Package ‘TopKSignal’

January 8, 2024
Type Package

Title A Convex Optimization Tool for Signal Reconstruction from
Multiple Ranked Lists

Version 1.0
Date 2023-12-12
Depends R (>=3.5.0)

Imports foreach, doParallel, parallel, nloptr, Matrix, ggplot2,
reshape?

Suggests knitr, rmarkdown, gurobi

Description A mathematical optimization procedure in combination with statistical boot-
strap for the estimation of the latent signals (sometimes called scores) informing the global con-
sensus ranking (often named aggregation ranking). To solve mid/large-scale prob-
lems, users should install the 'gurobi' optimiser (available from <https://www.gurobi.com/>).

License GPL-2
LazyLoad yes
RoxygenNote 7.2.3
Encoding UTF-8
VignetteBuilder knitr
NeedsCompilation no

Author Luca Vitale Developer [aut],
Bastian Pfeifer Maintainer [aut, cre],
Michael G. Schimek Supervision [aut]

Maintainer Bastian Pfeifer Maintainer <bastian.pfeifer@medunigraz.at>
Repository CRAN
Date/Publication 2024-01-08 10:50:12 UTC

R topics documented:

elbowPlot
estimatedSignal

https://www.gurobi.com/

2 elbowPlot
estimateTheta 3
generate.rank.matriX L. L L L e e e e e e 5
heatmapPlot e 6
TopKSignal e e 7
violinPlot 8

Index 10

elbowPlot elbowPlot
Description
The elbow plot permits the identification of subsets of objects, e.g. top-k or bottom-q objects.
On the x-axis all objects are ordered according to their rank positions. On the y-axis the corre-
sponding estimated signal values are displayed. The idea of the elbow plot is to scan for ’jumps’ in
the sequence of ordered objects ? i.e. find signal estimates next to each other that are visually much
distant - in an exploratory manner. The elbowPlot function requires the estimation results from the
estimateTheta function.
Usage
elbowPlot(estimation, title = "")

Arguments
estimation Results from the estimateTheta() function
title A title for the plot

Value

A elbow plot
Examples

data(estimatedSignal)
elbowPlot(estimatedSignal)

estimatedSignal 3

estimatedSignal Object returned by the estimateTheta() function.

Description

Object returned by the estimateTheta() function.

Format

A list of various values returned by the estimateTheta() function.

estimation A data frame with the signal estimation and the standard error computed by the boot-
strap for each object

estimatedMatrixNoise The estimated matrix noise

allBootstraps The signal estimates from all bootstrap iterations

Examples

data(estimatedSignal)

estimateTheta Estimation of the underlying signal.

Description

The main function for the estimation of the signals informing the ranks is called estimateTheta().
The required parameters are: (1) a rank matrix, (2) the number of bootstrap samples (500 is recom-
mended), (3) a constant for the support variables \(b>0\), default is 0.1, (4) the type of optimization
technique: fullLinear, fullQuadratic, restrictedLinear, and restrictedQuadratic (the latter two rec-
ommended), (5) the type of bootstrap sampling scheme: classic.bootstrap and poisson.bootstrap
(recommended), and (6) the number of cores for parallel computation. Each bootstrap sample is
executed on a dedicated CPU core.

Usage

estimateTheta(
R.input,
b,
num. boot,
solver,
type,
bootstrap. type,
nCore = ((detectCores() - 1))

4 estimateTheta

Arguments

R.input A matrix where the rows represent the objects and the columns the assessors
(rankers).

b The penalization term. The suggested value is 0.1.

num.boot The number of boostrap samples created from the input ranked matrix. A posi-
tive number is expected.

solver A string that indicates which solver to use. Two options are available, ’gurobi’
and ’nloptr’. We recommend to use gurobi for faster computation. Note, a
licence is required. Check the corresponding documentation on how to install
gurobi.

type A string that indicates which model to use: four approaches are available: ’re-

strictedQuadratic’, ’fullQuadratic’, 'restrictedLinear’ and ’fullLinear’.

bootstrap.type A string that indicates which bootstrap method to use: ’classic.bootstrap’ or
’poisson.bootstrap’.

nCore The number of cores used for computation. Each core is used to calculate the
signals from a bootstrap sample. Default number is detectCores() - 1.

