Package ‘SFDesign’

June 21, 2025

Type Package

Title Space-Filling Designs

Version 0.1.2

Date 2025-06-01

Maintainer Shangkun Wang <shangkunwang@1@gmail.com>

Description Construct various types of space-filling designs, including Latin hypercube designs, clus-
tering-based designs, maximin designs, maximum projection designs, and uniform de-
signs (Joseph 2016 <doi:10.1080/08982112.2015.1100447>). It also offers the option to opti-
mize designs based on user-defined criteria. This work is supported by U.S. National Sci-
ence Foundation grant DMS-2310637.

Depends Rcpp (>=1.0.8)

Imports GenSA, nloptr, primes, proxy, spacefillr
LinkingTo Rcpp, ReppArmadillo

License GPL (>=2)

Encoding UTF-8

Repository CRAN

NeedsCompilation yes

RoxygenNote 7.3.2

Author Shangkun Wang [aut, cre],
Roshan Joseph [aut]

Date/Publication 2025-06-21 20:00:02 UTC

Contents
SFDesign-package . . . . . . . . . . . .. 2
CIUSIEL.EITOr . . . . . . . o o it e e e e 3
clustering.design . . . . . . . ... e e e 4
CONtINUOUS.OPHM . .« . v v vt v et e e e e e e e e e e e e e e 5
customLHD . . . . . . . o e 7
full.factorial . . . . . . . . . . 10
Maximinaugment . . . . . . . . ..ttt e e e e e e 11


https://doi.org/10.1080/08982112.2015.1100447

2 SFDesign-package
Maximin.Crit . . . . . . . . . o e e e e 12
Maximin.optim . . . . . . . . ..o e e e e 13
MaxXimMinIEMOVE . . . . .« o v vttt e e et e e e e e e e e e 14
maximinLHD . . . . . . 000 15
MAaXPrO.Crit . . . . . o ottt e e e e e e e 16
Maxpro.Optim . . . . . . . . o e e e e 17
MAXPIOTEMOVE . . . o o v v e v v v e e et e e e e e e e e e e e e e 18
maxproLHD . . . . . . . e 19
randomLHD . . . . . .. 21
uniform.Crit . . . . ..o 21
uniform.discrete . . . . .. L L e e 22
uniform.optim . . . . . L. L e e e 24
uniformLHD . . . . . 0o 25

Index 27

SFDesign-package Space-Filling designs
Description
This pacakge offers a comprehensive suite of functions to construct various types of space-filling
designs, including Latin hypercube designs, clustering-based designs, maximin designs, maximum
projection designs, and uniform designs (Joseph 2016). It also offers the option to optimize designs
based on user-defined criteria.
Author(s)
Shangkun Wang, V. Roshan Joseph
Maintainer: Shangkun Wang <shangkunwang01 @ gmail.com>
References

Wang, Shangkun, Xie, Weijun and V. Roshan Joseph. SFDesign: An R package for Space-Filling
Designs.

Joseph, V. R. (2016). Space-filling designs for computer experiments: A review. Quality Engineer-
ing, 28(1), 28-35.



cluster.error 3

cluster.error Clustering error

Description

This function computes the clustering error.

Usage

cluster.error(design, X = NULL, alpha = 1)

Arguments
design a design matrix.
X candidate points in [0, 1]?. If X is not provided, Sobol points are generated as

candidate points.

alpha power of the Euclidean distance.

Details
cluster.error computes the clustering error. The clustering error for a design D = [z1, . .., x,]T
is defined as > Yo ey |z — x;]|*, where V; is the Voronoi cell of each design point a; for
i =1,...,n, Nis the size of X. When o = 2, we obtain K-means and when o« = 1, we obtain
K-medians.

Value

clustering error of the design.

Examples
n =20
p=3

D = randomLHD(n, p)
cluster.error(D)



4 clustering.design

clustering.design Designs generated by clustering algorithms

Description

This function is for producing designs by minimizing the clustering error.

Usage

clustering.design(
n)
P,
X = NULL,
D.ini = NULL,
multi.start = 1,
alpha = 1,
Lloyd.iter.max = 100,
cen.iter.max = 10,
Lloyd.tol = 1e-04,
cen.tol = 1e-04

)
Arguments

n design size.

p design dimension.

