
Package ‘RGF’
January 20, 2025

Type Package

Title Regularized Greedy Forest

Version 1.1.1

Date 2022-09-10

BugReports https://github.com/RGF-team/rgf/issues

URL https://github.com/RGF-team/rgf/tree/master/R-package

Description
Regularized Greedy Forest wrapper of the 'Regularized Greedy Forest' <https://github.com/
RGF-team/rgf/tree/master/python-package> 'python' package, which also includes a Multi-
core implementation (FastRGF) <https:
//github.com/RGF-team/rgf/tree/master/FastRGF>.

License MIT + file LICENSE

SystemRequirements Python (>= 3.7), rgf_python, scikit-learn (>=
0.18.0), scipy, numpy. Detailed installation instructions for
each operating system can be found in the README file.

Depends R(>= 3.2.0)

Imports reticulate, R6, Matrix

Suggests testthat, covr, knitr, rmarkdown

Encoding UTF-8

RoxygenNote 7.2.1

VignetteBuilder knitr

NeedsCompilation no

Author Lampros Mouselimis [aut, cre] (<https://orcid.org/0000-0002-8024-1546>),
Ryosuke Fukatani [cph] (Author of the python wrapper of the

'Regularized Greedy Forest' machine learning algorithm),
Nikita Titov [cph] (Author of the python wrapper of the 'Regularized

Greedy Forest' machine learning algorithm),
Tong Zhang [cph] (Author of the 'Regularized Greedy Forest' and of the

Multi-core implementation of Regularized Greedy Forest machine
learning algorithm),

Rie Johnson [cph] (Author of the 'Regularized Greedy Forest' machine
learning algorithm)

1

https://github.com/RGF-team/rgf/issues
https://github.com/RGF-team/rgf/tree/master/R-package
https://github.com/RGF-team/rgf/tree/master/python-package
https://github.com/RGF-team/rgf/tree/master/python-package
https://github.com/RGF-team/rgf/tree/master/FastRGF
https://github.com/RGF-team/rgf/tree/master/FastRGF
https://orcid.org/0000-0002-8024-1546

2 FastRGF_Classifier

Maintainer Lampros Mouselimis <mouselimislampros@gmail.com>

Repository CRAN

Date/Publication 2022-09-12 06:42:59 UTC

Contents
FastRGF_Classifier . 2
FastRGF_Regressor . 5
mat_2scipy_sparse . 8
RGF_Classifier . 9
RGF_cleanup_temp_files . 13
RGF_Regressor . 14
TO_scipy_sparse . 17

Index 20

FastRGF_Classifier A Fast Regularized Greedy Forest classifier

Description

A Fast Regularized Greedy Forest classifier

A Fast Regularized Greedy Forest classifier

Usage

init <- FastRGF_Classifier$new(n_estimators = 500, max_depth = 6,
max_leaf = 50, tree_gain_ratio = 1.0,
min_samples_leaf = 5, loss = "LS", l1 = 1.0,
l2 = 1000.0, opt_algorithm = "rgf",
learning_rate = 0.001, max_bin = NULL,
min_child_weight = 5.0, data_l2 = 2.0,
sparse_max_features = 80000,
sparse_min_occurences = 5,
calc_prob = "sigmoid", n_jobs = 1,
verbose = 0)

Details

the fit function builds a classifier from the training set (x, y).

the predict function predicts the class for x.

the predict_proba function predicts class probabilities for x.

the cleanup function removes tempfiles used by this model. See the issue https://github.com/RGF-
team/rgf/issues/75, which explains in which cases the cleanup function applies.

the get_params function returns the parameters of the model.

the score function returns the mean accuracy on the given test data and labels.

FastRGF_Classifier 3

Methods

FastRGF_Classifier$new(n_estimators = 500, max_depth = 6, max_leaf = 50, tree_gain_ratio = 1.0, min_samples_leaf = 5, loss = "LS", l1 = 1.0, l2 = 1000.0, opt_algorithm = "rgf", learning_rate = 0.001, max_bin = NULL, min_child_weight = 5.0, data_l2 = 2.0, sparse_max_features = 80000, sparse_min_occurences = 5, calc_prob = "sigmoid", n_jobs = 1, verbose = 0)

————–

fit(x, y, sample_weight = NULL)

————–

predict(x)

————–

predict_proba(x)

————–

cleanup()

————–

get_params(deep = TRUE)

————–

score(x, y, sample_weight = NULL)

