Package ‘UBayFs’

January 20, 2025
Type Package
Title A User-Guided Bayesian Framework for Ensemble Feature Selection
Version 1.0

Description The framework proposed in Jenul et al., (2022) <doi:10.1007/s10994-022-06221-9>, to-
gether with an interactive Shiny dashboard. 'UBayFS' is an ensemble feature selection tech-
nique embedded in a Bayesian statistical framework. The method combines data and user knowl-
edge, where the first is extracted via data-driven ensemble feature selection. The user can con-
trol the feature selection by assigning prior weights to features and penalizing specific fea-
ture combinations. 'UBayFS' can be used for common feature selection as well as block fea-
ture selection.

License GPL-3

URL https://annajenul.github.io/UBayFS/,
https://joss.theoj.org/papers/10.21105/joss. 04848

BugReports https://github.com/annajenul/UBayFS/issues
Depends R (>=3.5.0)

Imports DirichletReg, GA, ggplot2, gridExtra, hyper2, matrixStats,
methods, mRMRe, Rdimtools, shiny, utils

Suggests caret, dplyr, DT, glmnet, GSelection, knitr, plyr,
RColorBrewer, rmarkdown, rpart, shinyalert, shinyBS, shinyjs,
shinyWidgets, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

RoxygenNote 7.2.1

NeedsCompilation no

Author Anna Jenul [aut, cre] (<https://orcid.org/0000-0002-6919-3483>),
Stefan Schrunner [aut] (<https://orcid.org/0000-0003-1327-4855>),
Kristian Hovde Liland [rev],

Oliver Tomic [ctb],
Jiirgen Pilz [ctb]

https://doi.org/10.1007/s10994-022-06221-9
https://annajenul.github.io/UBayFS/
https://joss.theoj.org/papers/10.21105/joss.04848
https://github.com/annajenul/UBayFS/issues
https://orcid.org/0000-0002-6919-3483
https://orcid.org/0000-0003-1327-4855

2 bew

Maintainer Anna Jenul <anna. jenul@nmbu.no>
Repository CRAN
Date/Publication 2023-03-07 10:50:02 UTC

Contents
DCW . . e 2
build.UBayconstraint 3
build.UBaymodel e 4
buildConstraints e e e e e e e e e e e 6
buildDecorrConstraints e e e e e 7
build_train_Set e e 8
evaluateFS L L 8
group_admissibility Lo 9
is.UBayconstraint e 10
issUBaymodel 10
posteriorExpectation e e 11
print.UBayconstraint L e e e 11
printUBaymodel L 12
runlnteractive L . e e e e e e e e e 13
samplelnitial Lo 13
SetConStraints e e e 14
SEtOPLM o e e e e e e e 14
setWeights L L 15
Al . . . o o e e e e e e e e e e e e e e e e 16

Index 17

bcw Breast Cancer Wisconsin dataset
Description

A dataset containing features computed from digitized images of a fine needle aspirate (FNA) of a
breast mass. The target function contains two classes representing patient diagnoses (M...malignant
and B...benign). The dataset has been taken from the UCI Repository of Machine Learning Databases
and was created by W. H. Wolberg, W. N. Street and O. L. Mangasarian in 1995. For details, see
UCI documentation or literature:

* doi:10.1117/12.148698

e https://www. jstor.org/stable/171686

Feature blocks were added to the original dataset according to the dataset description (10 blocks
corresponding to different image characteristics).

Usage

bcw

https://doi.org/10.1117/12.148698
https://www.jstor.org/stable/171686

build. UBayconstraint 3

Format
A list containing:
* amatrix ‘data‘ with 569 rows and 30 columns representing features,

* avector ‘labels® of factor type with 569 entries representing the binary target variable, and

* alist of feature indices representing feature blocks.

Source

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)

build.UBayconstraint Build a customized constraint for UBayFS

Description
Builds a constraint using a left side ‘A‘, a right side ‘b‘, a relaxation parameter ‘rho‘, and a block
matrix ‘block_matrix ‘.

Usage

build.UBayconstraint(A, b, rho, block_matrix = NULL)

Arguments
A matrix containing the left side of the linear inequality system
b vector containing the right side of the linear inequality system
rho vector containing the relaxation parameters for each constraint

block_matrix amatrix indicating the membership of features in feature blocks

Value

a ‘UBayconstraint‘ object

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)

build. UBaymodel

build.UBaymodel

Build an ensemble for UBayFS

Description

Build a data structure for UBayFS and train an ensemble of elementary feature selectors.

