
Package ‘TDA’
February 2, 2025

Title Statistical Tools for Topological Data Analysis

Description Tools for Topological Data Analysis. The package focuses on statistical analysis of per-
sistent homology and density clustering. For that, this package provides an R interface for the ef-
ficient algorithms of the C++ li-
braries 'GUDHI' <https://project.inria.fr/gudhi/software/>, 'Diony-
sus' <https://www.mrzv.org/software/dionysus/>, and 'PHAT' <https:
//bitbucket.org/phat-code/phat/>. This package also implements meth-
ods from Fasy et al. (2014) <doi:10.1214/14-
AOS1252> and Chazal et al. (2015) <doi:10.20382/jocg.v6i2a8> for analyzing the statisti-
cal significance of persistent homology features.

Version 1.9.4

Depends R (>= 3.1.0)

Imports FNN, Rcpp (>= 0.11.0), igraph, parallel, scales

LinkingTo BH (>= 1.87.0-1), Rcpp, RcppEigen

Suggests testthat, lintr

Date 2025-02-01

Author Brittany T. Fasy [aut],
Jisu Kim [aut, cre],
Fabrizio Lecci [aut],
Clement Maria [aut],
David L. Millman [aut],
Vincent Rouvreau. [aut]

Maintainer Jisu Kim <jkim82133@snu.ac.kr>

License GPL-3

Copyright See inst/COPYRIGHTS

SystemRequirements gmp, GNU make

Encoding UTF-8

Type Package

Repository CRAN

NeedsCompilation yes

Date/Publication 2025-02-02 08:10:05 UTC

1

https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://bitbucket.org/phat-code/phat/
https://bitbucket.org/phat-code/phat/
https://doi.org/10.1214/14-AOS1252
https://doi.org/10.1214/14-AOS1252
https://doi.org/10.20382/jocg.v6i2a8


2 TDA-package

Contents
TDA-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
alphaComplexDiag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
alphaComplexFiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
alphaShapeDiag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
alphaShapeFiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
bootstrapBand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
bootstrapDiagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
bottleneck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
circleUnif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
clusterTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
distFct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
dtm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
filtrationDiag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
funFiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
gridDiag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
gridFiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
hausdInterval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
kde . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
kernelDist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
knnDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
maxPersistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
multipBootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
plot.clusterTree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
plot.diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
plot.maxPersistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
ripsDiag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
ripsFiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
silhouette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
sphereUnif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
summary.diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
torusUnif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
wasserstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Index 60

TDA-package Statistical Tools for Topological Data Analysis

Description

Tools for Topological Data Analysis. The package focuses on statistical analysis of persistent ho-
mology and density clustering. For that, this package provides an R interface for the efficient
algorithms of the C++ libraries GUDHI, Dionysus and PHAT. This package also implements meth-
ods from Fasy et al. (2014) and Chazal et al. (2015) for analyzing the statistical significance of
persistent homology features.

https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://bitbucket.org/phat-code/phat/


alphaComplexDiag 3

Details

Package: TDA
Version: 1.9.4
Date: 2025-02-01
License: GPL-3

Author(s)

Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clement Maria, David L. Millman, and Vincent
Rouvreau

Maintainer: Jisu Kim <jkim82133@snu.ac.kr>

References

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2014). "Confidence Sets for
Persistence Diagrams." Annals of Statistics. (arXiv:1303.7117)

Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2015). "Stochastic Convergence of Persis-
tence Landscapes and Silhouettes." Journal of Computational Geometry. (arXiv:1312.0308)

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2015a). "Subsampling Methods
for Persistent Homology." Proceedings of the 32nd International Conference on Machine Learning
(ICML). (arXiv:1406.1901)

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2017). "Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance." Journal of Machine Learning Research.
(arXiv:1412.7197)

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https:
//project.inria.fr/gudhi/software/.

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology." https://www.
mrzv.org/software/dionysus/.

Bauer U, Kerber M, Reininghaus J (2012). "PHAT, a software library for persistent homology".
https://bitbucket.org/phat-code/phat/.

alphaComplexDiag Alpha Complex Persistence Diagram

Description

The function alphaComplexDiag computes the persistence diagram of the alpha complex filtration
built on top of a point cloud.

https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/
https://bitbucket.org/phat-code/phat/


4 alphaComplexDiag

Usage

alphaComplexDiag(
X, maxdimension = NCOL(X) - 1, library = "GUDHI",

location = FALSE, printProgress = FALSE)

Arguments

X an n by d matrix of coordinates, used by the function FUN, where n is the number
of points stored in X and d is the dimension of the space.

maxdimension integer: max dimension of the homological features to be computed. (e.g. 0 for
connected components, 1 for connected components and loops, 2 for connected
components, loops, voids, etc.)

library either a string or a vector of length two. When a vector is given, the first ele-
ment specifies which library to compute the Alpha Complex filtration, and the
second element specifies which library to compute the persistence diagram. If a
string is used, then the same library is used. For computing the Alpha Complex
filtration, the user can use the library "GUDHI", and is also the default value.
For computing the persistence diagram, the user can choose either the library
"GUDHI", "Dionysus", or "PHAT". The default value is "GUDHI".

location if TRUE and if "Dionysus" or "PHAT" is used for computing the persistence
diagram, location of birth point and death point of each homological feature is
returned. Additionaly if library="Dionysus", location of representative cycles
of each homological feature is also returned. The default value is FALSE.

printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Details

The function alphaComplexDiag constructs the Alpha Complex filtration, using the C++ library
GUDHI. Then for computing the persistence diagram from the Alpha Complex filtration, the user
can use either the C++ library GUDHI, Dionysus, or PHAT. See refereneces.

Value

The function alphaComplexDiag returns a list with the following elements:

diagram an object of class diagram, a P by 3 matrix, where P is the number of points
in the resulting persistence diagram. The first column stores the dimension of
each feature (0 for components, 1 for loops, 2 for voids, etc). Second and third
columns are Birth and Death of the features.

birthLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the
persistence diagram: a P by d matrix, where P is the number of points in the
resulting persistence diagram. Each row represents the location of the grid point
completing the simplex that gives birth to an homological feature.

deathLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the
persistence diagram: a P by d matrix, where P is the number of points in the
resulting persistence diagram. Each row represents the location of the grid point
completing the simplex that kills an homological feature.

https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://bitbucket.org/phat-code/phat/


alphaComplexDiag 5

cycleLocation only if location=TRUE and if "Dionysus" is used for computing the persistence
diagram: a list of length P , where P is the number of points in the resulting
persistence diagram. Each element is a Pi by hi+1 by d array for hi dimensional
homological feature. It represents location of hi + 1 vertices of Pi simplices,
where Pi simplices constitutes the hi dimensional homological feature.

Author(s)

Jisu Kim and Vincent Rouvreau

References

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

Rouvreau V (2015). "Alpha complex." In GUDHI User and Reference Manual. GUDHI Editorial
Board. https://gudhi.inria.fr/doc/latest/group__alpha__complex.html

Edelsbrunner H, Kirkpatrick G, Seidel R (1983). "On the shape of a set of points in the plane."
IEEE Trans. Inform. Theory.

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https:
//project.inria.fr/gudhi/software/

See Also

summary.diagram, plot.diagram, alphaShapeDiag, gridDiag, ripsDiag

Examples

# input data generated from a circle
X <- circleUnif(n = 30)

# persistence diagram of alpha complex
DiagAlphaCmplx <- alphaComplexDiag(

X = X, library = c("GUDHI", "Dionysus"), location = TRUE,
printProgress = TRUE)

# plot
par(mfrow = c(1, 2))
plot(DiagAlphaCmplx[["diagram"]])
one <- which(DiagAlphaCmplx[["diagram"]][, 1] == 1)
one <- one[which.max(

DiagAlphaCmplx[["diagram"]][one, 3] - DiagAlphaCmplx[["diagram"]][one, 2])]
plot(X, col = 2, main = "Representative loop of data points")
for (i in seq(along = one)) {

for (j in seq_len(dim(DiagAlphaCmplx[["cycleLocation"]][[one[i]]])[1])) {
lines(

DiagAlphaCmplx[["cycleLocation"]][[one[i]]][j, , ], pch = 19, cex = 1,
col = i)

}
}
par(mfrow = c(1, 1))

https://gudhi.inria.fr/doc/latest/group__alpha__complex.html
https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/


6 alphaComplexFiltration

alphaComplexFiltration

Alpha Complex Filtration

Description

The function alphaComplexFiltration computes the alpha complex filtration built on top of a
point cloud.

Usage

alphaComplexFiltration(
X, library = "GUDHI", printProgress = FALSE)

Arguments

X an n by d matrix of coordinates, used by the function FUN, where n is the number
of points stored in X and d is the dimension of the space.

library a string specifying which library to compute the Alpha Complex filtration. The
user can use the library "GUDHI", and is also the default value.

printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Details

The function alphaComplexFiltration constructs the alpha complex filtration, using the C++
library GUDHI. See refereneces.

Value

The function alphaComplexFiltration returns a list with the following elements:

cmplx a list representing the complex. Its i-th element represents the vertices of i-th
simplex.

values a vector representing the filtration values. Its i-th element represents the filtration
value of i-th simplex.

increasing a logical variable indicating if the filtration values are in increasing order (TRUE)
or in decreasing order (FALSE).

coordinates a matrix representing the coordinates of vertices. Its i-th row represents the
coordinate of i-th vertex.

Author(s)

Jisu Kim and Vincent Rouvreau

https://project.inria.fr/gudhi/software/


alphaShapeDiag 7

References

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

Rouvreau V (2015). "Alpha complex." In GUDHI User and Reference Manual. GUDHI Editorial
Board. https://gudhi.inria.fr/doc/latest/group__alpha__complex.html

Edelsbrunner H, Kirkpatrick G, Seidel R (1983). "On the shape of a set of points in the plane."
IEEE Trans. Inform. Theory.

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https:
//project.inria.fr/gudhi/software/

See Also

alphaComplexDiag, filtrationDiag

Examples

# input data generated from a circle
X <- circleUnif(n = 10)

# alpha complex filtration
FltAlphaComplex <- alphaComplexFiltration(X = X, printProgress = TRUE)

# plot alpha complex filtration
lim <- rep(c(-1, 1), 2)
plot(NULL, type = "n", xlim = lim[1:2], ylim = lim[3:4],

main = "Alpha Complex Filtration Plot")
for (idx in seq(along = FltAlphaComplex[["cmplx"]])) {
polygon(FltAlphaComplex[["coordinates"]][FltAlphaComplex[["cmplx"]][[idx]], , drop = FALSE],

col = "pink", border = NA, xlim = lim[1:2], ylim = lim[3:4])
}
for (idx in seq(along = FltAlphaComplex[["cmplx"]])) {
polygon(FltAlphaComplex[["coordinates"]][FltAlphaComplex[["cmplx"]][[idx]], , drop = FALSE],

col = NULL, xlim = lim[1:2], ylim = lim[3:4])
}
points(FltAlphaComplex[["coordinates"]], pch = 16)

alphaShapeDiag Persistence Diagram of Alpha Shape in 3d

Description

The function alphaShapeDiag computes the persistence diagram of the alpha shape filtration built
on top of a point cloud in 3 dimension.

Usage

alphaShapeDiag(
X, maxdimension = NCOL(X) - 1, library = "GUDHI", location = FALSE,
printProgress = FALSE)

https://gudhi.inria.fr/doc/latest/group__alpha__complex.html
https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/


8 alphaShapeDiag

Arguments

X an n by d matrix of coordinates, used by the function FUN, where n is the number
of points stored in X and d is the dimension of the space. Currently d should be
3.

maxdimension integer: max dimension of the homological features to be computed. (e.g. 0 for
connected components, 1 for connected components and loops, 2 for connected
components, loops, voids, etc.)

library either a string or a vector of length two. When a vector is given, the first element
specifies which library to compute the Alpha Shape filtration, and the second el-
ement specifies which library to compute the persistence diagram. If a string is
used, then the same library is used. For computing the Alpha Shape filtration,
the user can use the library "GUDHI", and is also the default value. For com-
puting the persistence diagram, the user can choose either the library "GUDHI",
"Dionysus", or "PHAT". The default value is "GUDHI".

location if TRUE and if "Dionysus" or "PHAT" is used for computing the persistence
diagram, location of birth point and death point of each homological feature is
returned. Additionaly if library="Dionysus", location of representative cycles
of each homological feature is also returned. The default value is FALSE.

printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Details

The function alphaShapeDiag constructs the Alpha Shape filtration, using the C++ library GUDHI.
Then for computing the persistence diagram from the Alpha Shape filtration, the user can use either
the C++ library GUDHI, Dionysus, or PHAT. See refereneces.

