Package 'PAC'

January 20, 2025

Type Package

Title Partition-Assisted Clustering and Multiple Alignments of Networks

Version 1.1.4

Date 2021-02-17

Author Ye Henry Li, Dangna Li

Maintainer Ye Henry Li <hlowl2@gmail.com>

Description Implements partition-assisted clustering and multiple alignments of networks. It 1) utilizes partition-assisted clustering to find robust and accurate clusters and 2) discovers coherent relationships of clusters across multiple samples. It is particularly useful for analyzing singlecell data set. Please see Li et al. (2017) <doi:10.1371/journal.pcbi.1005875> for detail method description.

URL https://doi.org/10.1371/journal.pcbi.1005875

License GPL-3

Imports Rcpp (>= 0.12.2), igraph, parmigene, infotheo, dplyr, Rtsne, ggplot2, ggrepel

Suggests knitr, rmarkdown

VignetteBuilder knitr

LinkingTo Rcpp

RoxygenNote 5.0.1

NeedsCompilation yes

SystemRequirements C++11

Repository CRAN

Date/Publication 2021-02-18 07:00:02 UTC

Contents

aggregateData	. 2
annotateClades	. 3
annotationMatrix_withSubpopProp	. 4

aggregateData

17

BSPLeaveCenter
constellationPlot 5
fmeasure
getAverageSpreadOf2SubpopClades
getExtraneousCladeSubpopulations
getRepresentativeNetworks
heatmapInput
JaccardSM
MAN
MINetworkPlot_topEdges
MINetwork_matrix_topEdges 10
MINetwork_simplified_topEdges
outputNetworks_topEdges_matrix
outputRepresentativeNetworks_topEdges 11
PAC 12
recordWithinClusterSpread
refineSubpopulationLabels
renamePrunedSubpopulations 14
runElbowPointAnalysis
samplePass
-

Index

aggregateData Aggregates results from the clustering and merging step.

Description

Aggregates results from the clustering and merging step.

Usage

```
aggregateData(dataInput, labelsInput)
```

Arguments

dataInput	Data matrix, with first column being SampleID.
labelsInput	cluster labels from PAC.

Value

The aggregated data of dataInput, with average signal levels for all clusters and sample combinations.

annotateClades

Examples

```
n = 5e3
                                # number of observations
p = 1
                                # number of dimensions
K = 3
                               # number of clusters
                               # component weights
w = rep(1,K)/K
mu <- c(0,2,4)
                               # component means
sd <- rep(1,K)/K
                               # component standard deviations
g <- sample(1:K,prob=w,size=n,replace=TRUE) # ground truth for clustering</pre>
X <- as.matrix(rnorm(n=n,mean=mu[g],sd=sd[g]))</pre>
y \leftarrow PAC(X, K)
X2<-as.matrix(rnorm(n=n,mean=mu[g],sd=sd[g]))</pre>
y_{2} < -P_{AC}(X_{2},K)
X<-cbind("Sample1", as.data.frame(X)); colnames(X)<-c("SampleID", "Value")</pre>
X2<-cbind("Sample2", as.data.frame(X2)); colnames(X2)<-c("SampleID", "Value")</pre>
aggregateData(rbind(X,X2),c(y,y2))
```

annotateClades	Creates annotation matrix for the clades in aggregated format. The
	matrix contains average signals of each dimension for each clade in each sample
	euch sumple

Description

Creates annotation matrix for the clades in aggregated format. The matrix contains average signals of each dimension for each clade in each sample

Usage

annotateClades(sampleIDs, topHubs)

Arguments

sampleIDs	sampleID vector
topHubs	number of top ranked genes to output for annotation; annotation is a concate- nated list of top ranked genes.

Value

Annotated clade matrix

annotationMatrix_withSubpopProp

Adds subpopulation proportion for the annotation matrix for the clades

Description

Adds subpopulation proportion for the annotation matrix for the clades

Usage

annotationMatrix_withSubpopProp(aggregateMatrix_withAnnotation)

Arguments

aggregateMatrix_withAnnotation the annotated clade matrix

Value

Annotated clade matrix with subpopulation proportions

BSPLeaveCenter Finds N Leaf centers in the data

Description

Finds N Leaf centers in the data

Usage

BSPLeaveCenter(data, N = 40, method = "dsp")

Arguments

data	a n x p data matrix
Ν	number of leaves centers
method	partition method, either "dsp (discrepancy based partition)", or "ll (bayesian se- quantial partition limited-look ahead)"

Value

leafctr N leaves centers

constellationPlot	Makes constellation plot, in which the centroids are clusters are em-
	bedded in the t-SNE 2D plane and the cross-sample relationships are
	plotted as lines connecting related sample clusters (clades).