Value

A list with the estimation information obtained:

e estimation - A data frame with the signal estimation and the standard error computed by the
bootstrap for each object

* estimatedMatrixNoise - The estimated matrix noise
* time - The execution time of the procedure

* allBootstraps - The signal estimates from all bootstrap iterations

Examples

library(TopKSignal)

set.seed(1421)

p=28

n=10

input <- generate.rank.matrix(p, n)

rownames (input$R.input) <- c("a","b","c"”,"d","e","f","g","h")

For the following code Gurobi needs to be installed

Not run:

estimatedSignal <- estimateTheta(R.input = input$R.input, num.boot = 50, b = 0.1,

solver = "gurobi”, type = "restrictedQuadratic”, bootstrap.type = "poisson.bootstrap”,nCore = 1)

End(Not run)
data(estimatedSignal)
estimatedSignal

generate.rank. matrix 5

generate.rank.matrix generate.rank.matrix

Description
The generate.rank.matrix() function requires the user to specify the number of objects (items), called

p, and the number of assessors, called n. The function simulates full ranked lists (i.e. no missing
assignments) without ties.

Usage

generate.rank.matrix(p, n, percentageMissing = @)

Arguments
p The number of objects.
n The number of assessors.
percentageMissing
The percentage of the missing values. Note, missing data should be resolved by
the rank() function before calling estimateTheta().
Value

A list with simulated data

* R.input - The rank matrix
¢ thea.true - The true underlying signals from the assessments
* sigmas - The standard error of the noise added for each assessor

» matrixNoise - The noise added to the true signals in order to get the final rank matrix

Examples
p=38
n=10

input <- generate.rank.matrix(p, n)
rOWnameS(inpUt$R.inpUt) <_ C(”a”,"b“,"C",”d","e”,"f","g",”h”)

6 heatmapPlot

heatmapPlot Heatmap noise matrix plot

Description

The heatmap plot allows us to control for specific error patterns associated with the assessors. The
heatmap plot displays information about the noises involved in the estimation process. The rows of
the noise matrix are ordered by the estimated ranks of the consensus signal values. The columns
are ordered by the column error sums. In the plot, the column with the lowest sum is positioned on
the left side and the column with the highest sum is positioned on the right side. Hence, assessors
positioned on the left show substantial consensus and thus are more reliable than those positioned
to the far right. The heatmap plot is also an exploratory tool for the search for a subset of top-ranked
objects (notion of top-k objects ? see the package TopKLists on CRAN for details and functions).
Please note, beyond exploratory tasks, the noise matrix can serve as input for various inferential
purposes such as testing for assessor group differences. The heatmapPlot function requires the
estimation results obtained from the estimateTheta function.

Usage
heatmapPlot(estimation, type = "full”, title = "")

Arguments
estimation The bootstrap estimation obtained from the estimateTheta function
type The type of method used: Two options are available, *full’ or ‘reduced’
title The title of the plot

Value
A list with:

* plot - A heatmap plot with the noise matrix (ordered values).

» matrixNoiseOrdered - The matrix noise ordered by the columns. The objects are ordered by
the estimated value.

* estimateThetaOrdered - The theta vector ordered by their importance (from the highest value
to the lowest).

Examples

data(estimatedSignal)
heatmapPlot (estimatedSignal)

TopKSignal 7

TopKSignal TopKSignal: A convex optimization tool for signal reconstruction from
multiple ranked lists.

Description

A mathematical optimization procedure in combination with statistical bootstrap for the estima-
tion of the latent signals (sometimes called scores) informing the global consensus ranking (often
named aggregation ranking). When using TopKSignal in your work please cite: Schimek, M. G. et
al. (2024). Effective signal reconstruction from multiple ranked lists via convex optimization. Data
Mining and Knowledge Discovery. DOI: 10.1007/s10618-023-00991-z. The goal of estimating
consensus signals and therefrom consensus ranks (an alternative form of aggregation ranks) across
a number of assessors (humans or machines) is achieved via indirect inference. The input rank
matrix is fully represented by order constraints. No distance measures or distributional assumptions
are involved. The indirect inference procedure is built around a simple signal plus noise model.
TopKSignal implements a set of different functions. They permit to construct artificial ranked lists,
to derive sets of constraints from an input rank matrix, to run convex optimization (with a quadratic
or a linear objective function), to perform bootstrap estimation (standard or Poisson bootstrap), and
to produce numerical and graphical output. Different mathematical optimization techniques are
available: Optimization with the full set of constraints or with a computationally cheaper restricted
set of constraints in combination with either a quadratic or a linear objective function. Different
boostrap sample schemes are available: the classical bootstrap and the computationally less de-
manding Poisson bootstrap.