Value

The function alphaShapeDiag returns a list with the following elements:

diagram an object of class diagram, a P by 3 matrix, where P is the number of points
in the resulting persistence diagram. The first column stores the dimension of
each feature (0 for components, 1 for loops, 2 for voids, etc). Second and third
columns are Birth and Death of the features.

birthLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the
persistence diagram: a P by d matrix, where P is the number of points in the
resulting persistence diagram. Each row represents the location of the grid point
completing the simplex that gives birth to an homological feature.

deathLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the
persistence diagram: a P by d matrix, where P is the number of points in the
resulting persistence diagram. Each row represents the location of the grid point
completing the simplex that kills an homological feature.

cycleLocation only if location=TRUE and if "Dionysus" is used for computing the persistence
diagram: a list of length P , where P is the number of points in the resulting
persistence diagram. Each element is a Pi by hi+1 by d array for hi dimensional
homological feature. It represents location of hi + 1 vertices of Pi simplices,
where Pi simplices constitutes the hi dimensional homological feature.

https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://bitbucket.org/phat-code/phat/


alphaShapeDiag 9

Author(s)

Jisu Kim and Vincent Rouvreau

References

Fischer K (2005). "Introduction to Alpha Shapes."

Edelsbrunner H, Mucke EP (1994). "Three-dimensional Alpha Shapes." ACM Trans. Graph.

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https:
//project.inria.fr/gudhi/software/

Morozov D (2008). "Homological Illusions of Persistence and Stability."

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

See Also

summary.diagram, plot.diagram, alphaComplexDiag, gridDiag, ripsDiag

Examples

# input data generated from cylinder
n <- 30
X <- cbind(circleUnif(n = n), runif(n = n, min = -0.1, max = 0.1))

# persistence diagram of alpha shape
DiagAlphaShape <- alphaShapeDiag(

X = X, maxdimension = 1, library = c("GUDHI", "Dionysus"), location = TRUE,
printProgress = TRUE)

# plot diagram and first two dimension of data
par(mfrow = c(1, 2))
plot(DiagAlphaShape[["diagram"]])
plot(X[, 1:2], col = 2, main = "Representative loop of alpha shape filtration")
one <- which(DiagAlphaShape[["diagram"]][, 1] == 1)
one <- one[which.max(

DiagAlphaShape[["diagram"]][one, 3] - DiagAlphaShape[["diagram"]][one, 2])]
for (i in seq(along = one)) {

for (j in seq_len(dim(DiagAlphaShape[["cycleLocation"]][[one[i]]])[1])) {
lines(

DiagAlphaShape[["cycleLocation"]][[one[i]]][j, , 1:2], pch = 19,
cex = 1, col = i)

}
}
par(mfrow = c(1, 1))

https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/


10 alphaShapeFiltration

alphaShapeFiltration Alpha Shape Filtration in 3d

Description

The function alphaShapeFiltration computes the alpha shape filtration built on top of a point
cloud in 3 dimension.

Usage

alphaShapeFiltration(
X, library = "GUDHI", printProgress = FALSE)

Arguments

X an n by d matrix of coordinates, used by the function FUN, where n is the number
of points stored in X and d is the dimension of the space. Currently d should be
3.

library a string specifying which library to compute the Alpha Shape filtration. The
user can use the library "GUDHI", and is also the default value.

printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Details

The function alphaShapeFiltration constructs the alpha shape filtration, using the C++ library
GUDHI. See refereneces.

Value

The function alphaShapeFiltration returns a list with the following elements:

cmplx a list representing the complex. Its i-th element represents the vertices of i-th
simplex.

values a vector representing the filtration values. Its i-th element represents the filtration
value of i-th simplex.

increasing a logical variable indicating if the filtration values are in increasing order (TRUE)
or in decreasing order (FALSE).

coordinates a matrix representing the coordinates of vertices. Its i-th row represents the
coordinate of i-th vertex.

Author(s)

Jisu Kim and Vincent Rouvreau

https://project.inria.fr/gudhi/software/


bootstrapBand 11

References

Fischer K (2005). "Introduction to Alpha Shapes."

Edelsbrunner H, Mucke EP (1994). "Three-dimensional Alpha Shapes." ACM Trans. Graph.

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https:
//project.inria.fr/gudhi/software/

Morozov D (2008). "Homological Illusions of Persistence and Stability."

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

See Also

alphaShapeDiag, filtrationDiag

Examples

# input data generated from sphere
X <- sphereUnif(n = 20, d = 2)

# alpha shape filtration
FltAlphaShape <- alphaShapeFiltration(X = X, printProgress = TRUE)

bootstrapBand Bootstrap Confidence Band

Description

The function bootstrapBand computes a uniform symmetric confidence band around a function of
the data X, evaluated on a Grid, using the bootstrap algorithm. See Details and References.

Usage

bootstrapBand(
X, FUN, Grid, B = 30, alpha = 0.05, parallel = FALSE,
printProgress = FALSE, weight = NULL, ...)

Arguments

X an n by d matrix of coordinates of points used by the function FUN, where n is
the number of points and d is the dimension.

FUN a function whose inputs are an n by d matrix of coordinates X, an m by d matrix
of coordinates Grid and returns a numeric vector of length m. For example see
distFct, kde, and dtm which compute the distance function, the kernel density
estimator and the distance to measure over a grid of points, using the input X.

Grid an m by d matrix of coordinates, where m is the number of points in the grid, at
which FUN is evaluated.

https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/


12 bootstrapBand

B the number of bootstrap iterations.

alpha bootstrapBand returns a (1-alpha) confidence band. The default value is 0.05.

parallel logical: if TRUE the bootstrap iterations are parallelized, using the library parallel.
The default value is FALSE.

printProgress if TRUE, a progress bar is printed. The default value is FALSE.

weight either NULL, a number, or a vector of length n. If it is NULL, weight is not
used. If it is a number, then same weight is applied to each points of X. If it is a
vector, weight represents weights of each points of X. The default value is NULL.

... additional parameters for the function FUN.

Details

First, the input function FUN is evaluated on the Grid using the original data X. Then, for B times,
the bootstrap algorithm subsamples n points of X (with replacement), evaluates the function FUN
on the Grid using the subsample, and computes the ℓ∞ distance between the original function and
the bootstrapped one. The result is a sequence of B values. The (1-alpha) confidence band is
constructed by taking the (1-alpha) quantile of these values.

Value

The function bootstrapBand returns a list with the following elements:

width number: (1-alpha) quantile of the values computed by the bootstrap algorithm.
It corresponds to half of the width of the unfiorm confidence band; that is, width
is the distance of the upper and lower limits of the band from the function eval-
uated using the original dataset X.

fun a numeric vector of length m, storing the values of the input function FUN, eval-
uated on the Grid using the original data X.

band an m by 2 matrix that stores the values of the lower limit of the confidence band
(first column) and upper limit of the confidence band (second column), evaluated
over the Grid.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Wasserman L (2004). "All of statistics: a concise course in statistical inference." Springer.

Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference
For Persistent Homology: Confidence Sets for Persistence Diagrams." (arXiv:1303.7117). Annals
of Statistics.

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

See Also

kde, dtm



bootstrapDiagram 13

Examples

# Generate data from mixture of 2 normals.
n <- 2000
X <- c(rnorm(n / 2), rnorm(n / 2, mean = 3, sd = 1.2))

# Construct a grid of points over which we evaluate the function
by <- 0.02
Grid <- seq(-3, 6, by = by)

## bandwidth for kernel density estimator
h <- 0.3
## Bootstrap confidence band
band <- bootstrapBand(X, kde, Grid, B = 80, parallel = FALSE, alpha = 0.05,

h = h)

plot(Grid, band[["fun"]], type = "l", lwd = 2,
ylim = c(0, max(band[["band"]])), main = "kde with 0.95 confidence band")

lines(Grid, pmax(band[["band"]][, 1], 0), col = 2, lwd = 2)
lines(Grid, band[["band"]][, 2], col = 2, lwd = 2)

bootstrapDiagram Bootstrapped Confidence Set for a Persistence Diagram, using the
Bottleneck Distance (or the Wasserstein distance).

Description

The function bootstrapDiagram computes a (1-alpha) confidence set for the Persistence Dia-
gram of a filtration of sublevel sets (or superlevel sets) of a function evaluated over a grid of points.
The function returns the (1-alpha) quantile of B bottleneck distances (or Wasserstein distances),
computed in B iterations of the bootstrap algorithm.

Usage

bootstrapDiagram(
X, FUN, lim, by, maxdimension = length(lim) / 2 - 1,
sublevel = TRUE, library = "GUDHI", B = 30, alpha = 0.05,
distance = "bottleneck", dimension = min(1, maxdimension),

p = 1, parallel = FALSE, printProgress = FALSE, weight = NULL,
...)

Arguments

X an n by d matrix of coordinates, used by the function FUN, where n is the number
of points stored in X and d is the dimension of the space.

FUN a function whose inputs are 1) an n by d matrix of coordinates X, 2) an m by
d matrix of coordinates Grid, 3) an optional smoothing parameter, and returns
a numeric vector of length m. For example see distFct, kde, and dtm which
compute the distance function, the kernel density estimator and the distance to



14 bootstrapDiagram

measure, over a grid of points using the input X. Note that Grid is not an input
of bootstrapDiagram, but is automatically computed by the function using lim
and by.

lim a 2 by d matrix, where each column specifies the range of each dimension of the
grid, over which the function FUN is evaluated.

by either a number or a vector of length d specifying space between points of the
grid in each dimension. If a number is given, then same space is used in each
dimension.

maxdimension a number that indicates the maximum dimension to compute persistent homol-
ogy to. The default value is d − 1, which is (dimension of embedding space -
1).

sublevel a logical variable indicating if the Persistence Diagram should be computed for
sublevel sets (TRUE) or superlevel sets (FALSE) of the function. The default value
is TRUE.

library a string specifying which library to compute the persistence diagram. The user
can choose either the library "GUDHI", "Dionysus", or "PHAT". The default
value is "GUDHI".

B the number of bootstrap iterations. The default value is 30.

alpha The function bootstrapDiagram returns a (1 - alpha) quantile. The default
value is 0.05.

distance a string specifying the distance to be used for persistence diagrams: either
"bottleneck" or "wasserstein". The default value is "bottleneck".

dimension dimension is an integer or a vector specifying the dimension of the features
used to compute the bottleneck distance. 0 for connected components, 1 for
loops, 2 for voids, and so on. The default value is 1 if maxdimension ≥ 1, and
else 0.

p if distance == "wasserstein", then p is an integer specifying the power to be
used in the computation of the Wasserstein distance. The default value is 1.

parallel logical: if TRUE the bootstrap iterations are parallelized, using the library parallel.
The default value is FALSE.

printProgress if TRUE a progress bar is printed. The default value is FALSE.

weight either NULL, a number, or a vector of length n. If it is NULL, weight is not
used. If it is a number, then same weight is applied to each points of X. If it is a
vector, weight represents weights of each points of X. The default value is NULL.

... additional parameters for the function FUN.

Details

The function bootstrapDiagram uses gridDiag to compute the persistence diagram of the input
function using the entire sample. Then the bootstrap algorithm, for B times, computes the bottleneck
distance between the original persistence diagram and the one computed using a subsample. Finally
the (1-alpha) quantile of these B values is returned. See (Chazal, Fasy, Lecci, Michel, Rinaldo, and
Wasserman, 2014) for discussion of the method.



bootstrapDiagram 15

Value

The function bootstrapDiagram returns the (1-alpha) quantile of the values computed by the
bootstrap algorithm.

Note

The function bootstrapDiagram uses the C++ library Dionysus for the computation of bottleneck
and Wasserstein distances. See references.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

Wasserman L (2004), "All of statistics: a concise course in statistical inference." Springer.