X candidate points in [0, 1]P. If X is not provided, Sobol points is generated as
cluster points.

D.ini initial design points. If D.ini is not provided, Sobol points are generated as initial
design.

multi.start number of starting designs (cluster centers).

alpha power of the Euclidean distance.

Lloyd.iter.max maximum number of iterations for the Lloyd algorithm.

cen.iter.max maximum number of iterations for the center calculation for each cluster.

Lloyd.tol minimum relative change for the Lloyd algorithm to continue.
cen.tol minimum relative change for the center calculation algorithm to continue.
Details

clustering.design produces a design by clustering algorithms. It minimize the clustering error
(see cluster.error) by Lloyd’s algorithm. When o > 2, accelerated gradient descent is used to
find the center for each cluster (Mak, S. and Joseph, V. R. 2018). When o < 2: Weizfeld algorithm
is used to find the center for each cluster. Let mgo) = x; denote the initial position of the ith
center and and let S; represent the points within its Voronoi cell. The center is then updated as:

(k+1) _ 1 —
CCi — <ZS€Si ”S,m(i)‘lgfa ) / (23651 ||Sw(-k>|§“) fork = 07 17 e



continuous.optim 5

Value
design final design points.
cluster cluster assignment for each cluster points.

cluster.error final cluster error.

References

Mak, S. and Joseph, V. R. (2018), “Minimax and minimax projection designs using clustering,”
Journal of Computational and Graphical Statistics, 27, 166—178.

Examples
n =20
p=3
X = spacefillr::generate_sobol_set(1e5xp, p)
D = clustering.design(n, p, X)

continuous.optim Continuous optimization of a design

Description

This function does continuous optimization of an existing design based on a specified criterion. It
has an option to run simulated annealing after the continuous optimization.

Usage

continuous.optim(
D.ini,
objective,
gradient = NULL,
iteration = 10,
sa = FALSE,
sa.objective = NULL

)
Arguments
D.ini initial design matrix.
objective the criterion to minimize for the design. It can also return gradient information
at the same time in a list with elements "objective" and "gradient".
gradient the gradient of the objective with respect to the design.
iteration number iterations for LBFGS.
sa whether to use simulated annealing. If the final criterion is different from the

sa.objective

objective function specified above, simulated annealing can be useful. Use this
option only when the design size and dimension are not large.

the criterion to minimize for the simulated annealing.



6 continuous.optim

Details

continuous.optim optimizes an existing design based on a specified criterion. It is a wrapper for
the L-BFGS-B function from the nloptr packakge (Johnson 2008) and/or GenSA function in GenSA
package (Xiang, Gubian, Suomela and Hoeng 2013).

Value

the optimized design.

References

Johnson, S. G. (2008), The NLopt nonlinear-optimization package, available at https://github.com/stevengj/nlopt.
Xiang Y, Gubian S, Suomela B, Hoeng (2013). "Generalized Simulated Annealing for Efficient
Global Optimization: the GenSA Package for R". The R Journal Volume 5/1, June 2013.

Examples

# Below is an example showing how to create functions needed to generate MaxPro design manually by
# continuous.optim without using the maxpro.optim function in the package.
compute.distance.matrix <- function(A){
log_prod_metric = function(x, y) 2 * sum(log(abs(x-y)))
return (c(proxy::dist(A, log_prod_metric)))
3
optim.obj = function(x){
D = matrix(x, nrow=n, ncol=p)
d = exp(compute.distance.matrix(D))
d_matrix = matrix(@, n, n)
d_matrix[lower.tri(d_matrix)] = d
d_matrix = d_matrix + t(d_matrix)
fn = sum(1/d)
1fn = log(fn)

I = diag(n)
diag(d_matrix) = rep(1,n)
A=B=D
for(j in 1:p)
{
A = t(outer(DL,j1, DL,31, "-")

diag(A) = rep(1, n)

B[, j] = diag((1/A - I) %*% (1/d_matrix - I))
}
grad = 2 *x B/ fn
return(list(”"objective”=1fn, "gradient"=grad))

= 20

=3

.ini = maxproLHD(n, p)$design

= continuous.optim(D.ini, optim.obj)

O O T S5 v



customLHD 7

customLHD Generate a Latin-hypercube design (LHD) based on a custom crite-
rion

Description

This function generates a LHD by minimizing a user-specified design criterion.

