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as.list.sdreport Convert estimates to original list format.

Description

Get estimated parameters or standard errors in the same shape as the original parameter list.

Usage

## S3 method for class 'sdreport'
as.list(x, what = "", report = FALSE, ...)

Arguments

x Output from sdreport.

what Select what to convert (Estimate / Std. Error).

report Get AD reported variables rather than model parameters ?

... Passed to summary.sdreport.

Details

This function converts the selected column what of summary(x, select = c("fixed", "random"),
...) to the same format as the original parameter list (re-ordered as the template parameter order).
The argument what is partially matched among the column names of the summary table. The actual
match is added as an attribute to the output.

Value

List of same shape as original parameter list.

Examples

## Not run:
example(sdreport)

## Estimates as a parameter list:
as.list(rep, "Est")

## Std Errors in the same list format:
as.list(rep, "Std")

## p-values in the same list format:
as.list(rep, "Pr", p.value=TRUE)

## AD reported variables as a list:
as.list(rep, "Estimate", report=TRUE)

## Bias corrected AD reported variables as a list:
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as.list(rep, "Est. (bias.correct)", report=TRUE)

## End(Not run)

benchmark Benchmark parallel templates

Description

Benchmark parallel templates

Plot result of parallel benchmark

Usage

benchmark(obj, n = 10, expr = NULL, cores = NULL)

## S3 method for class 'parallelBenchmark'
plot(x, type = "b", ..., show = c("speedup", "time"), legendpos = "topleft")

Arguments

obj Object from MakeADFun

n Number of replicates to obtain reliable results.

expr Optional expression to benchmark instead of default.

cores Optional vector of cores.

x Object to plot

type Plot type

... Further plot arguments

show Plot relative speedup or relative time?

legendpos Position of legend

Details

By default this function will perform timings of the most critical parts of an AD model, specifically

1. Objective function of evaluated template.

2. Gradient of evaluated template.

3. Sparse hessian of evaluated template.

4. Cholesky factorization of sparse hessian.

(for pure fixed effect models only the first two). Expressions to time can be overwritten by the user
(expr). A plot method is available for Parallel benchmarks.
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Examples

## Not run:
runExample("linreg_parallel",thisR=TRUE) ## Create obj
ben <- benchmark(obj,n=100,cores=1:4)
plot(ben)
ben <- benchmark(obj,n=10,cores=1:4,expr=expression(do.call("optim",obj)))
plot(ben)

## End(Not run)

checkConsistency Check consistency and Laplace accuracy

Description

Check consistency of various parts of a TMB implementation. Requires that user has implemented
simulation code for the data and optionally random effects. (Beta version; may change without
notice)

Usage

checkConsistency(
obj,
par = NULL,
hessian = FALSE,
estimate = FALSE,
n = 100,
observation.name = NULL

)

Arguments

obj Object from MakeADFun

par Parameter vector (θ) for simulation. If unspecified use the best encountered
parameter of the object.

hessian Calculate the hessian matrix for each replicate ?

estimate Estimate parameters for each replicate ?

n Number of simulations
observation.name

Optional; Name of simulated observation
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Details

This function checks that the simulation code of random effects and data is consistent with the
implemented negative log-likelihood function. It also checks whether the approximate marginal
score function is central indicating whether the Laplace approximation is suitable for parameter
estimation.

Denote by u the random effects, θ the parameters and by x the data. The main assumption is that
the user has implemented the joint negative log likelihood fθ(u, x) satisfying∫ ∫

exp(−fθ(u, x)) du dx = 1

It follows that the joint and marginal score functions are central:

1. Eu,x [∇θfθ(u, x)] = 0

2. Ex

[
∇θ − log

(∫
exp(−fθ(u, x)) du

)]
= 0

For each replicate of u and x joint and marginal gradients are calculated. Appropriate centrality tests
are carried out by summary.checkConsistency. An asymptotic χ2 test is used to verify the first
identity. Power of this test increases with the number of simulations n. The second identity holds
approximately when replacing the marginal likelihood with its Laplace approximation. A formal
test would thus fail eventually for large n. Rather, the gradient bias is transformed to parameter
scale (using the estimated information matrix) to provide an estimate of parameter bias caused by
the Laplace approximation.

Value

List with gradient simulations (joint and marginal)

Simulation/re-estimation

A full simulation/re-estimation study is performed when estimate=TRUE. By default nlminb will
be used to perform the minimization, and output is stored in a separate list component ’estimate’
for each replicate. Should a custom optimizer be needed, it can be passed as a user function via
the same argument (estimate). The function (estimate) will be called for each simulation as
estimate(obj) where obj is the simulated model object. Current default corresponds to estimate
= function(obj) nlminb(obj$par,obj$fn,obj$gr).

See Also

summary.checkConsistency, print.checkConsistency

Examples

## Not run:
runExample("simple")
chk <- checkConsistency(obj)
chk
## Get more details
s <- summary(chk)
s$marginal$p.value ## Laplace exact for Gaussian models
## End(Not run)
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compile Compile a C++ template to DLL suitable for MakeADFun.

Description

Compile a C++ template into a shared object file. OpenMP flag is set if the template is detected to
be parallel.

Usage

compile(
file,
flags = "",
safebounds = TRUE,
safeunload = TRUE,
openmp = isParallelTemplate(file[1]),
libtmb = TRUE,
libinit = TRUE,
tracesweep = FALSE,
framework = getOption("tmb.ad.framework"),
supernodal = FALSE,
longint = FALSE,
eigen.disable.warnings = TRUE,
max.order = NULL,
...

)

Arguments

file C++ file.

flags Character with compile flags.

safebounds Turn on preprocessor flag for bound checking?

safeunload Turn on preprocessor flag for safe DLL unloading?

openmp Turn on openmp flag? Auto detected for parallel templates.

libtmb Use precompiled TMB library if available (to speed up compilation)?

libinit Turn on preprocessor flag to register native routines?

tracesweep Turn on preprocessor flag to trace AD sweeps? (Silently disables libtmb)

framework Which AD framework to use (’TMBad’ or ’CppAD’)

supernodal Turn on preprocessor flag to use supernodal sparse Cholesky/Inverse from sys-
tem wide suitesparse library

longint Turn on preprocessor flag to use long integers for Eigen’s SparseMatrix Stor-
ageIndex



8 compile

eigen.disable.warnings

Turn on preprocessor flag to disable nuisance warnings. Note that this is not
allowed for code to be compiled on CRAN.

max.order Maximum derivative order of compiler generated atomic special functions - see
details.

