynamics thread with variable lambda (exchanges are
performed by swapping lambda values rather than coordinates). The 1000 rows represent as many
sequential time points during the replica exchange trajectory. Each row contains binding energies
from each replica taken at the same simulation time (synchronous sampling).

References

Tan, Z., Gallicchio, E., Lapelosa, M., and Levy, R.M. (2012) "Theory of binless multi-state free
energy estimation with applications to protein-ligand binding," Journal of Chemical Physics, 136,
144102.

ligand2.soft A dataset of binding energies with a soft-core interaction potential

Description

A dataset for protein-ligand binding with a soft energy function.

Usage
data(ligand2.soft)

Format

A data frame containing 1 column and 15000 rows.

Details

The dataset contains binding energies (in kcal/mol) for the ligand 2/FKBP complex with a soft-core
interaction energy function, simulated using replica exchange with 15 lambda values (Tan et al.
2012).

Suppose that the dataset is converted to a 1000 x 15 matrix as follows.

data(ligand2.soft)
lig.data <- matrix(ligand2.soft$V1, nrow=1000)

obj.fcn 7

The 15 columns of lig.data correspond to the 15 lambda states from smallest (lambda=0) to
largest (lambda=1). The data were obtained by reordering by lambda the raw output of the molec-
ular dynamics replicas at each observation time. A replica is defined as a continuous replica ex-
change molecular dynamics thread with variable lambda (exchanges are performed by swapping
lambda values rather than coordinates). The 1000 rows represent as many sequential time points
during the replica exchange trajectory. Each row contains binding energies from each replica taken
at the same simulation time (synchronous sampling).

References

Tan, Z., Gallicchio, E., Lapelosa, M., and Levy, RM. (2012) "Theory of binless multi-state free
energy estimation with applications to protein-ligand binding," Journal of Chemical Physics, 136,
144102.

obj.fcn The objective function for UWHAM

Description

This function computes the objective function, its gradient and its hessian matrix for UWHAM.

Usage

obj.fcn(ze, logQ, size, base)

Arguments
ze A vector of log-normalizing constants (or free energies) for the sampled ther-
modynamic states.
logQ The matrix of log of unnormalized density ratios for the sampled thermody-
namic states over the baseline.
size A vector giving the individual sample sizes for the sampled thermodynamic
states.
base The baseline index.
Details

The objective function is convex as discussed in Tan et al. (2012). See also Gill et al. (1998) for
related results on biased sampling models.

Value
value The value of the objective function.
gradient The gradient of the objective function.

hessian The hessian matrix of objective function.

8 uwham

References

Gill, R., Vardi, Y., and Wellner, J. (1998) "Large sample theory of empirical distributions in biased
sampling models," Annals of Statistics, 16, 1069-1112.

Tan, Z., Gallicchio, E., Lapelosa, M., and Levy, R.M. (2012) "Theory of binless multi-state free
energy estimation with applications to protein-ligand binding," Journal of Chemical Physics, 136,
144102.

uwham Unbinned weighted histogram analysis method (UWHAM) for estimat-
ing free energies

Description

This function implements UWHAM for estimating log-normalizing constants (or free energies) and
expectations from multiple distributions (such as multiple generalized ensembles) as described in
Tan et al. (2012).

Usage

uwham(label=NULL, logQ, size=NULL, base = NULL, init = NULL,
fisher = TRUE)

Arguments

label A vector of length N of labels between 1 to M such that 1abel[i]=j when ith
observation is obtained from jth thermodynamic state; either label or size
must be provided; if fisher=FALSE and if 1abel=NULL, then label is set such
that the first size[1] observations are assumed to be from state 1, the next
size[2] observations from state 2, etc.

logQ N x M matrix of log unnormalized densities (such as 1/kT times negative po-
tential energies), where N is the total sample size, i.e., sum(size), and M is the
number of thermodynamic states for which free energies are to be computed; the
ith row of 1logQ correspond to ith observations and the jth column correspond
to jth thermodynamic state.

size A vector of length M, giving the individual sample sizes for the M thermodynamic
states, ordered as the columns of 1ogQ; if NULL, then label is required and used
to compute size.

base The baseline index, between 1 to M, for the thermodynamic state (with sample
size >0) whose free energy is set to 0; if NULL, then base is set to the first index
j such that size[j1>0.

init A vector of length M, giving the initial values of the log-normalizing constants
(or log of the partition functions); if NULL, then init is set to the zero vector.