————–

Super class

RGF::Internal_class -> FastRGF_Classifier

Methods

Public methods:
• FastRGF_Classifier$new()

• FastRGF_Classifier$clone()

Method new():
Usage:
FastRGF_Classifier$new(
n_estimators = 500,
max_depth = 6,
max_leaf = 50,
tree_gain_ratio = 1,
min_samples_leaf = 5,
loss = "LS",
l1 = 1,
l2 = 1000,
opt_algorithm = "rgf",
learning_rate = 0.001,
max_bin = NULL,
min_child_weight = 5,
data_l2 = 2,
sparse_max_features = 80000,

4 FastRGF_Classifier

sparse_min_occurences = 5,
calc_prob = "sigmoid",
n_jobs = 1,
verbose = 0

)

Arguments:
n_estimators an integer. The number of trees in the forest (Original name: forest.ntrees.)
max_depth an integer. Maximum tree depth (Original name: dtree.max_level.)
max_leaf an integer. Maximum number of leaf nodes in best-first search (Original name:

dtree.max_nodes.)
tree_gain_ratio a float. New tree is created when leaf-nodes gain < this value * estimated

gain of creating new tree (Original name: dtree.new_tree_gain_ratio.)
min_samples_leaf an integer or float. Minimum number of training data points in each leaf

node. If an integer, then consider min_samples_leaf as the minimum number. If a float,
then min_samples_leaf is a percentage and ceil(min_samples_leaf * n_samples) are the
minimum number of samples for each node (Original name: dtree.min_sample.)

loss a character string. One of "LS" (Least squares loss), "MODLS" (Modified least squares
loss) or "LOGISTIC" (Logistic loss) (Original name: dtree.loss.)

l1 a float. Used to control the degree of L1 regularization (Original name: dtree.lamL1.)
l2 a float. Used to control the degree of L2 regularization (Original name: dtree.lamL2.)
opt_algorithm a character string. Either "rgf" or "epsilon-greedy". Optimization method for

training forest (Original name: forest.opt.)
learning_rate a float. Step size of epsilon-greedy boosting. Meant for being used with

opt_algorithm = "epsilon-greedy" (Original name: forest.stepsize.)
max_bin an integer or NULL. Maximum number of discretized values (bins). If NULL, 65000

is used for dense data and 200 for sparse data (Original name: discretize.(sparse/dense).max_buckets.)
min_child_weight a float. Minimum sum of data weights for each discretized value (bin)

(Original name: discretize.(sparse/dense).min_bucket_weights.)
data_l2 a float. Used to control the degree of L2 regularization for discretization (Original

name: discretize.(sparse/dense).lamL2.)
sparse_max_features an integer. Maximum number of selected features. Meant for being

used with sparse data (Original name: discretize.sparse.max_features.)
sparse_min_occurences an integer. Minimum number of occurrences for a feature to be se-

lected. Meant for being used with sparse data (Original name: discretize.sparse.min_occrrences.)
calc_prob a character string. Either "sigmoid" or "softmax". Method of probability calculation
n_jobs an integer. The number of jobs to run in parallel for both fit and predict. If -1, all CPUs

are used. If -2, all CPUs but one are used. If < -1, (n_cpus + 1 + n_jobs) are used (Original
name: set.nthreads.)

verbose an integer. Controls the verbosity of the tree building process (Original name: set.verbose.)

Method clone(): The objects of this class are cloneable with this method.

Usage:
FastRGF_Classifier$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

FastRGF_Regressor 5

References

https://github.com/RGF-team/rgf/tree/master/python-package, Tong Zhang, FastRGF: Multi-core
Implementation of Regularized Greedy Forest (https://github.com/RGF-team/rgf/tree/master/FastRGF)

Examples

try({
if (reticulate::py_available(initialize = FALSE)) {

if (reticulate::py_module_available("rgf.sklearn")) {

library(RGF)

set.seed(1)
x = matrix(runif(100000), nrow = 100, ncol = 1000)

y = sample(1:2, 100, replace = TRUE)

fast_RGF_class = FastRGF_Classifier$new(max_leaf = 50)

fast_RGF_class$fit(x, y)

preds = fast_RGF_class$predict_proba(x)
}

}
}, silent = TRUE)