... Passed as Makeconf variables.

Details

TMB relies on R’s built in functionality to create shared libraries independent of the platform. A
template is compiled by compile("template.cpp"), which will call R’s makefile with appropriate
preprocessor flags. Compiler and compiler flags can be stored in a configuration file. In order of
precedence either via the file pointed at by R_MAKEVARS_USER or the file ~/.R/Makevars if it
exists. Additional configuration variables can be set with the flags and ... arguments, which will
override any previous selections.

Using a custom SuiteSparse installation

Sparse matrix calculations play an important role in TMB. By default TMB uses a small subset
of SuiteSparse available through the R package Matrix. This is sufficient for most use cases,
however for some very large models the following extra features are worth considering:

• Some large models benefit from an extended set of graph reordering algorithms (especially
METIS) not part of Matrix. It is common that these orderings can provide quite big speedups.

• Some large models need sparse matrices with number of nonzeros exceeding the current 32
bit limitation of Matrix. Normally such cases will result in the cholmod error ’problem too
large’. SuiteSparse includes 64 bit integer routines to address this problem.

Experimental support for linking to a custom SuiteSparse installation is available through two
arguments to the compile function. The first argument supernodal=TRUE tells TMB to use the
supernodal Cholesky factorization from the system wide SuiteSparse on the C++ side. This will
affect the speed of the Laplace approximation when run internally (using arguments intern or
integrate to MakeADFun).

The second argument longint=TRUE tells TMB to use 64 bit integers for sparse matrices on the
C++ side. This works in combination with supernodal=TRUE from Eigen version 3.4.

On Windows a SuiteSparse installation can be obtained using the Rtools package manager. Start
’Rtools Bash’ terminal and run:

pacman -Sy
pacman -S mingw-w64-{i686,x86_64}-suitesparse

On Linux one should look for the package libsuitesparse-dev.

Selecting the AD framework

TMB supports two different AD libraries ’CppAD’ and ’TMBad’ selected via the argument framework
which works as a switch to set one of two C++ preprocessor flags: ’CPPAD_FRAMEWORK’ or
’TMBAD_FRAMEWORK’. The default value of framework can be set from R by options("tmb.ad.framework")
or alternatively from the shell via the environment variable ’TMB_AD_FRAMEWORK’. Packages
linking to TMB should set one of the two C++ preprocessor flags in Makevars.
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Order of compiler generated atomic functions

The argument max.order controls the maximum derivative order of special functions (e.g. pbeta)
generated by the compiler. By default the value is set to 3 which is sufficient to obtain the Laplace
approximation (order 2) and its derivatives (order 3). However, sometimes a higher value may
be needed. For example framework='TMBad' allows one to calculate the Hessian of the Laplace
approximation, but that requires 4th order derivatives of special functions in use. A too small value
will cause the runtime error ’increase TMB_MAX_ORDER’. Note that compilation time and binary
size increases with max.order.

See Also

precompile

config Get or set internal configuration variables

Description

Get or set internal configuration variables of user’s DLL.

Usage

config(..., DLL = getUserDLL())

Arguments

... Variables to set

DLL Name of user’s DLL. Auto-detected if missing.

Details

A model compiled with the TMB C++ library has several configuration variables set by default. The
variables can be read and modified using this function. The meaning of the variables can be found
in the Doxygen documentation.

Value

List with current configuration

Examples

## Not run:
## Load library
dyn.load(dynlib("mymodel"))
## Read the current settings
config(DLL="mymodel")
## Reduce memory peak of a parallel model by creating tapes in serial
config(tape.parallel=0, DLL="mymodel")
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obj <- MakeADFun(..., DLL="mymodel")

## End(Not run)

confint.tmbprofile Profile based confidence intervals.

Description

Calculate confidence interval from a likelihood profile.

Usage

## S3 method for class 'tmbprofile'
confint(object, parm, level = 0.95, ...)

Arguments

object Output from tmbprofile.

parm Not used

level Confidence level.

... Not used

Value

Lower and upper limit as a matrix.

dynlib Add dynlib extension

Description

Add the platform dependent dynlib extension. In order for examples to work across platforms DLLs
should be loaded by dyn.load(dynlib("name")).

Usage

dynlib(name)

Arguments

name Library name without extension

Value

Character
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FreeADFun Free memory allocated on the C++ side by MakeADFun.

Description

Free memory allocated on the C++ side by MakeADFun.

Usage

FreeADFun(obj)

Arguments

obj Object returned by MakeADFun

Details

An object returned by MakeADFun contains pointers to structures allocated on the C++ side. These
are managed by R’s garbage collector which for the most cases is sufficient. However, because the
garbage collector is unaware of the C++ object sizes, it may fail to release memory to the system
as frequently as necessary. In such cases one can manually call FreeADFun(obj) to release the
resources.

Memory management

Memory allocated on the C++ side by MakeADFun is represented by external pointers. Each such
pointer has an associated ’finalizer’ (see reg.finalizer) that deallocates the external pointer when
gc() decides the pointer is no longer needed. Deallocated pointers are recognized on the R side
as external null pointers <pointer: (nil)>. This is important as it provides a way to prevent the
finalizers from freeing pointers that have already been deallocated even if the deallocation C-code
has been unloaded. The user DLL maintains a list of all external pointers on the C side. Three
events can reduce the list:

• Garbage collection of an external pointer that is no longer needed (triggers corresponding
finalizer).

• Explicit deallocation of external pointers using FreeADFun() (corresponding finalizers are
untriggered but harmless).

• Unload/reload of the user’s DLL deallocates all external pointers (corresponding finalizers are
untriggered but harmless).

Note

This function is normally not needed.

