Package ‘PRIMAL’

January 20, 2025

Type Package
Title Parametric Simplex Method for Sparse Learning

Version 1.0.2

Date 2020-01-21

Author Zichong Li, Qianli Shen

Maintainer Zichong Li <zichongli5@gmail.com>
LinkingTo Rcpp, ReppEigen

Description Implements a unified framework of parametric simplex method for a vari-
ety of sparse learning problems (e.g., Dantzig selector (for linear regression), sparse quantile re-
gression, sparse support vector machines, and compressive sensing) combined with efficient hy-
per-parameter selection strategies. The core algorithm is implemented in C++ with Eigen3 sup-
port for portable high performance linear algebra. For more details about parametric sim-
plex method, see Haotian Pang (2017) <https://papers.nips.cc/paper/
6623-parametric-simplex-method-for-sparse-learning.pdf>.

Imports Matrix

License GPL (>=2)

NeedsCompilation yes

RoxygenNote 6.1.1

Repository CRAN

Date/Publication 2020-01-22 11:10:02 UTC

Contents
PRIMAL-package 0 e e 2
coefprimal L 2
CompressedSensing_solver 3
Dantzig_solver 4
plot.primal e e e e e 6
print.primal L e e e e e 6
PSM_solver e 7
QuantileRegression_solver 8
SparseSVM_solver e 10

https://papers.nips.cc/paper/6623-parametric-simplex-method-for-sparse-learning.pdf
https://papers.nips.cc/paper/6623-parametric-simplex-method-for-sparse-learning.pdf

2 coef.primal

Index 12

PRIMAL-package Parametric Simplex Method for Sparse Learning

Description

A package for parametric simplex method for sparse learning

Details

Package: PRIMAL
Type: Package
Version: 1.0.0

Date: 2019-08-15

The package "PRIMAL" provides 5 main functions:

(1) The dantzig selector solver applying simplex method. Please refer to Dantzig_solver.

(2) The sparse SVM solver applying simplex method. Please refer to SparseSVM_solver.

(3) The compressed sensing solver. Please refer to CompressedSensing_solver.

(4) The quantile regression solver. Please refer to QuantileRegression_solver.

(5) The solver for standard formulation of parametric simplex method. Please refer to PSM_solver.

Author(s)
Qianli Shen, Zichong Li

See Also

plot.primal, print.primal, coef.primal

coef.primal Coef function for S3 class "primal”

Description

Print the estimated solution correspond to a specific parameter.

Usage

S3 method for class 'primal'
coef(object, n = NULL, ...)

CompressedSensing_solver 3

Arguments
object An object with S3 class "primal”.
n The index of the wanted parameter.
System reserved (No specific usage)
See Also

Dantzig_solver, SparseSVYM_solver

CompressedSensing_solver

Solve given compressed sensing problem in parametric simplex
method

Description

Solve given compressed sensing problem in parametric simplex method

Usage

CompressedSensing_solver(X, y, max_it = 50, lambda_threshold = 0.01)

Arguments
X x is an n by d data matrix
y y is a length n response vector
max_it This is the number of the maximum path length one would like to achieve. The

default length is 50.
lambda_threshold

The parametric simplex method will stop when the calculated parameter is smaller
than lambda. The default value is 0. 01.

Value

An object with S3 class "primal” is returned:

data The n by d data matrix from the input

response The length n response vector from the input

beta A matrix of regression estimates whose columns correspond to regularization
parameters for parametric simplex method.

df The degree of freedom (number of nonzero coefficients) along the solution path.

value The sequence of optimal value of the object function corresponded to the se-
quence of lambda.

iterN The number of iteration in the program.

lambda The sequence of regularization parameters lambda obtained in the program.

type The type of the problem, such as Dantzig and SparseSVM.

See Also

Dantzig_solver

primal-package, Dantzig_solver

Examples

Compressed Sensing

We set X to be standard normal random matrix and generate Y using gaussian noise.
Generate the design matrix and coefficient vector

n = 100 # sample number

d = 250 # sample dimension

c = 0.5 # correlation parameter

s = 20 # support size of coefficient

set.seed(1024)

X = scale(matrix(rnorm(n*d),n,d)+cxrnorm(n))/sqrt(n-1)*sqrt(n)

beta =

c(rnorm(s), rep(@, d-s))

Generate response using Gaussian noise, and solve the solution path

noise =

Y = X%x%beta + noise
Compressed Sensing solved with parametric simplex method
fit.compressed = CompressedSensing_solver(X, Y, max_it = 100, lambda_threshold = 0.01)

###1lambdas used

print(fit.compressed$lambda)

number of nonzero coefficients for each lambda
print(fit.compressed$df)

Visualize the solution path
plot(fit.compressed)

Dantzig_solver

Solve given Dantzig selector problem in parametric simplex method

Description

Solve given Dantzig selector problem in parametric simplex method

Usage

Dantzig_solver(X, y, max_it = 50, lambda_threshold = 0.01)

Arguments
X
y

max_it

x is an n by d data matrix
y is a length n response vector

This is the number of the maximum path length one would like to achieve. The
default length is 50.

lambda_threshold

The parametric simplex method will stop when the calculated parameter is smaller
than lambda. The default value is 0.01.

