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2 MST-package

MST-package Multivariate Survival Trees Package

Description

This package constructs trees for multivariate survival data using marginal and frailty models

Details

Package: MST
Type: Package
Version: 2.2
Date: 2020-04-05
License: GPL-2

Decision trees require few statistical assumptions, handle a variety of data structures, and provide
meaningful interpretations. There are several R packages that provide functions to construct survival
trees (see rpart, partykit, and DStree); this package extends the implementation to multivariate
survival data. There are two main approaches to analyzing correlated failure times. One is the
marginal approach studied by authors Wei et al. (1989) and Liang et al. (1993). In the marginal
model, the correlation is modeled implicitly using generalized estimating equations on the marginal
distribution formulated by the Cox (1972) proportional hazards model. The other approach is the
frailty model studied by Clayton (1978) and Clayton and Cuzick (1985). In the frailty model, the
correlation is modeled explicitly by a multiplicative random effect called frailty, which corresponds
to some common unobserved characteristics shared by all correlated times.

The construction of the tree adopts a modified CART procedure controlling for the correlated failure
times. The procedure consists of three stages: growing the initial tree, pruning the tree, and selecting
the best-sized subtree; details of these steps are described elsewhere (Fan et al. [2006], Su and Fan
[2004], and Fan et al. [2009]). There are two methods for selecting the best-sized subtree. When
the dataset is large, one may divide the dataset into a training sample to grow and prune the initial
tree and a test sample to select the best-sized tree. When the dataset is small, one can resample the
dataset to choose the best-sized subtree.

Author(s)

Xiaogang Su, Peter Calhoun, & Juanjuan Fan

Maintainer: Peter Calhoun <calhoun.peter@gmail.com>
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getTree Extract initial or best-sized tree

Description

This function extracts the tree based on the split penalty.

Usage

getTree(mstObj, Ga = c("0", "2", "3", "4", "log_n"))

Arguments

mstObj The output from the MST fit
Ga The split penalty

Value

The tree of object class "constparty"

Author(s)

Peter Calhoun <calhoun.peter@gmail.com>

See Also

MST
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MST Multivariate Survival Trees

Description

Constructs trees for multivariate survival data using marginal and frailty models. A wrapper func-
tion that grows a large initial tree, prunes the tree, and selects the best sized tree.

Usage

MST(formula, data, test = NULL, weights_data, weights_test, subset,
method = c("marginal", "gamma.frailty", "exp.frailty", "stratified", "independence"),
minsplit = 20, minevents = 3, minbucket = round(minsplit/3), maxdepth = 10,
mtry = NULL, distinct = TRUE, delta = 0.05, nCutPoints = 50,
selection.method = c("test.sample", "bootstrap"),
B = 30, LeBlanc = TRUE, min.boot.tree.size = 1,
plot.Ga = TRUE, filename = NULL, horizontal = TRUE, details = FALSE, sortTrees = TRUE)

Arguments

formula A linear survival model with the response on the left of a ~ operator and the
predictors, separated by + operators, on the right. Cluster (or id) variable is dis-
tinguished by a vertical bar | (e.g. Surv(time,status) ~ x1 + x2 | id). Cate-
gorical predictors must be treated as a factor.

data Data to grow and prune the tree

test Test sample if available

weights_data An optional vector of weights to grow the tree

weights_test An optional vector of weights to select the best-sized tree

subset An optional vector specifying a subset of observations to be used to grow the
tree

method Indicates method of handling correlation: must be either "marginal", "gamma.frailty",
"exp.frailty", "stratified", or "independence"

minsplit Number: Controls the minimum node size

minevents Number: Controls the minimum number of uncensored event times

minbucket Number: Controls the minimum number of observations in any terminal node

maxdepth Number: Maximum depth of tree

mtry Number of variables considered at each split. The default is to consider all
variables

distinct Logical: Indicates if all distinct cutpoints or only percentiles considered

delta Consider cutpoints from delta to 1 − delta. Only used when distinct = TRUE

nCutPoints Number of cutpoints (percentiles) considered. Only used when distinct =
TRUE
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selection.method

Indicates method of selecting the best-sized subtree: "test.sample" or "bootstrap"

B Number of bootstrap samples. Only used if selection.method = "bootstrap"

LeBlanc Logical: Indicates if entire sample used (alternative is out-of-bag sample). Only
used if selection.method = "bootstrap"

min.boot.tree.size

Number: Minimum size of tree grown at each bootstrap

plot.Ga Logical: Indicates if goodness-of-fit vs. tree size should be plotted

filename Name of the file plotted

horizontal Logical: Indicates if plot should be landscape

details Logical: Indicates if detailed information on the construction should be printed

sortTrees Logical: Indicates if trees should be sorted such that each split to the left has
lower risk of failure

Details

Marginal and frailty models are the two main ways to analyze correlated failure times. Let Xij

represent the covariate vector for the jth member in the ith cluster.