Description

Makes constellation plot, in which the centroids are clusters are embedded in the t-SNE 2D plane and the cross-sample relationships are plotted as lines connecting related sample clusters (clades).

Usage

```
constellationPlot(pacman_results, perplexity, max_iter, seed,
    plotTitle = "Constellations of Clades", nudge_x = 0.3, nudge_y = 0.3)
```

Arguments

pacman_results	PAC-MAN analysis result matrix that contains network annotation, clade IDs and mean (centroid) clade expression levels.
perplexity	perplexity setting for running t-SNE
max_iter	max_iter setting for running t-SNE
seed	set seed to make t-SNE and consetllation plot to be reproducible
plotTitle	max_iter setting for running t-SNE
nudge_x	nudge on x coordinate of centroid labels
nudge_y	nudge on y coordinate of centroid labels

fmeasure

F-measure Calculation

Description

Compute the F measure between the ground truth and the estimated label

Usage

fmeasure(g, t)

Arguments

g	the ground truth
t	estimated labels

Value

f the F measure

getAverageSpreadOf2SubpopClades

Calculate the (global) average spread of subpopulations in clades with 2 subpopulations on the constellation plot.

Description

Calculate the (global) average spread of subpopulations in clades with 2 subpopulations on the constellation plot.

Usage

getAverageSpreadOf2SubpopClades(tsneResults, pacman_results)

Arguments

tsneResults	t-SNE output of clade centroids' embedding.
pacman_results	PAC-MAN analysis result matrix that contains network annotation, clade IDs
	and mean (centroid) clade expression levels.

Value

Returns global average of 2-subpopulation clade spread on the constellation plot.

getExtraneousCladeSubpopulations

Calculates subpopulations in clades (with two or more subpopulations) that are too far away from other subpopulations (within the same clade) on the constellation plot; these far away subpopulations should be pruned away from the original clades.

Description

Calculates subpopulations in clades (with two or more subpopulations) that are too far away from other subpopulations (within the same clade) on the constellation plot; these far away subpopulations should be pruned away from the original clades.

Usage

```
getExtraneousCladeSubpopulations(tsneResults, pacman_results,
    threshold_multiplier, max_threshold)
```

Arguments

tsneResults	t-SNE output of clade centroids' embedding.	
pacman_results	PAC-MAN analysis result matrix that contains network annotation, clade IDs and mean (centroid) clade expression levels.	
threshold_multiplier		
	how many times the threshold ((a) spread from center of clade for clades with three or more sample subpopulations and (b) distance from each subpopulation centroid for clades with exactly two subpopulations).	
max_threshold	the maximum distance (on t-SNE plane) allowed for sample subpopulations to be categorized into the same clade.	

Value

Returns clade subpopulations to be pruned.

getRepresentativeNetworks

Representative Networks

Description

Outputs representative networks for clades/subpopulations larger than a size filter (very small subpopulations are not considered in downstream analyses)

Usage

```
getRepresentativeNetworks(sampleIDs, dim_subset, SubpopSizeFilter,
    num_networkEdge)
```

sampleIDs	sampleID vector	
dim_subset	a string vector of string names to subset the data columns for PAC; set to NULL to use all columns	
SubpopSizeFilter		
	the cutoff for small subpopulations. Smaller subpopulations have unstable co- variance structure, so no network structure is calculated	
num_networkEdge		
	the number of edges to draw for each subpopulation mutual information network	

heatmapInput

Description

Creates the matrix that can be easily plotted with a heatmap function available in an R package

Usage

heatmapInput(aggregateMatrix_withAnnotation)

Arguments

aggregateMatrix_withAnnotation the annotated clade matrix

Value

the heatmap input matrix

JaccardSM

Calculates the Jaccard similarity matrix.

Description

Calculates the Jaccard similarity matrix.

