
Package ‘SuperRanker’
January 20, 2025

Type Package

Title Sequential Rank Agreement

Version 1.2.1

Date 2023-08-27

Description Tools for analysing the agreement of two or more rankings of the same items. Exam-
ples are importance rankings of predictor variables and risk predictions of subjects. Bench-
marks for agreement are computed based on random permutation and bootstrap. See Ek-
strøm CT, Gerds TA, Jensen, AK (2018). ``Sequential rank agreement methods for compari-
son of ranked lists.'' _Biostatistics_, *20*(4), 582-
598 <doi:10.1093/biostatistics/kxy017> for more information.

License GPL (>= 2)

Imports stats, graphics, Rcpp (>= 0.11.5), prodlim (>= 1.5.7)

LinkingTo Rcpp

Encoding UTF-8

ByteCompile true

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation yes

Author Claus Thorn Ekstrøm [aut, cre],
Thomas Alexander Gerds [aut]

Maintainer Claus Thorn Ekstrøm <ekstrom@sund.ku.dk>

Repository CRAN

Date/Publication 2023-08-27 22:40:09 UTC

Contents
average_overlap . 2
overlap . 2
plot.sra . 3

1

https://doi.org/10.1093/biostatistics/kxy017

2 overlap

random_list_sra . 4
smooth_sra . 5
sra . 6
sracpp . 8
sracppfull . 9
SuperRanker . 9
test_sra . 10

Index 11

average_overlap Compute the average overlap

Description

Compute the average overlap

Usage

average_overlap(obj)

Arguments

obj Either a vector or matrix

Value

A vector of the average overlap

Examples

setting with 3 lists
mlist <- matrix(cbind(1:8,c(1,2,3,5,6,7,4,8),c(1,5,3,4,2,8,7,6)),ncol=3)
average_overlap(mlist)

overlap Compute the overlap between k ranked lists

Description

Computes the overlap (number of items present in all k lists divided by the current rank) for each
rank in the k lists

Usage

overlap(rankMat)

plot.sra 3

Arguments

rankMat A matrix with k columns corresponding to the k ranked lists. Elements of each
column are integers between 1 and the length of the lists

Value

A vector of the same length as the rows in rankMat containing the overlap between the lists for each
rank

Author(s)

Claus Ekstrøm <ekstrom@sund.ku.dk>

plot.sra Plot sequential rank agreement

Description

Plot the agreement between lists as a function of the list depth

Usage

S3 method for class 'sra'
plot(
x,
xlim,
ylim,
xlab = "List depth",
ylab = "Sequential rank agreement",
add = FALSE,
...

)

Arguments

x Agreement object

xlim x-axis limits

ylim y-axis limits

xlab x-axis lab

ylab y-axis lab

add Logical. If TRUE add graph to existing plot.

... Processed by function prodlim::SmartControl.

Value

Graph

4 random_list_sra

Author(s)

Thomas A. Gerds <tag@biostat.ku.dk>

Examples

R1=c(1,2,3,4,5,7,6,8,9,10,11,12,13)
R2=c(5,11,4,7,8,3,12,13,6,10,9,2,1)
a <- sra(list(R1,R2))
plot(a)
arand = colMeans(do.call("rbind",lapply(1:20,function(b){

sra(list(sample(R1),sample(R1)))
})))
lines(1:length(R1),arand,col=2,lwd=3)

l <- c(1,2,3,4,5,7,6,8,9,10,11,12,13)
l <- 1:100
aa <- sapply(1:20,function(i){

sra(list(sample(l),sample(l),sample(l)))[i]
})
c(mean(aa),sd(aa))

random_list_sra Simulate sequential rank agreement for randomized unrelated lists

Description

Simulate sequential rank agreement from completely uninformative lists (ie., raw permutations of
items) and compute the corresponding sequential rank agreement curves. The following attributes
are copied from the input object: number of lists, number of items and amount of censoring.

Usage

random_list_sra(
object,
B = 1,
n = 1,
na.strings = NULL,
nitems = NULL,
type = c("sd", "mad"),
epsilon = 0

)

Arguments

object A matrix of numbers or list of vectors representing ranked lists.

