
Package ‘SearchTrees’
January 20, 2025

Type Package

Title Spatial Search Trees

Version 0.5.5

Date 2022-10-03

Author Gabriel Becker

Maintainer Gabriel Becker <gabembecker@gmail.com>

Description The QuadTree data structure is useful for fast,
neighborhood-restricted lookups. We use it to implement fast k-Nearest

Neighbor and Rectangular range lookups in 2 dimenions. The
primary target is high performance interactive graphics.

Depends methods

License LGPL

LazyLoad yes

URL https://github.com/gmbecker/SearchTrees

BugReports https://github.com/gmbecker/SearchTrees/issues

NeedsCompilation yes

Repository CRAN

Date/Publication 2022-10-03 22:20:06 UTC

Contents
createTree . 2
knnLookup . 3
knnLookup-methods . 4
QuadTree-class . 5
rectLookup . 6
rectLookup-methods . 7
SearchTree-class . 7

Index 9

1

https://github.com/gmbecker/SearchTrees
https://github.com/gmbecker/SearchTrees/issues

2 createTree

createTree Create a Search Tree Index

Description

Create a search tree from the supplied data for use in during future lookups.

Usage

createTree(data, treeType = "quad", dataType = "point",
columns = if (dataType=="point") 1:2 else 1:4, ...)

Arguments

data data.frame or matrix. Data to be indexed.

treeType Character. Indicates type of index tree to be created. Currently only "quad"
(quad trees) is supported.

dataType Character. Indicates type of data being indexed. Currently "point", and "rect"
are supported corresponding to points and rectangles, respectively. Defaults to
"point".

columns Numeric. Indicates columns in data the information to be indexed can be found.
Length depends on value of dataType (2 for "point" and 4 for "rect"). Defaults
to columns 1 and 2. See Details.

... Any additional/type specific parameters to be passed to the tree creation func-
tion. These include:

maxDepth: Numeric. Maximum depth of the tree. Defaults to 7.
minNodeArea: Numeric. Minimum (rectangular) area to be represented by a

single node. When set, this overrides maxDepth

Details

For a point based tree, the two columns specified in columns represent the x and y values of the
points.

For a rectangle based tree, four columns must be specified. These columns represent the x and y
coordinates of point 1 and the x and y coordinates of point 2, in that order (where point 1 and point
2 specify the rectangle to be stored).

Value

The class of the returned object depends on the tree type created, though all will inherit from the
SearchTree S4 class and have the following slots:

ref An external pointer to the C level data structure.

numNodes Total number of nodes comprising the tree.

dataNodes Number of nodes which store at least one data point.

knnLookup 3

maxDepth Maximum depth of the tree.

maxBucket Maximum number of data points stored in a single node.

totalData Number of items indexed in the tree.

dataType Type of objects stored in the tree.

Author(s)

Gabriel Becker

References

Finkel, R. A. and Bentley, J. L. "Quad Trees, a Data Structure for Retrieval on Composite Keys."
Acta Informatica 4, 1-9, 1974.

See Also

SearchTree linkS4Class{QuadTree}

Examples

x = rnorm(100)
y = rnorm(100)
dat = cbind(x,y)
tree = createTree(dat)

knnLookup Perform k-Nearest Neighbors Lookup Using a Search Tree

Description

This function performs fast k-Nearest Neighbors lookup on a SearchTree object

Usage

knnLookup(tree, newx, newy, newdat, columns = 1:2, k = 5)

Arguments

tree An object which inherits from the SearchTree S4 class.

newx Numeric. Vector of x values for the points to look up neighbors for.

newy Numeric. Vector of x values for the points to look up neighbors for.

newdat Matrix or data.frame. Data containing x and y values of the points to look up
neighbors for. Ignored if x and y are specified.

columns Numeric. Columns x and y values can be found in within newdat.

k Numeric. Number of neighbors to find for each point.

4 knnLookup-methods

Value

The return value is an integer matrix indicating the indices in the original data used to create treE
where the nearest neighbors were found. Row indicates the indice of the new point, while column
indicates the order of the k neighbors.

Note

No defined order is specified for exact ties in distance.

Author(s)

Gabriel Becker

See Also

createTree rectLookup

Examples

x = rnorm(100)
y = rnorm(100)
tree = createTree(cbind(x,y))
newx = c(0, .5)
newy = c(.5, 0)
inds = knnLookup(tree, newx, newy, k=7)

ch = rep(1, times=100)
ch[inds[1:7]] = 3
ch[inds[8:14]] = 5
cls = rep("black", times=100)
cls[inds[1:7]] = "red"
cls[inds[8:14]] ="blue"

plot(x,y, pch=ch, col = cls)
abline(v=newx[1], h = newy[1] , col="red")
abline(v=newx[2], h = newy[2], col = "blue")

knnLookup-methods ~~ Methods for Function knnLookup in Package SearchTrees ~~

Description

~~ Methods for function knnLookup in package SearchTrees ~~

Methods

signature(tree = "QuadTree")

QuadTree-class 5

QuadTree-class Class "QuadTree"

Description

A class representing a Quad Tree object for storing 2 dimensional points for efficient rectangular
range and knn lookup.