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology." https://www.
mrzv.org/software/dionysus/

See Also

bottleneck, bootstrapBand, distFct, kde, kernelDist, dtm, summary.diagram, plot.diagram

Examples

## confidence set for the Kernel Density Diagram

# input data
n <- 400
XX <- circleUnif(n)

## Ranges of the grid
Xlim <- c(-1.8, 1.8)
Ylim <- c(-1.6, 1.6)
lim <- cbind(Xlim, Ylim)
by <- 0.05

h <- .3 #bandwidth for the function kde

#Kernel Density Diagram of the superlevel sets
Diag <- gridDiag(XX, kde, lim = lim, by = by, sublevel = FALSE,

printProgress = TRUE, h = h)

# confidence set
B <- 10 ## the number of bootstrap iterations should be higher!

## this is just an example
alpha <- 0.05

https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/


16 bottleneck

cc <- bootstrapDiagram(XX, kde, lim = lim, by = by, sublevel = FALSE, B = B,
alpha = alpha, dimension = 1, printProgress = TRUE, h = h)

plot(Diag[["diagram"]], band = 2 * cc)

bottleneck Bottleneck distance between two persistence diagrams

Description

The function bottleneck computes the bottleneck distance between two persistence diagrams.

Usage

bottleneck(Diag1, Diag2, dimension = 1)

Arguments

Diag1 an object of class diagram or a matrix (n by 3) that stores dimension, birth and
death of n topological features.

Diag2 an object of class diagram or a matrix (m by 3) that stores dimension, birth and
death of m topological features.

dimension an integer or a vector specifying the dimension of the features used to compute
the bottleneck distance. 0 for connected components, 1 for loops, 2 for voids
and so on. The default value is 1 (loops). The default value is 1.

Details

The bottleneck distance between two diagrams is the cost of the optimal matching between points
of the two diagrams. Note that all the diagonal points are included in the persistence diagrams when
computing the optimal matching. When a vector is given for dimension, then maximum among
bottleneck distances using each element in dimension is returned. The function bottleneck is an
R wrapper of the function "bottleneck_distance" in the C++ library Dionysus. See references.

Value

The function bottleneck returns the value of the bottleneck distance between the two persistence
diagrams.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology." https://www.
mrzv.org/software/dionysus/

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/


circleUnif 17

See Also

wasserstein, alphaComplexDiag, alphaComplexDiag, gridDiag, ripsDiag, plot.diagram

Examples

XX1 <- circleUnif(20)
XX2 <- circleUnif(20, r = 0.2)

DiagLim <- 5
maxdimension <- 1

Diag1 <- ripsDiag(XX1, maxdimension, DiagLim, printProgress = FALSE)
Diag2 <- ripsDiag(XX2, maxdimension, DiagLim, printProgress = FALSE)

bottleneckDist <- bottleneck(Diag1[["diagram"]], Diag2[["diagram"]],
dimension = 1)

print(bottleneckDist)

circleUnif Uniform Sample From The Circle

Description

The function circleUnif samples n points from the circle of radius r, uniformly with respect to
the circumference length.

Usage

circleUnif(n, r = 1)

Arguments

n an integer specifying the number of points in the sample.

r a numeric variable specifying the radius of the circle. The default value is 1.

Value

circleUnif returns an n by 2 matrix of coordinates.

Note

Uniform sample from sphere of arbitrary dimension can be generated using sphereUnif.

Author(s)

Fabrizio Lecci



18 clusterTree

See Also

sphereUnif, torusUnif

Examples

X <- circleUnif(100)
plot(X)

clusterTree Density clustering: the cluster tree

Description

Given a point cloud, or a matrix of distances, the function clusterTree computes a density esti-
mator and returns the corresponding cluster tree of superlevel sets (lambda tree and kappa tree; see
references).

Usage

clusterTree(
X, k, h = NULL, density = "knn", dist = "euclidean", d = NULL,
Nlambda = 100, printProgress = FALSE)

Arguments

X If dist="euclidean", then X is an n by d matrix of coordinates, where n
is the number of points stored in X and d is the dimension of the space. If
dist="arbitrary", then X is an n by n matrix of distances.

k an integer value specifying the parameter of the underlying k-nearest neighbor
similarity graph, used to determine connected components. If density="knn",
then k is also used to compute the k-nearest neighbor density estimator.

h real value: if density = "kde", then h is used to compute the kernel density
estimator with bandwidth h. The default value is NULL.

density string: if "knn" then the k-nearest neighbor density estimator is used to compute
the cluster tree; if "kde" then the kernel density estimator is used to compute
the cluster tree. The default value is "knn".

dist string: can be "euclidean", when X is a point cloud or "arbitrary", when X
is a matrix of distances. The default value is "euclidean".

d integer: if dist="arbitrary", then d is the dimension of the underlying space.
The default value is "NULL".

Nlambda integer: size of the grid of values of the density estimator, used to compute the
cluster tree. High Nlambda (i.e. a fine grid) means a more accurate cluster Tree.
The default value is 100.

printProgress logical: if TRUE, a progress bar is printed. The default value is FALSE.



clusterTree 19

Details

The function clusterTree is an implementation of Algorithm 1 in the first reference.

Value

The function clusterTree returns an object of class clusterTree, a list with the following com-
ponents

density Vector of length n: the values of the density estimator evaluated at each of the
points stored in X

DataPoints A list whose elements are the points of X corresponding to each branch, in the
same order of id

n The number of points stored in the input matrix X

id Vector: the IDs associated to the branches of the cluster tree

children A list whose elements are the IDs of the children of each branch, in the same
order of id

parent Vector: the IDs of the parents of each branch, in the same order of id

silo A list whose elements are the horizontal coordinates of the silo of each branch,
in the same order of id

Xbase Vector: the horiontal coordinates of the branches of the cluster tree, in the same
order of id

lambdaBottom Vector: the vertical bottom coordinates of the branches of the lambda tree, in
the same order of id

lambdaTop Vector: the vertical top coordinates of the branches of the lambda tree, in the
same order of id

rBottom (only if density="knn") Vector: the vertical bottom coordinates of the branches
of the r tree, in the same order of id

rTop (only if density="knn") Vector: the vertical top coordinates of the branches of
the r tree, in the same order of id

alphaBottom Vector: the vertical bottom coordinates of the branches of the alpha tree, in the
same order of id

alphaTop Vector: the vertical top coordinates of the branches of the alpha tree, in the same
order of id

Kbottom Vector: the vertical bottom coordinates of the branches of the kappa tree, in the
same order of id

Ktop Vector: the vertical top coordinates of the branches of the kappa tree, in the same
order of id

Author(s)

Fabrizio Lecci



20 distFct

References

Kent BP, Rinaldo A, Verstynen T (2013). "DeBaCl: A Python Package for Interactive DEnsity-
BAsed CLustering." arXiv:1307.8136

Lecci F, Rinaldo A, Wasserman L (2014). "Metric Embeddings for Cluster Trees"

See Also

plot.clusterTree

Examples

## Generate data: 3 clusters
n <- 1200 #sample size
Neach <- floor(n / 4)
X1 <- cbind(rnorm(Neach, 1, .8), rnorm(Neach, 5, 0.8))
X2 <- cbind(rnorm(Neach, 3.5, .8), rnorm(Neach, 5, 0.8))
X3 <- cbind(rnorm(Neach, 6, 1), rnorm(Neach, 1, 1))
X <- rbind(X1, X2, X3)

k <- 100 #parameter of knn

## Density clustering using knn and kde
Tree <- clusterTree(X, k, density = "knn")
TreeKDE <- clusterTree(X, k, h = 0.3, density = "kde")

par(mfrow = c(2, 3))
plot(X, pch = 19, cex = 0.6)
# plot lambda trees
plot(Tree, type = "lambda", main = "lambda Tree (knn)")
plot(TreeKDE, type = "lambda", main = "lambda Tree (kde)")
# plot clusters
plot(X, pch = 19, cex = 0.6, main = "cluster labels")
for (i in Tree[["id"]]){

points(matrix(X[Tree[["DataPoints"]][[i]],],ncol = 2), col = i, pch = 19,
cex = 0.6)

}
#plot kappa trees
plot(Tree, type = "kappa", main = "kappa Tree (knn)")
plot(TreeKDE, type = "kappa", main = "kappa Tree (kde)")

distFct Distance function

Description

The function distFct computes the distance between each point of a set Grid and the correspond-
ing closest point of another set X.



distFct 21

Usage

distFct(X, Grid)

Arguments

X a numeric m by d matrix of coordinates in the space, where m is the number
of points in X and d is the dimension of the space. X is the set of points whose
distance is being measured from a base grid.

Grid a numeric n by d matrix of coordinates in the space, where n is the number of
points in Grid and d is the dimension of the space. Grid is the base set from
which each point is compared to the closest point in X.

Details

Given a set of points X, the distance function computed at g is defined as

d(g) = inf
x∈X

∥x− g∥2

Value

The function distFct returns a numeric vector of length n, where n is the number of points stored
in Grid. Each value in V corresponds to the distance between a point in G and the nearest point in
X.

Author(s)

Fabrizio Lecci

See Also

kde,kernelDist, dtm

Examples

## Generate Data from the unit circle
n <- 300
X <- circleUnif(n)

## Construct a grid of points over which we evaluate the function
interval <- 0.065
Xseq <- seq(-1.6, 1.6, by = interval)
Yseq <- seq(-1.7, 1.7, by = interval)
Grid <- expand.grid(Xseq, Yseq)

## distance fct
distance <- distFct(X, Grid)



22 dtm

dtm Distance to Measure Function

Description

The function dtm computes the "distance to measure function" on a set of points Grid, using the
uniform empirical measure on a set of points X. Given a probability measure P , The distance to
measure function, for each y ∈ Rd, is defined by

dm0(y) =

(
1

m0

∫ m0

0

(G−1
y (u))rdu

)1/r

,

where Gy(t) = P (∥X − y∥ ≤ t), and m0 ∈ (0, 1) and r ∈ [1,∞) are tuning parameters. As m0
increases, DTM function becomes smoother, so m0 can be understood as a smoothing parameter. r
affects less but also changes DTM function as well. The DTM can be seen as a smoothed version
of the distance function. See Details and References.

Given X = {x1, . . . , xn}, the empirical version of the distance to measure is

d̂m0(y) =

1

k

∑
xi∈Nk(y)

∥xi − y∥r
1/r

,

where k = ⌈m0∗n⌉ and Nk(y) is the set containing the k nearest neighbors of y among x1, . . . , xn.

Usage

dtm(X, Grid, m0, r = 2, weight = 1)

Arguments

X an n by d matrix of coordinates of points used to construct the uniform empirical
measure for the distance to measure, where n is the number of points and d is
the dimension.

Grid an m by d matrix of coordinates of points where the distance to measure is
computed, where m is the number of points in Grid and d is the dimension.

m0 a numeric variable for the smoothing parameter of the distance to measure.
Roughly, m0 is the the percentage of points of X that are considered when the
distance to measure is computed for each point of Grid. The value of m0 should
be in (0, 1).

r a numeric variable for the tuning parameter of the distance to measure. The
value of r should be in [1,∞), and the default value is 2.

weight either a number, or a vector of length n. If it is a number, then same weight is
applied to each points of X. If it is a vector, weight represents weights of each
points of X. The default value is 1.



dtm 23

Details

See (Chazal, Cohen-Steiner, and Merigot, 2011, Definition 3.2) and (Chazal, Massart, and Michel,
2015, Equation (2)) for a formal definition of the "distance to measure" function.

Value

The function dtm returns a vector of length m (the number of points stored in Grid) containing the
value of the distance to measure function evaluated at each point of Grid.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Chazal F, Cohen-Steiner D, Merigot Q (2011). "Geometric inference for probability measures."
Foundations of Computational Mathematics 11.6, 733-751.

Chazal F, Massart P, Michel B (2015). "Rates of convergence for robust geometric inference."

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

See Also

kde, kernelDist, distFct

Examples

## Generate Data from the unit circle
n <- 300
X <- circleUnif(n)

## Construct a grid of points over which we evaluate the function
by <- 0.065
Xseq <- seq(-1.6, 1.6, by = by)
Yseq <- seq(-1.7, 1.7, by = by)
Grid <- expand.grid(Xseq, Yseq)

## distance to measure
m0 <- 0.1
DTM <- dtm(X, Grid, m0)



24 filtrationDiag

filtrationDiag Persistence Diagram of Filtration

Description

The function filtrationDiag computes the persistence diagram of the filtration.