estimateTheta function

The main function for the estimation of the signals informing the ranks is called estimateTheta().
The required parameters are: (1) a rank matrix, (2) the number of bootstrap samples (500 is recom-
mended), (3) a constant for the support variables \(b>0\), default is 0.1, (4) the type of optimization
technique: fullLinear, fullQuadratic, restrictedLinear, and restrictedQuadratic (the latter two rec-
ommended), (5) the type of bootstrap sampling scheme: classic.bootstrap and poisson.bootstrap
(recommended), and (6) the number of cores for parallel computation. Each bootstrap sample is
executed on a dedicated CPU core.

generate.rank.matrix function

The generate.rank.matrix() function requires the user to specify the number of objects (items), called
p, and the number of assessors, called n. The function simulates full ranked lists (i.e. no missing
assignments) without ties.

violinPlot function

The violin plot displays the bootstrap distribution of the estimated signals along with its means. The
deviations from the mean values +/-2 standard errors SE and are shown in the plot. Analyzing the
shape of the distribution and the standard error of the signal of each object, it is possible to evaluate
its rank stability with respect to all other objects. The violinPlot function requires (1) the result
obtained by the estimation procedure and (2) the ’true’ (simulated) signals or ground truth (when
available).

8 violinPlot

heatmapPlot function

The heatmap plot allows us to control for specific error patterns associated with the assessors. The
heatmap plot displays information about the noises involved in the estimation process. The rows of
the noise matrix are ordered by the estimated ranks of the consensus signal values. The columns
are ordered by the column error sums. In the plot, the column with the lowest sum is positioned on
the left side and the column with the highest sum is positioned on the right side. Hence, assessors
positioned on the left show substantial consensus and thus are more reliable than those positioned
to the far right. The heatmap plot is also an exploratory tool for the search for a subset of top-ranked
objects (notion of top-k objects ? see the package TopKLists on CRAN for details and functions).
Please note, beyond exploratory tasks, the noise matrix can serve as input for various inferential
purposes such as testing for assessor group differences. The heatmapPlot function requires the
estimation results obtained from the estimateTheta function.

elbowPlot function

The elbow plot permits the identification of subsets of objects, e.g. top-k or bottom-q objects.
On the x-axis all objects are ordered according to their rank positions. On the y-axis the corre-
sponding estimated signal values are displayed. The idea of the elbow plot is to scan for ’jumps’ in
the sequence of ordered objects ? i.e. find signal estimates next to each other that are visually much
distant - in an exploratory manner. The elbowPlot function requires the estimation results from the
estimateTheta function.

Examples

library(TopKSignal)

set.seed(1421)

p=28

n=10

input <- generate.rank.matrix(p, n)

rownames (input$R.input) <- c("a","b","c"”,"d","e","f","g","h")

For the following code Gurobi needs to be installed

Not run:

estimatedSignal <- estimateTheta(R.input = input$R.input, num.boot = 50, b = 0.1,

solver = "gurobi”, type = "restrictedQuadratic”, bootstrap.type = "poisson.bootstrap”,nCore = 1)

End(Not run)
data(estimatedSignal)
estimatedSignal

violinPlot violinPlot

Description

violinPlot

violinPlot

Usage
violinPlot(estimation, trueSignal = NULL, title = NULL)

Arguments
estimation The estimation list from the ’estimateTheta’ function
trueSignal The true signal (if available)
title The title of the plot

Value

A violint plot with the estimated distribution of each object

Examples

data(estimatedSignal)
violinPlot(estimatedSignal)

Index

* elbowtPlot
elbowPlot, 2

x estimateTheta
estimateTheta, 3

* generate.rank.matrix
generate.rank.matrix, 5

+ heatmapPlot
heatmapPlot, 6

x violintPlot
violinPlot, 8

elbowPlot, 2
estimatedSignal, 3
estimateTheta, 3

generate.rank.matrix, 5
heatmapPlot, 6
TopKSignal, 7

violinPlot, 8

10

	elbowPlot
	estimatedSignal
	estimateTheta
	generate.rank.matrix
	heatmapPlot
	TopKSignal
	violinPlot
	Index