fisher Logical; if NULL, no variance estimation; if TRUE, variance estimation is based
on Fisher information; if FALSE, variance estimation is based on the Sandwich
variance formula (see the details).

uwham 9

Details

The UWHAM method results from a number of interesting, sometimes independent, developments
in physics and statistics. See Kong et al. (2003) for a formal statistical treatment along with earlier
references, and Tan et al. (2012) for a more accessible account, presenting the method as a bin-
less extension of the Weighted Histogram Analysis Method (WHAM) widely known in physics and
chemistry (e.g., Ferrenberg and Swendsen 1989). The possibility of obtaining free energies from
a binless extension of WHAM was noticed by various authors (e.g., Kumar et al. 1992; Newman
& Barkema 1999). The binless method was later reintroduced by Shirts & Chodera (2008) to the
physics literature and was called the Multi-state Bennet Acceptance Ratio method (MBAR) because
it can be interpreted as a multi-state extension of the Bennet Acceptance Ratio (BAR) method. An
implementation of MBAR in the Python language developed by Shirts & Chodera is freely avail-
able (see https://simtk.org/home/pymbar). The UWHAM package, while adopting an alternative
numerical approach, provides identical point estimates compared to the MBAR Python package. In
addition, the UWHAM package provides variance estimation based on variance formulas without
using generalized inverses or, for correlated data, by block bootstrap.

A typical application of UWHAM involves the computation of the relative free energies of a series
of thermodynamic states differing in environmental conditions (temperature for example) and/or
Hamiltonian parameters (such as the strength of biasing potentials) from data collected at these
thermodynamic states. The method takes as input the reduced energies (such as the inverse temper-
ature times the negative of the potential energy for canonical ensembles differing in temperature) of
the observations at all thermodynamic states of interest. In addition to the free energies, the output
includes estimates of the thermodynamic weights of the observations for all states to be used for
thermodynamic reweighting calculations.

The UWHAM method is statistically optimal in yielding the smallest asymptotic variances, pro-
vided that the individual samples are independent and the observations in each sample are also
independent (Tan 2004).

To compute point estimates, the method is implemented here by minimizing a convex objective
function, as described in Tan et al. (2012). This approach can be more effective than solving
the nonlinear equations by the self-consistency or the Newton-Raphson algorithm. Currently, the
optimization is done by using the R package trust.

Variance estimation provided here is based on the Fisher information or the Sandwich variance for-
mula, as presented in Tan et al. (2012). In contrast with the Sandwich formula, the Fisher informa-
tion based formula does not require labels indicating which thermodynamic state each observation
is obtained from (see the dataset ligand2.hard). The analytical variance formulas are consistent
when the observations are considered independent. Alternatively, variance estimation can be done
by block bootstrap, implemented in uwham. boot.

Value
ze The vector of estimated log-normalizing constants (or log of the partition func-
tions).
ve The vector of estimated variances for ze, if fisher!=NULL.
Ve The estimated variance-covariance matrix for ze, if fisher!=NULL.
W The N x M matrix of UWHAM weights for each of the N observations at each of

the M thermodynamic states.

10 uwham

check The column averages of W[, sampled]; the elements of check should be equal
to 1 to indicate a valid convergence of trust.
out The output of frust used to minimize the objective function; see help(trust).
label Same as argument label.
size Same as argument size.
base Same as argument base.
References

Ferrenberg, A.M. and Swendsen, R.H. (1989) "Optimized Monte Carlo data analysis," Physics
Review Letters, 63, 1195-1198.

Kong, A., McCullagh, P., Meng, X.-L., Nicolae, D., and Tan, Z. (2003) "A theory of statistical
models for Monte Carlo integration" (with discussion), Journal of the Royal Statistical Society, Ser.
B, 65, 585-618.

Kumar, S., Bouzida, D., Swendsen, R.H., Kollman, P.A. and Rosenberg, J.M. (1992) "The Weighted
Histogram Analysis Method for free-energy calculations on biomolecules. I. The method," Journal
of Computational Chemistry, 13, 1011-1021.

Newman, M.E.J. and Barkema, G.T. (1999) Monte Carlo Methods in Statistical Physics, Oxford
University Press, New York.

Shirts, M.R. and J. D. Chodera, J.D. (2008) "Statistically optimal analysis of samples from multiple
equilibrium states," Journal of Chemical Physics, 129, 124105.

Tan, Z. (2004) "On a likelihood approach for Monte Carlo integration," Journal of the American
Statistical Association, 99, 1027-1036.