Usage

customLHD(
compute.distance.matrix,
compute.criterion,
update.distance.matrix,
n,
P,
design = NULL,
max.sa.iter = 1e+06,
temp = 0,
decay = 0.95,
no.update.iter.max = 400,
num.passes = 10,
max.det.iter = 1e+06,
method = "full"”,
scaled = TRUE

Arguments

compute.distance.matrix
a function to calculate pairwise distance
compute.criterion
a function to calculate the criterion based on the pairwise distance
update.distance.matrix
a function to update the distance matrix after swapping one column of two de-
sign points

n design size.

p design dimension.

design an initial LHD. If design=NULL, a random LHD is generated.

max.sa.iter maximum number of swapping involved in the simulated annealing (SA) algo-
rithm.

temp initial temperature of the simulated annealing algorithm. If temp=0, it will be

automatically determined.

decay the temperature decay rate of simulated annealing.



8 customLHD

no.update.iter.max
the maximum number of iterations where there is no update to the global opti-
mum before SA stops.

num. passes the maximum number of passes of the whole design matrix if deterministic
swapping is used.

max.det.iter = maximum number of swapping involved in the deterministic swapping algo-

rithm.

method choice of "deterministic", "sa", or "full". See details for the description of each
choice.

scaled whether the design is scaled to unit hypercube. If scaled=FALSE, the design is

represented by integer numbers from 1 to design size. Leave it as TRUE when
no initial design is provided.

Details
customLHD generates a LHD by minimizing a user-specified design criterion.

* If method="sa’, then a simulated annealing algorithm is used to optimize the LHD. To custom
the optimization process, you can change the default values for max.sa.iter, temp, decay,
no.update.iter.max. In this optimization step, two design points are randomly chosen and
their coordinate along one dimension are swaped. If the new design improves the criterion,
then it is accepted; otherwise, it is accepted with some probability.

* If method="deterministic’, then a deterministic swap algorithm is used to optimize the
LHD. To custom the optimization process, you can change the default values for num. passes,
max.det.iter. In this optimization step, we swap the coordinates of all pairs of design points
(start with design point 1 with design point 2, then 1 with 3, ... 1 with n, then 2 with 3 until
n-1 with n). Only accept the change if the swap leads to an improvement.

e If method="full', then optimization goes through the above two stages.

Value
design optimized LHD.
total.iter total number of swaps in the optimization.
criterion optimized criterion.
crit.hist criterion history during the optimization process.
Examples

# Below is an example showing how to create functions needed to generate
# MaxPro LHD manually by customLHD without using the maxproLHD function in
# the package.
compute.distance.matrix <- function(A){

s =2

log_prod_metric = function(x, y) s * sum(log(abs(x-y)))

return (c(proxy::dist(A, log_prod_metric)))
}
compute.criterion <- function(n, p, d) {

s =2



customLHD

dim <- as.integer(n * (n - 1) / 2)
# Find the minimum distance
Dmin <- min(d)

# Compute the exponential summation

avgdist <- sum(exp(Dmin - d))

# Apply the logarithmic transformation and scaling

avgdist <- log(avgdist) - Dmin

avgdist <- exp((avgdist - log(dim)) * (p * s) * (-1))

return(avgdist)

}

update.distance.matrix <- function(A,
s =2
n = nrow(A)
# transform from c++ idx to r idx
selrowl selrowl + 1
selrow2 = selrow2 + 1
col = col + 1
# A is the updated matrix
rowl <- min(selrowl, selrow2)
row2 <- max(selrowl, selrow2)

col, selrowl, selrow2, d) {

compute_position <- function(row, h, n) {

nx(h-1) - hx(h-1)/2 + row-h
}

# Update for rows less than rowl
if (rowl > 1) {
for (h in 1:(rowl-1)) {

positionl <- compute_position(rowl, h, n)
position2 <- compute_position(row2, h, n)

d[positionl1] <- d[positionl] +
s * log(abs(A[row2, col]
d[position2] <- d[position2]

s * log(abs(A[rowl, col]