Examples

runExample("simple", thisR = TRUE) ## Create 'obj'
FreeADFun(obj) ## Free external pointers
obj$fn() ## Re-allocate external pointers
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gdbsource Source R-script through gdb to get backtrace.

Description

Source R-script through gdb to get backtrace.

If gdbsource is run non-interactively (the default) only the relevant information will be printed.

Usage

gdbsource(file, interactive = FALSE)

## S3 method for class 'backtrace'
print(x, ...)

Arguments

file Your R script

interactive Run interactive gdb session?

x Backtrace from gdbsource

... Not used

Details

This function is useful for debugging templates. If a script aborts e.g. due to an out-of-bound index
operation it should be fast to locate the line that caused the problem by running gdbsource(file).
Alternatively, If more detailed debugging is required, then gdbsource(file,TRUE) will provide the
full backtrace followed by an interactive gdb session where the individual frames can be inspected.
Note that templates should be compiled without optimization and with debug information in order
to provide correct line numbers:

• On Linux/OS X use compile(cppfile,"-O0 -g").

• On Windows use compile(cppfile,"-O1 -g",DLLFLAGS="") (lower optimization level will
cause errors).

Value

Object of class backtrace
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GK Gauss Kronrod configuration

Description

Helper function to specify parameters used by the Gauss Kronrod integration available through the
argument integrate to MakeADFun.

Usage

GK(...)

Arguments

... See source code

MakeADFun Construct objective functions with derivatives based on a compiled
C++ template.

Description

Construct objective functions with derivatives based on the users C++ template.

Usage

MakeADFun(
data,
parameters,
map = list(),
type = c("ADFun", "Fun", "ADGrad"[!intern && (!is.null(random) || !is.null(profile))]),
random = NULL,
profile = NULL,
random.start = expression(last.par.best[random]),
hessian = FALSE,
method = "BFGS",
inner.method = "newton",
inner.control = list(maxit = 1000),
MCcontrol = list(doMC = FALSE, seed = 123, n = 100),
ADreport = FALSE,
atomic = TRUE,
LaplaceNonZeroGradient = FALSE,
DLL = getUserDLL(),
checkParameterOrder = TRUE,
regexp = FALSE,
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silent = FALSE,
intern = FALSE,
integrate = NULL,
...

)

Arguments

data List of data objects (vectors, matrices, arrays, factors, sparse matrices) required
by the user template (order does not matter and un-used components are al-
lowed).

parameters List of all parameter objects required by the user template (both random and
fixed effects).

map List defining how to optionally collect and fix parameters - see details.

type Character vector defining which operation stacks are generated from the users
template - see details.

random Character vector defining the random effect parameters. See also regexp.

profile Parameters to profile out of the likelihood (this subset will be appended to
random with Laplace approximation disabled).

random.start Expression defining the strategy for choosing random effect initial values as
function of previous function evaluations - see details.

hessian Calculate Hessian at optimum?

method Outer optimization method.

inner.method Inner optimization method (see function "newton").

inner.control List controlling inner optimization.

MCcontrol List controlling importance sampler (turned off by default).

ADreport Calculate derivatives of macro ADREPORT(vector) instead of objective_function
return value?

atomic Allow tape to contain atomic functions?
LaplaceNonZeroGradient

Allow Taylor expansion around non-stationary point?

DLL Name of shared object file compiled by user (without the conventional exten-
sion, ‘.so’, ‘.dll’, . . . ).

checkParameterOrder

Optional check for correct parameter order.

regexp Match random effects by regular expressions?

silent Disable all tracing information?

intern Do Laplace approximation on C++ side ? See details (Experimental - may
change without notice)

integrate Specify alternative integration method(s) for random effects (see details)

... Currently unused.
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Details

A call to MakeADFun will return an object that, based on the users DLL code (specified through
DLL), contains functions to calculate the objective function and its gradient. The object contains the
following components:

• par A default parameter.

• fn The likelihood function.

• gr The gradient function.

• report A function to report all variables reported with the REPORT() macro in the user
template.

• env Environment with access to all parts of the structure.

and is thus ready for a call to an R optimizer, such as nlminb or optim. Data (data) and parameters
(parameters) are directly read by the user template via the macros beginning with DATA_ and PA-
RAMETER_. The order of the PARAMETER_ macros defines the order of parameters in the final
objective function. There are no restrictions on the order of random parameters, fixed parameters
or data in the template.

Value

List with components (fn, gr, etc) suitable for calling an R optimizer, such as nlminb or optim.

Parameter mapping

Optionally, a simple mechanism for collecting and fixing parameters from R is available through
the map argument. A map is a named list of factors with the following properties:

• names(map) is a subset of names(parameters).

• For a parameter "p" length(map$p) equals length(parameters$p).

• Parameter entries with NAs in the factor are fixed.

• Parameter entries with equal factor level are collected to a common value.

More advanced parameter mapping, such as collecting parameters between different vectors etc.,
must be implemented from the template.

Specifying random effects

Random effects are specified via the argument random: A component of the parameter list is
marked as random if its name is matched by any of the characters of the vector random (Regu-
lar expression match is performed if regexp=TRUE). If some parameters are specified as random
effects, these will be integrated out of the objective function via the Laplace approximation. In
this situation the functions fn and gr automatically perform an optimization of random effects for
each function evaluation. This is referred to as the ’inner optimization’. Strategies for choos-
ing initial values of the inner optimization can be controlled via the argument random.start.
The default is expression(last.par.best[random]) where last.par.best is an internal full
parameter vector corresponding to the currently best likelihood. An alternative choice could be
expression(last.par[random]) i.e. the random effect optimum of the most recent - not nec-
essarily best - likelihood evaluation. Further control of the inner optimization can be obtained by
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the argument inner.control which is a list of control parameters for the inner optimizer newton.
Depending of the inner optimization problem type the following settings are recommended:

1. Quasi-convex: smartsearch=TRUE (the default).
2. Strictly-convex: smartsearch=FALSE and maxit=20.
3. Quadratic: smartsearch=FALSE and maxit=1.

The model environment env

Technically, the user template is processed several times by inserting different types as template
parameter, selected by argument type:

• "ADFun" Run through the template with AD-types and produce a stack of operations repre-
senting the objective function.