Usage

build.UBaymodel (

data,
target,
M = 100,

tt_split = 0.75,

nr_features "auto”,
method = "mRMR",
prior_model = "dirichlet”,
weights = 1,

constraints = NULL,

lambda = 1,

optim_method = "GA",

popsize = 50,

maxiter = 100,
shiny = FALSE,

Arguments

data
target

M
tt_split

nr_features

method

prior_model

weights

constraints

a matrix of input data

a vector of input labels; for binary problems a factor variable should be used
the number of elementary models to be trained in the ensemble

the ratio of samples drawn for building an elementary model (train-test-split)

number of features to select in each elementary model; if auto’ a randomized
number of features is used in each elementary model

a vector denoting the method(s) used as elementary models; options: ‘mRMR°,
‘laplace® (Laplacian score) Also self-defined functions are possible methods;
they must have the arguments X (data), y (target), n (number of features) and
name (name of the function). For more details see examples.

a string denoting the prior model to use; options: ‘dirichlet, ‘wong*, ‘hankin‘;
‘hankin‘ is the most general prior model, but also the most time consuming

the vector of user-defined prior weights for each feature

a list containing a relaxed system ‘Ax<=b‘ of user constraints, given as matrix

‘A, vector ‘b‘ and vector or scalar ‘rho‘ (relaxation parameter). At least one
max-size constraint must be contained. For details, see buildConstraints.

build.UBaymodel

lambda
optim_method

popsize
maxiter

shiny

Details

a positive scalar denoting the overall strength of the constraints

the method to evaluate the posterior distribution. Currently, only the option
‘GA‘ (genetic algorithm) is supported.

size of the initial population of the genetic algorithm for model optimization
maximum number of iterations of the genetic algorithm for model optimization
TRUE indicates that the function is called from Shiny dashboard

additional arguments

The function aggregates input parameters for UBayFS - including data, parameters defining en-
semble and user knowledge and parameters specifying the optimization procedure - and trains the

ensemble model.

Value

a ‘UBaymodel‘ object containing the following list elements:

* ‘data‘ - the input dataset

* ‘target‘ - the input target

e ‘lambda‘ - the input lambda value (constraint strength)

* ‘prior_model‘ - the chosen prior model

* ‘ensemble.params’ - information about input and output of ensemble feature selection

* ‘constraint.params‘ - parameters representing the constraints

* ‘user.params‘ - parameters representing the user’s prior knowledge

e ‘optim.params‘ - optimization parameters

Examples

build a UBayFS model using Breast Cancer Wisconsin dataset
data(bcw) # dataset
¢ <- buildConstraints(constraint_types = 'max_size',

constraint_vars = list(10),
num_elements = ncol(bcw$data),
rho = 1) # prior constraints

w <- rep(1, ncol(bcw$data)) # weights
model <- build.UBaymodel(

)

data = bcw$data,
target = bcw$labels,
M = 20,

constraints = c,
weights = w

use a function computing a decision tree as input

library('rpart")

decision_tree <- function(X, y, n, name = 'tree'){

rf_data = as.data.frame(cbind(y, X))
colnames(rf_data) <- make.names(colnames(rf_data))
tree = rpart::rpart(y~., data = rf_data)

return(list(ranks= which(colnames(X) %in% names(tree$variable.importance)[1:n]),

name = name))

}

model <- build.UBaymodel(
data = bcw$data,
target = bcw$labels,
constraints = c,
weights = w,
method = decision_tree

)

include block-constraints

c_block <- buildConstraints(constraint_types = 'max_size',

constraint_vars = list(2),

num_elements = length(bcw$blocks),

rho = 10,
block_list = bcw$blocks)

model <- setConstraints(model, c_block)

buildConstraints

buildConstraints Build a constraint system

Description

Build an inequation system from constraints provided by the user.

Usage

buildConstraints(
constraint_types,
constraint_vars,
num_elements,
rho = 1,
block_list = NULL,
block_matrix = NULL

Arguments

constraint_types

a vector of strings denoting the type of constraint to be added; options: ‘max_size*

‘must_link‘, ‘cannot_link®

)

buildDecorrConstraints

constraint_vars

num_elements

rho

block_list

block_matrix

Details

a list of parameters defining the constraints; in case of max-size constraints, the
list element must contain an integer denoting the maximum size of the feature
set, in case of max-link or cannot link, the list element must be a vector of feature
indices to be linked

the total number of features (feature-wise constraints) or blocks (block-wise
constraints) in the dataset

a positive parameter denoting the level of relaxation; ‘Inf‘ denotes a hard con-
straint, i.e. no relaxation

the list of feature indices for each block; only required, if block-wise constraints
are built and ‘block_matrix‘ is ‘NULL*

the matrix containing affiliations of features to each block; only required, if
block-wise constraints are built and ‘block_list* is ‘NULL*

The function transforms user information about relations between features (must-link or cannot-link
constraints) and maximum feature set size (max-size) into a linear inequation system. In addition,
the relaxation parameter ‘tho‘ can be specified to achieve soft constraints.

