Package ‘TDAstats’

January 20, 2025

Type Package
Title Pipeline for Topological Data Analysis
Version 0.4.1

Description A comprehensive toolset for any
useR conducting topological data analysis, specifically via the
calculation of persistent homology in a Vietoris-Rips complex.
The tools this package currently provides can be conveniently split
into three main sections: (1) calculating persistent homology; (2)
conducting statistical inference on persistent homology calculations;
(3) visualizing persistent homology and statistical inference.
The published form of TDAstats can be found in Wadhwa et al. (2018)
<doi:10.21105/j0ss.00860>.
For a general background on computing persistent homology for
topological data analysis, see Otter et al. (2017)
<doi:10.1140/epjds/s13688-017-0109-5>.
To learn more about how the permutation test is used for
nonparametric statistical inference in topological data analysis,
read Robinson & Turner (2017) <doi:10.1007/s41468-017-0008-7>.
To learn more about how TDAstats calculates persistent homology,
you can visit the GitHub repository for Ripser, the software that
works behind the scenes at <https://github.com/Ripser/ripser>.
This package has been published as Wadhwa et al. (2018)
<doi:10.21105/j0ss.00860>.

License GPL-3

Encoding UTF-8

LazyData true

Depends R (>=3.3)

Imports ggplot2 (>=2.2.1), Repp (>=0.12.15)

URL https://github.com/rrrlw/TDAstats

BugReports https://github.com/rrriw/TDAstats/issues
LinkingTo Rcpp
RoxygenNote 6.1.0

https://doi.org/10.21105/joss.00860
https://doi.org/10.1140/epjds/s13688-017-0109-5
https://doi.org/10.1007/s41468-017-0008-7
https://github.com/Ripser/ripser
https://doi.org/10.21105/joss.00860
https://github.com/rrrlw/TDAstats
https://github.com/rrrlw/TDAstats/issues

2 calculate_homology

SystemRequirements C++11

Suggests testthat (>= 2.0.0), knitr, rmarkdown, covr
VignetteBuilder knitr

NeedsCompilation yes

Author Raoul Wadhwa [aut, cre],
Andrew Dhawan [aut],
Drew Williamson [aut],
Jacob Scott [aut],
Jason Cory Brunson [ctb],
Shota Ochi [ctb]

Maintainer Raoul Wadhwa <raoulwadhwa@gmail.com>
Repository CRAN
Date/Publication 2019-12-12 22:30:03 UTC

Contents
calculate_homology 2
circle2d e 3
id_significant e 4
PErmMuUtation_test e e e e e 5
phom.dist 6
plot_barcode e e e e 6
plot_persist 7
sphere3d L 8
TDAStats e e 9
unif2d . .. e 9
unif3d e e 9

Index 11

calculate_homology Calculate Persistent Homology of a Point Cloud
Description

Calculates the persistent homology of a point cloud, as represented by a Vietoris-Rips complex.
This function is an R wrapper for Ulrich Bauer’s Ripser C++ library for calculating persistent ho-
mology. For more information on the C++ library, see <https://github.com/Ripser/ripser>.

Usage

calculate_homology(mat, dim = 1, threshold = -1, format = "cloud”,
standardize = FALSE, return_df = FALSE)

circle2d 3

Arguments
mat numeric matrix containing point cloud or distance matrix
dim maximum dimension of features to calculate
threshold maximum diameter for computation of Vietoris-Rips complexes
format format of ‘mat‘, either "cloud" for point cloud or "distmat" for distance matrix
standardize boolean determining whether point cloud size should be standardized
return_df defaults to ‘FALSE®, returning a matrix; if ‘TRUE, returns a data frame
Details

The ‘mat‘ parameter should be a numeric matrix with each row corresponding to a single point, and
each column corresponding to a single dimension. Thus, if ‘mat‘ has 50 rows and 5 columns, it
represents a point cloud with 50 points in 5 dimensions. The ‘dim‘ parameter should be a positive
integer. Alternatively, the ‘mat® parameter could be a distance matrix (upper triangular half is
ignored); note: ‘format* should be specified as "ldm".

Value

3-column matrix or data frame, with each row representing a TDA feature

Examples

create a 2-d point cloud of a circle (100 points)
num.pts <- 100

rand.angle <- runif(num.pts, 0, 2*pi)

pt.cloud <- cbind(cos(rand.angle), sin(rand.angle))

calculate persistent homology (num.pts by 3 numeric matrix)
pers.hom <- calculate_homology(pt.cloud)

circle2d 2-dimensional point cloud of a unit circle

Description
A dataset containing the Cartesian coordinates of 100 points uniformly distributed on the circum-
ference of a unit circle.