Usage

filtrationDiag(
filtration, maxdimension, library = "GUDHI", location = FALSE,
printProgress = FALSE, diagLimit = NULL)

Arguments

filtration a list representing the input filtration. This list consists of three components:
"cmplx", a list representing the complex, "values", a vector representing the
filtration values, and "increasing", a logical variable indicating if the filtration
values are in increasing order or in decreasing order.

maxdimension integer: max dimension of the homological features to be computed. (e.g. 0 for
connected components, 1 for connected components and loops, 2 for connected
components, loops, voids, etc.)

library a string specifying which library to compute the persistence diagram. The user
can choose either the library "GUDHI" or "Dionysus". The default value is
"GUDHI".

location if TRUE and if "Dionysus" is used for computing the persistence diagram, loca-
tion of birth point, death point, and representative cycles, of each homological
feature is returned.

printProgress logical: if TRUE, a progress bar is printed. The default value is FALSE.

diagLimit a number that replaces Inf in the persistence diagram. The default value is NULL
and Inf value in the persistence diagram will not be replaced.

Details

The user can decide to use either the C++ library GUDHI or Dionysus. See refereneces.

Value

The function filtrationDiag returns a list with the following elements:

diagram an object of class diagram, a P by 3 matrix, where P is the number of points
in the resulting persistence diagram. The first column contains the dimension of
each feature (0 for components, 1 for loops, 2 for voids, etc.). Second and third
columns are Birth and Death of the features.

https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/


filtrationDiag 25

birthLocation only if location=TRUE and if "Dionysus" is used for computing the persistence
diagram: a vector of length P . Each row represents the index of the vertex
completing the simplex that gives birth to an homological feature.

deathLocation only if location=TRUE and if "Dionysus" is used for computing the persistence
diagram: a vector of length P . Each row represents the index of the vertex
completing the simplex that kills an homological feature.

cycleLocation only if location=TRUE and if "Dionysus" is used for computing the persistence
diagram: a Pi by hi + 1 matrix for hi dimensional homological feature. It
represents index of hi + 1 vertices of Pi simplices on a representative cycle of
the hi dimensional homological feature.

Author(s)

Jisu Kim

References

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https:
//project.inria.fr/gudhi/software/.

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology". https://www.
mrzv.org/software/dionysus/

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

Fasy B, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference
For Persistent Homology." (arXiv:1303.7117). Annals of Statistics.

See Also

summary.diagram, plot.diagram

Examples

n <- 5
X <- cbind(cos(2*pi*seq_len(n)/n), sin(2*pi*seq_len(n)/n))
maxdimension <- 1
maxscale <- 1.5
dist <- "euclidean"
library <- "Dionysus"

FltRips <- ripsFiltration(X = X, maxdimension = maxdimension,
maxscale = maxscale, dist = "euclidean", library = "Dionysus",
printProgress = TRUE)

DiagFltRips <- filtrationDiag(filtration = FltRips, maxdimension = maxdimension,
library = "Dionysus", location = TRUE, printProgress = TRUE)

plot(DiagFltRips[["diagram"]])

https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/


26 funFiltration

FUNvalues <- X[, 1] + X[, 2]

FltFun <- funFiltration(FUNvalues = FUNvalues, cmplx = FltRips[["cmplx"]])

DiagFltFun <- filtrationDiag(filtration = FltFun, maxdimension = maxdimension,
library = "Dionysus", location = TRUE, printProgress = TRUE)

plot(DiagFltFun[["diagram"]], diagLim = c(-2, 5))

funFiltration Filtration from function values

Description

The function funFiltration computes the filtration from the complex and the function values.

Usage

funFiltration(FUNvalues, cmplx, sublevel = TRUE)

Arguments

FUNvalues The function values on the vertices of the complex.

cmplx the complex.

sublevel a logical variable indicating if the Persistence Diagram should be computed for
sublevel sets (TRUE) or superlevel sets (FALSE) of the function. The default value
is TRUE.

Details

See references.

Value

The function funFiltration returns a list with the following elements:

cmplx a list representing the complex. Its i-th element represents the vertices of i-th
simplex.

values a vector representing the filtration values. Its i-th element represents the filtration
value of i-th simplex.

increasing a logical variable indicating if the filtration values are in increasing order (TRUE)
or in decreasing order (FALSE).

Author(s)

Jisu Kim



gridDiag 27

References

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

See Also

filtrationDiag

Examples

n <- 5
X <- cbind(cos(2*pi*seq_len(n)/n), sin(2*pi*seq_len(n)/n))
maxdimension <- 1
maxscale <- 1.5
dist <- "euclidean"
library <- "Dionysus"

FltRips <- ripsFiltration(X = X, maxdimension = maxdimension,
maxscale = maxscale, dist = "euclidean", library = "Dionysus",
printProgress = TRUE)

FUNvalues <- X[, 1] + X[, 2]

FltFun <- funFiltration(FUNvalues = FUNvalues, cmplx = FltRips[["cmplx"]])

gridDiag Persistence Diagram of a function over a Grid

Description

The function gridDiag computes the Persistence Diagram of a filtration of sublevel sets (or super-
level sets) of a function evaluated over a grid of points in arbitrary dimension d.

Usage

gridDiag(
X = NULL, FUN = NULL, lim = NULL, by = NULL, FUNvalues = NULL,
maxdimension = max(NCOL(X), length(dim(FUNvalues))) - 1,
sublevel = TRUE, library = "GUDHI", location = FALSE,
printProgress = FALSE, diagLimit = NULL, ...)

Arguments

X an n by d matrix of coordinates, used by the function FUN, where n is the number
of points stored in X and d is the dimension of the space. NULL if this option is
not used. The default value is NULL.



28 gridDiag

FUN a function whose inputs are 1) an n by d matrix of coordinates X, 2) an m by
d matrix of coordinates Grid, 3) an optional smoothing parameter, and returns
a numeric vector of length m. For example see distFct, kde, and dtm which
compute the distance function, the kernel density estimator and the distance to
measure, over a grid of points using the input X. Note that Grid is not an input
of gridDiag, but is automatically computed by the function using lim, and by.
NULL if this option is not used. The default value is NULL.

lim a 2 by d matrix, where each column specifying the range of each dimension of
the grid, over which the function FUN is evaluated. NULL if this option is not
used. The default value is NULL.

by either a number or a vector of length d specifying space between points of the
grid in each dimension. If a number is given, then same space is used in each
dimension. NULL if this option is not used. The default value is NULL.

FUNvalues an m1 ∗ m2 ∗ ... ∗ md array of function values over m1 ∗ m2 ∗ ... ∗ md grid,
where mi is the number of scales of grid on ith dimension. NULL if this option
is not used. The default value is NULL.

maxdimension a number that indicates the maximum dimension of the homological features to
compute: 0 for connected components, 1 for loops, 2 for voids and so on. The
default value is d− 1, which is (dimension of embedding space - 1).

sublevel a logical variable indicating if the Persistence Diagram should be computed for
sublevel sets (TRUE) or superlevel sets (FALSE) of the function. The default value
is TRUE.

library a string specifying which library to compute the persistence diagram. The user
can choose either the library "GUDHI", "Dionysus", or "PHAT". The default
value is "GUDHI".

location if TRUE and if "Dionysus" or "PHAT" is used for computing the persistence
diagram, location of birth point and death point of each homological feature is
returned. Additionaly if library="Dionysus", location of representative cycles
of each homological feature is also returned. The default value is FALSE.

printProgress if TRUE a progress bar is printed. The default value is FALSE.

diagLimit a number that replaces Inf (if sublevel is TRUE) or -Inf (if sublevel is FALSE)
in the Death value of the most persistent connected component. The default
value is NULL and the max/min of the function is used.

... additional parameters for the function FUN.

Details

If the values of X, FUN are set, then FUNvalues should be NULL. In this case, gridDiag evaluates the
function FUN over a grid. If the value of FUNvalues is set, then X, FUN should be NULL. In this case,
FUNvalues is used as function values over the grid. If location=TRUE, then lim, and by should be
set.

Once function values are either computed or given, gridDiag constructs a filtration by triangulating
the grid and considering the simplices determined by the values of the function of dimension up to
maxdimension+1.



gridDiag 29

Value

The function gridDiag returns a list with the following components:

diagram an object of class diagram, a P by 3 matrix, where P is the number of points
in the resulting persistence diagram. The first column stores the dimension of
each feature (0 for components, 1 for loops, 2 for voids, etc). Second and third
columns are Birth and Death of the features, in case of a filtration constructed
using sublevel sets (from -Inf to Inf), or Death and Birth of features, in case of a
filtration constructed using superlevel sets (from Inf to -Inf).

birthLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the
persistence diagram: a P by d matrix, where P is the number of points in the
resulting persistence diagram. Each row represents the location of the grid point
completing the simplex that gives birth to an homological feature.

deathLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the
persistence diagram: a P by d matrix, where P is the number of points in the
resulting persistence diagram. Each row represents the location of the grid point
completing the simplex that kills an homological feature.

cycleLocation only if location=TRUE and if "Dionysus" is used for computing the persistence
diagram: a list of length P , where P is the number of points in the resulting
persistence diagram. Each element is a Pi by hi+1 by d array for hi dimensional
homological feature. It represents location of hi + 1 vertices of Pi simplices,
where Pi simplices constitutes the hi dimensional homological feature.

Note

The user can decide to use either the C++ library GUDHI, Dionysus, or PHAT. See references.

Since dimension of simplicial complex from grid points in Rd is up to d, homology of dimension
≥ d is trivial. Hence setting maxdimension with values ≥ d is equivalent to maxdimension=d-1.

Author(s)

Brittany T. Fasy, Jisu Kim, and Fabrizio Lecci

References

Fasy B, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference
For Persistent Homology." (arXiv:1303.7117). Annals of Statistics.

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology." https://www.
mrzv.org/software/dionysus/

Bauer U, Kerber M, Reininghaus J (2012). "PHAT, a software library for persistent homology."
https://bitbucket.org/phat-code/phat/

See Also

summary.diagram, plot.diagram, distFct, kde, kernelDist, dtm, alphaComplexDiag, alphaComplexDiag,
ripsDiag

https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://bitbucket.org/phat-code/phat/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/
https://bitbucket.org/phat-code/phat/


30 gridFiltration

Examples

## Distance Function Diagram and Kernel Density Diagram

# input data
n <- 300
XX <- circleUnif(n)

## Ranges of the grid
Xlim <- c(-1.8, 1.8)
Ylim <- c(-1.6, 1.6)
lim <- cbind(Xlim, Ylim)
by <- 0.05

h <- .3 #bandwidth for the function kde

#Distance Function Diagram of the sublevel sets
Diag1 <- gridDiag(XX, distFct, lim = lim, by = by, sublevel = TRUE,

printProgress = TRUE)

#Kernel Density Diagram of the superlevel sets
Diag2 <- gridDiag(XX, kde, lim = lim, by = by, sublevel = FALSE,

library = "Dionysus", location = TRUE, printProgress = TRUE, h = h)
#plot
par(mfrow = c(2, 2))
plot(XX, cex = 0.5, pch = 19)
title(main = "Data")
plot(Diag1[["diagram"]])
title(main = "Distance Function Diagram")
plot(Diag2[["diagram"]])
title(main = "Density Persistence Diagram")
one <- which(Diag2[["diagram"]][, 1] == 1)
plot(XX, col = 2, main = "Representative loop of grid points")
for (i in seq(along = one)) {

points(Diag2[["birthLocation"]][one[i], , drop = FALSE], pch = 15, cex = 3,
col = i)

points(Diag2[["deathLocation"]][one[i], , drop = FALSE], pch = 17, cex = 3,
col = i)

for (j in seq_len(dim(Diag2[["cycleLocation"]][[one[i]]])[1])) {
lines(Diag2[["cycleLocation"]][[one[i]]][j, , ], pch = 19, cex = 1, col = i)

}
}

gridFiltration Persistence Diagram of a function over a Grid

Description

The function gridFiltration computes the Persistence Diagram of a filtration of sublevel sets (or
superlevel sets) of a function evaluated over a grid of points in arbitrary dimension d.



gridFiltration 31

Usage

gridFiltration(
X = NULL, FUN = NULL, lim = NULL, by = NULL, FUNvalues = NULL,
maxdimension = max(NCOL(X), length(dim(FUNvalues))) - 1,
sublevel = TRUE, printProgress = FALSE, ...)