Value

a ‘UBayconstraint‘ containing a matrix ‘A‘ and a vector ‘b° representing the inequality system
‘Ax<=b‘, and a vector ‘tho‘ representing the penalty shape

Examples

given a dataset with 10 features, we create a max-size constraint limiting
the set to 5 features and a cannot-link constraint between features 1 and 2
buildConstraints(constraint_types = c('max_size', 'cannot_link'),

constraint_vars = list(5, c(1,2)),
num_elements = 10,

rho = 1)

buildDecorrConstraints

Build decorrelation constraints

Description

Build a cannot link constraint between highly correlated features. The user defines the correlation

threshold.

Usage

buildDecorrConstraints(data, level = 0.5, method = "spearman")

8 evaluateFS

Arguments
data the dataset in the ‘UBaymodel‘ object
level the threshold correlation-level
method the method used to compute correlation; must be one of ‘pearson, ‘spearman’
or ‘kendall*
Value

a list containing a matrix ‘A and a vector ‘b‘ representing the inequality system ‘Ax<=b°, a vector
‘tho* and a block matrix

build_train_set Perform stratified data partition.

Description

Sample indices for training from the data.

Usage

build_train_set(y, tt_split)

Arguments
y a column, often the target, by which the data shall be partitioned.
tt_split the percentage of data used for training in each ensemble model.
Value

data indices for training ensembles

evaluateFS Evaluate a feature set

Description

Evaluates a feature set under the UBayFS model framework.

Usage

evaluateFS(state, model, method = "spearman”, log = FALSE)

evaluateMultiple(state, model, method = "spearman”, log = TRUE)

group_admissibility 9

Arguments
state a binary membership vector describing a feature set
model a ‘UBaymodel‘ object created using build.UBaymodel
method type of correlation (‘pearson‘,‘kendall’, or ‘spearman°)
log whether the admissibility should be returned on log scale
Value

a posterior probability value

Functions

* evaluateMultiple(): Evaluate multiple feature sets

group_admissibility Admissibility for constraint group

Description

Evaluate the value of the admissibility function ‘kappa‘.

Usage

group_admissibility(state, constraints, log = TRUE)

admissibility(state, constraint_list, log = TRUE)

Arguments
state a binary membership vector describing a feature set
constraints group of constraints with common block matrix
log whether the admissibility should be returned on log scale

constraint_list
a list of constraint groups, each containing a matrix ‘A and a vector ‘b‘ repre-
senting the inequality system ‘Ax<=b‘, a vector ‘rho‘, and a matrix ‘block_matrix*

Value

an admissibility value

Functions

e group_admissibility(): computes admissibility for a group of constraints (with a common
block).

10

is.UBaymodel

is.UBayconstraint Checks whether a list object implements proper UBayFS user con-

straints

Description

Checks whether a list object implements proper UBayFS user constraints

Usage

is.UBayconstraint(x)

Arguments

X a ‘UBayconstraint* object

Value

boolean value

is.UBaymodel Check whether an object is a UBaymodel

Description

Perform consistency checks of a UBaymodel.

Usage

is.UBaymodel (x)

Arguments

X an object to be checked for class consistency

Value

returns a single scalar (TRUE or FALSE) indicating whether the object fulfills the consistency

requirements of the UBayFS model

posteriorExpectation

11

posteriorExpectation Posterior expectation of features

Description

compute the posterior score for each feature.

Usage

posteriorExpectation(model)

Arguments

model a ‘UBaymodel‘ object

print.UBayconstraint Prints the ‘UBayconstraint‘ object

Description

Prints the ‘UBayconstraint® object

Usage

S3 method for class 'UBayconstraint'
print(x, ...)

S3 method for class 'UBayconstraint'

summary (object, ...)
Arguments
X a ‘UBayconstraint* object

additional print parameters

object a ‘UBayconstraint* object

Value

prints model summary to the console, no return value

Functions

* summary(UBayconstraint): Prints a summary of the ‘UBayconstraint‘ object

12 print. UBaymodel

print.UBaymodel Print a UBayFS model

Description

Print details of a ‘UBaymodel*

Usage

S3 method for class 'UBaymodel'
print(x, ...)

printResults(model)

S3 method for class 'UBaymodel'
summary (object, ...)