The marginal model uses the Cox (1972) proportional hazards model:

λij(t|Xij) = λ0(t) exp(β · I(Xij ≤ c))

where λ0(t) is an unspecified baseline hazard function and I(·) is the indicator function.

The gamma frailty model uses the proportional hazards model:

λij(t|Xij , wi) = λ0(t) exp(β · I(Xij ≤ c))wi

where λ0(t) is an unspecified baseline hazard function, I(·) is the indicator function, and wi is the
frailty term for the ith cluster.

The exponential frailty model uses the proportional hazards model:

λij(t|Xij , wi) = exp(β0 + β1 · I(Xij ≤ c))wi

where I(·) is the indicator function and wi is the frailty term for the ith cluster.

For the marginal model, a robust logrank statistic is calculated for each covariate X and possible
cutpoint c. The estimate of the score function and likelihood of β can be obtained assuming inde-
pendence. However, the variance-covariance structure adjusts for the dependence using a sandwich-
type estimator. The best split is the one with the largest robust logrank statistic.

For the frailty models, a score test statistic is calculated from the maximum integrated log likelihood
for each covariate X and possible cutpoint c. The frailty term must follow some known positive
distribution; one common choice is wi ∼ Γ(1/ν, 1/ν) where ν represents an unknown variance.
Note, the exponential frailty model replaces the baseline hazard function with a constant, yielding
different score test statistics and typically computationally faster splits. The best split is the one
with the largest score test statistic.

Stratified model grows a tree by minimizing the within-strata variation. This method should be used
with care because the tree will not split on variables with a fixed value within each stratum. The
independence model ignores the dependence and uses the logrank statistic as the splitting rule.
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For continuous variables with many distinct cutpoints, the number of cutpoints considered can be
reduced to percentiles. Using percentiles increases efficiency at the expense of less accuracy.

Growing the initial tree is done by splitting nodes (as described above) reiteratively until the max-
imum depth of the tree is reached or a small number of observations remain at terminal node.
However, as the final tree model can be any subtree of the initial tree, the number of subtrees can
become massive. A goodness-of-fit with an added penalty for the number of internal nodes is used
to prune the trees (i.e. reduce the number of subtrees considered). The best-sized tree is selected by
the largest goodness-of-fit with the added penalty using either the test sample or bootstrap samples.

Value

tree0 The initial tree. Tree listed as constparty object

prunining.info Trees pruned and considered in the best tree selection

best.tree.size The best tree size based on the penalty used
best.tree.structure

The best tree structure based on the penalty used. Tree listed as constparty object

Note, the constparty object requires a constant fit from each terminal node. Thus, the predict
and plot functions ignore the dependence, so users are recommended to fit their own model when
making predictions (see example)

Warning

Error messages in the gamma frailty models sometimes occur when using the bootstrap method.
Increasing minsplit may help fix these errors. The exponential frailty model can have problems
for large, extremely unbalanced designs. Currently weights can only be applied to marginal and
gamma frailty models.

Note

Code may take awhile to implement large datasets. To decrease computation time, user should use
test sample (selection.method = "test.sample"). User can also split continuous variables based
on percentiles (distinct = FALSE) at the expense of slightly less accuracy. Gamma frailty models
are more computationally intensive

Author(s)

Xiaogang Su, Peter Calhoun, and Juanjuan Fan

References

Calhoun P., Su X., Nunn M., Fan J. (2018) Constructing Multivariate Survival Trees: The MST
Package for R. Journal of Statistical Software, 83(12), 1–21.

Cox D.R. (1972) Regression models and life-tables (with discussion). Journal of the Royal Statisti-
cal Society Series B, 34(2), 187–220.

Fan J., Su X., Levine R., Nunn M., LeBlanc M. (2006) Trees for Correlated Survival Data by Good-
ness of Split, With Applications to Tooth Prognosis. Journal of American Statistical Association,
101(475), 959–967.
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Fan J., Nunn M., Su X. (2009) Multivariate exponential survival trees and their application to tooth
prognosis. Computational Statistics and Data Analysis, 53(4), 1110–1121.