+

3
3

# Update for rows between rowl and
if ((row2-rowl) > 1){
for (h in (rowl+1):(row2-1)) {
positionl <- compute_position(h

s * log(abs(A[rowl, col]l - A[h, coll)) -
ALh, coll))
s * log(abs(A[Lrow2, col] - A[h, coll)) -
ALh, coll))

row2

, rowl, n)

position2 <- compute_position(row2, h, n)

d[positionl1] <- d[positionl] +
s * log(abs(A[row2, col]
d[position2] <- d[position2]

s * log(abs(A[rowl, col]

+

}
}

# Update for rows greater than row2
if (row2 < n) {
for (h in (row2+1):n) {

s * log(abs(A[rowl, col]l - A[h, coll)) -
ALh, coll))
s * log(abs(A[Lrow2, col] - A[h, coll)) -
ALh, coll))



10 full.factorial

positionl <- compute_position(h, rowl, n)
position2 <- compute_position(h, row2, n)
d[positionl1] <- d[positionl1] + s * log(abs(A[rowl, col]l - A[h, coll)) -
s * log(abs(A[row2, col]l - A[h, coll))
d[position2] <- d[position2] + s * log(abs(A[row2, col]l - A[h, coll)) -
s * log(abs(ALrowl, col] - A[h, coll))
}

}
return (d)

n==o6

p=2

# Find an appropriate initial temperature

critt =1/ (n-1)

critz = (1 /7 ((n=1)"(p-1) * (n-2))) * (1/p)

delta = crit2 - critl

temp = - delta / log(@.99)

result_custom = customLHD(compute.distance.matrix,
function(d) compute.criterion(n, p, d),
update.distance.matrix, n, p, temp = temp)

full.factorial Full factorial design

Description

This function generates a full factorial design.

Usage

full.factorial(p, level)

Arguments

p design dimension.

level an integer specifying the number of levels.
Details

full.factorial generates a p dimensional full factorial design.

Value

a full factorial design matrix (scaled to [0, 1])



maximin.augment 11

Examples

p=3
level = 3
D = full.factorial(p, level)

maximin.augment Augment a design by adding new design points that minimize the re-
ciprocal distance criterion greedily

Description

This function augments a design by adding new design points one-at-a-time that minimize the re-
ciprocal distance criterion.

Usage

maximin.augment(n, p, D.ini, candidate = NULL, r = 2 * p)

Arguments
n the size of the final design.
p design dimension.
D.ini initial design.
candidate candidate points to choose from. The default candidates are Sobol points of size
100n.
r the power parameter in the maximin.crit. By default it is set as 2p.
Details

maximin.augment augments a design by adding new design points that minimize the reciprocal
distance criterion (see maximin.crit) greedily. In each iteration, the new design points is selected

as the one from the candidate points that has the smallest sum of reciprocal distance to the existing
k 1

design, that is, x4 = argming » ,;_, To—a

Value

the augmented design.

Examples

n.ini = 10

n = 20

p=23

D.ini = maximinLHD(n.ini, p)$design
D = maximin.augment(n, p, D.ini)



12 maximin.crit

maximin.crit Maximin criterion

Description

This function calculates the maximin distance or the average reciprocal distance of a design.

Usage

maximin.crit(design, r = 2 * ncol(design), surrogate = FALSE)

Arguments
design the design matrix.
r the power used in the reciprocal distance objective function. The default value
is set as twice the dimension of the design.
surrogate whether to return the surrogate average reciprocal distance objective function or
the maximin distance. If setting surrogate=TRUE, then the average reciprocal
distance is returned.
Details
maximin.crit calculates the maximin distance or the average reciprocal distance of a design. The
maximin distance for a design D = [z1,...,x,]7 is defined as drr, = min; [|z; — x;|2. In
optimization, the average reciprocal distance is usually used (Morris and Mitchell, 1995):
1/r
2 1
¢rec =
n(n—1) ; [l: — ;5

The r is a power parameter and when it is large enough, the reciprocal distance is similar to the
exact maximin distance.