Dantzig_solver 5

Value

An object with S3 class "primal” is returned:

data The n by d data matrix from the input
response The length n response vector from the input
beta A matrix of regression estimates whose columns correspond to regularization

parameters for parametric simplex method.
df The degree of freedom (number of nonzero coefficients) along the solution path.

value The sequence of optimal value of the object function corresponded to the se-
quence of lambda.

iterN The number of iteration in the program.
lambda The sequence of regularization parameters lambda obtained in the program.
type The type of the problem, such as Dantzig and SparseSVM.

See Also

primal-package

Examples

Dantzig

We set X to be standard normal random matrix and generate Y using gaussian noise.
Generate the design matrix and coefficient vector

n = 100 # sample number

d = 250 # sample dimension

c = 0.5 # correlation parameter

s = 20 # support size of coefficient

set.seed(1024)

X = scale(matrix(rnorm(nxd),n,d)+cxrnorm(n))/sqrt(n-1)*sqrt(n)

beta = c(rnorm(s), rep(@, d-s))

Generate response using Gaussian noise, and solve the solution path
noise = rnorm(n)

Y = X%*%beta + noise

Dantzig selection solved with parametric simplex method

fit.dantzig = Dantzig_solver(X, Y, max_it = 100, lambda_threshold = 0.01)
###1lambdas used

print(fit.dantzig$lambda)

number of nonzero coefficients for each lambda
print(fit.dantzig$df)

Visualize the solution path

plot(fit.dantzig)

6 print.primal

plot.primal Plot function for 83 class "primal”

Description

Plot regularization path and parameter obtained from the algorithm.

Usage
S3 method for class 'primal'
plot(x, n = NULL, ...)
Arguments
X An object with S3 class "primal”
n If n = NULL, three graph will be shown together. If n is a number, then the corre-

sponding graph will be shown.

System reserved (No specific usage)

See Also

Dantzig_solver, SparseSVYM_solver

print.primal Print function for S3 class "primal”

Description

Print the information about the model usage, the parameter path, degree of freedom of the solution
path.

Usage
S3 method for class 'primal'
print(x, ...)
Arguments
X An object with S3 class "primal”.
System reserved (No specific usage)
See Also

Dantzig_solver, SparseSVYM_solver

PSM _solver 7

PSM_solver Solve given problem in parametric simplex method

Description

Solve given problem in parametric simplex method

Usage

PSM_solver(A, b, b_bar, c, c_bar, B_init = NULL, max_it = 50,
lambda_threshold = 0.01)

Arguments
A Ais an n by d data matrix
b b is a length n response vector
b_bar b_bar is a length n vector time to parameter in constraints.
c c is a length d vector in target function.
c_bar c_bar is a length d vector time to parameter in target function
B_init B_init is the index of initial basic colume.
max_it This is the number of the maximum path length one would like to achieve. The

default length is 50.

lambda_threshold
The parametric simplex method will stop when the calculated parameter is smaller
than lambda. The default value is 9. 01.

Value

An object with S3 class "primal” is returned:

data The n by d data matrix from the input

response The length n response vector from the input

beta A matrix of regression estimates whose columns correspond to regularization
parameters for parametric simplex method.

beta@ A vector of regression estimates whose index correspond to regularization pa-
rameters for parametric simplex method.

df The degree of freecom (number of nonzero coefficients) along the solution path.

value The sequence of optimal value of the object function corresponded to the se-
quence of lambda.

iterN The number of iteration in the program.

lambda The sequence of regularization parameters lambda obtained in the program.

type The type of the problem, such as Dantzig and SparseSVM.

8 QuantileRegression_solver

See Also

primal-package

Examples

This example show how to use PSM_solver() to solve dantzig problem.
Generate the design matrix and coefficient vector
n = 100 # sample number
d = 250 # sample dimension
c = 0.5 # correlation parameter
s = 20 # support size of coefficient
set.seed(1024)
X = scale(matrix(rnorm(nxd),n,d)+cxrnorm(n))/sqrt(n-1)*sqrt(n)
beta = c(rnorm(s), rep(@, d-s))
Generate response using Gaussian noise, and solve the solution path
noise = rnorm(n)
Y = X%*%beta + noise
Define parameters for dantzig problem
XtX = t(X)%*%X
= chind(cbind(rbind(XtX,-XtX),-rbind(XtX,-XtX)),diag(rep(1,2*d)))
rbind (t (X)%x%Y, -t (X)%*%Y)
= c(rep(-1,2*d),rep(0,2*d))
_bar = rep(0,4xd)
b_bar = rep(1,2x*d)
B_init = seq(2xd,4xd-1)
Dantzig selection solved with parametric simplex method
fit.dantzig = PSM_solver(A, b, b_bar, c, c_bar, B_init, max_it = 50, lambda_threshold = 0.01)
###1lambdas used
print(fit.dantzig$lambda)
number of nonzero coefficients for each lambda
print(fit.dantzig$df)
Visualize the solution path
plot(fit.dantzig)

o 0 T >
1}

QuantileRegression_solver
Solve given quantile regression problem in parametric simplex method