Tan, Z., Gallicchio, E., Lapelosa, M., and Levy, R.M. (2012) "Theory of binless multi-state free
energy estimation with applications to protein-ligand binding," Journal of Chemical Physics, 136,
144102.

Examples

B S S S s e
HHHEHEHAHEAE example 1 #HHEHHHEHEHEHEE
FHHHEHHHAE A

This example illustrates the calculation of the standard free energy
of binding of a ligand to a protein receptor by means of an alchemical
perturbation potential of the form lambda*binding_energy(r), where
lambda is a scaling parameter (lambda=0@ corresponds to the
protein-ligand uncoupled state, and lambda=1 corresponds to the
coupled state) and binding_energy(r) is the (solvent averaged)
potential energy of conformation r of the complex relative to one in
which the receptor and the ligand are rigidly displaced at infinite
separation. See Gallicchio et al., J. Chem. Theory Comput. 6,
2961-2977 (2010), and Tan et al. J. Chem. Phys., 136, 144102 (2012).

e R E E E R

Inverse temperature beta, in kcal/mol”*-1
bet <- 1.0/(0.001986209%300.0)

uwham

negative reduced potential function -beta*lambdaxbinding_energy.
"x" is the binding energy of a structure of the complex and "lam” the
value of lambda at which to compute the reduced energy
npot.fcn <- function(x, lam)
-bet*lamxx

values of lambda for the calculation with a "hard-core” potential
lam <- c(0.0, ©.000000001, ©.00000001, 0.0000001, 0.000001, 0.00001, 0.0001,
0.001, 0.01, 0.1, 0.15, 0.25, 0.35, 0.5, 0.6, 0.75, 0.9, 1.0)

#number of alchemical states
m <- length(lam)

load binding energies
data(ligand2.hard)
lig.data <- ligand2.hard$vi

1000 observations at each lambda state
size <- rep(1000, m)

total sample size
N <- sum(size)

compute negative potential of each observation at each lambda state
neg.pot <- matrix(@, N,m)
for (j in 1:1length(lam))

neg.pot[,j] <- npot.fcn(x=lig.data, lam=lam[j])

estimate free energies using UWHAM
out <- uwham(logQ=neg.pot, size=size, fisher=TRUE)

convergence diagnosis: the elements should be equal to 1
out$check

the "ze" values are dimensionless free energies, that is the
log of the partition functions (log Z2).

To obtain thermodynamic free energies, multiply by -kT.

0.71 kcal/mol is the standard state correction; see

Lapelosa et al. J Chem Theory Comput, 8, 44-60 (2012).
-out$ze/bet + 0.71

variances of free energies from Fisher information
sqrt(out$ve)/bet

perform block bootstrap for free energies to take into account

time correlations in the binding energy data

To save time for package checking, this is not run.

#out.boot <- uwham.boot(proc.type="parallel”, block.size=50, boot.size=100,
logQ=neg.pot, size=size)

#

#-out.boot$ze/bet + 0.71

#sqgrt(out.boot$ve)/bet

11

12

uwham

estimation of average binding energies and variances

at lambda = 0.6, 0.75, 0.9, 1.0

state <- 15:18

out.phi <- uwham.phi(phi=lig.data, state=state, out.uwham=out, fisher=TRUE)

out.phi$phi
out.phi$phi.v

block bootstrap for both free energies and expectations
To save time for package checking, this is not run.
#out.boot <- uwham.boot(proc.type="parallel”, block.size=50, boot.size=100,

logQ=neg.pot, size=size,
phi=lig.data, state=state)
#

#out.boot$phi
#out.boot$phi.v

HHHEHHAEEEEE AR AR
example 2 (unequal and zero sample sizes)
HHH A A A

same calculation as above but with a "soft-core” potential and

illustrating the ability to compute free energies and expectations
for states with unequal sample sizes including those with

zero sample sizes (or states that have not been sampled).