FastRGF_Regressor A Fast Regularized Greedy Forest regressor

Description

A Fast Regularized Greedy Forest regressor

A Fast Regularized Greedy Forest regressor

Usage

init <- FastRGF_Regressor$new(n_estimators = 500, max_depth = 6,
max_leaf = 50, tree_gain_ratio = 1.0,
min_samples_leaf = 5, l1 = 1.0,
l2 = 1000.0, opt_algorithm = "rgf",
learning_rate = 0.001, max_bin = NULL,
min_child_weight = 5.0, data_l2 = 2.0,
sparse_max_features = 80000,
sparse_min_occurences = 5,
n_jobs = 1, verbose = 0)

6 FastRGF_Regressor

Details

the fit function builds a regressor from the training set (x, y).

the predict function predicts the regression target for x.

the cleanup function removes tempfiles used by this model. See the issue https://github.com/RGF-
team/rgf/issues/75, which explains in which cases the cleanup function applies.

the get_params function returns the parameters of the model.

the score function returns the coefficient of determination (R^2) for the predictions.

Methods

FastRGF_Regressor$new(n_estimators = 500, max_depth = 6, max_leaf = 50, tree_gain_ratio = 1.0, min_samples_leaf = 5, l1 = 1.0, l2 = 1000.0, opt_algorithm = "rgf", learning_rate = 0.001, max_bin = NULL, min_child_weight = 5.0, data_l2 = 2.0, sparse_max_features = 80000, sparse_min_occurences = 5, n_jobs = 1, verbose = 0)

————–

fit(x, y, sample_weight = NULL)

————–

predict(x)

————–

cleanup()

————–

get_params(deep = TRUE)

————–

score(x, y, sample_weight = NULL)

————–

Super class

RGF::Internal_class -> FastRGF_Regressor

Methods

Public methods:
• FastRGF_Regressor$new()

• FastRGF_Regressor$clone()

Method new():
Usage:
FastRGF_Regressor$new(
n_estimators = 500,
max_depth = 6,
max_leaf = 50,
tree_gain_ratio = 1,
min_samples_leaf = 5,
l1 = 1,

FastRGF_Regressor 7

l2 = 1000,
opt_algorithm = "rgf",
learning_rate = 0.001,
max_bin = NULL,
min_child_weight = 5,
data_l2 = 2,
sparse_max_features = 80000,
sparse_min_occurences = 5,
n_jobs = 1,
verbose = 0

)

Arguments:

n_estimators an integer. The number of trees in the forest (Original name: forest.ntrees.)
max_depth an integer. Maximum tree depth (Original name: dtree.max_level.)
max_leaf an integer. Maximum number of leaf nodes in best-first search (Original name:

dtree.max_nodes.)
tree_gain_ratio a float. New tree is created when leaf-nodes gain < this value * estimated

gain of creating new tree (Original name: dtree.new_tree_gain_ratio.)
min_samples_leaf an integer or float. Minimum number of training data points in each leaf

node. If an integer, then consider min_samples_leaf as the minimum number. If a float,
then min_samples_leaf is a percentage and ceil(min_samples_leaf * n_samples) are the
minimum number of samples for each node (Original name: dtree.min_sample.)

l1 a float. Used to control the degree of L1 regularization (Original name: dtree.lamL1.)
l2 a float. Used to control the degree of L2 regularization (Original name: dtree.lamL2.)
opt_algorithm a character string. Either "rgf" or "epsilon-greedy". Optimization method for

training forest (Original name: forest.opt.)
learning_rate a float. Step size of epsilon-greedy boosting. Meant for being used with

opt_algorithm = "epsilon-greedy" (Original name: forest.stepsize.)
max_bin an integer or NULL. Maximum number of discretized values (bins). If NULL, 65000

is used for dense data and 200 for sparse data (Original name: discretize.(sparse/dense).max_buckets.)
min_child_weight a float. Minimum sum of data weights for each discretized value (bin)

(Original name: discretize.(sparse/dense).min_bucket_weights.)
data_l2 a float. Used to control the degree of L2 regularization for discretization (Original

name: discretize.(sparse/dense).lamL2.)
sparse_max_features an integer. Maximum number of selected features. Meant for being

used with sparse data (Original name: discretize.sparse.max_features.)
sparse_min_occurences an integer. Minimum number of occurrences for a feature to be se-

lected. Meant for being used with sparse data (Original name: discretize.sparse.min_occrrences.)
n_jobs an integer. The number of jobs to run in parallel for both fit and predict. If -1, all CPUs

are used. If -2, all CPUs but one are used. If < -1, (n_cpus + 1 + n_jobs) are used (Original
name: set.nthreads.)

verbose an integer. Controls the verbosity of the tree building process (Original name: set.verbose.)

