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Summary

We present an R-package MDSMap, which contains functions relevant to robust
methods for rapid construction of high density linkage maps suitable for a variety
of experimental genetic populations from homozygous or heterozygous parents in
diploids or autotetraploids. The approach uses multi-dimensional scaling to order
markers within a linkage group using pairwise recombination fractions (or mappings
thereof) weighted by LOD scores (logarithm10 of the odds ratio). Functions are
included to allow evaluation adjustment of the estimated order and comparison to
some external “truth”. The estimation is a two step process using unconstrained
SMACOF followed by either spherically constrained SMACOF or fitting a principal
curve using the R-packages smacof and princurve.

Key Words: multidimensional scaling, linkage mapping, principal curves, autote-
traploid

1 Introduction

Modern genotyping techniques are producing increasingly high numbers of genetic mark-
ers that can be scored in experimental populations of plants and animals. Ordering these
markers to form a reliable linkage map is computationally challenging. There is a wide liter-
ature on this topic, but much has focused on populations derived from diploid, homozygous
parents. Here we present a method which uses weighted multidimensional scaling (MDS) to
order markers from more general experimental crosses, with homozygous or heterozygous
parents that are diploid or autotetraploid. We demonstrate the method using simulated
data and also experimental data from a tetraploid potato population. The method was
originally developed for incorporation into TetraploidSNPMap (Hackett et al., 2017) and
is discussed in detail in Preedy and Hackett (2016). The general approach is to use pair-
wise recombination fractions (or Haldane or Kosambi map distances) and their associated
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LOD (or LOD2) scores and map them into a 2 or 3 dimensional Euclidean space using
the SMACOF method of weighted metric multidimensional scaling (MDS). They are then
mapped onto a curve either by fitting a principal curve (Hastie and Stuetzele, 1989) or by
constraining the final configuration of the MDS to lie on an arc.

2 Multidimensional Scaling

Multidimensional scaling (MDS) refers to a class of ordination techniques designed to
display ’distances’ among points in geometrical space. It is generally used to reduce data
from many dimensions, m, to fewer, possibly more comprehensible dimensions, n. If there
are m observations then MDS techniques use an m ×m matrix of observed distances (or
dissimilarities) between points and the desired number of dimensions, n < m, is specified.
A configuration of points in n-dimensional space is sought that best preserves the observed
distances between points by minimising a loss function L. For a given configuration X,
the loss function L(X) is a function of the difference between the observed distances in the
m-dimensional configuration (which may be formed using any metric) and the Euclidean
distances between points in the n-dimensional configuration

L(X) =
m∑
i=1

‖widi.d̂i(X)‖ (1)

where ‖.‖ is any metric function (i.e. it satisfies intuitive properties of a distance such
as non-negativity, symmetry and the triangle inequality ‖x.y‖ + ‖y.z‖ ≥ ‖x.z‖), di is the
m-dimensional vector of observed distances between point i and the other points, wi is a
vector of weights associated with point i and d̂i(X) is the m-dimensional vector of distances
between point i and the other points in configuration X. In its simplest form classical
multidimensional scaling is also known as principal co-ordinates analysis and, though the
distance matrix may be calculated in a variety of ways, the metric is always Euclidean,

‖di.d̂i‖ =

√∑
j

(
dij − d̂ij

)2
and the weights are always equal to one. If the distance matrix

is Euclidean, then this is equivalent to principal components analysis and the function to

be minimised reduces to

√∑
ij

(
d2ij − d̂2ij

)
. Metric multidimensional scaling (or weighted

metric multidimensional scaling) generalises classical multidimensional scaling to allow for
different metrics (and weights) and a commonly used loss function in this context is stress,
defined as

σ(X) =
∑

i<j<m

wij

(
dij − d̂ij(X)

)2
(2)

There are many ways of minimising σ(X) and we use a common method, the stress min-
imisation by majorization approach implemented in the smacof package. This minimises
σ(X) iteratively by minimising at each step a simple function that bounds σ from above,
called the majorizing function. The method is described in detail in de Leeuw and Mair
(2009).
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The analysis described above is an unconstrained MDS. It is also possible to constrain
the final configuration of points to lie on a circle by imposing a penalty for deviations from
that circle, in a constrained MDS. This is done by defining a new point in the centre of
the data and constraining all points to be equidistant from it. The variation in distance
from the centre point is added to the stress function.