S3 method for class 'UBaymodel'

plot(x, ...)
Arguments
X a ‘UBaymodel‘ object created using build.UBaymodel
additional print parameters
model a ‘UBaymodel‘ object created using build.UBaymodel after training
object a ‘UBaymodel‘ object created using build.UBaymodel
Value

prints model summary to the console, no return value

Functions
* printResults(): Display and summarize the results of UBayFS after feature selection.

e summary(UBaymodel): A summary of a ‘UBaymodel*

* plot(UBaymodel): A barplot of a ‘UBaymodel® containing prior weights, ensemble counts
and the selected features.

runlnteractive 13

runInteractive Run an interactive Shiny app for demonstration

Description

Starts an interactive R Shiny application in the browser.

Usage

runlnteractive()

Value

calls Shiny app, no return value

sampleInitial Initial feature set sampling using probabilistic Greedy algorithm

Description

Sample initial solutions using a probabilistic version of Greedy algorithm.

Usage

samplelInitial(post_scores, constraints, size)

Arguments
post_scores a vector of posterior scores (prior scores + likelihood) for each feature
constraints a list containing feature-wise constraints
size initial number of samples to be created. The output sample size can be lower,
since duplicates are removed.
Value

a matrix containing initial feature sets as rows

14 setOptim

setConstraints Set constraints in UBaymodel object

Description

Set the constraints in a ‘UBaymodel‘ object.

Usage

setConstraints(model, constraints, append = FALSE)

Arguments
model a ‘UBaymodel‘ object created using build.UBaymodel
constraints a ‘UBayconstraint* object created using build.UBayconstraint
append if “TRUE’, constraints are appended to the existing constraint system
Value

a ‘UBaymodel‘ object with updated constraint parameters

See Also
build.UBaymodel

setOptim Set optimization parameters in a UBaymodel object

Description

Set the optimization parameters in a UBaymodel object.

Usage

setOptim(model, method = "GA", popsize, maxiter)

Arguments
model a UBaymodel object created using build.UBaymodel
method the method to evaluate the posterior distribution; currently only’GA’ (genetic
algorithm) is supported
popsize size of the initial population of the genetic algorithm for model optimization

maxiter maximum number of iterations of the genetic algorithm for model optimization

setWeights 15
Value

a UBaymodel object with updated optimization parameters

See Also

build.UBaymodel

setWeights Set weights in UBaymodel object

Description

Set the prior weights in a UBaymodel object.

Usage

setWeights(model, weights, block_list = NULL, block_matrix = NULL)

Arguments
model a UBaymodel object created using build.UBaymodel
weights the vector of user-defined prior weights for each feature
block_list the list of feature indices for each block; only required, if block-wise weights

are specified and block_matrix is NULL

block_matrix the matrix containing affiliations of features to each block; only required, if
block-wise weights are specified and block_list is NULL

Value

a UBaymodel object with updated prior weights

See Also

build.UBaymodel

16 train

train UBayF'S feature selection

Description

Genetic algorithm to train UBayFS feature selection model.

Usage

train(x, verbose = FALSE)

Arguments

X a ‘UBaymodel‘ created by build.UBaymodel

verbose if TRUE: GA optimization output is printed to the console
Value

a ‘UBaymodel with an additional list element output containing the optimized solution, see build.UBaymodel

Index

x datasets
bcw, 2

admissibility (group_admissibility), 9

bcw, 2
build.UBayconstraint, 3, 14
build.UBaymodel, 4, 9, 12, 14, 16
build_train_set, 8
buildConstraints, 4, 6
buildDecorrConstraints, 7

evaluateFs, 8
evaluateMultiple (evaluateFs), 8

group_admissibility, 9

is.UBayconstraint, 10
is.UBaymodel, 10

plot.UBaymodel (print.UBaymodel), 12
posteriorExpectation, 11
print.UBayconstraint, 11
print.UBaymodel, 12

printResults (print.UBaymodel), 12

runInteractive, 13

samplelnitial, 13

setConstraints, 14

setOptim, 14

setWeights, 15

summary.UBayconstraint
(print.UBayconstraint), 11

summary .UBaymodel (print.UBaymodel), 12

train, 16

17

	bcw
	build.UBayconstraint
	build.UBaymodel
	buildConstraints
	buildDecorrConstraints
	build_train_set
	evaluateFS
	group_admissibility
	is.UBayconstraint
	is.UBaymodel
	posteriorExpectation
	print.UBayconstraint
	print.UBaymodel
	runInteractive
	sampleInitial
	setConstraints
	setOptim
	setWeights
	train
	Index