Method clone(): The objects of this class are cloneable with this method.

Usage:

8 mat_2scipy_sparse

FastRGF_Regressor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

https://github.com/RGF-team/rgf/tree/master/python-package, Tong Zhang, FastRGF: Multi-core
Implementation of Regularized Greedy Forest (https://github.com/RGF-team/rgf/tree/master/FastRGF)

Examples

try({
if (reticulate::py_available(initialize = FALSE)) {

if (reticulate::py_module_available("rgf.sklearn")) {

library(RGF)

set.seed(1)
x = matrix(runif(100000), nrow = 100, ncol = 1000)

y = runif(100)

fast_RGF_regr = FastRGF_Regressor$new(max_leaf = 50)

fast_RGF_regr$fit(x, y)

preds = fast_RGF_regr$predict(x)
}

}
}, silent = TRUE)

mat_2scipy_sparse conversion of an R matrix to a scipy sparse matrix

Description

conversion of an R matrix to a scipy sparse matrix

Usage

mat_2scipy_sparse(x, format = "sparse_row_matrix")

Arguments

x a data matrix

format a character string. Either "sparse_row_matrix" or "sparse_column_matrix"

RGF_Classifier 9

Details

This function allows the user to convert an R matrix to a scipy sparse matrix. This is useful because
the Regularized Greedy Forest algorithm accepts only python sparse matrices as input.

References

https://docs.scipy.org/doc/scipy/reference/sparse.html

Examples

try({
if (reticulate::py_available(initialize = FALSE)) {

if (reticulate::py_module_available("scipy")) {

library(RGF)

set.seed(1)

x = matrix(runif(1000), nrow = 100, ncol = 10)

res = mat_2scipy_sparse(x)

print(dim(x))

print(res$shape)
}

}
}, silent = TRUE)

RGF_Classifier Regularized Greedy Forest classifier

Description

Regularized Greedy Forest classifier

Regularized Greedy Forest classifier

Usage

init <- RGF_Classifier$new(max_leaf = 1000, test_interval = 100,
algorithm = "RGF", loss = "Log", reg_depth = 1.0,
l2 = 0.1, sl2 = NULL, normalize = FALSE,
min_samples_leaf = 10, n_iter = NULL,
n_tree_search = 1, opt_interval = 100,
learning_rate = 0.5, calc_prob = "sigmoid",
n_jobs = 1, memory_policy = "generous",
verbose = 0, init_model = NULL)

10 RGF_Classifier

Details

the fit function builds a classifier from the training set (x, y).

the predict function predicts the class for x.

the predict_proba function predicts class probabilities for x.

the cleanup function removes tempfiles used by this model. See the issue https://github.com/RGF-
team/rgf/issues/75, which explains in which cases the cleanup function applies.

the get_params function returns the parameters of the model.

the score function returns the mean accuracy on the given test data and labels.

the feature_importances function returns the feature importances for the data.

the dump_model function currently prints information about the fitted model in the console

the save_model function saves a model to a file from which training can do warm-start in the future.

Methods

RGF_Classifier$new(max_leaf = 1000, test_interval = 100, algorithm = "RGF", loss = "Log", reg_depth = 1.0, l2 = 0.1, sl2 = NULL, normalize = FALSE, min_samples_leaf = 10, n_iter = NULL, n_tree_search = 1, opt_interval = 100, learning_rate = 0.5, calc_prob = "sigmoid", n_jobs = 1, memory_policy = "generous", verbose = 0, init_model = NULL)

————–

fit(x, y, sample_weight = NULL)

————–

predict(x)

————–

predict_proba(x)

————–

cleanup()

————–

get_params(deep = TRUE)

————–

score(x, y, sample_weight = NULL)

————–

feature_importances()

————–

dump_model()

————–

save_model(filename)

————–

Super class

RGF::Internal_class -> RGF_Classifier

RGF_Classifier 11

Methods

Public methods:
• RGF_Classifier$new()

• RGF_Classifier$clone()

Method new():
Usage:
RGF_Classifier$new(
max_leaf = 1000,
test_interval = 100,
algorithm = "RGF",
loss = "Log",
reg_depth = 1,
l2 = 0.1,
sl2 = NULL,
normalize = FALSE,
min_samples_leaf = 10,
n_iter = NULL,
n_tree_search = 1,
opt_interval = 100,
learning_rate = 0.5,
calc_prob = "sigmoid",
n_jobs = 1,
memory_policy = "generous",
verbose = 0,
init_model = NULL