See Tan et al. J. Chem. Phys., 136, 144102 (2012).

rm(list=1s())

inverse temperature
bet <- 1.0/(0.001986209%300.0)

negative potential function
npot.fcn <- function(x, lam)
-bet*lamxx

read data (soft core)

lam <- c(0.0, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01, 0.02, 0.06, 0.1,
9.25, 0.5, 0.75, 0.9, 1.0)

m <- length(lam)

data(ligand2.soft)
lig.data <- ligand2.soft$V1

unequal and zero sample sizes

size <- c(rep(1000, 5), rep(500, 3), rep(0, 2), rep(1000,5))

subs <- c(rep(TRUE, 5000), rep(c(rep(TRUE,500),rep(FALSE,500)), 3),
rep(FALSE, 2000), rep(TRUE,5000))

lig.data <- lig.data[subs]

N <- sum(size)

compute negative potential

uwham

neg.pot <- matrix(@, N,m)
for (j in 1:length(lam))
neg.pot[,j] <- npot.fcn(x=lig.data, lam=lam[j])

estimate free energies
out <- uwham(logQ=neg.pot, size=size, fisher=TRUE)

-out$ze/bet + 0.71
sqrt(out$ve)/bet

block bootstrap for free energies,

pretending that the data are generated from independent chains.
To save time for package checking, this is not run.

#out.boot <- uwham.boot(proc.type="indep",

block.size=rep(50,m-2), boot.size=100,
logQ=neg.pot, size=size)
#

#-out.boot$ze/bet + 0.71
#sqrt(out.boot$ve)/bet

B S s s
example 3 (serial tempering data)
B s s s

rm(list=1s())

inverse temperature
bet <- 1.0/(0.001986209%300.0)

negative potential function
npot.fcn <- function(x, lam)
-betxlamxx

lambda states

lam <- c(0.0,0.001,0.002,0.004,0.005,0.006,0.008,0.01,0.02,0.04,
0.07,0.1,0.25,0.5,0.55,0.6,0.65,0.7,0.75,0.8,
0.85,0.9,0.95,1.0)

m <- length(lam)

loads cyclooctanol dataset
data(cyclooctanol)
lig.data <- cyclooctanol$V2

sample size
N <- length(lig.data)

state labels based on lambda values
note that labels=1:m, not 0:(m-1)
state.labels <- factor(cyclooctanol$Vl, labels=1:m)

compute negative potential
neg.pot <- matrix(@, N,m)
for (3 in 1:m)

13

14 uwham.boot

neg.pot[,j] <- npot.fcn(x=lig.data, lam=lam[j])

estimate free energies, note that size=NULL because label is given
out <- uwham(label=state.labels, logQ=neg.pot, fisher=TRUE)

free energies as a function of lambda, ©.36 kcal/mol is a standard
state correction

-out$ze/bet + 0.36

sqrt(out$ve)/bet

block bootstrap for free energies, note that proc.type="serial”

for simulated tempering data.

To save time for package checking, this is not run.

#out.boot <- uwham.boot(proc.type="serial”, block.size=10, boot.size=100,
label=state.labels, logQ=neg.pot)

#

#-out.boot$ze/bet + 0.36

#sqrt(out.boot$ve)/bet

uwham.boot Variance estimation for UWHAM based on block bootstrap

Description

This function implements variance estimation based on block bootstrap for UWHAM estimates of
free energies and expectations.

Usage

uwham.boot(proc.type, block.size, boot.size, seed = 0,
label = NULL, logQ, size=NULL, base = NULL, init = NULL,
phi = NULL, state = NULL)

Arguments

proc.type Type of simulation, "indep" for independent chains at the thermodynamic states,
"parallel” for (synchronous) parallel tempering, or "serial” for (single-
chain) serial tempering (see the details).

block.size A vector of length m=sum(size>@) (or recycled to be so), giving possibly differ-
ent block sizes for the m sampled thermodynamic states if proc. type="indep”,
or a scalar (or truncated to the first element), giving a single block size if proc. type="parallel”
or "serial”.

boot.size The number of bootstrap replications.

seed Seed for random number generation.

label A vector of length N of labels between 1 to M such that 1abel[i]=j when ith ob-

servation is obtained from jth thermodynamic state; either label or size must
be provided if proc.type="indep" or "parallel”; label must be provided
but size is optional if proc.type="serial”.

uwham.boot 15

logQ N x M matrix of log unnormalized densities (such as 1/kT times negative po-
tential energies), where N is the total sample size, i.e., sum(size), and M is the
number of thermodynamic states for which free energies are to be computed; the
ith row of logQ correspond to ith observations and the jth column correspond
to jth thermodynamic state.

size A vector of length M, giving the individual sample sizes for the M thermodynamic
states, ordered as the columns of 1ogQ; if NULL, then label is required and used
to compute size.

base The baseline index, between 1 to M, for the thermodynamic state (with sample
size >0) whose free energy is set to 0; if NULL, then base is set to the first index
j such that size[j1>0.

init A vector of length M, giving the initial values of the log-normalizing constants
(or log of the partition functions); if NULL, then init is set to the zero vector.

phi A vector of function values on the pooled sample; if NULL, no expectation is
estimated.

state A vector of indices for the thermodynamic states under which expectations are

to be computed; if NULL, no expectation is estimated.