Arguments

X an n by d matrix of coordinates, used by the function FUN, where n is the number
of points stored in X and d is the dimension of the space. NULL if this option is
not used. The default value is NULL.

FUN a function whose inputs are 1) an n by d matrix of coordinates X, 2) an m by
d matrix of coordinates Grid, 3) an optional smoothing parameter, and returns
a numeric vector of length m. For example see distFct, kde, and dtm which
compute the distance function, the kernel density estimator and the distance to
measure, over a grid of points using the input X. Note that Grid is not an input
of gridFiltration, but is automatically computed by the function using lim,
and by. NULL if this option is not used. The default value is NULL.

lim a 2 by d matrix, where each column specifying the range of each dimension of
the grid, over which the function FUN is evaluated. NULL if this option is not
used. The default value is NULL.

by either a number or a vector of length d specifying space between points of the
grid in each dimension. If a number is given, then same space is used in each
dimension. NULL if this option is not used. The default value is NULL.

FUNvalues an m1 ∗ m2 ∗ ... ∗ md array of function values over m1 ∗ m2 ∗ ... ∗ md grid,
where mi is the number of scales of grid on ith dimension. NULL if this option
is not used. The default value is NULL.

maxdimension a number that indicates the maximum dimension of the homological features to
compute: 0 for connected components, 1 for loops, 2 for voids and so on. The
default value is d− 1, which is (dimension of embedding space - 1).

sublevel a logical variable indicating if the Persistence Diagram should be computed for
sublevel sets (TRUE) or superlevel sets (FALSE) of the function. The default value
is TRUE.

printProgress if TRUE a progress bar is printed. The default value is FALSE.

... additional parameters for the function FUN.

Details

If the values of X, FUN are set, then FUNvalues should be NULL. In this case, gridFiltration
evaluates the function FUN over a grid. If the value of FUNvalues is set, then X, FUN should be NULL.
In this case, FUNvalues is used as function values over the grid.

Once function values are either computed or given, gridFiltration constructs a filtration by tri-
angulating the grid and considering the simplices determined by the values of the function of di-
mension up to maxdimension+1.



32 gridFiltration

Value

The function gridFiltration returns a list with the following elements:

cmplx a list representing the complex. Its i-th element represents the vertices of i-th
simplex.

values a vector representing the filtration values. Its i-th element represents the filtration
value of i-th simplex.

increasing a logical variable indicating if the filtration values are in increasing order (TRUE)
or in decreasing order (FALSE).

coordinates only if both lim and by are not NULL: a matrix representing the coordinates of
vertices. Its i-th row represents the coordinate of i-th vertex.

Note

The user can decide to use either the C++ library GUDHI, Dionysus, or PHAT. See references.

Since dimension of simplicial complex from grid points in Rd is up to d, homology of dimension
≥ d is trivial. Hence setting maxdimension with values ≥ d is equivalent to maxdimension=d-1.

Author(s)

Brittany T. Fasy, Jisu Kim, and Fabrizio Lecci

References

Fasy B, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference
For Persistent Homology." (arXiv:1303.7117). Annals of Statistics.

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology." https://www.
mrzv.org/software/dionysus/

Bauer U, Kerber M, Reininghaus J (2012). "PHAT, a software library for persistent homology."
https://bitbucket.org/phat-code/phat/

See Also

summary.diagram, plot.diagram, distFct, kde, kernelDist, dtm, alphaComplexDiag, alphaComplexDiag,
ripsDiag

Examples

# input data
n <- 10
XX <- circleUnif(n)

## Ranges of the grid
Xlim <- c(-1, 1)
Ylim <- c(-1, 1)
lim <- cbind(Xlim, Ylim)
by <- 1

https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://bitbucket.org/phat-code/phat/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/
https://bitbucket.org/phat-code/phat/


hausdInterval 33

#Distance Function Diagram of the sublevel sets
FltGrid <- gridFiltration(

XX, distFct, lim = lim, by = by, sublevel = TRUE, printProgress = TRUE)

hausdInterval Subsampling Confidence Interval for the Hausdorff Distance between
a Manifold and a Sample

Description

hausdInterval computes a confidence interval for the Hausdorff distance between a point cloud X
and the underlying manifold from which X was sampled. See Details and References.

Usage

hausdInterval(
X, m, B = 30, alpha = 0.05, parallel = FALSE,
printProgress = FALSE)

Arguments

X an n by d matrix of coordinates of sampled points.

m the size of the subsamples.

B the number of subsampling iterations. The default value is 30.

alpha hausdInterval returns a (1-alpha) confidence interval. The default value is
0.05.

parallel logical: if TRUE, the iterations are parallelized, using the library parallel. The
default value is FALSE.

printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Details

For B times, the subsampling algorithm subsamples m points of X (without replacement) and com-
putes the Hausdorff distance between the original sample X and the subsample. The result is a
sequence of B values. Let q be the (1-alpha) quantile of these values and let c = 2 ∗ q. The interval
[0, c] is a valid (1-alpha) confidence interval for the Hausdorff distance between X and the under-
lying manifold, as proven in (Fasy, Lecci, Rinaldo, Wasserman, Balakrishnan, and Singh, 2013,
Theorem 3).

Value

The function hausdInterval returns a number c. The confidence interval is [0, c].

Author(s)

Fabrizio Lecci



34 kde

References

Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference
For Persistent Homology: Confidence Sets for Persistence Diagrams." (arXiv:1303.7117). Annals
of Statistics.

See Also

bootstrapBand

Examples

X <- circleUnif(1000)
interval <- hausdInterval(X, m = 800)
print(interval)

kde Kernel Density Estimator over a Grid of Points

Description

Given a point cloud X (n points), the function kde computes the Kernel Density Estimator over a
grid of points. The kernel is a Gaussian Kernel with smoothing parameter h. For each x ∈ Rd, the
Kernel Density estimator is defined as

pX(x) =
1

n(
√
2πh)d

n∑
i=1

exp

(
−∥x−Xi∥22

2h2

)
.

Usage

kde(X, Grid, h, kertype = "Gaussian", weight = 1,
printProgress = FALSE)

Arguments

X an n by d matrix of coordinates of points used in the kernel density estimation
process, where n is the number of points and d is the dimension.

Grid an m by d matrix of coordinates, where m is the number of points in the grid.

h number: the smoothing paramter of the Gaussian Kernel.

kertype string: if kertype = "Gaussian", Gaussian kernel is used, and if kertype =
"Epanechnikov", Epanechnikov kernel is used. Defaults to "Gaussian".

weight either a number, or a vector of length n. If it is a number, then same weight is
applied to each points of X. If it is a vector, weight represents weights of each
points of X. The default value is 1.

printProgress if TRUE, a progress bar is printed. The default value is FALSE.



kernelDist 35

Value

The function kde returns a vector of length m (the number of points in the grid) containing the value
of the kernel density estimator for each point in the grid.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Larry Wasserman (2004), "All of statistics: a concise course in statistical inference", Springer.

Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology: Confidence Sets for Per-
sistence Diagrams", (arXiv:1303.7117). To appear, Annals of Statistics.

See Also

kernelDist, distFct, dtm

Examples

## Generate Data from the unit circle
n <- 300
X <- circleUnif(n)

## Construct a grid of points over which we evaluate the function
by <- 0.065
Xseq <- seq(-1.6, 1.6, by=by)
Yseq <- seq(-1.7, 1.7, by=by)
Grid <- expand.grid(Xseq,Yseq)

## kernel density estimator
h <- 0.3
KDE <- kde(X, Grid, h)

kernelDist Kernel distance over a Grid of Points

Description

Given a point cloud X, the function kernelDist computes the kernel distance over a grid of points.
The kernel is a Gaussian Kernel with smoothing parameter h:

Kh(x, y) = exp

(
−∥x− y∥22

2h2

)
.

For each x ∈ Rd, the Kernel distance is defined by

κX(x) =

√√√√ 1

n2

n∑
i=1

n∑
j=1

Kh(Xi, Xj) +Kh(x, x)− 2
1

n

n∑
i=1

Kh(x,Xi).



36 kernelDist

Usage

kernelDist(X, Grid, h, weight = 1, printProgress = FALSE)

Arguments

X an n by d matrix of coordinates of points, where n is the number of points and
d is the dimension.

Grid an m by d matrix of coordinates, where m is the number of points in the grid.

h number: the smoothing paramter of the Gaussian Kernel.

weight either a number, or a vector of length n. If it is a number, then same weight is
applied to each points of X. If it is a vector, weight represents weights of each
points of X. The default value is 1.

printProgress if TRUE, a progress bar is printed. The default value is FALSE.

Value

The function kernelDist returns a vector of lenght m (the number of points in the grid) containing
the value of the Kernel distance for each point in the grid.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Phillips JM, Wang B, Zheng Y (2013). "Geometric Inference on Kernel Density Estimates." arXiv:1307.7760.

Chazal F, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust Topological
Inference: Distance-To-a-Measure and Kernel Distance." Technical Report.

See Also

kde, dtm, distFct

Examples

## Generate Data from the unit circle
n <- 300
X <- circleUnif(n)

## Construct a grid of points over which we evaluate the functions
by <- 0.065
Xseq <- seq(-1.6, 1.6, by = by)
Yseq <- seq(-1.7, 1.7, by = by)
Grid <- expand.grid(Xseq, Yseq)

## kernel distance estimator
h <- 0.3
Kdist <- kernelDist(X, Grid, h)



knnDE 37

knnDE k Nearest Neighbors Density Estimator over a Grid of Points

Description

Given a point cloud X (n points), The function knnDE computes the k Nearest Neighbors Density
Estimator over a grid of points. For each x ∈ Rd, the knn Density Estimator is defined by

pX(x) =
k

n vd rdk(x)
,

where vn is the volume of the Euclidean d dimensional unit ball and rdk(x) is the Euclidean distance
from point x to its k’th closest neighbor.

Usage

knnDE(X, Grid, k)

Arguments

X an n by d matrix of coordinates of points used in the density estimation process,
where n is the number of points and d is the dimension.

Grid an m by d matrix of coordinates, where m is the number of points in the grid.

k number: the smoothing paramter of the k Nearest Neighbors Density Estimator.

Value

The function knnDE returns a vector of length m (the number of points in the grid) containing the
value of the knn Density Estimator for each point in the grid.

Author(s)

Fabrizio Lecci

See Also

kde, kernelDist, distFct, dtm

Examples

## Generate Data from the unit circle
n <- 300
X <- circleUnif(n)

## Construct a grid of points over which we evaluate the function
by <- 0.065
Xseq <- seq(-1.6, 1.6, by = by)
Yseq <- seq(-1.7, 1.7, by = by)



38 landscape

Grid <- expand.grid(Xseq, Yseq)

## kernel density estimator
k <- 50
KNN <- knnDE(X, Grid, k)

landscape The Persistence Landscape Function

Description

The function landscape computes the landscape function corresponding to a given persistence
diagram.

Usage

landscape(
Diag, dimension = 1, KK = 1,
tseq = seq(min(Diag[,2:3]), max(Diag[,2:3]), length=500))

Arguments

Diag an object of class diagram or a P by 3 matrix, storing a persistence diagram
with colnames: "dimension", "Birth", "Death".

dimension the dimension of the topological features under consideration. The default value
is 1 (loops).

KK a vector: the order of the landscape function. The default value is 1. (First
Landscape function).

tseq a vector of values at which the landscape function is evaluated.

Value

The function landscape returns a numeric matrix with the number of row as the length of tseq and
the number of column as the length of KK. The value at ith row and jth column represents the value
of the KK[j]-th landscape function evaluated at tseq[i].

Author(s)

Fabrizio Lecci

References

Bubenik P (2012). "Statistical topology using persistence landscapes." arXiv:1207.6437.

Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2014). "Stochastic Convergence of Persis-
tence Landscapes and Silhouettes." Proceedings of the 30th Symposium of Computational Geome-
try (SoCG). (arXiv:1312.0308)



maxPersistence 39

See Also

silhouette

Examples

Diag <- matrix(c(0, 0, 10, 1, 0, 3, 1, 3, 8), ncol = 3, byrow = TRUE)
DiagLim <- 10
colnames(Diag) <- c("dimension", "Birth", "Death")

#persistence landscape
tseq <- seq(0,DiagLim, length = 1000)
Land <- landscape(Diag, dimension = 1, KK = 1, tseq)

par(mfrow = c(1,2))
plot.diagram(Diag)
plot(tseq, Land, type = "l", xlab = "t", ylab = "landscape", asp = 1)

maxPersistence Maximal Persistence Method

Description

Given a point cloud and a function built on top of the data, we are interested in studying the evolution
of the sublevel sets (or superlevel sets) of the function, using persistent homology. The Maximal
Persistence Method selects the optimal smoothing parameter of the function, by maximizing the
number of significant topological features, or by maximizing the total significant persistence of
the features. For each value of the smoothing parameter, the function maxPersistence computes
a persistence diagram using gridDiag and returns the values of the two criteria, the dimension
of detected features, their persistence, and a bootstrapped confidence band. The features that fall
outside of the band are statistically significant. See References.

Usage

maxPersistence(
FUN, parameters, X, lim, by,
maxdimension = length(lim) / 2 - 1, sublevel = TRUE,
library = "GUDHI", B = 30, alpha = 0.05,
bandFUN = "bootstrapBand", distance = "bottleneck",
dimension = min(1, maxdimension), p = 1, parallel = FALSE,
printProgress = FALSE, weight = NULL)

Arguments

FUN the name of a function whose inputs are: 1) X, a n by d matrix of coordinates
of the input point cloud, where d is the dimension of the space; 2) a matrix
of coordinates of points forming a grid at which the function can be evaluated
(note that this grid is not passed as an input, but is automatically computed by
maxPersistence); 3) a real valued smoothing parameter. For example, see kde,
dtm, kernelDist.



40 maxPersistence

parameters a numerical vector, storing a sequence of values for the smoothing paramter of
FUN among which maxPersistence will select the optimal ones.

X a n by d matrix of coordinates of the input point cloud, where d is the dimension
of the space.

lim a 2 by d matrix, where each column specifying the range of each dimension of
the grid, over which the function FUN is evaluated.

by either a number or a vector of length d specifying space between points of the
grid in each dimension. If a number is given, then same space is used in each
dimension.

maxdimension a number that indicates the maximum dimension to compute persistent homol-
ogy to. The default value is d − 1, which is (dimension of embedding space -
1).

sublevel a logical variable indicating if the persistent homology should be computed for
sublevel sets of FUN (TRUE) or superlevel sets (FALSE). The default value is TRUE.

library a string specifying which library to compute the persistence diagram. The user
can choose either the library "GUDHI", "Dionysus", or "PHAT". The default
value is "GUDHI".

bandFUN the function to be used in the computation of the confidence band. Either
"bootstrapDiagram" or "bootstrapBand".

B the number of bootstrap iterations.

alpha for each value store in parameters, maxPersistence computes a (1-alpha)
confidence band.

distance optional (if bandFUN == bootstrapDiagram): a string specifying the distance to
be used for persistence diagrams: either "bottleneck" or "wasserstein"

dimension optional (if bandFUN == bootstrapDiagram): an integer or a vector specifying
the dimension of the features used to compute the bottleneck distance. 0 for
connected components, 1 for loops, 2 for voids. The default value is 1.

p optional (if bandFUN == bootstrapDiagram AND distance == "wasserstein"):
integer specifying the power to be used in the computation of the Wasserstein
distance. The default value is 1.

parallel logical: if TRUE, the bootstrap iterations are parallelized, using the library parallel.

printProgress if TRUE, a progress bar is printed. The default value is FALSE.

weight either NULL, a number, or a vector of length n. If it is NULL, weight is not
used. If it is a number, then same weight is applied to each points of X. If it is a
vector, weight represents weights of each points of X.

Details

The function maxPersistence calls the gridDiag function, which computes the persistence dia-
gram of sublevel (or superlevel) sets of a function, evaluated over a grid of points.



maxPersistence 41

Value

The function maxPersistence returns an object of the class "maxPersistence", a list with the fol-
lowing components

parameters the same vector parameters given in input

sigNumber a numeric vector storing the number of significant features in the persistence
diagrams computed using each value in parameters

sigPersistence a numeric vector storing the sum of significant persistence of the features in the
persistence diagrams, computed using each value in parameters

bands a numeric vector storing the bootstrap band’s width, for each value in parameters

Persistence a list of the same lenght of parameters. Each element of the list is a Pi by
2 matrix, where Pi is the number of features found using the parameter i: the
first column stores the dimension of each feature and the second column the
persistence abs(death-birth|).

Author(s)

Jisu Kim and Fabrizio Lecci

References

Chazal F, Cisewski J, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust
Topological Inference: distance-to-a-measure and kernel distance."

Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference
For Persistent Homology", (arXiv:1303.7117). Annals of Statistics.

See Also

gridDiag, kde, kernelDist, dtm, bootstrapBand

Examples

## input data: circle with clutter noise
n <- 600
percNoise <- 0.1
XX1 <- circleUnif(n)
noise <- cbind(runif(percNoise * n, -2, 2), runif(percNoise * n, -2, 2))
X <- rbind(XX1, noise)

## limits of the Gird at which the density estimator is evaluated
Xlim <- c(-2, 2)
Ylim <- c(-2, 2)
lim <- cbind(Xlim, Ylim)
by <- 0.2

B <- 80
alpha <- 0.05

## candidates



42 multipBootstrap

parametersKDE <- seq(0.1, 0.5, by = 0.2)

maxKDE <- maxPersistence(kde, parametersKDE, X, lim = lim, by = by,
bandFUN = "bootstrapBand", B = B, alpha = alpha,
parallel = FALSE, printProgress = TRUE)

print(summary(maxKDE))

par(mfrow = c(1,2))
plot(X, pch = 16, cex = 0.5, main = "Circle")
plot(maxKDE)

multipBootstrap Multiplier Bootstrap for Persistence Landscapes and Silhouettes

Description

The function multipBootstrap computes a confidence band for the average landscape (or the
average silhouette) using the multiplier bootstrap.

Usage

multipBootstrap(
Y, B = 30, alpha = 0.05, parallel = FALSE,
printProgress = FALSE)

Arguments

Y an N by m matrix of values of N persistence landscapes (or silhouettes) evalu-
ated over a 1 dimensional grid of length m.

B the number of bootstrap iterations.

alpha multipBootstrap returns a 1-alpha confidence band for the mean landscape
(or silhouette).

parallel logical: if TRUE the bootstrap iterations are parallelized, using the library parallel.

printProgress logical: if TRUE a progress bar is printed. The default value is FALSE.

Details

See Algorithm 1 in the reference.

Value

The function multipBootstrap returns a list with the following elements:

width number: half of the width of the unfiorm confidence band; that is, the distance
of the upper and lower limits of the band from the empirical average landscape
(or silhouette).



multipBootstrap 43

mean a numeric vector of length m, storing the values of the empirical average land-
scape (or silhouette) over a 1 dimensional grid of length m.

band an m by 2 matrix that stores the values of the lower limit of the confidence band
(first column) and upper limit of the confidence band (second column), evaluated
over a 1 dimensional grid of length m.

Author(s)

Fabrizio Lecci

References

Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2014). "Stochastic Convergence of Persis-
tence Landscapes and Silhouettes." Proceedings of the 30th Symposium of Computational Geome-
try (SoCG). (arXiv:1312.0308)

See Also

landscape, silhouette

Examples

nn <- 3000 #large sample size
mm <- 50 #small subsample size
NN <- 5 #we will compute NN diagrams using subsamples of size mm

XX <- circleUnif(nn) ## large sample from the unit circle

DiagLim <- 2
maxdimension <- 1
tseq <- seq(0, DiagLim, length = 1000)

Diags <- list() #here we will store the NN rips diagrams
#constructed using different subsamples of mm points

#here we'll store the landscapes
Lands <- matrix(0, nrow = NN, ncol = length(tseq))

for (i in seq_len(NN)){
subXX <- XX[sample(seq_len(nn), mm), ]
Diags[[i]] <- ripsDiag(subXX, maxdimension, DiagLim)
Lands[i, ] <- landscape(Diags[[i]][["diagram"]], dimension = 1, KK = 1, tseq)

}

## now we use the NN landscapes to construct a confidence band
B <- 50
alpha <- 0.05
boot <- multipBootstrap(Lands, B, alpha)

LOWband <- boot[["band"]][, 1]
UPband <- boot[["band"]][, 2]
MeanLand <- boot[["mean"]]



44 plot.clusterTree

plot(tseq, MeanLand, type = "l", lwd = 2, xlab = "", ylab = "",
main = "Mean Landscape with band", ylim = c(0, 1.2))

polygon(c(tseq, rev(tseq)), c(LOWband, rev(UPband)), col = "pink")
lines(tseq, MeanLand, lwd = 1, col = 2)

plot.clusterTree Plots the Cluster Tree

Description

The function plot.clusterTree plots the Cluster Tree stored in an object of class clusterTree.

Usage

## S3 method for class 'clusterTree'
plot(

x, type = "lambda", color = NULL, add = FALSE, ...)

Arguments

x an object of class clusterTree. (see clusterTree)

type string: if "lambda", then the lambda Tree is plotted. if "r", then the r Tree is
plotted. if "alpha", then the alpha Tree is plotted. if "kappa", then the kappa
Tree is plotted.

color number: the color of the branches of the Cluster Tree. The default value is NULL
and a different color is assigned to each branch.

add logical: if TRUE, the Tree is added to an existing plot.

... additional graphical parameters.

Author(s)

Fabrizio Lecci

References

Kent BP, Rinaldo A, Verstynen T (2013). "DeBaCl: A Python Package for Interactive DEnsity-
BAsed CLustering." arXiv:1307.8136

Lecci F, Rinaldo A, Wasserman L (2014). "Metric Embeddings for Cluster Trees"

See Also

clusterTree, print.clusterTree



plot.diagram 45

Examples

## Generate data: 3 clusters
n <- 1200 #sample size
Neach <- floor(n / 4)
X1 <- cbind(rnorm(Neach, 1, .8), rnorm(Neach, 5, 0.8))
X2 <- cbind(rnorm(Neach, 3.5, .8), rnorm(Neach, 5, 0.8))
X3 <- cbind(rnorm(Neach, 6, 1), rnorm(Neach, 1, 1))
XX <- rbind(X1, X2, X3)

k <- 100 #parameter of knn

## Density clustering using knn and kde
Tree <- clusterTree(XX, k, density = "knn")
TreeKDE <- clusterTree(XX,k, h = 0.3, density = "kde")

par(mfrow = c(2, 3))
plot(XX, pch = 19, cex = 0.6)
# plot lambda trees
plot(Tree, type = "lambda", main = "lambda Tree (knn)")
plot(TreeKDE, type = "lambda", main = "lambda Tree (kde)")
# plot clusters
plot(XX, pch = 19, cex = 0.6, main = "cluster labels")
for (i in Tree[["id"]]){

points(matrix(XX[Tree[["DataPoints"]][[i]], ], ncol = 2), col = i, pch = 19,
cex = 0.6)

}
#plot kappa trees
plot(Tree, type = "kappa", main = "kappa Tree (knn)")
plot(TreeKDE, type = "kappa", main = "kappa Tree (kde)")

plot.diagram Plot the Persistence Diagram

Description

The function plot.diagram plots the Persistence Diagram stored in an object of class diagram.
Optionally, it can also represent the diagram as a persistence barcode.

Usage

## S3 method for class 'diagram'
plot(

x, diagLim = NULL, dimension = NULL, col = NULL,
rotated = FALSE, barcode = FALSE, band = NULL, lab.line = 2.2,
colorBand = "pink", colorBorder = NA, add = FALSE, ...)