Usage

JaccardSM(network1, network2)

Arguments

network1	first network matrix input
network2	second network matrix input

Value

the alignment/co-occurene score

MAN

Creates network alignments using network constructed from subpopulations after PAC

Description

Creates network alignments using network constructed from subpopulations after PAC

Usage

MAN(sampleIDs, num_PACSupop, smallSubpopCutoff, k_clades)

Arguments

sampleIDs	sampleID vector
num_PACSupop	number of subpopulations learned in PAC step for each sample
smallSubpopCuto	off
	Population size cutoff for subpopulations in clade calculation. The small sub- populations will be considered in the refinement step.
k_clades	number of clades to output before refinement

Value

clades_network_only the clades constructed without small subpopulations (by cutoff) using mutual information network alignments

```
MINetworkPlot_topEdges
```

Plots mutual information network (mrnet algorithm) connection using the parmigene package. Mutual information calculated with infotheo package.

Description

Plots mutual information network (mrnet algorithm) connection using the parmigene package. Mutual information calculated with infotheo package.

Usage

MINetworkPlot_topEdges(dataMatrix, threshold)

dataMatrix	data matrix
threshold	the maximum number of edges to draw for each subpopulation mutual informa-
	tion network

```
MINetwork_matrix_topEdges
```

Mutual information network connection matrix generation (mrnet algorithm) using the parmigene package. Mutual information calculated with infotheo package.

Description

Mutual information network connection matrix generation (mrnet algorithm) using the parmigene package. Mutual information calculated with infotheo package.

Usage

MINetwork_matrix_topEdges(dataMatrix, threshold)

Arguments

dataMatrix	data matrix
threshold	the number of edges to draw for each subpopulation mutual information network

Value

the mutual information network connection matrix with top edges

```
MINetwork_simplified_topEdges
```

Outputs the vectorized summary of a network based on the number of edges connected to a node

Description

Outputs the vectorized summary of a network based on the number of edges connected to a node

Usage

```
MINetwork_simplified_topEdges(dataMatrix, threshold)
```

dataMatrix	data matrix
threshold	the number of edges to draw for each subpopulation mutual information network

outputNetworks_topEdges_matrix

Wrapper to output the mutual information networks for subpopulations with size larger than a desired threshold.

Description

Wrapper to output the mutual information networks for subpopulations with size larger than a desired threshold.

Usage

```
outputNetworks_topEdges_matrix(dataMatrix, subpopulationLabels, threshold)
```

Arguments

dataMatrix	data matrix with first column being the sample ID	
subpopulationLabels		
	the subpopulation labels	
threshold	the number of edges to draw for each subpopulation mutual information network	

```
outputRepresentativeNetworks_topEdges
```

Outputs the representative/clade networks (plots and summary vectors) for subpopulations with size larger than a desired threshold. Saves the networks and the data matrices without the smaller subpopulations.

Description

Outputs the representative/clade networks (plots and summary vectors) for subpopulations with size larger than a desired threshold. Saves the networks and the data matrices without the smaller subpopulations.

Usage

```
outputRepresentativeNetworks_topEdges(dataMatrix, subpopulationLabels,
    threshold)
```

dataMatrix	data matrix with first column being the sample ID	
subpopulationLabels		
	the subpopulation labels	
threshold	the number of edges to draw for each subpopulation mutual information network $% \left({{{\bf{n}}_{{\rm{s}}}}} \right)$	

PAC

Partition Assisted Clustering PAC 1) utilizes dsp or bsp-ll to recursively partition the data space and 2) applies a short round of kmeans style postprocessing to efficiently output clustered labels of data points.

Description

Partition Assisted Clustering PAC 1) utilizes dsp or bsp-ll to recursively partition the data space and 2) applies a short round of kmeans style postprocessing to efficiently output clustered labels of data points.

Usage

```
PAC(data, K, maxlevel = 40, method = "dsp", max.iter = 50)
```

Arguments

data	a n x p data matrix
К	number of final clusters in the output
maxlevel	the maximum level of the partition
method	partition method, either "dsp(discrepancy based partition)", or "bsp(bayesian sequantial partition)"
max.iter	maximum iteration for the kmeans step

Value

y cluter labels for the input

Examples

```
# number of observations
n = 5e3
p = 1
                                # number of dimensions
K = 3
                                # number of clusters
w = rep(1,K)/K
                               # component weights
mu <- c(0,2,4)
                               # component means
                               # component standard deviations
sd <- rep(1,K)/K</pre>
g <- sample(1:K,prob=w,size=n,replace=TRUE) # ground truth for clustering
X <- as.matrix(rnorm(n=n,mean=mu[g],sd=sd[g]))</pre>
y \leftarrow PAC(X, K)
print(fmeasure(g,y))
```

recordWithinClusterSpread

Calculates the within cluster spread

Description

Calculates the within cluster spread

Usage

```
recordWithinClusterSpread(sampleIDs, dim_subset = NULL, SubpopSizeFilter)
```

Arguments

sampleIDs	A vector of sample names.	
dim_subset	a string vector of string names to subset the data columns for PAC; set to NULL to use all columns.	
SubpopSizeFilter		
	threshold to filter out very small clusters with too few points; these very small subpopulations may not be outliers and not biologically relevant.	