Details

The use of block bootstrap requires at least two more inputs than uwham: the type of simulation
proc. type and the time ordering of the observations.

If proc.type="indep”, the data are assumed to be generated by (approximately) independent
chains at different thermodynamic states. The observations corresponding to the rows of logQ are
assumed to be ordered by thermodynamic state and by simulation time within each state. To per-
form block bootstrap, data blocks are resampled within each thermodynamic state and then pooled
to build bootstrap samples.

If proc. type="parallel”, the data are assumed to be generated by (synchronous) parallel tem-
pering or replica exhanges. Equal sample sizes are required. The observations corresponding to
the rows of logQ are assumed to be ordered by simulation time and then by either thermodynamic
state (as in the dataset ligand2.soft) or replica (as in the dataset 1igand2.hard). The synchro-
nized block bootstrap is implemented such that blocks corresponding to the same time interval are
randomly selected from all the thermodynamic states (Tan et al. 2012).

If proc.type="serial”, the data are assumed to be generated by (single-chain) serial tempering
or simulated tempering. The observations corresponding to the rows of 1logQ are assumed to be
ordered by time. The thermodynamic labels must then be provided in label. To perform block
bootstrap, data blocks are resampled from the entire chain, and the number of observations at each
state is re-computed for each bootstrap sample.

Value
ze The vector of averages of estimated free energies over the bootstrap samples,
which can differ from the output ze in uwham.
ve The vector of estimated variances for the output ze in uwham.
phi The vector of averages of estimated expectations over the bootstrap samples

(which can differ from the output phi in uwham. phi), if phi!=NULL and state!=NULL.

16 uwham.phi

phi.v The vector of estimated variances for phi in uwham.phi, if phi!=NULL and
state!=NULL.

References

Tan, Z., Gallicchio, E., Lapelosa, M., and Levy, R.M. (2012) "Theory of binless multi-state free
energy estimation with applications to protein-ligand binding," Journal of Chemical Physics, 136,
144102.

Examples

#See the examples for uwham().

uwham.phi Unbinned weighted histogram analysis method (UWHAM) for estimat-
ing expectations

Description
This function implements UWHAM for estimating expectations for multiple distributions (such as
multiple generalized ensembles) as described in Tan et al. (2012).

Usage

uwham.phi(phi, state, out.uwham, fisher = TRUE)

Arguments
phi A vector of function (or observable) values on the pooled sample.
state A vector of indices between 1 to M for the thermodynamic states under which
expectations are to be computed.
out.uwham The output of uwham.
fisher Logical; if NULL, no variance estimation; if TRUE, variance estimation is based
on Fisher information; if FALSE variance estimation is based on the Sandwich
variance formula (see the details).
Details

The implementation is directly based on Tan et al. (2012). See the details for uwham.

Value
phi The vector of estimated expectations.
phi.v The vector of estimated variances for phi, if fisher!=NULL.

phi.V The variance-covariance matrix for phi, if fisher!=NULL.

uwham.phi 17

References

Tan, Z., Gallicchio, E., Lapelosa, M., and Levy, R.M. (2012) "Theory of binless multi-state free
energy estimation with applications to protein-ligand binding," Journal of Chemical Physics, 136,
144102.

Examples

#See the examples for uwham().

Index

x* UWHAM
UWHAM-package, 2

+ datasets
cyclooctanol, 2
ligand2.hard, 5
ligand2.soft, 6

* expectation
insert, 5
uwham.boot, 14
uwham.phi, 16

* free energy
histw, 3
insert, 5
obj.fcn, 7
uwham, 8
uwham.boot, 14

cyclooctanol, 2
histw, 3
insert, 5

ligand2.hard, 5, 9, 15
ligand2.soft, 6, 15

obj.fcn, 7

UWHAM (UWHAM-package), 2
uwham, 8, 15, 16
UWHAM-package, 2
uwham.boot, 9, 14
uwham.phi, 15, 16, 16

18

	UWHAM-package
	cyclooctanol
	histw
	insert
	ligand2.hard
	ligand2.soft
	obj.fcn
	uwham
	uwham.boot
	uwham.phi
	Index