Usage

circle2d

Format

A matrix with 100 rows and 2 columns: the x- and y-coordinates

4 id_significant

Source

https://github.com/rrrlw/TDAstats/blob/master/data-raw/circle2d.R

id_significant Identify Significant Features in Persistent Homology

Description

An empirical method (bootstrap) to differentiate between features that constitute signal versus noise
based on the magnitude of their persistence relative to one another. Note: you must have at least 5
features of a given dimension to use this function.

Usage

id_significant(features, dim = 1, reps = 100, cutoff = 0.975)

Arguments
features 3xn data frame of features; the first column must be dimension, the second birth,
and the third death
dim dimension of features of interest
reps number of replicates
cutoff percentile cutoff past which features are considered significant
Examples

get dataset (noisy circle) and calculate persistent homology
angles <- runif(100, 0, 2 * pi)

x <- cos(angles) + rnorm(100, mean = @, sd = 0.1)

y <- sin(angles) + rnorm(100, mean =0.1)

annulus <- cbind(x, y)

phom <- calculate_homology(annulus)

1
[S)
%]
(e

|

find threshold of significance
expecting 1 significant feature of dimension 1 (Betti-1 = 1 for annulus)
thresh <- id_significant(features = as.data.frame(phom),

dim =1,

reps = 500,

cutoff = 0.975)

generate flat persistence diagram
every feature higher than ~thresh™ is significant
plot_persist(phom, flat = TRUE)

https://github.com/rrrlw/TDAstats/blob/master/data-raw/circle2d.R

permutation_test 5

permutation_test Statistical Inference for Topological Data Analysis

Description

Conducts a permutation test for nonparametric statistical inference of persistent homology in topo-
logical data analysis.

Usage
permutation_test(datal, data2, iterations, exponent = 1, update = 0,
)
Arguments
datal first dataset
data2 second dataset
iterations number of iterations for distribution in permutation test
exponent parameter ‘p°‘ that returns Wasserstein-p metric
update if greater than zero, will print a message every ‘update‘ iterations

arguments for ‘calculate_homology‘ used for each permutation; this includes
the ‘format‘, ‘dim°, and ‘threshold* parameters

Details

The persistent homology of two point clouds are compared with the Wasserstein metric (where
Wasserstein-1 is also known as the Earth Mover’s Distance). However, the magnitude of the metric
for a single pair of point clouds is meaningless without a reference distribution. This function uses
a permutation test (permuting the points between the two clouds) as a nonparametric hypothesis test
for statistical inference.

For more details on permutation tests for statistical inference in topological data analysis, see Robin-
son A, Turner K. Hypothesis testing for topological data analysis. J Appl Comput Topology. 2017;
1(2): 241-261.<d0i:10.1007/s41468-017-0008-7>

Value

list containing results of permutation test

6 plot_barcode

phom.dist Calculate Distance between Homology Matrices

Description

Calculates the distance between two matrices containing persistent homology features, usually as
returned by the ‘calculate_homology* function.

Usage

phom.dist(phom1, phom2, limit.num = @)

Arguments
phom1 3-by-n numeric matrix containing persistent homology for first dataset
phom?2 3-by-n numeric matrix containing persistent homology for second dataset
limit.num limit comparison to only top ‘limit.num* features in each dimension
Details

Note that the absolute value of this measure of distance is not meaningful without a null distribution
or at least another value for relative comparison (e.g. finding most similar pair within a triplet).

Value

distance vector (1 element per dimension) between ‘phom1‘ and ‘phom2°

plot_barcode Plot Persistent Homology as Topological Barcode

Description
Plots a feature matrix as a topological barcode. See ‘plot_persist® for an alternate visualization
method of persistent homology.

Usage

plot_barcode(feature.matrix)

Arguments

feature.matrix nx3 matrix representing persistent homology features

plot_persist 7

Details

The ‘feature.matrix‘ parameter should be a numeric matrix with each row corresponding to a single
feature. It should have 3 columns corresponding to feature dimension (col 1), feature birth (col 2),
and feature death (col 3). The first column should be filled with integers, and the next two columns
should be filled with numeric values. The output from the ‘calculate_homology* function in this
package will be a valid value for the ‘feature.matrix‘ parameter.