Description

Solve given quantile regression problem in parametric simplex method

Usage

QuantileRegression_solver(X, y, max_it = 50, lambda_threshold = 0.01,
tau = 0.5)

QuantileRegression_solver 9

Arguments
X x is an n by d data matrix
y y is a length n response vector
max_it This is the number of the maximum path length one would like to achieve. The

default length is 50.
lambda_threshold

The parametric simplex method will stop when the calculated parameter is smaller
than lambda. The default value is @.01.

tau The quantile number you want. The default quantile is 0.5

Value

An object with S3 class "primal” is returned:

data The n by d data matrix from the input

response The length n response vector from the input

beta A matrix of regression estimates whose columns correspond to regularization
parameters for parametric simplex method.

df The degree of freedom (number of nonzero coefficients) along the solution path.

value The sequence of optimal value of the object function corresponded to the se-
quence of lambda.

iterN The number of iteration in the program.

lambda The sequence of regularization parameters lambda obtained in the program.

type The type of the problem, such as Dantzig and SparseSVM.

See Also

primal-package, Dantzig_solver

Examples

Quantile Regression

We set X to be standard normal random matrix and generate Y using gaussian noise
with default quantile number to be 0.5.

Generate the design matrix and coefficient vector

n = 100 # sample number

d = 250 # sample dimension

c = 0.5 # correlation parameter

s = 20 # support size of coefficient

set.seed(1024)

X = scale(matrix(rnorm(nxd),n,d)+cxrnorm(n))/sqrt(n-1)*sqrt(n)

beta = c(rnorm(s), rep(@, d-s))

Generate response using Gaussian noise, and solve the solution path

noise = rnorm(n)

Y = X%*%beta + noise

Quantile Regression problem solved with parametric simplex method

fit.quantile = QuantileRegression_solver(X, Y, max_it = 100, lambda_threshold = 0.01)

10 SparseSVM_solver

###lambdas used

print(fit.quantile$lambda)

number of nonzero coefficients for each lambda
print(fit.quantile$df)

Visualize the solution path

plot(fit.quantile)

SparseSVM_solver Solve given Sparse SVM problem in parametric simplex method

Description

Solve given Sparse SVM problem in parametric simplex method

Usage

SparseSVYM_solver(X, y, max_it = 50, lambda_threshold = 0.01)

Arguments
X x is an n by d data matrix
y y is a length n response vector
max_it This is the number of the maximum path length one would like to achieve. The

default length is 50.
lambda_threshold

The parametric simplex method will stop when the calculated parameter is smaller
than lambda. The default value is @.01.

Value

An object with S3 class "primal” is returned:

data The n by d data matrix from the input

response The length n response vector from the input

beta A matrix of regression estimates whose columns correspond to regularization
parameters for parametric simplex method.

beta@ A vector of regression estimates whose index correspond to regularization pa-
rameters for parametric simplex method.

df The degree of freecom (number of nonzero coefficients) along the solution path.

value The sequence of optimal value of the object function corresponded to the se-
quence of lambda.

iterN The number of iteration in the program.

lambda The sequence of regularization parameters Lambda obtained in the program.

type The type of the problem, such as Dantzig and SparseSVM.

SparseSVM_solver 11

See Also

primal-package

Examples

SparseSVM

We set the X matrix to be normal random matrix and Y is a vector consists of -1 and 1
with the number of iteration to be 1000.

Generate the design matrix and coefficient vector

n = 200 # sample number

d = 100 # sample dimension

c = 0.5 # correlation parameter

s = 20 # support size of coefficient

set.seed(1024)

X = matrix(rnorm(nxd),n,d)+c*rnorm(n)

Generate response and solve the solution path

Y <- sample(c(-1,1),n,replace = TRUE)

Sparse SVM solved with parametric simplex method

fit.SVM = SparseSVM_solver(X, Y, max_it = 1000, lambda_threshold = 0.01)
lambdas used

print(fit.SVM$lambda)

Visualize the solution path

plot(fit.SVM)

Index

_PACKAGE (PRIMAL-package), 2

coef.primal, 2,2
CompressedSensing_solver, 2, 3

Dantzig_solver, 2-4,4,6, 9

plot.primal, 2,6
PRIMAL-package, 2

primal-package (PRIMAL-package), 2
print.primal, 2,6

PSM_solver, 2,7

QuantileRegression_solver, 2,8

SparseSVM_solver, 2, 3, 6, 10

12

	PRIMAL-package
	coef.primal
	CompressedSensing_solver
	Dantzig_solver
	plot.primal
	print.primal
	PSM_solver
	QuantileRegression_solver
	SparseSVM_solver
	Index