• "Fun" Run through the template with ordinary double-types.
• "ADGrad" Run through the template with nested AD-types and produce a stack of operations

representing the objective function gradient.

Each of these are represented by external pointers to C++ structures available in the environment
env.

Further objects in the environment env:

• validpar Function defining the valid parameter region (by default no restrictions). If an
invalid parameter is inserted fn immediately return NaN.

• parList Function to get the full parameter vector of random and fixed effects in a convenient
list format.

• random An index vector of random effect positions in the full parameter vector.
• last.par Full parameter of the latest likelihood evaluation.
• last.par.best Full parameter of the best likelihood evaluation.
• tracepar Trace every likelihood evaluation ?
• tracemgc Trace maximum gradient component of every gradient evaluation ?
• silent Pass ’silent=TRUE’ to all try-calls ?

The argument intern

By passing intern=TRUE the entire Laplace approximation (including sparse matrix calculations)
is done within the AD machinery on the C++ side. This requires the model to be compiled using
the ’TMBad framework’ - see compile. For any serious use of this option one should consider
compiling with supernodal=TRUE - again see compile - in order to get performance comparable
to R’s matrix calculations. The benefit of the ’intern’ LA is that it may be faster in some cases and
that it provides an autodiff hessian (obj$he) wrt. the fixed effects which would otherwise not work
for random effect models. Another benefit is that it gives access to fast computations with certain
hessian structures that do not meet the usual sparsity requirement. A detailed list of options are
found in the online doxygen documentation in the ’newton’ namespace under the ’newton_config’
struct. All these options can be passed from R via the ‘inner.control‘ argument. However, there are
some drawbacks of running the LA on the C++ side. Notably, random effects are no longer visible
in the model environment which may break assumptions on the layout of internal vectors (‘par‘,
‘last.par‘, etc). In addition, model debugging becomes harder when calculations are moved to C++.
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Controlling tracing

A high level of tracing information will be output by default when evaluating the objective func-
tion and gradient. This is useful while developing a model, but may eventually become annoying.
Disable all tracing by passing silent=TRUE to the MakeADFun call.

Note

Do not rely upon the default arguments of any of the functions in the model object obj$fn, obj$gr,
obj$he, obj$report. I.e. always use the explicit form obj$fn(obj$par) rather than obj$fn().

newton Generalized newton optimizer.

Description

Generalized newton optimizer used for the inner optimization problem.

Usage

newton(
par,
fn,
gr,
he,
trace = 1,
maxit = 100,
tol = 1e-08,
alpha = 1,
smartsearch = TRUE,
mgcmax = 1e+60,
super = TRUE,
silent = TRUE,
ustep = 1,
power = 0.5,
u0 = 1e-04,
grad.tol = tol,
step.tol = tol,
tol10 = 0.001,
env = environment(),
...

)

Arguments

par Initial parameter.

fn Objective function.
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gr Gradient function.

he Sparse hessian function.

trace Print tracing information?

maxit Maximum number of iterations.

tol Convergence tolerance.

alpha Newton stepsize in the fixed stepsize case.

smartsearch Turn on adaptive stepsize algorithm for non-convex problems?

mgcmax Refuse to optimize if the maximum gradient component is too steep.

super Supernodal Cholesky?

silent Be silent?

ustep Adaptive stepsize initial guess between 0 and 1.

power Parameter controlling adaptive stepsize.

u0 Parameter controlling adaptive stepsize.

grad.tol Gradient convergence tolerance.

step.tol Stepsize convergence tolerance.

tol10 Try to exit if last 10 iterations not improved more than this.

env Environment for cached Cholesky factor.

... Currently unused.

Details

If smartsearch=FALSE this function performs an ordinary newton optimization on the function fn
using an exact sparse hessian function. A fixed stepsize may be controlled by alpha so that the
iterations are given by:

un+1 = un − αf ′′(un)
−1f ′(un)

If smartsearch=TRUE the hessian is allowed to become negative definite preventing ordinary new-
ton iterations. In this situation the newton iterations are performed on a modified objective function
defined by adding a quadratic penalty around the expansion point u0:

ft(u) = f(u) +
t

2
∥u− u0∥2

This function’s hessian ( f ′′(u) + tI ) is positive definite for t sufficiently large. The value t is
updated at every iteration: If the hessian is positive definite t is decreased, otherwise increased.
Detailed control of the update process can be obtained with the arguments ustep, power and u0.

Value

List with solution similar to optim output.

See Also

newtonOption
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newtonOption Set newton options for a model object.

Description

Inner-problem options can be set for a model object using this function.

Usage

newtonOption(obj, ...)

Arguments

obj Object from MakeADFun for which to change settings.
... Parameters for the newton optimizer to set.

Value

List of updated parameters.

normalize Normalize process likelihood using the Laplace approximation.

Description

If the random effect likelihood contribution of a model has been implemented without proper nor-
malization (i.e. lacks the normalizing constant), then this function can perform the adjustment
automatically. In order for this to work, the model must include a flag that disables the data term
so that the un-normalized random effect (negative log) density is returned from the model template.
Automatic process normalization may be useful if either the normalizing constant is difficult to im-
plement, or if its calulation involves so many operations that it becomes infeasible to include in the
AD machinery.

Usage

normalize(obj, flag, value = 0)

Arguments

obj Model object from MakeADFun without proper normalization of the random ef-
fect likelihood.

flag Flag to disable the data term from the model.
value Value of ’flag’ that signifies to not include the data term.

Value

Modified model object that can be passed to an optimizer.
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oneStepPredict Calculate one-step-ahead (OSA) residuals for a latent variable model.

Description

Calculate one-step-ahead (OSA) residuals for a latent variable model. (Beta version; may change
without notice)

Usage

oneStepPredict(
obj,
observation.name = NULL,
data.term.indicator = NULL,
method = c("oneStepGaussianOffMode", "fullGaussian", "oneStepGeneric",
"oneStepGaussian", "cdf"),

subset = NULL,
conditional = NULL,
discrete = NULL,
discreteSupport = NULL,
range = c(-Inf, Inf),
seed = 123,
parallel = FALSE,
trace = TRUE,
reverse = (method == "oneStepGaussianOffMode"),
splineApprox = TRUE,
...

