Package ‘MLPUGS’

January 20, 2025

Type Package

Title Multi-Label Prediction Using Gibbs Sampling (and Classifier
Chains)

Version 0.2.0
Date 2016-07-05
Maintainer Mikhail Popov <mikhail@mpopov.com>

Description An implementation of classifier chains (CC's) for multi-label
prediction. Users can employ an external package (e.g. 'randomForest',
'C50"), or supply their own. The package can train a single set of CC's or
train an ensemble of CC's -- in parallel if running in a multi-core
environment. New observations are classified using a Gibbs sampler since
each unobserved label is conditioned on the others. The package includes
methods for evaluating the predictions for accuracy and aggregating across
iterations and models to produce binary or probabilistic classifications.

URL https://github.com/bearloga/MLPUGS

BugReports https://github.com/bearloga/MLPUGS/issues
Depends R (>=3.1.2)

Suggests knitr, progress, C50, randomForest
VignetteBuilder knitr

LazyData true

License MIT + file LICENSE

RoxygenNote 5.0.1

NeedsCompilation no

Author Mikhail Popov [aut, cre] (@bearloga on Twitter)
Repository CRAN

Date/Publication 2016-07-06 09:43:54


https://github.com/bearloga/MLPUGS
https://github.com/bearloga/MLPUGS/issues

2 ecc

Contents
MLPUGS-package . . . . . . . . . e 2
BCC « v v v e e e e e e e e e e e e e e 2
MOVICS .« o v v vt e e e e e e e e e e e e e e 3
predict.t ECC . . . . . . . e 4
summary.PUGS . . . . . . . . 6
validate_pugs . . . . . . .. 7

Index 9

MLPUGS-package MLPUGS: Multi-Label Prediction Using Gibbs Sampling (and Clas-
sifier Chains)
Description

An implementation of classifier chains for binary and probabilistic multi-label prediction. The
classification pipeline consists of:

1.

Training an ensemble of classifier chains. Each chain is a binary classifier (built-in, supplied
from an external package or user-coded).

. Making predictions using a Gibbs sampler since each unobserved label is conditioned on the

others.

. (Optional) Evaluating the ECC.

Gathering predictions (aggregating across iterations & models).

To learn more about MLPUGS, start with the vignettes: browseVignettes(package = "MLPUGS")

ecc

Fit an Ensemble of Classifier Chains (ECC)

Description

Constructs an ensemble of classifier chains, each chain using a user-supplied base classifier.

Usage

ecc(x, y, m =5, prop_subset = 0.95, run_parallel = FALSE,
silent = TRUE, .f = NULL, ...)



movies

Arguments

X

y

prop_subset

run_parallel
silent
.f

Value

A data frame or matrix of features.

A data frame or matrix of labels. Each label must be its own column and each
instance (observation) must be a row of Os and 1s, indicating which labels belong
to the instance.

Number of classifier chains (models) to train. Recommended: m=3 and m=7
for 4-core and 8-core systems, respectively.

The proportion of the training data to utilize when m is greater than 1. Each set
of classifier chains in the ensemble will use a random subset (95% by default)
of the supplied training data.

Whether to utilize multicore capabilities of the system.
Whether to print progress messages to console. Recommended.

User-supplied classifier training function. If not supplied, the trainer will use
the built-in classifier. See Details for more information.

additional arguments to pass to . f.

An object of class ECC containing:

e y_labels : names of the columns of y

e fits: An list of length m, each element being a set of classifier chains - a list of length L =
ncol(y) where each element is a fitted model object trained to predict each of the L labels.

Examples

X <- movies_train[, -(1:3)]
y <- movies_train[, 1:3]

fit <- ecc(x, y, m =1, .f = glm.fit, family = binomial(link = "logit"))

## Not run:

fit <- ecc(x, y, .f = randomForest::randomForest)

fit <- ecc(x, y, m =7, .f = C50::C5.0, trials = 10)

## End(Not run)

movies

FiveThirtyEight’s Movie Scores

Description

This dataset contains every film that has a Rotten Tomatoes rating, a RT User rating, a Metacritic
score, a Metacritic User score, and IMDDb score, and at least 30 fan reviews on Fandango. The data
from Fandango was pulled on Aug. 24, 2015. It is licensed under CC BY 4.0
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Usage

movies
movies_train

movies_test

Format

A data.frame with 146 rows and 9 columns. The training data contains 87 movies, while the test
set contains 59 movies. The first three columns of the training and test sets indicate the multiple
labels: 1 if the movie got a rating equal to or greater than 80% on Metacritic, Rotten Tomatoes, and
Fandango; and O otherwise.

Author(s)
FiveThirtyEight

Source

https://github.com/fivethirtyeight/data/tree/master/fandango

predict.ECC Classify new samples using an Ensemble of Classifier Chains

Description

Uses a trained ECC and Gibbs sampling to predict labels for new samples. . f must return a matrix
of probabilities, one row for each observation in newdata.

Usage

## S3 method for class 'ECC'
predict(object, newdata, n.iters = 300, burn.in = 100,

thin = 2, run_parallel = FALSE, silent = TRUE, .f = NULL, ...)
Arguments
object An object of type ECC returned by ecc().
newdata A data frame or matrix of features. Must be the same form as the one used with
ecc().
n.iters Number of iterations of the Gibbs sampler.
burn.in Number of iterations for adaptation (burn-in).
thin Thinning interval.

run_parallel  Logical flag for utilizing multicore capabilities of the system.
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silent Logical flag indicating whether to have a progress bar (if the "progress’ package
is installed) or print progress messages to console.