Value

the maximin distance or reciprocal distance of the design.

References

Morris, M. D. and Mitchell, T. J. (1995), “Exploratory designs for computational experiments,”
Journal of statistical planning and inference, 43, 381-402.

Examples
n = 20
p=3

D = randomLHD(n, p)
maximin.crit(D)



maximin.optim

13

maximin.optim

Optimize a design based on maximin or reciprocal distance criterion

Description

This function optimizes a design by continuous optimization based on reciprocal distance criterion.
A simulated annealing step can be enabled in the end to directly optimize the maximin distance

criterion.

Usage

maximin.optim(D.ini, iteration = 10, sa = FALSE, find.best.ini = FALSE)

Arguments
D.ini
iteration

Ssa

find.best.ini

Details

the initial design.
number iterations for L-BFGS-B algorithm.

whether to use simulated annealing in the end. If sa=TRUE, continuous opti-
mization is first used to optimize the reciprocal distance criterion and then SA
is performed to optimize the maximin criterion.

whether to generate other initial designs. If find.best.ini=TRUE, it will first find
the closest full factorial design in terms of size to D.ini. If the size of the
full factorial design is larger than D.ini, design points will be removed by the
maximin.remove function. If the the size of the full factorial design is smaller
thanD. ini, then we will augment the design by maximin.augment. In this case,
we have two different candidate set to choose from: one is a full factorial design
with level+1 and another is Sobol points. All initial designs are optimized and
the best is returned.

maximin.optim optimizes a design by L-BFGS-B algorithm (Liu and Nocedal 1989) based on the
reciprocal distance criterion. A simulated annealing step can be enabled in the end to directly opti-
mize the maximin distance criterion. Optimization detail can be found in continuous.optim. We
also provide the option to try other initial designs generated internally besides the D.ini provided
by the user (see argument find.best.ini).

Value

design

D.ini

References

the optimized design.

initial designs. If find.best.ini=TRUE, a list will be returned containing all the
initial designs considered.

Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1), 503-528.



14 maximin.remove

Examples

= 20

=3

maximinLHD(n, p)$design

maximin.optim(D, sa=FALSE)$design

D = maximin.optim(D, sa=TRUE)$design # Let sa=TRUE only when the n and p is not large.

¥ O O T S
1l

maximin.remove Sequentially remove design points from a design while maintaining
low reciprocal distance criterion as possible

Description

This function sequentially removes design points one-at-a-time from a design while maintaining
low reciprocal distance criterion as possible.

Usage

maximin.remove(D, n.remove, r = 2 * p)

Arguments

D the design matrix.

n.remove number of design points to remove.

r the power parameter in the maximin.crit. By default it is set as 2p.
Details

maximin.remove sequentially removes design points from a design in a greedy way while maintain-
ing low reciprocal distance criterion (see maximin.crit) as possible. In each iteration, the design
point with the largest sum of reciprocal distances with the other design points is removed, that is,

* __ —
k* = arg maxy, Zi#k ler—a:"

Value
the updated design.
Examples
n = 20
p=3
n.remove = 5
D = maximinLHD(n, p)$design
D = maximin.remove(D, n.remove)



maximinLHD

15

maximinLHD

Generate a maximin Latin-hypercube design (LHD)

Description

This function generates a LHD with large maximin distance.

Usage

maximinLHD(
n)
p,
design = NULL
power = 2 * p
max.sa.iter =
temp = 0,
decay = 0.95,
no.update.ite
num.passes =
max.det.iter
method = "ful
scaled = TRUE

Arguments

n

p
design
power

max.sa.iter

temp

decay
no.update.iter.

num. passes

max.det.iter

method

’

’

1e+06,

r.max = 100,
10,

= le+06,

lll’

design size.

design dimension.

an initial LHD. If design=NULL, a random LHD is generated.
the power used in the maximin objective function.

maximum number of swapping involved in the simulated annealing (SA) algo-
rithm.

initial temperature of the simulated annealing algorithm. If temp=0, it will be
automatically determined.

the temperature decay rate of simulated annealing.

max

the maximum number of iterations where there is no update to the global opti-
mum before SA stops.

the maximum number of passes of the whole design matrix if deterministic
swapping is used.

maximum number of swapping involved in the deterministic swapping algo-
rithm.

choice of "deterministic", "sa", or "full". If the method="full", the design is first
optimized by SA and then deterministic swapping.