)

Arguments

obj Output from MakeADFun.
observation.name

Character naming the observation in the template.
data.term.indicator

Character naming an indicator data variable in the template (not required by all
methods - see details).

method Method to calculate OSA (see details).

subset Index vector of observations that will be added one by one during OSA. By
default 1:length(observations) (with conditional subtracted).

conditional Index vector of observations that are fixed during OSA. By default the empty
set.

discrete Logical; Are observations discrete? (assumed FALSE by default).
discreteSupport

Possible outcomes of discrete part of the distribution (method="oneStepGeneric"
and method="cdf" only).
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range Possible range of continuous part of the distribution (method="oneStepGeneric"
only).

seed Randomization seed (discrete case only). If NULL the RNG seed is untouched by
this routine (recommended for simulation studies).

parallel Run in parallel using the parallel package?
trace Logical; Trace progress? More options available for method="oneStepGeneric"

- see details.
reverse Do calculations in opposite order to improve stability? (currently enabled by

default for oneStepGaussianOffMode method only)
splineApprox Represent one-step conditional distribution by a spline to reduce number of den-

sity evaluations? (method="oneStepGeneric" only).
... Control parameters for OSA method

Details

Given a TMB latent variable model this function calculates OSA standardized residuals that can be
used for goodness-of-fit assessment. The approach is based on a factorization of the joint distribu-
tion of the observations X1, ..., Xn into successive conditional distributions. Denote by

Fn(xn) = P (Xn ≤ xn|X1 = x1, ..., Xn−1 = xn−1)

the one-step-ahead CDF, and by

pn(xn) = P (Xn = xn|X1 = x1, ..., Xn−1 = xn−1)

the corresponding point probabilities (zero for continuous distributions). In case of continuous
observations the sequence

Φ−1(F1(X1)) , ..., Φ
−1(Fn(Xn))

will be iid standard normal. These are referred to as the OSA residuals. In case of discrete observa-
tions draw (unit) uniform variables U1, ..., Un and construct the randomized OSA residuals

Φ−1(F1(X1)− U1p1(X1)) , ..., Φ
−1(Fn(Xn)− Unpn(Xn))

These are also iid standard normal.

Value

data.frame with OSA standardized residuals in column residual. In addition, depending on the
method, the output includes selected characteristics of the predictive distribution (current row) given
past observations (past rows), notably the conditional

mean Expectation of the current observation
sd Standard deviation of the current observation
Fx CDF at current observation
px Density at current observation
nll Negative log density at current observation
nlcdf.lower Negative log of the lower CDF at current observation
nlcdf.upper Negative log of the upper CDF at current observation

given past observations. If column randomize is present, it indicates that randomization has been
applied for the row.
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Choosing the method

The user must specify the method used to calculate the residuals - see detailed list of method de-
scriptions below. We note that all the methods are based on approximations. While the default
’oneStepGaussianoffMode’ often represents a good compromise between accuracy and speed, it
cannot be assumed to work well for all model classes. As a rule of thumb, if in doubt whether a
method is accurate enough, you should always compare with the ’oneStepGeneric’ which is con-
sidered the most accurate of the available methods.

method="fullGaussian" This method assumes that the joint distribution of data and random ef-
fects is Gaussian (or well approximated by a Gaussian). It does not require any changes
to the user template. However, if used in conjunction with subset and/or conditional a
data.term.indicator is required - see the next method.

method="oneStepGeneric" This method calculates the one-step conditional probability density
as a ratio of Laplace approximations. The approximation is integrated (and re-normalized
for improved accuracy) using 1D numerical quadrature to obtain the one-step CDF evaluated
at each data point. The method works in the continuous case as well as the discrete case
(discrete=TRUE).

It requires a specification of a data.term.indicator explained in the following. Suppose
the template for the observations given the random effects (u) looks like

DATA_VECTOR(x);
...
nll -= dnorm(x(i), u(i), sd(i), true);
...

Then this template can be augmented with a data.term.indicator = "keep" by changing
the template to

DATA_VECTOR(x);
DATA_VECTOR_INDICATOR(keep, x);
...
nll -= keep(i) * dnorm(x(i), u(i), sd(i), true);
...

The new data vector (keep) need not be passed from R. It automatically becomes a copy of x
filled with ones.

Some extra parameters are essential for the method. Pay special attention to the integration
domain which must be set either via range (continuous case) or discreteSupport (discrete
case). Both of these can be set simultanously to specify a mixed continuous/discrete distribu-
tion. For example, a non-negative distribution with a point mass at zero (e.g. the Tweedie dis-
tribution) should have range=c(0,Inf) and discreteSupport=0. Several parameters control
accuracy and appropriate settings are case specific. By default, a spline is fitted to the one-step
density before integration (splineApprox=TRUE) to reduce the number of density evaluations.
However, this setting may have negative impact on accuracy. The spline approximation can
then either be disabled or improved by noting that ... arguments are passed to tmbprofile:
Pass e.g. ystep=20, ytol=0.1. Finally, it may be useful to look at the one step predictive
distributions on either log scale (trace=2) or natural scale (trace=3) to determine which
alternative methods might be appropriate.
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method="oneStepGaussian" This is a special case of the generic method where the one step
conditional distribution is approximated by a Gaussian (and can therefore be handled more
efficiently).

method="oneStepGaussianOffMode" This is an approximation of the "oneStepGaussian" method
that avoids locating the mode of the one-step conditional density.

method="cdf" The generic method can be slow due to the many function evaluations used during
the 1D integration (or summation in the discrete case). The present method can speed up this
process but requires more changes to the user template. The above template must be expanded
with information about how to calculate the negative log of the lower and upper CDF:

DATA_VECTOR(x);
DATA_VECTOR_INDICATOR(keep, x);
...
nll -= keep(i) * dnorm(x(i), u(i), sd(i), true);
nll -= keep.cdf_lower(i) * log( pnorm(x(i), u(i), sd(i)) );
nll -= keep.cdf_upper(i) * log( 1.0 - pnorm(x(i), u(i), sd(i)) );
...