3 Principal Curves

Formally, principal curves (PC) were defined by Hastie and Stuetzle (1989) as self-consistent
smooth one-dimensional curves that pass through the middle of a p-dimensional data set
providing a nonlinear summary of the data. (In this context, the projection of a data point
onto a curve is the closest point on that curve, and for a curve to be self-consistent, any
set of data points that project onto the same point, z, on the curve must have point z as
their mean.) Fitting a PC is an iterative two-stage process. A summary straight line, such
as a principal component, is fitted. Then this summary line is transformed to a smooth
curve, using splines, to achieve self-consistency. Since splines depend on the smoothing con-
straint, PCs are not unique. We used the algorithm implemented in princurve (Hastie and
Weingessel, 2013) which uses the first principal component (from a Principal Components
Analysis) as the initial summary of the data, cubic splines for fitting smooth curves and
local averaging to determine self-consistency. The smoothing constraint can be selected by
an explicit option or determined automatically by leave-one-out cross validation.

4 The Basic Algorithm

We take an input of pairwise recombination fractions and LOD scores for the population
of interest and cast the data into distance or LOD score matrices. If a map distance is
used recombination fractions, r, are converted to map distances, d, using either Haldane’s
mapping function

dh = −1

2
ln(1− 2r) (3)

or the Kosambi mapping function

dk =
1

4
ln

(
1 + 2r

1− 2r

)
(4)

For mapping using principal curves the algorithm is as follows:

1. Use the smacofSym function from the the smacof package to perform two or three
dimensional weighted unconstrained MDS on the distance matrix.

2. Plot final configuration to find potential outliers from Smacofsym.

3. Fit the principal curves using package princurve.
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4. Plot the first principal curve on the final configuration of the unconstrained fit and
assess whether it looks reasonable.

5. The projections of the markers onto the first principal curve give the estimated map
positions.

For mapping using constrained MDS follow steps 1-2 as for two dimensional principal
curves

4. Use the smacofSphere function in two dimensions to constrain the points to approx-
imate to the arc of a circle with a penalty, p, for deviations from the arc.

5. Plot the final configuration from smacofSym and smacofSphere to check for any
points which have major changes in rank with respect to either dimension in the
final configuration.

6. Check the stress ratio smacofsphere stress/smacofsym stress. This is a metric for the
increase in stress (which approximates to a measure of the reduction in fit) caused
by forcing the points to lie on an arc and should be below 1.1. If the ratio is above
this, return to step 4 and reduce the penalty p.

7. Project the final configuration onto a line to get order and estimated map length.

(a) Centre sphere on (0,0)

(b) Calculate the polar coordinates of each point in the configuration.

(c) Rotate so that the mapping starts at the beginning of the arc.

(d) Radius of the sphere is the median distance of points from (0,0) rescaled so that
the sum of the configuration is the same as the sum of the observed distances.

(e) Order the markers by increasing angle.

(f) Inter-marker distances are equal to the radius multiplied by the difference in
angle between the points.