16 maxpro.crit

scaled whether the design is scaled to unit hypercube. If scaled=FALSE, the design is
represented by integer numbers from 1 to design size. Leave it as TRUE when
no initial design is provided.

Details

maximinLHD generates a LHD or optimize an existing LHD to achieve large maximin distance by
optimizing the reciprocal distance (see maximin.crit). The optimization details can be found in

customLHD.
Value
design final design points.
total.iter total number of swaps in the optimization.
criterion final optimized criterion.
crit.hist criterion history during the optimization process.
Examples

# We show three different ways to use this function.

n = 20

p=3

D.random = randomLHD(n, p)

# optimize over a random LHD by SA

D = maximinLHD(n, p, D.random, method='sa')

# optimize over a random LHD by deterministic swapping
D = maximinLHD(n, p, D.random, method='deterministic')
# Directly generate an optimized LHD for maximin criterion which goes
# through the above two optimization stages.

D = maximinLHD(n, p)

maxpro.crit Maximum projection (MaxPro) criterion

Description

This function calculates the MaxPro criterion of a design.

Usage

maxpro.crit(design, delta = @)

Arguments
design the design matrix.
delta a small value added to the denominator of the maximum projection criterion. By

default it is set as zero.



maxpro.optim 17

Details

maxpro.crit calculates the MaxPro criterion of a design. The MaxPro criterion for a design D =
[1,..., 2, is defined as

1/p

1 n—1 n 1
@Z Z 4 (Scil—l’j[)2+6 ’

i=1 j=i+1 L 1=1

where p is the dimension of the design (Joseph, V. R., Gul, E., & Ba, S. 2015).

Value

the MaxPro criterion of the design.

References

Joseph, V. R., Gul, E., & Ba, S. (2015). Maximum projection designs for computer experiments.
Biometrika, 102(2), 371-380.

Examples
n =20
p=3
D = randomLHD(n, p)

maxpro.crit(D)

maxpro.optim Optimize a design based on the maximum projection criterion

Description
This function optimizes a design by continuous optimization based on maximum projection crite-
rion (Joseph, V. R., Gul, E., & Ba, S. 2015).

Usage

maxpro.optim(D.ini, iteration = 10)

Arguments

D.ini the initial design.

iteration number iterations for L-BFGS-B.
Details

maxpro.optim optimizes a design by L-BFGS-B algorithm (Liu and Nocedal 1989) based on the
maximum projection criterion maxpro.crit.



18 maxpro.remove

Value
design optimized design.
D.ini initial design.
References

Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1), 503-528.

Joseph, V. R., Gul, E., & Ba, S. (2015). Maximum projection designs for computer experiments.
Biometrika, 102(2), 371-380.

Examples
n = 20
p=3
D = maxproLHD(n, p)$design
D = maxpro.optim(D)$design

maxpro.remove Sequentially remove design points from a design while maintaining
low maximum projection criterion as possible

Description

This function sequentially removes design points one-at-a-time from a design while maintaining
low maximum projection criterion as possible.

Usage

maxpro.remove(D, n.remove, delta = 0)

Arguments
D design
n.remove number of design points to remove
delta a small value added to the denominator of the maximum projection criterion. By
default it is set as zero.
Details

maxpro.remove sequentially removes design points from a design while maintaining low maximum
projection criterion (see maxpro.crit) as possible. The maximum projection criterion is modified
to include a small delta term:

n—1 n p
1

¢maxpm (Dn ) =



maxproLHD 19

. . . * . 1

The index of the point to remove is k* = arg ming Z#k N CTETmEETE
Value

the updated design.
Examples

n = 20

p=3

n.remove = 5

D = maxproLHD(n, p)$design

D = maxpro.remove(D, n.remove)

maxproLHD Generate a MaxPro Latin-hypercube design

Description

This function generates a MaxPro Latin-hypercube design.