The specialized members keep.cdf_lower and keep.cdf_upper automatically become copies
of x filled with zeros.

Examples

######################## Gaussian case
runExample("simple")
osa.simple <- oneStepPredict(obj, observation.name = "x", method="fullGaussian")
qqnorm(osa.simple$residual); abline(0,1)

## Not run:
######################## Poisson case (First 100 observations)
runExample("ar1xar1")
osa.ar1xar1 <- oneStepPredict(obj, "N", "keep", method="cdf", discrete=TRUE, subset=1:100)
qqnorm(osa.ar1xar1$residual); abline(0,1)

## End(Not run)

openmp Control number of OpenMP threads used by a TMB model.

Description

Control number of OpenMP threads used by a TMB model.

Usage

openmp(n = NULL, max = FALSE, autopar = NULL, DLL = getUserDLL())
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Arguments

n Requested number of threads, or NULL to just read the current value.

max Logical; Set n to OpenMP runtime value ’omp_get_max_threads()’?

autopar Logical; use automatic parallelization - see details.

DLL DLL of a TMB model.

Details

This function controls the number of parallel threads used by a TMB model compiled with OpenMP.
The number of threads is part of the configuration list config() of the DLL. The value only affects
parallelization of the DLL. It does not affect BLAS/LAPACK specific parallelization which has to
be specified elsewhere.

When a DLL is loaded, the number of threads is set to 1 by default. To activate parallelization
you have to explicitly call openmp(nthreads) after loading the DLL. Calling openmp(max=TRUE)
should normally pick up the environment variable OMP_NUM_THREADS, but this may be platform
dependent.

An experimental option autopar=TRUE can be set to parallelize models automatically. This requires
the model to be compiled with framework="TMBad" and openmp=TRUE without further requirements
on the C++ code. If the C++ code already has explicit parallel constructs these will be ignored if
automatic parallelization is enabled.

Value

Number of threads.

plot.tmbprofile Plot likelihood profile.

Description

Plot (negative log) likelihood profile with confidence interval added.

Usage

## S3 method for class 'tmbprofile'
plot(x, type = "l", level = 0.95, ...)

Arguments

x Output from tmbprofile.

type Plot type.

level Add horizontal and vertical lines depicting this confidence level (NULL disables
the lines).

... Additional plot arguments.
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precompile Precompile the TMB library in order to speed up compilation of tem-
plates.

Description

Precompile the TMB library

Usage

precompile(all = TRUE, clean = FALSE, trace = TRUE, get.header = FALSE, ...)

Arguments

all Precompile all or just the core parts of TMB ?

clean Remove precompiled libraries ?

trace Trace precompilation process ?

get.header Create files ’TMB.h’ and ’TMB.cpp’ in current working directory to be used as
part of a project?

... Not used.

Details

Precompilation can be used to speed up compilation of templates. It is only necessary to run
precompile() once, typically right after installation of TMB. The function prepares TMB for
precompilation, while the actual pre-compilation takes place the first time you compile a model
after running precompile().

Note that the precompilation requires write access to the TMB package folder. Three versions of
the library will be prepared: Normal, parallel and a debugable version.

Precompilation works the same way on all platforms. The only known side-effect of precompilation
is that it increases the file size of the generated binaries.

Examples

## Not run:
## Prepare precompilation
precompile()
## Perform precompilation by running a model
runExample(all = TRUE)

## End(Not run)
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print.checkConsistency

Print output from checkConsistency

Description

Print diagnostics output from checkConsistency

Usage

## S3 method for class 'checkConsistency'
print(x, ...)

Arguments

x Output from checkConsistency

... Not used

print.sdreport Print brief model summary

Description

Print parameter estimates and give convergence diagnostic based on gradient and Hessian.

Usage

## S3 method for class 'sdreport'
print(x, ...)

Arguments

x Output from sdreport

... Not used
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Rinterface Create minimal R-code corresponding to a cpp template.

Description

Create a skeleton of required R-code once the cpp template is ready.

Usage

Rinterface(file)

Arguments

file cpp template file.

Examples

file <- system.file("examples/simple.cpp", package = "TMB")
Rinterface(file)

runExample Run one of the test examples.

Description

Compile and run a test example (runExample() shows all available examples).

Usage

runExample(
name = NULL,
all = FALSE,
thisR = TRUE,
clean = FALSE,
exfolder = NULL,
dontrun = FALSE,
subarch = TRUE,
...

)
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Arguments

name Character name of example.

all Run all the test examples?

thisR Run inside this R?

clean Cleanup before compile?

exfolder Alternative folder with examples.

dontrun Build only (don’t run) and remove temporary object files ?

subarch Build in sub-architecture specific folder ?

... Passed to compile.

runSymbolicAnalysis Run symbolic analysis on sparse Hessian

Description

Aggressively tries to reduce fill-in of sparse Cholesky factor by running a full suite of ordering
algorithms. NOTE: requires a specialized installation of the package. More information is available
at the package URL.

Usage

runSymbolicAnalysis(obj)

Arguments

obj Output from MakeADFun

sdreport General sdreport function.

Description

After optimization of an AD model, sdreport is used to calculate standard deviations of all model
parameters, including non linear functions of random effects and parameters specified through the
ADREPORT() macro from the user template.
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Usage

sdreport(
obj,
par.fixed = NULL,
hessian.fixed = NULL,
getJointPrecision = FALSE,
bias.correct = FALSE,
bias.correct.control = list(sd = FALSE, split = NULL, nsplit = NULL),
ignore.parm.uncertainty = FALSE,
getReportCovariance = TRUE,
skip.delta.method = FALSE

)

Arguments

obj Object returned by MakeADFun

par.fixed Optional. Parameter estimate (will be known to obj when an optimization has
been carried out).

hessian.fixed Optional. Hessian wrt. parameters (will be calculated from obj if missing).
getJointPrecision

Optional. Return full joint precision matrix of random effects and parameters?

bias.correct logical indicating if bias correction should be applied
bias.correct.control

a list of bias correction options; currently sd, split and nsplit are used - see
details.

ignore.parm.uncertainty

Optional. Ignore estimation variance of parameters?
getReportCovariance

Get full covariance matrix of ADREPORTed variables?
skip.delta.method

Skip the delta method? (FALSE by default)

Details

First, the Hessian wrt. the parameter vector (θ) is calculated. The parameter covariance matrix is
approximated by

V (θ̂) = −∇2l(θ̂)−1

where l denotes the log likelihood function (i.e. -obj$fn). If ignore.parm.uncertainty=TRUE
then the Hessian calculation is omitted and a zero-matrix is used in place of V (θ̂).