Value

Returns the sample within cluster spread

refineSubpopulationLabels

Refines the subpopulation labels from PAC using network alignment and small subpopulation information. Outputs a new set of files containing the representative labels.

Description

Refines the subpopulation labels from PAC using network alignment and small subpopulation information. Outputs a new set of files containing the representative labels.

Usage

```
refineSubpopulationLabels(sampleIDs, dim_subset, clades_network_only,
    expressionGroupClamp)
```

Arguments

	sampleIDs	sampleID vector
	dim_subset	a string vector of string names to subset the data columns for PAC; set to NULL to use all columns
	clades_network_only	
		the alignment results from MAN; used to translate the original sample-specific labels into clade labels
expressionGroupClamp		
		clamps the subpopulations into desired number of expression groups for assign- ing small subpopulations into larger groups or their own groups.

renamePrunedSubpopulations

Prune away specified subpopulations in clades that are far away.

Description

Prune away specified subpopulations in clades that are far away.

Usage

```
renamePrunedSubpopulations(pacman_results, subpopulationsToPrune)
```

Arguments

pacman_results PAC-MAN analysis result matrix that contains network annotation, clade IDs and mean (centroid) clade expression levels.

subpopulationsToPrune A vector of clade IDs; these clades will be pruned.

Value

Returns PAC-MAN analysis result matrix with pruned clades. The pruning process creates new clades to replace the original clade ID of the specified subpopulations.

runElbowPointAnalysis Runs elbow point analysis to find the practical optimal number of clades to output. Outputs the average within sample cluster spread for all samples and the elbow point analysis plot with loess line fitted through the results.

Description

Runs elbow point analysis to find the practical optimal number of clades to output. Outputs the average within sample cluster spread for all samples and the elbow point analysis plot with loess line fitted through the results.

Usage

```
runElbowPointAnalysis(ks, sampleIDs, dim_subset, num_PACSupop,
    smallSubpopCutoff, expressionGroupClamp, SubpopSizeFilter)
```

Arguments

ks	Vector that is a sequence of clade sizes.	
sampleIDs	A vector of sample names.	
dim_subset	a string vector of string names to subset the data columns for PAC; set to NULL to use all columns.	
num_PACSupop	Number of PAC subpopulation explored in each sample.	
smallSubpopCuto	off	
	Cutoff of minor subpopulation not used in multiple alignments of networks	
expressionGroupClamp		
	clamps the subpopulations into desired number of expression groups for assign- ing small subpopulations into larger groups or their own groups.	
SubpopSizeFilter		
	threshold to filter out very small clusters with too few points in the calculation of cluster spreads; these very small subpopulations may be outliers and not bio- logically relevant.	

samplePass

Run PAC for Specified Samples

Description

A wrapper to run PAC and output subpopulation mutual information networks. Please use the PAC function itself for individual samples or if the MAN step is not needed.

Usage

```
samplePass(sampleIDs, dim_subset, hyperrectangles, num_PACSupop, max.iter,
num_networkEdge)
```

sampleIDs	sampleID vector	
dim_subset	a string vector of string names to subset the data columns for PAC; set to NULL to use all columns	
hyperrectangles	5	
	number of hyperrectangles to learn for each sample	
num_PACSupop	number of subpopulations to output for each sample using PAC	
max.iter	postprocessing kmeans iterations	
num_networkEdge		
	a threshold on the number of edges to output for each subpopulation mutual	
	information network	

Index

```
aggregateData, 2
annotateClades, 3
annotationMatrix_withSubpopProp, 4
BSPLeaveCenter, 4
constellationPlot, 5
fmeasure, 5
getAverageSpreadOf2SubpopClades, 6
getExtraneousCladeSubpopulations, 6
getRepresentativeNetworks, 7
heatmapInput, 8
JaccardSM, 8
MAN, 9
MINetwork_matrix_topEdges, 10
MINetwork_simplified_topEdges, 10
MINetworkPlot_topEdges, 9
```

PAC, 12

```
recordWithinClusterSpread, 13
refineSubpopulationLabels, 13
renamePrunedSubpopulations, 14
runElbowPointAnalysis, 15
```

samplePass, 15