Su X., Fan J. (2004) Multivariate Survival Trees: A Maximum Likelihood Approach Based on
Frailty Models. Biometrics, 60(1), 93–99.

See Also

rpart

Examples

set.seed(186117)
data <- rmultime(N = 200, K = 4, beta = c(-1, 0.8, 0.8, 0, 0), cutoff = c(0.5, 0.3, 0, 0),

model = "marginal.multivariate.exponential", rho = 0.65)$dat
test <- rmultime(N = 100, K = 4, beta = c(-1, 0.8, 0.8, 0, 0), cutoff = c(0.5, 0.3, 0, 0),

model = "marginal.multivariate.exponential", rho = 0.65)$dat

#Construct Multivariate Survival Tree:
fit <- MST(formula = Surv(time, status) ~ x1 + x2 + x3 + x4 | id, data, test,

method = "marginal", minsplit = 100, minevents = 20, selection.method = "test.sample")

(tree_final <- getTree(fit, 4))
plot(tree_final)

#Fit a model from the final tree
data$term_nodes <- as.factor(predict(tree_final, newdata = data, type = 'node'))
coxph(Surv(time, status) ~ term_nodes + cluster(id), data = data)

rmultime Random Multivariate Survival Data

Description

Generates multivariate survival data

Usage

rmultime(N = 100, K = 4, beta = c(-1, 2, 1, 0, 0), cutoff = c(0.5, 0.5, 0, 0),
digits = 1, icensor = 1, model = c("gamma.frailty", "log.normal.frailty",
"marginal.multivariate.exponential", "marginal.nonabsolutely.continuous",
"nonPH.weibull"), v = 1, rho = 0.65, a = 1.5, lambda = 0.1)

Arguments

N Number of clusters (ids)

K Number of units per cluster

beta Vector of beta coefficients (first number is baseline hazard coefficient (β0), re-
maining numbers are slope coefficients for covariates (β1))
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cutoff Cutoff values for each covariate

digits Rounding digits

icensor Control for censoring rate: 1 - 50%

model Model for simulating data: must be either "gamma.frailty", "log.normal.frailty",
"marginal.multivariate.exponential", "marginal.nonabsolutely.continuous",
or "nonPH.weibull"

v Scale parameter for "gamma.frailty" and "nonPH.weibull" or variance pa-
rameter for "log.normal.frailty" models. Not used in marginal models

rho Correlation for marginal models. Not used in other models

a Parameter for "nonPH.weibull" model. Not used in other models

lambda Parameter for "nonPH.weibull" model. Not used in other models

Details

This function generates multivariate survival data. Letting i = 1, ..., N number of clusters, j =
1, ...,K number of units per cluster, and Xij be a candidate covariate, the following multivariate
survival models can be used:

gamma.frailty: λij(t) = exp(β0 + β1 · I(Xij ≤ c))wi with wi ∼ Γ(1/v, 1/v)

log.normal.frailty: λij(t) = exp(β0 + β1 · I(Xij ≤ c) + wi) with wi ∼ N(0, v)

marginal.multivariate.exponential: λij(t) = exp(β0 + β1 · I(Xij ≤ c)) absolutely continuous

marginal.nonabsolutely.continuous: λij(t) = exp(β0+β1·I(Xij ≤ c)) not absolutely continuous

nonPH.weibull: λij(t) = λ0(t) exp(β0 + β1 · I(Xij ≤ c))wi with wi ∼ Γ(1/v, 1/v) and

λ0(t) = αλtα−1

The user specifies the coefficients (β0 and β1), the cutoff values, the censoring rate, and the model
with the respective parameters.

Value

dat The simulated data

model The model used

Author(s)

Xiaogang Su, Peter Calhoun, Juanjuan Fan

References

Fan J., Nunn M., Su X. (2009) Multivariate exponential survival trees and their application to tooth
prognosis. Computational Statistics and Data Analysis, 53(4), 1110–1121.

Su X., Fan J., Wang A., Johnson M. (2006) On Simulating Multivariate Failure Times. International
Journal of Applied Mathematics & Statistics, 5, 8–18

See Also

genSurv, complex.surv.dat.sim, survsim
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Examples

randMarginalExp <- rmultime(N = 200, K = 4, beta = c(-1, 2, 2, 0, 0), cutoff = c(0.5, 0.5, 0, 0),
digits = 1, icensor = 1, model = "marginal.multivariate.exponential", rho = .65)$dat

randFrailtyGamma <- rmultime(N = 200, K = 4, beta = c(-1, 1, 3, 0), cutoff = c(0.4, 0.6, 0),
digits = 1, icensor = 1, model = "gamma.frailty", v = 1)$dat

Teeth Tooth Loss Data

Description

Survival of teeth with various predictors.