B An integer giving the number of randomizations to sample over in the case of
censored observations

smooth_sra 5

n Integer: the number of permutation runs. For each permutation run we per-
mute each of the lists in object and compute corresponding the sequential rank
agreement curves

na.strings A vector of character values that represent censored observations

nitems The total number of items in the original lists if we only have partial lists avail-
able. Will be derived from the unique elements of the object if set to NULL (the
default)

type The type of measure to use. Either sd (standard deviation - the default) or mad
(median absolute deviance)

epsilon A non-negative numeric vector that contains the minimum limit in proportion of
lists that must show the item. Defaults to 0. If a single number is provided then
the value will be recycles to the number of items. Should usually be low.

Value

A matrix with n columns and the same number of rows as for the input object. Each column contains
one simulated sequential rank agreement curve from one permutation run.

Author(s)

Claus Ekstrøm <ekstrom@sund.ku.dk>

Examples

setting with 3 lists
mlist <- matrix(cbind(1:8,c(1,2,3,5,6,7,4,8),c(1,5,3,4,2,8,7,6)),ncol=3)
compute sequential rank agreement of lists
sra(mlist)
compute sequential rank agreement of 5 random permutations
random_list_sra(mlist, n=5)

smooth_sra Smooth quantiles of a matrix of sequential ranked agreements.

Description

Smooth quantiles of a matrix of sequential ranked agreements.

Usage

smooth_sra(object, confidence = 0.95)

Arguments

object A matrix

confidence the limits to compute

6 sra

Value

A list containing two vectors for the smoothed lower and upper limits

Author(s)

Claus Ekstrøm <ekstrom@sund.ku.dk>

Examples

setting with 3 lists
mlist <- matrix(cbind(1:8,c(1,2,3,5,6,7,4,8),c(1,5,3,4,2,8,7,6)),ncol=3)
compute rank agreement of 5 random permutations
null=random_list_sra(mlist,n=15)
now extract point-wise quantiles according to confidence level
smooth_sra(null)

sra Compute the sequential rank agreement

Description

Compute the sequential rank agreement

Usage

sra(object, B, na.strings, nitems, type, epsilon = 0, ...)

Default S3 method:
sra(object, B, na.strings, nitems, type, epsilon = 0, ...)

S3 method for class 'matrix'
sra(
object,
B = 1,
na.strings = NULL,
nitems = nrow(object),
type = c("sd", "mad"),
epsilon = 0,
...

)

S3 method for class 'list'
sra(
object,
B = 1,
na.strings = NULL,
nitems = max(sapply(object, length)),

sra 7

type = c("sd", "mad"),
epsilon = 0,
...

)

Arguments

object Either matrix where each column is a ranked list of items or a list of ranked lists
of items. Elements are integers between 1 and the length of the lists. The lists
should have the same length but censoring can be used by setting the list to zero
from a point onwards. See details for more information.

B An integer giving the number of randomization to sample over in the case of
censored observations

na.strings A vector of strings/values that represent missing values in addition to NA. De-
faults to NULL which means only NA are censored values.

nitems The total number of items in the original lists if we only have partial lists avail-
able.

type The type of measure to use. Either sd (standard deviation - the default) or mad
(median absolute deviance around the median)

epsilon A non-negative numeric vector that contains the minimum limit in proportion of
lists that must show the item. Defaults to 0. If a single number is provided then
the value will be recycles to the number of items.

... Arguments passed to methods.

Value

A vector of the sequential rank agreement

Author(s)

Claus Ekstrøm <ekstrom@sund.ku.dk> and Thomas A Gerds <tag@biostat.ku.dk>

Examples

mlist <- matrix(cbind(1:8,c(1,2,3,5,6,7,4,8),c(1,5,3,4,2,8,7,6)),ncol=3)
sra(mlist)

mlist <- matrix(cbind(1:8,c(1,2,3,5,6,7,4,8),c(1,5,3,4,2,8,7,6)),ncol=3)
sra(mlist, nitems=20, B=10)

alist <- list(a=1:8,b=sample(1:8),c=sample(1:8))
sra(alist)

blist <- list(x1=letters,x2=sample(letters),x3=sample(letters))
sra(blist)