Objects from the Class

Objects can be created by calls of the form new("QuadTree", ...).

Slots

ref: Object of class "externalptr" Pointer to the internal representation of the tree
numNodes: Object of class "integer" Number of nodes in the tree
dataNodes: Object of class "integer" Number of nodes in the tree which are storing data
maxDepth: Object of class "integer" Maximum depth of the tree.
maxBucket: Object of class "integer" Maximum number of data points which are stored at a

single node
totalData: Object of class "integer" Number of objects stored in the tree
dataType: Object of class "character" Indicates type of data stored in the tree.

Extends

Class "SearchTree", directly.

Methods

knnLookup signature(tree = "QuadTree"): ...
rectLookup signature(tree = "QuadTree"): ...

Note

When using createIndex to create a quadTree, only two columns of the matrix/data.frame passed to
the function will be used to create the tree. See the columns argument in createTree

Author(s)

Gabriel Becker

See Also

createTree

Examples

showClass("QuadTree")

6 rectLookup

rectLookup Perform Rectangular Lookup in 2d Space

Description

Determine which objects, stored in a SearchTrees indexing object, fall within a given rectangle in
two-dimensional space.

Usage

rectLookup(tree, ptOne, ptTwo, xlims, ylims)

Arguments

tree SearchTree. A SearchTree object to perform the lookup on.

ptOne Numeric. A numeric of length two indicating x and y values for one corner of
the rectangle.

ptTwo Numeric. A numeric of length two indicating x and y values for the corner of
the rectangle opposite to ptOne

xlims Numeric. A numeric vector indicating the minimum and maximum x value for
the rectangle. Overrides ptOne and ptTwo

ylims Numeric. A numeric vector indicating the minimum and maximum y value for
the rectangle. Overrides ptOne and ptTwo

Details

In the case of lookup for rectangular objects, any rectangle which overlaps the query rectangle will
be returned.

Value

A numeric vector indicating the indicies of the object (in the order they were in when the SearchTree
object was created) which fall (at least partially) within the rectangular query.

Author(s)

Gabriel Becker

See Also

QuadTree knnLookup

rectLookup-methods 7

Examples

x = rnorm(100)
y = rnorm(100)
x2 = x + runif(100, .5, 2)
y2 = y + runif(100, .5, 2)
dat2 = cbind(x, y, x2, y2)
tree2 = createTree(dat2, dataType="rect", columns= 1:4)
inrect = rectLookup(tree2, xlim = c(0,1), ylim=c(0, 1))
col = rgb(0, 1, 0, alpha=.5)
plot(x, y2, col="white")
rect(x[inrect], y[inrect], x2[inrect], y2[inrect], col=col)
rect(0, 0, 1, 1, col="blue", lwd=3)

rectLookup-methods Methods for Function rectLookup in Package SearchTrees

Description

Methods for function rectLookup in package SearchTrees

Methods

signature(tree = "QuadTree")

SearchTree-class Class "SearchTree"

Description

A virtual class representing a search tree for storing geometric points in a manner designed for
efficient lookup.

Objects from the Class

This is a virtual class so objects of class SearchTree cannot be created directly.No methods defined
with class "SearchTree" in the signature.

Slots

ref: Object of class "externalptr" Pointer to the internal representation of the tree.

numNodes: Object of class "integer" Number of nodes in the tree

dataNodes: Object of class "integer" Number of nodes in the tree which are storing data.

maxDepth: Object of class "integer" Maximum depth of the tree

maxBucket: Object of class "integer" Maximum number of data points stored in a single node

totalData: Object of class "integer" Number of data objects stored in the tree.

dataType: Object of class "character" Indicates type of data stored in the tree.

8 SearchTree-class

Methods

knnLookup, rectLookup

Author(s)

Gabriel Becker

See Also

QuadTree createTree

Index

∗ classes
QuadTree-class, 5
SearchTree-class, 7

∗ indexing
createTree, 2

∗ knn
knnLookup, 3

∗ lookup
knnLookup, 3
rectLookup, 6
SearchTree-class, 7

∗ methods
knnLookup-methods, 4
rectLookup-methods, 7

∗ neighbors
knnLookup, 3

∗ quadtree
createTree, 2

∗ query
rectLookup, 6

∗ rectangular
rectLookup, 6

createTree, 2, 4, 5, 8

knnLookup, 3, 6
knnLookup, QuadTree-method (knnLookup),

3
knnLookup,QuadTree-method

(knnLookup-methods), 4
knnLookup-methods, 4

QuadTree, 6, 8
QuadTree-class, 5

rectLookup, 4, 6
rectLookup, QuadTree-method

(rectLookup), 6
rectLookup,QuadTree-method

(rectLookup-methods), 7

rectLookup-methods, 7

SearchTree, 3, 5
SearchTree-class, 7

9

	createTree
	knnLookup
	knnLookup-methods
	QuadTree-class
	rectLookup
	rectLookup-methods
	SearchTree-class
	Index