Usage

data("Teeth")

Format

A data frame with 65,890 teeth on the following 56 variables.

x1 numeric. mobil Mobility score (on a scale 0–5).

x2 numeric. bleed Bleeding on Probing (percentage).

x3 numeric. plaque Plaque Score (percentage).

x4 numeric. pocket_mean Periodontal Probing Depth (tooth-level mean).

x5 numeric. pocket_max Periodontal Probing Depth (tooth-level mean).

x6 numeric. cal_mean Clinical Attachment Level (tooth-level mean).

x7 numeric. cal_max Clinical Attachment Level (tooth-level max).

x8 numeric. fgm_mean Free Gingival Margin (tooth-level mean).

x9 numeric. fgm_max Free Gingival Margin (tooth-level max).

x10 numeric. mg Mucogingival Defect.

x11 numeric. filled Filled Surfaces.

x12 numeric. decay_new Decayed Surfaces – new.

x13 numeric. decay_recur Decayed Surfaces – recurrent.

x14 numeric. dfs Decayed and Filled Surfaces.

x15 factor. crown Crown.

x16 factor. endo Endodontic Therapy.

x17 factor. implant Tooth Implant.

x18 factor. pontic Bridge Pontic.

x19 factor. missing_tooth Missing Tooth.

x20 factor. filled_tooth Filled Tooth.
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x21 factor. decayed_tooth Decayed Tooth.

x22 factor. furc_max Furcation Involvement for Molars.

x23 numeric. bleed_ave Bleeding on Probing (mean percentage).

x24 numeric. plaque_ave Plaque Index (mean percentage).

x25 numeric. pocket_mean_ave Periodontal Probing Depth (mean of tooth mean).

x26 numeric. pocket_max_ave Periodontal Probing Depth (mean of tooth max).

x27 numeric. cal_mean_ave Clinical Attachment Level (mean of tooth mean).

x28 numeric. cal_max_ave Clinical Attachment Level (mean of tooth max).

x29 numeric. fgm_mean_ave Free Gingival Margin (mean of tooth max).

x30 numeric. fgm_max_ave Free Gingival Margin (mean of tooth max).

x31 numeric. mg_ave Mucogingival Defect (mean).

x32 numeric. filled_sum Filled Surfaces (total).

x33 numeric. filled_ave Filled Surfaces (mean).

x34 numeric. decay_new_sum New Decayed Surfaces (total).

x35 numeric. decay_new_ave New Decayed Surfaces (mean).

x36 numeric. decay_recur_sum Recurrent Decayed Surfaces (total).

x37 numeric. decay_recur_ave Recurrent Decayed Surfaces (mean).

x38 numeric. dfs_sum Decayed and Filled Surfaces (total).

x39 numeric. dfs_ave Decayed and Filled Surfaces (mean).

x40 numeric. filled_tooth_sum Number of Filled Teeth.

x41 numeric. filled_tooth_ave Percentage of Filled Teeth.

x42 numeric. decayed_tooth_sum Number of Decayed Teeth.

x43 numeric. decayed_tooth_ave Percentage of Decayed Teeth.

x44 numeric. missing_tooth_sum Number of Missing Teeth.

x45 numeric. missing_tooth_ave Percentage of Missing Teeth.

x46 numeric. total_tooth Number of Teeth.

x47 numeric. dft Number of Decayed and Filled Teeth.

x48 numeric. baseline_age Patient Age at Baseline (years).

x49 factor. gender Gender.

x50 factor. diabetes Diabetes Mellitus.

x51 factor. tobacco_ever Tobacco Use.

molar logical. Molar.

id numeric. Patient ID.

tooth numeric. Tooth ID.

event numeric. Tooth Loss Status.

time numeric. Follow Up Time.
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Details

Patients were treated at the Creighton University School of Dentistry from August 2007 to March
2013. This is a subset of the original data.

The goal is to estimate the survival time of teeth (molars or non-molars) using 51 predictors (22
tooth-level factors (x1–x22) and 29 patient-level factors (x23–x51)).

Examples

data(Teeth)
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