)

Arguments:
max_leaf an integer. Training will be terminated when the number of leaf nodes in the forest

reaches this value.
test_interval an integer. Test interval in terms of the number of leaf nodes.
algorithm a character string specifying the Regularization algorithm. One of "RGF" (RGF

with L2 regularization on leaf-only models), "RGF_Opt" (RGF with min-penalty regular-
ization) or "RGF_Sib" (RGF with min-penalty regularization with the sum-to-zero sibling
constraints).

loss a character string specifying the Loss function. One of "LS" (Square loss), "Expo" (Expo-
nential loss) or "Log" (Logistic loss).

reg_depth a float. Must be no smaller than 1.0. Meant for being used with the algorithm RGF
Opt or RGF Sib. A larger value penalizes deeper nodes more severely.

l2 a float. Used to control the degree of L2 regularization.
sl2 a float or NULL. Override L2 regularization parameter l2 for the process of growing the

forest. That is, if specified, the weight correction process uses l2 and the forest growing
process uses sl2. If NULL, no override takes place and l2 is used throughout training.

normalize a boolean. If True, training targets are normalized so that the average becomes zero.
min_samples_leaf an integer or a float. Minimum number of training data points in each leaf

node. If an integer, then consider min_samples_leaf as the minimum number. If a float,

12 RGF_Classifier

then min_samples_leaf is a percentage and ceil(min_samples_leaf * n_samples) are the
minimum number of samples for each node.

n_iter an integer or NULL. The number of iterations of coordinate descent to optimize weights.
If NULL, 10 is used for loss = "LS" and 5 for loss = "Expo" or "Log".

n_tree_search an integer. The number of trees to be searched for the nodes to split. The most
recently grown trees are searched first.

opt_interval an integer. Weight optimization interval in terms of the number of leaf nodes.
For example, by default, weight optimization is performed every time approximately 100
leaf nodes are newly added to the forest.

learning_rate a float. Step size of Newton updates used in coordinate descent to optimize
weights.

calc_prob a character string. One of "sigmoid" or "softmax". Method of probability calcula-
tion.

n_jobs an integer. The number of jobs (threads) to use for the computation. The substantial
number of the jobs dependents on classes_ (The number of classes when fit is performed).
If classes_ = 2, the substantial max number of the jobs is one. If classes_ > 2, the substantial
max number of the jobs is the same as classes_. If n_jobs = 1, no parallel computing code is
used at all regardless of classes_. If n_jobs = -1 and classes_ >= number of CPU, all CPUs
are used. For n_jobs = -2, all CPUs but one are used. For n_jobs below -1, (n_cpus + 1 +
n_jobs) are used.

memory_policy a character string. One of "conservative" (it uses less memory at the expense of
longer runtime. Try only when with default value it uses too much memory) or "generous"
(it runs faster using more memory by keeping the sorted orders of the features on memory
for reuse). Memory using policy.

verbose an integer. Controls the verbosity of the tree building process.
init_model either NULL or a character string, optional (default=NULL). Filename of a pre-

viously saved model from which training should do warm-start. If model has been saved
into multiple files, do not include numerical suffixes in the filename. NOTE: Make sure you
haven’t forgotten to increase the value of the max_leaf parameter regarding to the speci-
fied warm-start model because warm-start model trees are counted in the overall number of
trees.

Method clone(): The objects of this class are cloneable with this method.

Usage:
RGF_Classifier$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

References

https://github.com/RGF-team/rgf/tree/master/python-package, Rie Johnson and Tong Zhang, Learn-
ing Nonlinear Functions Using Regularized Greedy Forest

Examples

try({
if (reticulate::py_available(initialize = FALSE)) {

RGF_cleanup_temp_files 13

if (reticulate::py_module_available("rgf.sklearn")) {

library(RGF)

set.seed(1)
x = matrix(runif(1000), nrow = 100, ncol = 10)

y = sample(1:2, 100, replace = TRUE)

RGF_class = RGF_Classifier$new(max_leaf = 50)

RGF_class$fit(x, y)

preds = RGF_class$predict_proba(x)
}

}
}, silent = TRUE)

RGF_cleanup_temp_files

Delete all temporary files of the created RGF estimators

Description

Delete all temporary files of the created RGF estimators

Usage

RGF_cleanup_temp_files()

Details

This function deletes all temporary files of the created RGF estimators. See the issue https://github.com/RGF-
team/rgf/issues/75 for more details.