.f User-supplied prediction function that corresponds to the type of classifier that
was trained in the ecc() step. See Details.

additional arguments to pass to . f.

Details

Getting the prediction function correct is very important here. Since this package is a wrapper
that can use any classification algorithm as its base classifier, certain assumptions have been made.
We assume that the prediction function can return a data.frame or matrix of probabilities with two
columns: "0" and "1" because ecc() trains on a factor of "0"s and "1"s for more universal consis-
tency.

Value
An object of class PUGS containing:

e y_labels : inherited from object

* preds : A burnt-in, thinned multi-dimensional array of predictions.

Examples

X <- movies_train[, -(1:3)]
y <- movies_train[, 1:3]

model_glm <- ecc(x, y, m =1, .f = glm.fit, family = binomial(link = "logit"))

predictions_glm <- predict(model_glm, movies_test[, -(1:3)],
.f = function(glm_fit, newdata) {

# Credit for writing the prediction function that works
# with objects created through glm.fit goes to Thomas Lumley

eta <- as.matrix(newdata) %*% glm_fit$coef
output <- glm_fit$family$linkinv(eta)
colnames(output) <- "1"

return(output)

}, n.iters =10, burn.in = @, thin = 1)
## Not run:

model_c50 <- ecc(x, y, .f = C50::C5.0)

predictions_c50 <- predict(model_c50, movies_test[, -(1:3)],
n.iters = 10, burn.in = @, thin =1,
.f = C50::predict.C5.0, type = "prob")

model_rf <- ecc(x, y, .f = randomForest::randomForest)
predictions_rf <- predict(model_rf, movies_test[, -(1:3)1],
n.iters = 1000, burn.in = 100, thin = 10,
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.f = function(rF, newdata) {
randomForest: : :predict.randomForest(rF, newdata, type = "prob")

b

## End(Not run)

summary . PUGS Gather samples of predictions

Description

Collapses the multi-label predictions across sets of classifier chains and iterations into a single set
of predictions, either binary or probabilistic.

Usage
## S3 method for class 'PUGS'
summary (object, ...)
Arguments
object A pugs object generated by predict.ECC.

type = "prob” for probabilistic predictions, type = "class” for binary (0/1)
predictions
Value

A matrix of predictions.

Examples
X <- movies_train[, -(1:3)]
y <- movies_train[, 1:3]

model_glm <- ecc(x, y, m =1, .f = glm.fit, family = binomial(link = "logit"))

predictions_glm <- predict(model_glm, movies_test[, -(1:3)],
.f = function(glm_fit, newdata) {

# Credit for writing the prediction function that works
# with objects created through glm.fit goes to Thomas Lumley

eta <- as.matrix(newdata) %*% glm_fit$coef
output <- glm_fit$family$linkinv(eta)
colnames(output) <- "1"

return(output)

}, n.iters = 10, burn.in = @, thin = 1)
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summary (predictions_glm, movies_test[, 1:3])
## Not run:

model_c50 <- ecc(x, y, .f = C50::C5.0)

predictions_c50 <- predict(model_c50, movies_test[, -(1:3)],
n.iters = 10, burn.in = @, thin =1,
.f = C50::predict.C5.0, type = "prob")

summary (predictions_c50, movies_test[, 1:3])

model_rf <- ecc(x, y, .f = randomForest::randomForest)
predictions_rf <- predict(model_rf, movies_test[, -(1:3)1],
n.iters = 10, burn.in = @, thin =1,
.f = function(rF, newdata){
randomForest:: :predict.randomForest(rF, newdata, type = "prob")

bl

summary (predictions_rf, movies_test[, 1:3])

## End(Not run)

validate_pugs Assess multi-label prediction accuracy

Description

Computes a variety of accuracy metrics for multi-label predictions.

Usage

validate_pugs(object, y)

Arguments

object A PUGS object generated by predict.ECC.

y A matrix of the same form as the one used with ecc.
Value

A variety of multi-label classification accuracy measurements.

Examples

X <- movies_train[, -(1:3)]
y <- movies_train[, 1:3]

model_glm <- ecc(x, y, m =1, .f = glm.fit, family = binomial(link = "logit"))

predictions_glm <- predict(model_glm, movies_test[, -(1:3)],
.f = function(glm_fit, newdata) {
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# Credit for writing the prediction function that works
# with objects created through glm.fit goes to Thomas Lumley

eta <- as.matrix(newdata) %*% glm_fit$coef
output <- glm_fit$family$linkinv(eta)
colnames(output) <- "1"

return(output)

}, n.iters =10, burn.in = @, thin = 1)
validate_pugs(predictions_glm, movies_test[, 1:31)
## Not run:

model_c50 <- ecc(x, y, .f = C50::C5.0)

predictions_c50 <- predict(model_c50, movies_test[, -(1:3)1],
n.iters = 10, burn.in = @, thin =1,
.f = C50::predict.C5.0, type = "prob")

validate_pugs(predictions_c50, movies_test[, 1:31)

model_rf <- ecc(x, y, .f = randomForest::randomForest)

predictions_rf <- predict(model_rf, movies_test[, -(1:3)1],
n.iters = 10, burn.in = @, thin =1,
.f = function(rF, newdata){
randomForest:::predict.randomForest(rF, newdata, type = "prob")

b

validate_pugs(predictions_rf, movies_test[, 1:3])

## End(Not run)
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