This function uses the ggplot2 framework to generate persistence diagrams. For details, see: Wick-
ham H (2009). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag: New York, NY.

Value

ggplot instance representing topological barcode

Examples

create a 2-d point cloud of a circle (100 points)
num.pts <- 100

rand.angle <- runif(num.pts, 0, 2*pi)

pt.cloud <- cbind(cos(rand.angle), sin(rand.angle))

calculate persistent homology (num.pts by 3 numeric matrix)
pers.hom <- calculate_homology(pt.cloud)

plot calculated homology features as persistence diagram
plot_barcode(pers.hom)

plot_persist Plot Persistent Homology as Persistence Diagram

Description

Plots a feature matrix as a persistence diagram. See ‘plot_barcode‘ for an alternate visualization
method of persistent homology.

Usage

plot_persist(feature.matrix, flat = FALSE, cutoff = @)

Arguments

feature.matrix nx3 matrix representing persistent homology features
flat default FALSE; if TRUE, plots flat persistent homology instead

cutoff threshold for significant features; line added as marker on plot

8 sphere3d

Details

The ‘feature.matrix‘ parameter should be a numeric matrix with each row corresponding to a single
feature. It should have 3 columns corresponding to feature dimension (col 1), feature birth (col 2),
and feature death (col 3). The first column should be filled with integers, and the next two columns
should be filled with numeric values. The output from the ‘calculate_homology* function in this
package will be a valid value for the ‘feature.matrix‘ parameter.

This function uses the ggplot2 framework to generate persistence diagrams. For details, see: Wick-
ham H (2009, ISBN:9780387981413). ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag: New York, NY.

Value

ggplot instance representing persistence diagram

Examples

create a 2-d point cloud of a circle (100 points)
num.pts <- 100

rand.angle <- runif(num.pts, @, 2*pi)

pt.cloud <- cbind(cos(rand.angle), sin(rand.angle))

calculate persistent homology (num.pts by 3 numeric matrix)
pers.hom <- calculate_homology(pt.cloud)

plot calculated homology features as persistence diagram
plot_persist(pers.hom)

sphere3d 3-dimensional point cloud of a unit sphere

Description

A dataset containing the Cartesian coordinates of 100 points uniformly distributed on the surface of
a unit sphere.

Usage

sphere3d

Format

A matrix with 100 rows and 3 columns: the x-, y-, and z-coordinates

Source

https://github.com/rrrlw/TDAstats/blob/master/data-raw/sphere3d.R

https://github.com/rrrlw/TDAstats/blob/master/data-raw/sphere3d.R

TDAstats 9

TDAstats Statistical Inference for Persistent Homology in Topological Data
Analysis

Description

This package aims to be a comprehensive toolset for any useR conducting topological data analy-
sis, specifically via the calculation of persistent homology in a Vietoris-Rips complex. The tools
this package currently provides can be conveniently split into three main sections: (1) calculating
persistent homology; (2) conducting statistical inference on persistent homology calculations; (3)
visualizing persistent homology and statistical inference.

unif2d 2-dimensional point cloud of a unit square

Description
A dataset containing the Cartesian coordinates of 100 points uniformly distributed within a unit
square.

Usage
unif2d

Format

A matrix with 100 rows and 2 columns: the x- and y-coordinates

Source

https://github.com/rrrlw/TDAstats/blob/master/data-raw/unif2d.R

unif3d 3-dimensional point cloud of a unit cube

Description
A dataset containing the Cartesian coordinates of 100 points uniformly distributed within a unit
cube.

Usage
unif3d

https://github.com/rrrlw/TDAstats/blob/master/data-raw/unif2d.R

10 unif3d

Format

A matrix with 100 rows and 3 columns: the x-, y-, and z-coordinates

Source

https://github.com/rrrlw/TDAstats/blob/master/data-raw/unif3d.R

https://github.com/rrrlw/TDAstats/blob/master/data-raw/unif3d.R

Index

+ datasets
circle2d, 3
sphere3d, 8
unif2d, 9
unif3d, 9

calculate_homology, 2
circle2d, 3

id_significant, 4

permutation_test, 5
phom.dist, 6
plot_barcode, 6
plot_persist, 7

sphere3d, 8

TDAstats, 9
TDAstats-package (TDAstats), 9

unif2d, 9
unif3d, 9

11

	calculate_homology
	circle2d
	id_significant
	permutation_test
	phom.dist
	plot_barcode
	plot_persist
	sphere3d
	TDAstats
	unif2d
	unif3d
	Index