Usage

maxproLHD (
n!
p,
design = NULL,
max.sa.iter = 1e+06,
temp = 0,
decay = 0.95,
no.update.iter.max = 400,
num.passes = 10,
max.det.iter = 1e+06,
method = "full”,
scaled = TRUE

)
Arguments
n design size.
p design dimension.
design an initial LHD. If design=NULL, a random LHD is generated.
max.sa.iter maximum number of swapping involved in the simulated annealing (SA) algo-
rithm.
temp initial temperature of the simulated annealing algorithm. If temp=0, it will be

automatically determined.



20

decay

maxproLHD

the temperature decay rate of simulated annealing.

no.update.iter.max

num. passes

max.det.iter

method

scaled

Details

the maximum number of iterations where there is no update to the global opti-
mum before SA stops.

the maximum number of passes of the whole design matrix if deterministic
swapping is used.

maximum number of swapping involved in the deterministic swapping algo-
rithm.

choice of "deterministic", "sa", or "full". If the method="full", the design is first
optimized by SA and then deterministic swapping.

whether the design is scaled to unit hypercube. If scaled=FALSE, the design is
represented by integer numbers from 1 to design size. Leave it as TRUE when
no initial design is provided.

maxproLHD generates a MaxPro Latin-hypercube design (Joseph, V. R., Gul, E., & Ba, S. 2015).
The major difference with the MaxPro packages is that we have a deterministic swap algorithm,
which can be enabled by setting method="deterministic” or method="full". For optimization
details, see the detail section in customLHD.

Value

design
total.iter
criterion

crit.hist

References

final design points.
total number of swaps in the optimization.
final optimized criterion.

criterion history during the optimization process.

Joseph, V. R., Gul, E., & Ba, S. (2015). Maximum projection designs for computer experiments.
Biometrika, 102(2), 371-380.

Examples
n = 20
=3
D =

maxproLHD(n, p)



randomLHD

21

randomLHD Random Latin hypercube design

Description

This function generates a random Latin hypercube design.

Usage

randomLHD(n, p)

Arguments

n design size.

p design dimension.
Details

randomLHD generates a random Latin hypercube design.

Value

a random Latin hypercube design.

Examples
n =20
p=3
D = randomLHD(n, p)

uniform.crit Uniform criterion

Description

This function calculates the wrap-around discrepancy of a design.

Usage

uniform.crit(design)

Arguments

design a design matrix.



22 uniform.discrete

Details

uniform.crit calculates the wrap-around discrepancy of a design. The wrap-around discrepancy
for a design D = [x1,...,x,] is defined as (Hickernell, 1998):

A S - 2
Pwa = — <3> +5 Z H {2 — @ik — x| (1 — |z — zj5]) | -
i=1k=1

Value

wrap-around discrepancy of the design

References

Hickernell, F. (1998), “A generalized discrepancy and quadrature error bound,” Mathematics of
computation, 67, 299-322.

Examples
n = 20
p=3

D = randomLHD(n, p)
uniform.crit(D)

uniform.discrete Generate a uniform design for discrete factors with different number
of levels

Description

This function generates a uniform design for discrete factors with different number of levels.

Usage

uniform.discrete(
t,
P,
levels,
design = NULL,
max.sa.iter = 1e+06,
temp = 0,
decay = 0.95,
no.update.iter.max = 400,
num.passes = 10,
max.det.iter = 1e+06,
method = "full"”,
scaled = TRUE



uniform.discrete

Arguments
t

p
levels

design

max.sa.iter

temp

decay
no.update.iter.

num. passes

max.det.iter

method

scaled

Details

23

multiple of the least common multiple of the levels.

design dimension.

a vector of the number of levels for each dimension.

an initial design. If design=NULL, a random design is generated.

maximum number of swapping involved in the simulated annealing (SA) algo-
rithm.

initial temperature of the simulated annealing algorithm. If temp=0, it will be
automatically determined.

the temperature decay rate of simulated annealing.

max

the maximum number of iterations where there is no update to the global opti-
mum before SA stops.

the maximum number of passes of the whole design matrix if deterministic
swapping is used.

maximum number of swapping involved in the deterministic swapping algo-
rithm.

choice of "deterministic", "sa", or "full". If the method="full", the design is first
optimized by SA and then deterministic swapping.

whether the design is scaled to unit hypercube. If scaled=FALSE, the design is
represented by integer numbers from 1 to design size. Leave it as TRUE when
no initial design is provided.

uniform.discrete generates a uniform design of discrete factors with different number of levels

by minimizing the

Value
design
design.int
total.iter
criterion
crit.hist
Examples
p=25
levels = c(3, 4,
t=1

wrap-around discrepancy criterion (see uniform.crit).

final design points.

design transformed to integer numbers for each dimenion
total number of swaps in the optimization.

final optimized criterion.

criterion history during the optimization process.