46 plot.diagram

Arguments

x an object of class diagram (as returned by the functions alphaComplexDiag,
alphaComplexDiag, gridDiag, or ripsDiag) or an n by 3 matrix, where n is
the number of features to be plotted.

diagLim numeric vector of length 2, specifying the limits of the plot. If NULL then it is
automatically computed using the lifetimes of the features.

dimension number specifying the dimension of the features to be plotted. If NULL all the
features are plotted.

col an optional vector of length P that stores the colors of the topological features
to be plotted, where P is the number of topological features stored in x.

rotated logical: if FALSE the plotted diagram has axes (birth, death), if TRUE the plotted
diagram has axes ((birth+death)/2,(death-birth)/2). The default value is FALSE.

barcode logical: if TRUE the persistence barcode is plotted, in place of the diagram.

band numeric: if band!=NULL, a pink band of size band is added around the diagonal.
If also barcode is TRUE, then bars shorter than band are dotted. The default
value is NULL.

lab.line number of lines from the plot edge, where the labels will be placed. The default
value is 2.2.

colorBand the color for filling the confidence band. The default value is "pink". (NA
leaves the band unfilled)

colorBorder the color to draw the border of the confidence band. The default value is NA and
omits the border.

add logical: if TRUE, the points of x are added to an existing plot.

... additional graphical parameters.

Author(s)

Fabrizio Lecci

References

Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, Larry Wasserman, Sivaraman Balakrishnan,
and Aarti Singh. (2013), "Statistical Inference For Persistent Homology", (arXiv:1303.7117). To
appear, Annals of Statistics.

Frederic Chazal, Brittany T. Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman,
(2014), "Stochastic Convergence of Persistence Landscapes and Silhouettes", Proceedings of the
30th Symposium of Computational Geometry (SoCG). (arXiv:1312.0308)

See Also

alphaComplexDiag, alphaComplexDiag, gridDiag, ripsDiag



plot.maxPersistence 47

Examples

XX1 <- circleUnif(30)
XX2 <- circleUnif(30, r = 2) + 3
XX <- rbind(XX1, XX2)

DiagLim <- 5
maxdimension <- 1

## rips diagram
Diag <- ripsDiag(XX, maxdimension, DiagLim, printProgress = TRUE)

#plot
par(mfrow = c(1, 3))
plot(Diag[["diagram"]])
plot(Diag[["diagram"]], rotated = TRUE)
plot(Diag[["diagram"]], barcode = TRUE)

plot.maxPersistence Summary plot for the maxPersistence function

Description

The function plot.maxPersistence plots an object of class maxPersistence, for the selection of
the optimal smoothing parameter for persistent homology. For each value of the smoothing param-
eter, the plot shows the number of detected features, their persistence, and a bootstrap confidence
band.

Usage

## S3 method for class 'maxPersistence'
plot(

x, features = "dimension", colorBand = "pink",
colorBorder = NA, ...)

Arguments

x an object of class maxPersistence, as returned by the functions maxPersistence

features string: if "all" then all the features are plotted; if "dimension" then only the
features of the dimension used to compute the confidence band are plotted.

colorBand the color for filling the confidence band. The default is "pink". (NA leaves the
band unfilled)

colorBorder the color to draw the border of the confidence band. The default is NA and omits
the border.

... additional graphical parameters.

Author(s)

Fabrizio Lecci



48 ripsDiag

References

Chazal F, Cisewski J, Fasy BT, Lecci F, Michel B, Rinaldo A, Wasserman L (2014). "Robust
Topological Inference: distance-to-a-measure and kernel distance."

Fasy BT, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference
For Persistent Homology." (arXiv:1303.7117). Annals of Statistics.

See Also

maxPersistence

Examples

## input data: circle with clutter noise
n <- 600
percNoise <- 0.1
XX1 <- circleUnif(n)
noise <- cbind(runif(percNoise * n, -2, 2), runif(percNoise * n, -2, 2))
X <- rbind(XX1, noise)

## limits of the Gird at which the density estimator is evaluated
Xlim <- c(-2, 2)
Ylim <- c(-2, 2)
lim <- cbind(Xlim, Ylim)
by <- 0.2

B <- 80
alpha <- 0.05

## candidates
parametersKDE <- seq(0.1, 0.5, by = 0.2)

maxKDE <- maxPersistence(kde, parametersKDE, X, lim = lim, by = by,
bandFUN = "bootstrapBand", B = B, alpha = alpha,
parallel = FALSE, printProgress = TRUE)

print(summary(maxKDE))

par(mfrow = c(1, 2))
plot(X, pch = 16, cex = 0.5, main = "Circle")
plot(maxKDE)

ripsDiag Rips Persistence Diagram

Description

The function ripsDiag computes the persistence diagram of the Rips filtration built on top of a
point cloud.



ripsDiag 49

Usage

ripsDiag(
X, maxdimension, maxscale, dist = "euclidean",
library = "GUDHI", location = FALSE, printProgress = FALSE)

Arguments

X If dist="euclidean", X is an n by d matrix of coordinates, where n is the
number of points in the d-dimensional euclidean space. If dist="arbitrary",
X is an n by n matrix of distances of n points.

maxdimension integer: max dimension of the homological features to be computed. (e.g. 0 for
connected components, 1 for connected components and loops, 2 for connected
components, loops, voids, etc.) Currently there is a bug for computing homo-
logical features of dimension higher than 1 when the distance is arbitrary (dist
= "arbitrary") and library ’GUDHI’ is used (library = "GUDHI").

maxscale number: maximum value of the rips filtration.

dist "euclidean" for Euclidean distance, "arbitrary" for an arbitrary distance
given in input as a distance matrix. Currently there is a bug for the arbitrary
distance (dist = "arbitrary") when computing homological features of di-
mension higher than 1 and library ’GUDHI’ is used (library = "GUDHI").

library either a string or a vector of length two. When a vector is given, the first el-
ement specifies which library to compute the Rips filtration, and the second
element specifies which library to compute the persistence diagram. If a string
is used, then the same library is used. For computing the Rips filtration, if dist
= "euclidean", the user can use either the library "GUDHI" or "Dionysus".
If dist = "arbitrary", the user can use either the library "Dionysus". The
default value is "GUDHI" if dist = "euclidean", and "Dionysus" if dist ==
"arbitrary". When "GUDHI" is used for dist = "arbitrary", "Dionysus" is
implicitly used. For computing the persistence diagram, the user can choose ei-
ther the library "GUDHI", "Dionysus", or "PHAT". The default value is "GUDHI".
Currently there is a bug for ’GUDHI’ (library = "GUDHI") when computing
homological features of dimension higher than 1 and the distance is arbitrary
(dist = "arbitrary").

location if TRUE and if "Dionysus" or "PHAT" is used for computing the persistence
diagram, location of birth point and death point of each homological feature is
returned. Additionaly if library="Dionysus", location of representative cycles
of each homological feature is also returned.

printProgress logical: if TRUE, a progress bar is printed. The default value is FALSE.

Details

For Rips filtration based on Euclidean distance of the input point cloud, the user can decide to use
either the C++ library GUDHI or Dionysus. For Rips filtration based on arbitrary distance, the user
can decide to the C++ library Dionysus. Then for computing the persistence diagram from the Rips
filtration, the user can use either the C++ library GUDHI, Dionysus, or PHAT. Currently there is a
bug for computing homological features of dimension higher than 1 when the distance is arbitrary
(dist = "arbitrary") and library ’GUDHI’ is used (library = "GUDHI"). See refereneces.

https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/
https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://bitbucket.org/phat-code/phat/


50 ripsDiag

Value

The function ripsDiag returns a list with the following elements:

diagram an object of class diagram, a P by 3 matrix, where P is the number of points
in the resulting persistence diagram. The first column contains the dimension of
each feature (0 for components, 1 for loops, 2 for voids, etc.). Second and third
columns are Birth and Death of the features.

birthLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing
the persistence diagram: if dist="euclidean", then birthLocation is a P
by d matrix, where P is the number of points in the resulting persistence dia-
gram. Each row represents the location of the data point completing the sim-
plex that gives birth to an homological feature. If dist="arbitrary", then
birthLocation is a vector of length P . Each row represents the index of the
data point completing the simplex that gives birth to an homological feature.

deathLocation only if location=TRUE and if "Dionysus" or "PHAT" is used for computing the
persistence diagram: if dist="euclidean", then deathLocation is a P by d
matrix, where P is the number of points in the resulting persistence diagram.
Each row represents the location of the data point completing the simplex that
kills an homological feature. If dist="arbitrary", then deathLocation is a
vector of length P . Each row represents the index of the data point completing
the simplex that kills an homological feature.

cycleLocation only if location=TRUE and if "Dionysus" is used for computing the persis-
tence diagram: if dist="euclidean", then cycleLocation is a list of length
P , where P is the number of points in the resulting persistence diagram. Each
element is a Pi by hi + 1 by d array for hi dimensional homological feature. It
represents location of hi + 1 vertices of Pi simplices, where Pi simplices con-
stitutes the hi dimensional homological feature. If dist = "arbitrary", then
each element is a Pi by hi + 1 matrix for for hi dimensional homological fea-
ture. It represents index of hi + 1 vertices of Pi simplices on a representative
cycle of the hi dimensional homological feature.

Author(s)

Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, and Clement Maria

References

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https:
//project.inria.fr/gudhi/software/.

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology". https://www.
mrzv.org/software/dionysus/

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

Fasy B, Lecci F, Rinaldo A, Wasserman L, Balakrishnan S, Singh A (2013). "Statistical Inference
For Persistent Homology." (arXiv:1303.7117). Annals of Statistics.

https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/


ripsFiltration 51

See Also

summary.diagram, plot.diagram, gridDiag

Examples

## EXAMPLE 1: rips diagram for circles (euclidean distance)
X <- circleUnif(30)
maxscale <- 5
maxdimension <- 1
## note that the input X is a point cloud
DiagRips <- ripsDiag(

X = X, maxdimension = maxdimension, maxscale = maxscale,
library = "Dionysus", location = TRUE, printProgress = TRUE)

# plot
layout(matrix(c(1, 3, 2, 2), 2, 2))
plot(X, cex = 0.5, pch = 19)
title(main = "Data")
plot(DiagRips[["diagram"]])
title(main = "rips Diagram")
one <- which(

DiagRips[["diagram"]][, 1] == 1 &
DiagRips[["diagram"]][, 3] - DiagRips[["diagram"]][, 2] > 0.5)

plot(X, col = 2, main = "Representative loop of data points")
for (i in seq(along = one)) {

for (j in seq_len(dim(DiagRips[["cycleLocation"]][[one[i]]])[1])) {
lines(
DiagRips[["cycleLocation"]][[one[i]]][j, , ], pch = 19, cex = 1,

col = i)
}

}

## EXAMPLE 2: rips diagram with arbitrary distance
## distance matrix for triangle with edges of length: 1,2,4
distX <- matrix(c(0, 1, 2, 1, 0, 4, 2, 4, 0), ncol = 3)
maxscale <- 5
maxdimension <- 1
## note that the input distXX is a distance matrix
DiagTri <- ripsDiag(distX, maxdimension, maxscale, dist = "arbitrary",

printProgress = TRUE)
#points with lifetime = 0 are not shown. e.g. the loop of the triangle.
print(DiagTri[["diagram"]])

ripsFiltration Rips Filtration

Description

The function ripsFiltration computes the Rips filtration built on top of a point cloud.



52 ripsFiltration

Usage

ripsFiltration(
X, maxdimension, maxscale, dist = "euclidean",
library = "GUDHI", printProgress = FALSE)

Arguments

X If dist="euclidean", X is an n by d matrix of coordinates, where n is the
number of points in the d-dimensional euclidean space. If dist="arbitrary",
X is an n by n matrix of distances of n points.

maxdimension integer: max dimension of the homological features to be computed. (e.g. 0 for
connected components, 1 for connected components and loops, 2 for connected
components, loops, voids, etc.)

maxscale number: maximum value of the rips filtration.

dist "euclidean" for Euclidean distance, "arbitrary" for an arbitrary distance
given in input as a distance matrix.

library a string specifying which library to compute the Rips filtration. If dist = "euclidean",
the user can use either the library "GUDHI" or "Dionysus". If dist = "arbitrary",
the user can use the library "Dionysus". The default value is "GUDHI" if dist
= "euclidean", and "Dionysus" if dist == "arbitrary". When "GUDHI" is
used for dist = "arbitrary", "Dionysus" is implicitly used.

printProgress logical: if TRUE, a progress bar is printed. The default value is FALSE.

Details

For Rips filtration based on Euclidean distance of the input point cloud, the user can decide to use
either the C++ library GUDHI or Dionysus. For Rips filtration based on arbitrary distance, the user
can use the C++ library Dionysus. See refereneces.