censored lists are either too short
clist <- list(x1=c("a","b","c","d","e","f","g","h"),

x2=c("h","c","f","g","b"),

8 sracpp

x3=c("d","e","a"))
set.seed(17)
sra(clist,na.strings="z",B=10)

or use a special code for missing elements
Clist <- list(x1=c("a","b","c","d","e","f","g","h"),

x2=c("h","c","f","g","b","z","z","z"),
x3=c("d","e","a","z","z","z","z","z"))

set.seed(17)
sra(Clist,na.strings="z",B=10)

sracpp Compute the sequential rank agreement between k ranked lists

Description

Computes the sequential rank agreement (number of items present in all k lists divided by the
current rank) for each rank in the k lists

Usage

sracpp(rankMat, maxlength, B, cens, type = 0L, epsilon = as.numeric(c(0)))

Arguments

rankMat A matrix with k columns corresponding to the k ranked lists. Elements of each
column are integers between 1 and the length of the lists

maxlength The maximum depth that are needed XXX

B The number of resamples to use in the presence of censored lists

cens A vector of integer values that

type The type of distance measure to use: 0 (the default) is the variance while 1 is
MAD (median absolute deviation)

epsilon A non-negative numeric vector that contains the minimum limit in proportion of
lists that must show the item. Defaults to 0. If a single number is provided then
the value will be recycles to the number of items.

Value

A vector of the same length as the rows in rankMat containing the squared (!) sequential rank
agreement between the lists for each depth. If the MAD type was chosen then the sequential MAD
values are returned

Author(s)

Claus Ekstrøm <ekstrom@sund.ku.dk>

sracppfull 9

sracppfull Compute the sequential rank agreement between k ranked lists

Description

Computes the sequential rank agreement (number of items present in all k lists divided by the
current rank) for each rank in the k lists

Usage

sracppfull(rankMat, type = 0L, epsilon = as.numeric(c(0)))

Arguments

rankMat A matrix with k columns corresponding to the k ranked lists. Elements of each
column are integers between 1 and the length of the lists

type The type of distance measure to use: 0 (the default) is the variance while 1 is
MAD (mean absolute deviation)

epsilon A non-negative numeric vector that contains the minimum limit in proportion of
lists that must show the item. Defaults to 0. If a single number is provided then
the value will be recycles to the number of items.

Value

A vector of the same length as the rows in rankMat containing the sequential rank agreement be-
tween the lists for each depth (squared for type=0)

Author(s)

Claus Ekstrøm <ekstrom@sund.ku.dk>

SuperRanker Functions related to comparison of ranked lists

Description

SuperRanker allows you to estimate the agreement between two or more rankings of the same items.

10 test_sra

test_sra Compute a Kolmogorov-Smirnoff-like test for Smooth quantiles of a
matrix of sequential rank agreements

Description

Compute a Kolmogorov-Smirnoff-like test for Smooth quantiles of a matrix of sequential rank
agreements

Usage

test_sra(object, nullobject, weights = 1)

Arguments

object An object created with sra.

nullobject An object created with random_list_sra.

weights Either a single value or a vector of the same length as the number of item with
the weight that should be given to specific depths.

Value

A single value corresponding to the p-value

Author(s)

Claus Ekstrøm <ekstrom@sund.ku.dk>

Examples

setting with 3 lists
mlist <- matrix(cbind(1:8,c(1,2,3,5,6,7,4,8),c(1,5,3,4,2,8,7,6)),ncol=3)
compute sequential rank agreements
x=sra(mlist)
compute rank agreement of 5 random permutations
null=random_list_sra(mlist,n=15)
now extract point-wise quantiles according to confidence level
test_sra(x,null)
compare to when we use the result of the first permutation run
test_sra(null[,1],null[,-1])

Index

average_overlap, 2

overlap, 2

plot.sra, 3

random_list_sra, 4

smooth_sra, 5
sra, 6
sracpp, 8
sracppfull, 9
SuperRanker, 9
SuperRanker-package (SuperRanker), 9

test_sra, 10

11

	average_overlap
	overlap
	plot.sra
	random_list_sra
	smooth_sra
	sra
	sracpp
	sracppfull
	SuperRanker
	test_sra
	Index