In both cases the fit of individual points can be assessed via the nearest neighbour measure
(nnfit) derived from the matrix of distances. This is a measure given for each marker and
is the sum of the absolute difference between the observed and estimated distance between
that marker and the nearest informative neighbours on either side that is the nearest
neighbours with a non-zero LOD score. (Neighbouring markers where different parents are
heterozygous are uninformative about recombination). For some markers near the ends of
the chromosome there will be a neighbour on only one side. High values of the criterion
can be used to identify possible outliers. The mean NNfit provides a measure of the fit to
the complete set of data. It can be used to compare models with different weight functions
(LOD or LOD2) and in different numbers of dimensions when using the Principal Curves
method as long as the same data and same distance metric are used.
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5 Examples

5.1 Backcross from Homozygous Parents

The package contains a wrapper function for the qtl package (Broman et al., 2003) to
simulate a backcross population and write it to a file in the form that would have been
output by JoinMap 4 (Van Ooijen, 2006), namely with the number of markers and the
number of pairs on the first line, then the marker names and pairwise recombination
fractions and associated LOD scores below. This example uses a simulated population of
200 individuals with 200 markers on a chromosome of length 100cM with a 1% random
error rate.

fname<-‘bcsim’

sim.bc.rflod.file(fname)

For the purposes of this example both the spherically constrained method and the method
of principal curves are employed to estimate the map using the default settings of a Haldane
map function and a LOD2 weighting.

5.1.1 Spherically constrained estimation

map.s<-estimate.map(fname,p=100,n=NULL,ispc=FALSE,displaytext=FALSE)

Diagnostic plots are automatically generated. (See Figure 1 for the output from this exam-
ple, but note that every simulation would be different). In general, where a lot of markers
are involved it is easier to plot numbers than marker names. However, this can be altered
by setting displaytext=TRUE. The marker name associated with each number can be ac-
cessed using map$locikey. The final estimated map is stored in map.s$locimap$. The
higher the value of p the higher the penalty for deviations from the sphere. A good rule
of thumb is that if the ratio of the stress from the spherically constrained smacof to the
unconstrained smacof is > 1.1 p should be reduced to avoid overly distorting the config-
uration of the markers. In the case below the ratio is 1.0032, well within that margin, so
p does not need to be altered. The bottom left plot shows the final configuration from
the unconstrained smacof and can be used to check for any major outliers - in this case
markers 105 and 102 stand out slightly but not enough to consider removing them. If we
were concerned about them we could remove them by setting n=c(102,105) and rerunning
estimate.map. Once satisfied that there are no major outliers in the unconstrained config-
uration the next step is to consider the plot which contains both the unconstrained (black
numbers) and spherically constrained configurations (red numbers) and the plot of the
nearest neighbour fits. The purpose of the former plot is to check for markers significantly
changing rank in either dimension 1 or 2 as this may indicated that part of the map has
been inverted. In this case, although there are slight changes (for instance markers 28 and
102), none of them are large enough to warrant concern and the final plot indicates that
the nearest neighbour fit discrepancies are not large for the points of concern. If deciding
on whether changing p improves the fit, a reduction in the mean nearest neighbour fit (or

5



Figure 1: Diagnostic plots from a spherically constrained map estimation of a simulated
backcross population

map.s$totalnnfit) would indicate a closer representation of the observed pairwise inter-
marker distances. In this case the fit is satisfactory so no further modifications are needed
and the final map can be accessed using map.s$locimap. In this situation, the markers
were, in fact, presented in order, so the number on the configuration plot gives the true
order of the markers and the quality of the fit can be assessed by plotting that against the
estimated marker position.

Figure 2 shows that in this case, the order has been inverted, but is broadly accurate.
If it is desired to do so the map can be inverted using invertmap(map.s$locimap).