References

https://github.com/RGF-team/rgf/tree/master/python-package

Examples

Not run:
library(RGF)

RGF_cleanup_temp_files()

End(Not run)

14 RGF_Regressor

RGF_Regressor Regularized Greedy Forest regressor

Description

Regularized Greedy Forest regressor

Regularized Greedy Forest regressor

Usage

init <- RGF_Regressor$new(max_leaf = 500, test_interval = 100,
algorithm = "RGF", loss = "LS", reg_depth = 1.0,
l2 = 0.1, sl2 = NULL, normalize = TRUE,
min_samples_leaf = 10, n_iter = NULL,
n_tree_search = 1, opt_interval = 100,
learning_rate = 0.5, memory_policy = "generous",
verbose = 0, init_model = NULL)

Details

the fit function builds a regressor from the training set (x, y).

the predict function predicts the regression target for x.

the cleanup function removes tempfiles used by this model. See the issue https://github.com/RGF-
team/rgf/issues/75, which explains in which cases the cleanup function applies.

the get_params function returns the parameters of the model.

the score function returns the coefficient of determination (R^2) for the predictions.

the feature_importances function returns the feature importances for the data.

the dump_model function currently prints information about the fitted model in the console

the save_model function saves a model to a file from which training can do warm-start in the future.

Methods

RGF_Regressor$new(max_leaf = 500, test_interval = 100, algorithm = "RGF", loss = "LS", reg_depth = 1.0, l2 = 0.1, sl2 = NULL, normalize = TRUE, min_samples_leaf = 10, n_iter = NULL, n_tree_search = 1, opt_interval = 100, learning_rate = 0.5, memory_policy = "generous", verbose = 0, init_model = NULL)

————–

fit(x, y, sample_weight = NULL)

————–

predict(x)

————–

cleanup()

————–

get_params(deep = TRUE)

RGF_Regressor 15

————–

score(x, y, sample_weight = NULL)

————–

feature_importances()

————–

dump_model()

————–

save_model(filename)

————–

Super class

RGF::Internal_class -> RGF_Regressor

Methods

Public methods:

• RGF_Regressor$new()

• RGF_Regressor$clone()

Method new():

Usage:
RGF_Regressor$new(
max_leaf = 500,
test_interval = 100,
algorithm = "RGF",
loss = "LS",
reg_depth = 1,
l2 = 0.1,
sl2 = NULL,
normalize = TRUE,
min_samples_leaf = 10,
n_iter = NULL,
n_tree_search = 1,
opt_interval = 100,
learning_rate = 0.5,
memory_policy = "generous",
verbose = 0,
init_model = NULL

)

Arguments:

max_leaf an integer. Training will be terminated when the number of leaf nodes in the forest
reaches this value.

test_interval an integer. Test interval in terms of the number of leaf nodes.

16 RGF_Regressor

algorithm a character string specifying the Regularization algorithm. One of "RGF" (RGF
with L2 regularization on leaf-only models), "RGF_Opt" (RGF with min-penalty regular-
ization) or "RGF_Sib" (RGF with min-penalty regularization with the sum-to-zero sibling
constraints).

loss a character string specifying the Loss function. One of "LS" (Square loss), "Expo" (Expo-
nential loss) or "Log" (Logistic loss).

reg_depth a float. Must be no smaller than 1.0. Meant for being used with the algorithm RGF
Opt or RGF Sib. A larger value penalizes deeper nodes more severely.

l2 a float. Used to control the degree of L2 regularization.

sl2 a float or NULL. Override L2 regularization parameter l2 for the process of growing the
forest. That is, if specified, the weight correction process uses l2 and the forest growing
process uses sl2. If NULL, no override takes place and l2 is used throughout training.

normalize a boolean. If True, training targets are normalized so that the average becomes zero.

min_samples_leaf an integer or a float. Minimum number of training data points in each leaf
node. If an integer, then consider min_samples_leaf as the minimum number. If a float,
then min_samples_leaf is a percentage and ceil(min_samples_leaf * n_samples) are the
minimum number of samples for each node.

n_iter an integer or NULL. The number of iterations of coordinate descent to optimize weights.
If NULL, 10 is used for loss = "LS" and 5 for loss = "Expo" or "Log".