For non-random effect models the standard delta-method is used to calculate the covariance matrix
of transformed parameters. Let ϕ(θ) denote some non-linear function of θ. Then

V (ϕ(θ̂)) ≈ ∇ϕV (θ̂)∇ϕ′

The covariance matrix of reported variables V (ϕ(θ̂)) is returned by default. This can cause high
memory usage if many variables are ADREPORTed. Use getReportCovariance=FALSE to only
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return standard errors. In case standard deviations are not required one can completely skip the
delta method using skip.delta.method=TRUE.

For random effect models a generalized delta-method is used. First the joint covariance of random
effect and parameter estimation error is approximated by

V

(
û− u

θ̂ − θ

)
≈

(
H−1

uu 0
0 0

)
+ JV (θ̂)J ′

where Huu denotes random effect block of the full joint Hessian of obj$env$f and J denotes the

Jacobian of
(

û(θ)
θ

)
wrt. θ. Here, the first term represents the expected conditional variance of

the estimation error given the data and the second term represents the variance of the conditional
mean of the estimation error given the data.

Now the delta method can be applied on a general non-linear function ϕ(u, θ) of random effects u
and parameters θ:

V
(
ϕ(û, θ̂)− ϕ(u, θ)

)
≈ ∇ϕV

(
û− u

θ̂ − θ

)
∇ϕ′

The full joint covariance is not returned by default, because it may require large amounts of memory.

It may be obtained by specifying getJointPrecision=TRUE, in which case V

(
û− u

θ̂ − θ

)−1

will

be part of the output. This matrix must be manually inverted using solve(jointPrecision) in
order to get the joint covariance matrix. Note, that the parameter order will follow the original
order (i.e. obj$env$par).

Using ϕ(û, θ) as estimator of ϕ(u, θ) may result in substantial bias. This may be the case if either
ϕ is non-linear or if the distribution of u given x (data) is sufficiently non-symmetric. A generic
correction is enabled with bias.correct=TRUE. It is based on the identity

Eθ[ϕ(u, θ)|x] = ∂ε

(
log

∫
exp(−f(u, θ) + εϕ(u, θ)) du

)
|ε=0

stating that the conditional expectation can be written as a marginal likelihood gradient wrt. a
nuisance parameter ε. The marginal likelihood is replaced by its Laplace approximation.

If bias.correct.control$sd=TRUE the variance of the estimator is calculated using

Vθ[ϕ(u, θ)|x] = ∂2
ε

(
log

∫
exp(−f(u, θ) + εϕ(u, θ)) du

)
|ε=0

A further correction is added to this variance to account for the effect of replacing θ by the MLE θ̂
(unless ignore.parm.uncertainty=TRUE).

Bias correction can be be performed in chunks in order to reduce memory usage or in order to only
bias correct a subset of variables. First option is to pass a list of indices as bias.correct.control$split.
E.g. a list list(1:2,3:4) calculates the first four ADREPORTed variables in two chunks. The in-
ternal function obj$env$ADreportIndex() gives an overview of the possible indices of ADREPORTed
variables.

Second option is to pass the number of chunks as bias.correct.control$nsplit in which case
all ADREPORTed variables are bias corrected in the specified number of chunks. Also note that
skip.delta.method may be necessary when bias correcting a large number of variables.
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Value

Object of class sdreport

See Also

summary.sdreport, print.sdreport, as.list.sdreport

Examples

## Not run:
runExample("linreg_parallel", thisR = TRUE) ## Non-random effect example
sdreport(obj)
## End(Not run)

runExample("simple", thisR = TRUE) ## Random effect example
rep <- sdreport(obj)
summary(rep, "random") ## Only random effects
summary(rep, "fixed", p.value = TRUE) ## Only non-random effects
summary(rep, "report") ## Only report

## Bias correction
rep <- sdreport(obj, bias.correct = TRUE)
summary(rep, "report") ## Include bias correction

SR Sequential reduction configuration

Description

Helper function to specify an integration grid used by the sequential reduction algorithm available
through the argument integrate to MakeADFun.

Usage

SR(x, discrete = FALSE)

Arguments

x Breaks defining the domain of integration

discrete Boolean defining integration wrt Lebesgue measure (discrete=FALSE) or count-
ing measure discrete=TRUE.
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summary.checkConsistency

Summarize output from checkConsistency

Description

Summarize output from checkConsistency

Usage

## S3 method for class 'checkConsistency'
summary(object, na.rm = FALSE, ...)

Arguments

object Output from checkConsistency

na.rm Logical; Remove failed simulations ?

... Not used

Value

List of diagnostics

summary.sdreport summary tables of model parameters

Description

Extract parameters, random effects and reported variables along with uncertainties and optionally
Chi-square statistics. Bias corrected quantities are added as additional columns if available.

Usage

## S3 method for class 'sdreport'
summary(
object,
select = c("all", "fixed", "random", "report"),
p.value = FALSE,
...

)
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Arguments

object Output from sdreport

select Parameter classes to select. Can be any subset of "fixed" (θ̂), "random" (û) or
"report" (ϕ(û, θ̂)) using notation as sdreport.

p.value Add column with approximate p-values

... Not used

Value

matrix

template Create cpp template to get started.

Description

Create a cpp template to get started.

Usage

template(file = NULL)

Arguments

file Optional name of cpp file.

Details

This function generates a C++ template with a header and include statement. Here is a brief
overview of the C++ syntax used to code the objective function. For a full reference see the Doxy-
gen documentation (more information at the package URL).