6, 2, 3)

D = uniform.discrete(t, p, levels)



24 uniform.optim

uniform.optim Optimize a design based on the wrap-around discrepancy

Description

This function optimizes a design through continuous optimization of the wrap-around discrepancy.

Usage

uniform.optim(D.ini, iteration = 10)

Arguments

D.ini the initial design.

iteration number iterations for LBFGS.
Details

uniform.optim optimizes a design through continuous optimization of the wrap-around discrep-
ancy (see uniform.crit) by L-BFGS-B algorithm (Liu and Nocedal 1989).

Value
design optimized design.
D.ini initial design.
References

Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization.
Mathematical programming, 45(1), 503-528.

Examples
n = 20
p=3
D = uniformLHD(n, p)$design
D = uniform.optim(D)$design



uniformL. HD

25

uniformLHD

Generate a uniform Latin-hypercube design (LHD)

Description

This function gene

Usage

uniformLHD(
n,
P,
design = NULL
max.sa.iter =
temp = 0,
decay = 0.95,
no.update.ite
num.passes =
max.det.iter
method = "ful
scaled = TRUE

Arguments

n

p
design
max.sa.iter

temp

decay
no.update.iter.

num.passes
max.det.iter
method

scaled

rates a uniform LHD by minimizing the wrap-around discrepancy.

’

le+06,

r.max = 400,
10,

= le+06,

]-IIy

design size.
design dimension.
an initial LHD. If design=NULL, a random LHD is generated.

maximum number of swapping involved in the simulated annealing (SA) algo-
rithm.

initial temperature of the simulated annealing algorithm. If temp=0, it will be
automatically determined.

the temperature decay rate of simulated annealing.

max

the maximum number of iterations where there is no update to the global opti-
mum before SA stops.

the maximum number of passes of the whole design matrix if deterministic
swapping is used.

maximum number of swapping involved in the deterministic swapping algo-
rithm.

choice of "deterministic", "sa", or "full". If the method="full", the design is first
optimized by SA and then deterministic swapping.

whether the design is scaled to unit hypercube. If scaled=FALSE, the design is
represented by integer numbers from 1 to design size. Leave it as TRUE when
no initial design is provided.



26

Details

uniformLHD

uniformLHD generates a uniform LHD minimizing wrap-around discrepancy (see uniform.crit).
The optimization details can be found in customLHD.

Value

design final design points.

total.iter total number of swaps in the optimization.

criterion final optimized criterion.

crit.hist criterion history during the optimization process.
Examples

n = 20

p=3

D = uniformLHD(n, p)



Index

cluster.error, 3,4
clustering.design, 4
continuous.optim, 5, 13
customLHD, 7, 16, 20, 26

full.factorial, 10

maximin.augment, 11
maximin.crit, 717, 12, 14, 16
maximin.optim, 13
maximin.remove, 14
maximinLHD, 15
maxpro.crit, 16, 17, 18
maxpro.optim, 17
maxpro.remove, 18
maxprolLHD, 19

randomLHD, 21
SFDesign-package, 2

uniform.crit, 21, 23, 24, 26
uniform.discrete, 22
uniform.optim, 24
uniformLHD, 25

27



	SFDesign-package
	cluster.error
	clustering.design
	continuous.optim
	customLHD
	full.factorial
	maximin.augment
	maximin.crit
	maximin.optim
	maximin.remove
	maximinLHD
	maxpro.crit
	maxpro.optim
	maxpro.remove
	maxproLHD
	randomLHD
	uniform.crit
	uniform.discrete
	uniform.optim
	uniformLHD
	Index