n_tree_search an integer. The number of trees to be searched for the nodes to split. The most
recently grown trees are searched first.

opt_interval an integer. Weight optimization interval in terms of the number of leaf nodes.
For example, by default, weight optimization is performed every time approximately 100
leaf nodes are newly added to the forest.

learning_rate a float. Step size of Newton updates used in coordinate descent to optimize
weights.

memory_policy a character string. One of "conservative" (it uses less memory at the expense of
longer runtime. Try only when with default value it uses too much memory) or "generous"
(it runs faster using more memory by keeping the sorted orders of the features on memory
for reuse). Memory using policy.

verbose an integer. Controls the verbosity of the tree building process.

init_model either NULL or a character string, optional (default=NULL). Filename of a pre-
viously saved model from which training should do warm-start. If model has been saved
into multiple files, do not include numerical suffixes in the filename. NOTE: Make sure you
haven’t forgotten to increase the value of the max_leaf parameter regarding to the speci-
fied warm-start model because warm-start model trees are counted in the overall number of
trees.

Method clone(): The objects of this class are cloneable with this method.

Usage:

RGF_Regressor$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

TO_scipy_sparse 17

References

https://github.com/RGF-team/rgf/tree/master/python-package, Rie Johnson and Tong Zhang, Learn-
ing Nonlinear Functions Using Regularized Greedy Forest

Examples

try({
if (reticulate::py_available(initialize = FALSE)) {

if (reticulate::py_module_available("rgf.sklearn")) {

library(RGF)

set.seed(1)
x = matrix(runif(1000), nrow = 100, ncol = 10)

y = runif(100)

RGF_regr = RGF_Regressor$new(max_leaf = 50)

RGF_regr$fit(x, y)

preds = RGF_regr$predict(x)
}

}
}, silent = TRUE)

TO_scipy_sparse conversion of an R sparse matrix to a scipy sparse matrix

Description

conversion of an R sparse matrix to a scipy sparse matrix

Usage

TO_scipy_sparse(R_sparse_matrix)

Arguments

R_sparse_matrix

an R sparse matrix. Acceptable input objects are either a dgCMatrix or a dgR-
Matrix.

Details

This function allows the user to convert either an R dgCMatrix or a dgRMatrix to a scipy sparse ma-
trix (scipy.sparse.csc_matrix or scipy.sparse.csr_matrix). This is useful because the RGF package
accepts besides an R dense matrix also python sparse matrices as input.

18 TO_scipy_sparse

The dgCMatrix class is a class of sparse numeric matrices in the compressed, sparse, column-
oriented format. The dgRMatrix class is a class of sparse numeric matrices in the compressed,
sparse, row-oriented format.

References

https://stat.ethz.ch/R-manual/R-devel/library/Matrix/html/dgCMatrix-class.html, https://stat.ethz.ch/R-
manual/R-devel/library/Matrix/html/dgRMatrix-class.html, https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csc_matrix.html#scipy.sparse.csc_matrix

Examples

try({
if (reticulate::py_available(initialize = FALSE)) {

if (reticulate::py_module_available("scipy")) {

if (Sys.info()["sysname"] != 'Darwin') {

library(RGF)

'dgCMatrix' sparse matrix
#--------------------------

data = c(1, 0, 2, 0, 0, 3, 4, 5, 6)

dgcM = Matrix::Matrix(
data = data
, nrow = 3
, ncol = 3
, byrow = TRUE
, sparse = TRUE

)

print(dim(dgcM))

res = TO_scipy_sparse(dgcM)

print(res$shape)

'dgRMatrix' sparse matrix
#--------------------------

dgrM = as(dgcM, "RsparseMatrix")

print(dim(dgrM))

res_dgr = TO_scipy_sparse(dgrM)

print(res_dgr$shape)
}

}

TO_scipy_sparse 19

}
}, silent = TRUE)

Index

FastRGF_Classifier, 2
FastRGF_Regressor, 5

mat_2scipy_sparse, 8

RGF_Classifier, 9
RGF_cleanup_temp_files, 13
RGF_Regressor, 14

TO_scipy_sparse, 17

20

	FastRGF_Classifier
	FastRGF_Regressor
	mat_2scipy_sparse
	RGF_Classifier
	RGF_cleanup_temp_files
	RGF_Regressor
	TO_scipy_sparse
	Index