5.1.2 Principal Curves Method

In general the principal curves method is faster, more robust and nearly as accurate as
the spherically constrained method so is recommended as the default approach. The com-
mand for estimating the map using principal curves is similar to that for the spherically
constrained approach. However, the principal curves method is selected byusing the default
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Figure 2: Diagnostic plots from a spherically constrained map estimation of a simulated
backcross population

for the ispc argument, ispc=TRUE. In this case p refers to the smoothing parameter which
may vary between 0 and 1. If, as is the default, it is left NULL, then the smoothing pa-
rameter is selected using leave-one-out cross validation. For simple backcross populations
a 2-dimensional fit is generally sufficient.

map<-estimate.map(fname,p=NULL,n=NULL,ispc=TRUE,ndim=2,displaytext=FALSE)

Figure 3 shows the diagnostic plots for the map estimate. As before, numbers have been
plotted rather than marker names, and the names associated with each number are stored
in map.pc$locikey. The final estimated map is stored in map.pc$locimap. The first plot
shows the final configuration from the unconstrained MDS together with the first principal
curve and the second plot shows the nearest neighbour fits for each marker plotted by its
estimated position. There are no major outliers. We have used exactly the same input
data and markers (not having dropped any from either estimation), the same LOD weights
and map distance function so it is reasonable to compare the total nearest neighbour
fits between the estimated maps. The mean nearest neighbour fit for this map is 1.007
(accessed using map.pc$meannnfit) which is lower than the total nearest neighbour fit for
the spherically constrained map estimate (1.021) suggesting that the method of principal
curves remains closer to the original data.

5.2 Full-sib Population from Autotetraploid Heterozygous Par-
ents

The data used in this example comes from the potato Stirling x 12601ab1 mapping popu-
lation described in Hackett et al. (2013). The pairwise recombination fractions and LOD
scores for linkage group I are stored in the file ‘lgI.txt’. The two-dimensional fit is slightly
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Figure 3: Diagnostic plots from principal curves map estimation of a simulated backcross
population

faster and the diagnostic plot easier to interpret. However, tetraploid data can sometimes
be represented better in 3 dimensions so it makes sense to fit both and compare which
represent the data better.

fname<-system.file("extdata", "lgI.txt", package="MDSMap")

map2d<-estimate.map(fname,p=NULL,n=NULL,ispc=TRUE,ndim=2,displaytext=FALSE)

map3d<-estimate.map(fname,p=NULL,n=NULL,ispc=TRUE,ndim=3,displaytext=FALSE)

Note that, in addition to the diagnostic plots, the 3-dimensional fit launches a 3-d
graph which can be rotated using the mouse to explore for outliers. In this example
the total nearest neighbour fit is 137.75 for the 2-dimensional fit, and 139.65 for the 3-
dimensional fit, indicating that the 2-dimensional fit gives a better representation of the
observed data with diagnostic plots displayed in Figure 4. The plots suggest a bit of a gap
between marker number 49 and the other markers, and also a relatively high discrepancy
between the observed and fitted difference between that marker and its nearest informative
neighbour so there may be some uncertainty as to the exact distance between markers
49 and 8. with(map2d,locikey[locikey$confplotno==49,]) reveals this to be locus
c2 9722. However, in generally the fit appears reasonable and the map can be accessed
using map2d$locimap. A plot of the fitted map (generated using the commands below) is
displayed in Figure 5.

with(map2d,plot(locimap$position,locimap$position, pch="",xlab="position",ylab="position"))

with(map2d, text(locimap$position,locimap$position, locimap$confplotno,cex=0.8))
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Figure 4: Diagnostic plots from principal curves map estimation from the data from the
potato Stirling x 12601ab1 mapping population

Figure 5: Diagnostic plots from principal curves map estimation from the data from the
potato Stirling x 12601ab1 mapping population

6 Advanced functions and integration into other soft-

ware

In the case of a simulation, the true positions of the markers is known and in cases where
simulations are to be used to decide which weight function (LOD or LOD2) to use or which
mapping function (none, Haldane or Kosambi). The function mean.distance.from.truth

can be used to compare the estimated with the ‘real’ map. The default is to use LOD2

weights and a haldane map. Finally, the nearest neighbour fits can be calculated from a file
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if the map is refined using alternative software using the function calc.nnfit.from.file.

The authors gratefully acknowledge the helpful feedback from Peter Bourke at Wagenin-
gen University which has considerably improved the operation of this package.
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