Value

The function ripsFiltration returns a list with the following elements:

cmplx a list representing the complex. Its i-th element represents the vertices of i-th
simplex.

values a vector representing the filtration values. Its i-th element represents the filtration
value of i-th simplex.

increasing a logical variable indicating if the filtration values are in increasing order (TRUE)
or in decreasing order (FALSE).

coordinates only if dist = "euclidean": a matrix representing the coordinates of vertices.
Its i-th row represents the coordinate of i-th vertex.

Author(s)

Jisu Kim

https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/


silhouette 53

References

Maria C (2014). "GUDHI, Simplicial Complexes and Persistent Homology Packages." https:
//project.inria.fr/gudhi/software/.

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology". https://www.
mrzv.org/software/dionysus/

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

See Also

ripsDiag, filtrationDiag

Examples

n <- 5
X <- cbind(cos(2*pi*seq_len(n)/n), sin(2*pi*seq_len(n)/n))
maxdimension <- 1
maxscale <- 1.5

FltRips <- ripsFiltration(X = X, maxdimension = maxdimension,
maxscale = maxscale, dist = "euclidean", library = "GUDHI",
printProgress = TRUE)

# plot rips filtration
lim <- rep(c(-1, 1), 2)
plot(NULL, type = "n", xlim = lim[1:2], ylim = lim[3:4],

main = "Rips Filtration Plot")
for (idx in seq(along = FltRips[["cmplx"]])) {

polygon(FltRips[["coordinates"]][FltRips[["cmplx"]][[idx]], , drop = FALSE],
col = "pink", border = NA, xlim = lim[1:2], ylim = lim[3:4])

}
for (idx in seq(along = FltRips[["cmplx"]])) {

polygon(FltRips[["coordinates"]][FltRips[["cmplx"]][[idx]], , drop = FALSE],
col = NULL, xlim = lim[1:2], ylim = lim[3:4])

}
points(FltRips[["coordinates"]], pch = 16)

silhouette The Persistence Silhouette Function

Description

The function silhouette computes the silhouette function corresponding to a given persistence
diagram.

Usage

silhouette(
Diag, p = 1, dimension = 1,
tseq = seq(min(Diag[, 2:3]), max(Diag[, 2:3]), length = 500))

https://project.inria.fr/gudhi/software/
https://project.inria.fr/gudhi/software/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/


54 silhouette

Arguments

Diag an object of class diagram or a P by 3 matrix, storing a persistence diagram
with colnames: "dimension", "Birth", "Death".

p a vector: the power of the weights of the silhouette function. See the definition
of silhouette function, Section 5 in the reference.

dimension the dimension of the topological features under consideration. The default value
is 1 (loops).

tseq a vector of values at which the silhouette function is evaluated.

Value

The function silhouette returns a numeric matrix of with the number of row as the length of tseq
and the number of column as the length of p. The value at ith row and jth column represents the
value of the p[j]-th power silhouette function evaluated at tseq[i].

Author(s)

Fabrizio Lecci

References

Chazal F, Fasy BT, Lecci F, Rinaldo A, Wasserman L (2014). "Stochastic Convergence of Persis-
tence Landscapes and Silhouettes." Proceedings of the 30th Symposium of Computational Geome-
try (SoCG). (arXiv:1312.0308)

See Also

landscape

Examples

Diag <- matrix(c(0, 0, 10, 1, 0, 3, 1, 3, 8), ncol = 3, byrow = TRUE)
DiagLim <- 10
colnames(Diag) <- c("dimension", "Birth", "Death")

#persistence silhouette
tseq <- seq(0, DiagLim, length = 1000)
Sil <- silhouette(Diag, p = 1, dimension = 1, tseq)

par(mfrow = c(1, 2))
plot.diagram(Diag)
plot(tseq, Sil, type = "l", xlab = "t", ylab = "silhouette", asp = 1)



sphereUnif 55

sphereUnif Uniform Sample From The Sphere Sˆd

Description

The function sphereUnif samples n points from the sphere Sd of radius r embedded in Rd+1,
uniformly with respect to the volume measure of the sphere.

Usage

sphereUnif(n, d, r = 1)

Arguments

n an integer specifying the number of points in the sample.

d an integer specifying the dimension of the sphere Sd

r a numeric variable specifying the radius of the sphere. The default value is 1.

Value

The function sphereUnif returns an n by 2 matrix of coordinates.

Note

When d = 1, this function is same as using circleUnif.

Author(s)

Jisu Kim

See Also

circleUnif, torusUnif

Examples

X <- sphereUnif(n = 100, d = 1, r = 1)
plot(X)



56 summary.diagram

summary.diagram print and summary for diagram

Description

The function print.diagram prints a persistence diagram, a P by 3 matrix, where P is the number
of points in the diagram. The first column contains the dimension of each feature (0 for components,
1 for loops, 2 for voids, etc.). Second and third columns are Birth and Death of the features.

The function summary.diagram produces basic summaries of a persistence diagrams.

Usage

## S3 method for class 'diagram'
print(x, ...)
## S3 method for class 'diagram'
summary(object, ...)

Arguments

x an object of class diagram

object an object of class diagram

... additional arguments affecting the summary produced.

Author(s)

Fabrizio Lecci

See Also

plot.diagram, alphaComplexDiag, alphaComplexDiag, gridDiag, ripsDiag

Examples

# Generate data from 2 circles
XX1 <- circleUnif(30)
XX2 <- circleUnif(30, r = 2) + 3
XX <- rbind(XX1, XX2)

DiagLim <- 5 # limit of the filtration
maxdimension <- 1 # computes betti0 and betti1

Diag <- ripsDiag(XX, maxdimension, DiagLim, printProgress = TRUE)

print(Diag[["diagram"]])
print(summary(Diag[["diagram"]]))



torusUnif 57

torusUnif Uniform Sample From The 3D Torus

Description

The function torusUnif samples n points from the 3D torus, uniformly with respect to its surface.

Usage

torusUnif(n, a, c)

Arguments

n an integer specifying the number of points in the sample.

a the radius of the torus tube.

c the radius from the center of the hole to the center of the torus tube.

Details

This function torusUnif is an implementation of Algorithm 1 in the reference.

Value

The function torusUnif returns an n by 3 matrix of coordinates.

Author(s)

Fabrizio Lecci

References

Diaconis P, Holmes S, and Shahshahani M (2013). "Sampling from a manifold." Advances in
Modern Statistical Theory and Applications: A Festschrift in honor of Morris L. Eaton. Institute of
Mathematical Statistics, 102-125.

See Also

circleUnif,sphereUnif

Examples

X <- torusUnif(300, a = 1.8, c = 5)
plot(X)



58 wasserstein

wasserstein Wasserstein distance between two persistence diagrams

Description

The function wasserstein computes the Wasserstein distance between two persistence diagrams.

Usage

wasserstein(Diag1, Diag2, p = 1, dimension = 1)

Arguments

Diag1 an object of class diagram or a matrix (n by 3) that stores dimension, birth and
death of n topological features.

Diag2 an object of class diagram or a matrix (m by 3) that stores dimension, birth and
death of m topological features.

p integer specifying the power to be used in the computation of the Wasserstein
distance. The default value is 1.

dimension an integer or a vector specifying the dimension of the features used to compute
the wasserstein distance. 0 for connected components, 1 for loops, 2 for voids
and so on. The default value is 1 (loops).

Details

The Wasserstein distance between two diagrams is the cost of the optimal matching between points
of the two diagrams. When a vector is given for dimension, then maximum among bottleneck dis-
tances using each element in dimension is returned. This function is an R wrapper of the function
"wasserstein_distance" in the C++ library Dionysus. See references.

Value

The function wasserstein returns the value of the Wasserstein distance between the two persis-
tence diagrams.

Author(s)

Jisu Kim and Fabrizio Lecci

References

Morozov D (2007). "Dionysus, a C++ library for computing persistent homology". https://www.
mrzv.org/software/dionysus/.

Edelsbrunner H, Harer J (2010). "Computational topology: an introduction." American Mathemat-
ical Society.

https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/
https://www.mrzv.org/software/dionysus/


wasserstein 59

See Also

bottleneck, alphaComplexDiag, alphaComplexDiag, gridDiag, ripsDiag, plot.diagram

Examples

XX1 <- circleUnif(20)
XX2 <- circleUnif(20, r = 0.2)

DiagLim <- 5
maxdimension <- 1

Diag1 <- ripsDiag(XX1, maxdimension, DiagLim, printProgress = FALSE)
Diag2 <- ripsDiag(XX2, maxdimension, DiagLim, printProgress = FALSE)

wassersteinDist <- wasserstein(Diag1[["diagram"]], Diag2[["diagram"]], p = 1,
dimension = 1)

print(wassersteinDist)



Index

∗ datagen
circleUnif, 17
sphereUnif, 55
torusUnif, 57

∗ hplot
plot.clusterTree, 44
plot.diagram, 45
plot.maxPersistence, 47

∗ htest
bootstrapBand, 11
bootstrapDiagram, 13
hausdInterval, 33
multipBootstrap, 42

∗ methods
alphaComplexDiag, 3
alphaComplexFiltration, 6
alphaShapeDiag, 7
alphaShapeFiltration, 10
bottleneck, 16
filtrationDiag, 24
funFiltration, 26
gridDiag, 27
gridFiltration, 30
landscape, 38
maxPersistence, 39
ripsDiag, 48
ripsFiltration, 51
silhouette, 53
wasserstein, 58

∗ nonparametric
bootstrapBand, 11
bootstrapDiagram, 13
clusterTree, 18
distFct, 20
dtm, 22
hausdInterval, 33
kde, 34
kernelDist, 35
knnDE, 37

multipBootstrap, 42
∗ optimize

bottleneck, 16
wasserstein, 58

∗ package
TDA-package, 2

alphaComplexDiag, 3, 7, 9, 17, 29, 32, 46, 56,
59

alphaComplexFiltration, 6
alphaShapeDiag, 5, 7, 11
alphaShapeFiltration, 10

bootstrapBand, 11, 15, 34, 41
bootstrapDiagram, 13
bottleneck, 15, 16, 59

circleUnif, 17, 55, 57
clusterTree, 18, 44

distFct, 11, 13, 15, 20, 23, 28, 29, 31, 32,
35–37

dtm, 11–13, 15, 21, 22, 28, 29, 31, 32, 35–37,
39, 41

filtrationDiag, 7, 11, 24, 27, 53
funFiltration, 26

gridDiag, 5, 9, 14, 17, 27, 40, 41, 46, 51, 56,
59

gridFiltration, 30

hausdInterval, 33

kde, 11–13, 15, 21, 23, 28, 29, 31, 32, 34, 36,
37, 39, 41

kernelDist, 15, 21, 23, 29, 32, 35, 35, 37, 39,
41

knnDE, 37

landscape, 38, 43, 54

60



INDEX 61

maxPersistence, 39, 47, 48
multipBootstrap, 42

plot.clusterTree, 20, 44
plot.diagram, 5, 9, 15, 17, 25, 29, 32, 45, 51,

56, 59
plot.maxPersistence, 47
print.clusterTree, 44
print.clusterTree (clusterTree), 18
print.diagram (summary.diagram), 56
print.maxPersistence (maxPersistence),

39
print.summary.diagram

(summary.diagram), 56
print.summary.maxPersistence

(maxPersistence), 39

ripsDiag, 5, 9, 17, 29, 32, 46, 48, 53, 56, 59
ripsFiltration, 51

silhouette, 39, 43, 53
sphereUnif, 17, 18, 55, 57
summary.diagram, 5, 9, 15, 25, 29, 32, 51, 56
summary.maxPersistence

(maxPersistence), 39

TDA (TDA-package), 2
TDA-package, 2
torusUnif, 18, 55, 57

wasserstein, 17, 58


	TDA-package
	alphaComplexDiag
	alphaComplexFiltration
	alphaShapeDiag
	alphaShapeFiltration
	bootstrapBand
	bootstrapDiagram
	bottleneck
	circleUnif
	clusterTree
	distFct
	dtm
	filtrationDiag
	funFiltration
	gridDiag
	gridFiltration
	hausdInterval
	kde
	kernelDist
	knnDE
	landscape
	maxPersistence
	multipBootstrap
	plot.clusterTree
	plot.diagram
	plot.maxPersistence
	ripsDiag
	ripsFiltration
	silhouette
	sphereUnif
	summary.diagram
	torusUnif
	wasserstein
	Index