Macros to read data and declare parameters:

Template Syntax C++ type R type
DATA_VECTOR(name) vector<Type> vector
DATA_MATRIX(name) matrix<Type> matrix
DATA_SCALAR(name) Type numeric(1)
DATA_INTEGER(name) int integer(1)
DATA_FACTOR(name) vector<int> factor
DATA_IVECTOR(name) vector<int> integer
DATA_SPARSE_MATRIX(name) Eigen::SparseMatrix<Type> dgTMatrix
DATA_ARRAY(name) array<Type> array
PARAMETER_MATRIX(name) matrix<Type> matrix
PARAMETER_VECTOR(name) vector<Type> vector
PARAMETER_ARRAY(name) array<Type> array
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PARAMETER(name) Type numeric(1)

Basic calculations:

Template Syntax Explanation
REPORT(x) Report x back to R
ADREPORT(x) Report x back to R with derivatives
vector<Type> v(n1); R equivalent of v=numeric(n1)
matrix<Type> m(n1,n2); R equivalent of m=matrix(0,n1,n2)
array<Type> a(n1,n2,n3); R equivalent of a=array(0,c(n1,n2,n3))
v+v,v-v,v*v,v/v Pointwise binary operations
m*v Matrix-vector multiply
a.col(i) R equivalent of a[„i]
a.col(i).col(j) R equivalent of a[,j,i]
a(i,j,k) R equivalent of a[i,j,k]
exp(v) Pointwise math
m(i,j) R equivalent of m[i,j]
v.sum() R equivalent of sum(v)
m.transpose() R equivalent of t(m)

Some distributions are available as C++ templates with syntax close to R’s distributions:

Function header Distribution
dnbinom2(x,mu,var,int give_log=0) Negative binomial with mean and variance
dpois(x,lambda,int give_log=0) Poisson distribution as in R
dlgamma(y,shape,scale,int give_log=0) log-gamma distribution
dnorm(x,mean,sd,int give_log=0) Normal distribution as in R

Examples

template()

TMB.Version Version information on API and ABI.

Description

The R interface to TMB roughly consists of two components: (1) The ’API’ i.e. R functions docu-
mented in this manual and (2) C-level entry points, here referred to as the ’ABI’, which controls the
C++ code. The latter can be shown by getDLLRegisteredRoutines(DLL) where DLL is the shared
library generated by the compile function (or by a package linking to TMB). A DLL compiled with
one version of TMB can be used with another version of TMB provided that the ’ABI’ is the same. We
therefore define the ’ABI version’ as the oldest ABI compatible version. This number can then be
used to tell if re-compilation of a DLL is necessary after updating TMB.
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Usage

TMB.Version()

Value

List with components package (API version) and abi (ABI version) inspired by corresponding
function in the Matrix package.

tmbprofile Adaptive likelihood profiling.

Description

Calculate 1D likelihood profiles wrt. single parameters or more generally, wrt. arbitrary linear
combinations of parameters (e.g. contrasts).

Usage

tmbprofile(
obj,
name,
lincomb,
h = 1e-04,
ytol = 2,
ystep = 0.1,
maxit = ceiling(5 * ytol/ystep),
parm.range = c(-Inf, Inf),
slice = FALSE,
adaptive = TRUE,
trace = TRUE,
...

)

Arguments

obj Object from MakeADFun that has been optimized.

name Name or index of a parameter to profile.

lincomb Optional linear combination of parameters to profile. By default a unit vector
corresponding to name.

h Initial adaptive stepsize on parameter axis.

ytol Adjusts the range of the likelihood values.

ystep Adjusts the resolution of the likelihood profile.

maxit Max number of iterations for adaptive algorithm.

parm.range Valid parameter range.
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slice Do slicing rather than profiling?

adaptive Logical; Use adaptive step size?

trace Trace progress? (TRUE, or a numeric value of 1, gives basic tracing: numeric
values > 1 give more information)

... Unused

Details

Given a linear combination

t =

n∑
i=1

viθi

of the parameter vector θ, this function calculates the likelihood profile of t. By default v is a
unit vector determined from name. Alternatively the linear combination may be given directly
(lincomb).

Value

data.frame with parameter and function values.

See Also

plot.tmbprofile, confint.tmbprofile

Examples

## Not run:
runExample("simple",thisR=TRUE)
## Parameter names for this model:
## beta beta logsdu logsd0

## Profile wrt. sigma0:
prof <- tmbprofile(obj,"logsd0")
plot(prof)
confint(prof)

## Profile the difference between the beta parameters (name is optional):
prof2 <- tmbprofile(obj,name="beta1 - beta2",lincomb = c(1,-1,0,0))
plot(prof2)
confint(prof2)

## End(Not run)
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tmbroot Compute likelihood profile confidence intervals of a TMB object by
root-finding

Description

Compute likelihood profile confidence intervals of a TMB object by root-finding in contrast to
tmbprofile, which tries to compute somewhat equally spaced values along the likelihood profile
(which is useful for visualizing the shape of the likelihood surface), and then (via confint.tmbprofile)
extracting a critical value by linear interpolation,

Usage

tmbroot(
obj,
name,
target = 0.5 * qchisq(0.95, df = 1),
lincomb,
parm.range = c(NA, NA),
sd.range = 7,
trace = FALSE,
continuation = FALSE

)

Arguments

obj Object from MakeADFun that has been optimized.

name Name or index of a parameter to profile.

target desired deviation from minimum log-likelihood. Default is set to retrieve the 95
if the objective function is a negative log-likelihood function

lincomb Optional linear combination of parameters to profile. By default a unit vector
corresponding to name.

parm.range lower and upper limits; if NA, a value will be guessed based on the parameter
value and sd.range

sd.range in the absence of explicit parm.range values, the range chosen will be the pa-
rameter value plus or minus sd.range times the corresponding standard devia-
tion. May be specified as a two-element vector for different ranges below and
above the parameter value.

trace report information?

continuation use continuation method, i.e. set starting parameters for non-focal parameters to
solutions from previous fits?

Value

a two-element numeric vector containing the lower and upper limits (or NA if the target is not
achieved in the range), with an attribute giving the total number of function iterations used
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Examples

## Not run:
runExample("simple",thisR=TRUE)
logsd0.ci <- tmbroot(obj,"logsd0")

## End(Not run)
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