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Abstract

The package LFDREmpiricalBayes contains a series of functions aiming at analyzing the asso-
ciation of single nucleotide polymorphisms (SNPs) to some particular disease. The functions use
estimated local false discovery rates (LFDRs) of SNPs within a sample population that we define as
a “reference class”. Of the proposed methods, the maximum entropy method is based on ratio of two
likelihood functions generated on the basis of two alternative reference classes. The other methods
are based on robust Bayes approaches and are applicable to more than two reference classes. The
explanations in this report allow for a better understanding of the basic ideas of how the functions in
this package work as well as detailed examples that are useful in analyzing a given data set. Although
SNPs are used throughout this document, other biological data such as protein data and other gene
data can be used.
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1 Introduction

The package LFDREmpiricalBayes contains a series of functions aiming at analyzing the association
of SNPs to some particular disease. These functions include ME.log, caution.parameter.actions,
SEL.caution.parameter and PRGM.action. Details and the theories behind these functions have been
extensively discussed in Karimnezhad and Bickel (2016a).

The function ME.log uses the new maximum entropy approach given two reference classes (the defini-
tion of a reference class is provided in details in subsection 3.1). The new ME approach will consider both
reference classes and provides a vector of more reliable LFDR estimates copmared to the input vector of
LFDRs computed based on the two alternative reference classes (Karimnezhad and Bickel, 2016a).

The function ME. log as well as the functions caution.parameter.actions, SEL.caution.parameter
and PRGM. action use estimated values of local false discovery rate (LFDR) as input elements. Although
in this report we use maximum likelihood (ML) LFDR estimates, all these functions except ME.log work
with other estimates of LFDR?2.

caution.parameter.actions provides three robust Bayes actions (based on three different values
for a caution parameter) to determine if a specific SNP is associated with some disease. As well,
SEL.caution.parameter provides three robust Bayes estimates of LFDR (based on three different val-
ues for a caution parameter) correspoding to a specific SNP. The estimates can be used to determine
if the SNP is associated with the relevent disease. PRGM.action provides a robust Bayes value of the
correspoding LFDR estimates. These three functions are based on two or more reference classes.

This vignette was created to demonstrate practical examples for each function in LFDREmpirical-
Bayes so that users can better understand the code output. It provides comprehensive examples of the

2such as binomial-based LFDR estimator (BBE) or histogram-based LFDR estimator (HBE) (Yang et al., 2013).



functions, their corresponding interpretation, and a user-friendly explanation of the theoretical aspects
associated with the functions and the methodologies developed in Karimnezhad and Bickel (2016a).

2 How to Install and Use This Package

In order to install and use this package, simply input the following commands into the R console.

> source("https://bioconductor.org/biocLite.R")
> biocLite("LFDREmpiricalBayes")

Note that this package uses other functions in the packages matrixStats and stats. This package
also uses the function 1fdr.mle from the package LFDR.MLE. To install the packages and use them, input
the following into the R console.

> install.packages(c("LFDR.MLE", "matrixStats", "stats"))

Ensure that the following packages are loaded before using LFDREmpiricalBayes:

> library(LFDR.MLE)
> library(matrixStats)
> library(stats)

For more information, consult their respective documentation.

3 Basic Definitions

Before detailing the important functions of this package, a few concepts relating to relevant methods
of the functions should be explained.

3.1 Reference Classes

One of the motivating factors in estimating LFDRs, as described in Karimnezhad and Bickel (2016a),
involves choosing which set of LFDR estimates gives the best estimates. The main reason for this is due
to having two different sets of LFDR estimates, which is referred to as a reference class. With the two
reference classes, there lies a situation in which a subset of LFDR estimates can fall into both classes.
In this case, the decision on whether to favour one class over the other is highly important.

Leading to favouring one class over another, two different reference class definitions were considered
as two different cases. Those two cases are described in more details in Parts 3.1.1 and 3.1.2.

3.1.1 Considering Separate and Combined Reference Classes

In Figure 1, consider the two groups: ncRNA and UTR-3 groups containing 3 and 2 SNPs, re-
spectively. Considering a series of LFDR estimates for SNPs in both the ncRNA and UTR-3 regions, a
separate class considers only a small subset of the region seen in Figure 1. In this case, the region ncRNA
containing the first three SNPs (i.e. SNP1, SNP2 and SNP3) is a separate reference class. The combined
referece class is defined as the class that contains all SNPs in both the ncRNA and UTR-3 regions (i.e.
the green rectangular). Now, to estimate LEFDR for each of ncRNA SPNs; for example SNP1, there are
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Figure 1: A visual diagram illustrating the separate and combined classes (Karimnezhad and Bickel,
2016b).

two reference classes with red and green regions in Figure 1. Determining which of the two reference
classes (separate or combined) should be used to estimate the corresponding LFDR is the motivation of
using the functions provided in this package.

3.1.2 Considering First and Second Reference Class Terms
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Figure 2: This figure illustrates the first and second reference classes and the intersection.

In Figure 2, we consider the first class in red to be exonic SNPs (SNP2, SNP3 and SNP4) and the
second class in green to be ncRNA SNPs (containing SNP3, SNP4, SNP5 and SNP6). The intersection
contains SNP3 and SNP4. The corresponding LFDR estimates based on the first class and the second
class can be different. Determining an appropriate reference class to be used to reach a reliable LFDR
estimate is our motivation.

3.2 Multiple Hypothesis Testing

Performing multiple hypothesis testing is important in terms of evaluating the relationship between
a set of data within a population to some condition. The most general case in a biological perspective
can be whether or not there is an association between an SNP and a particular disease. For example,
Karimnezhad and Bickel (2016a) performed a genome-wide association analysis for the coronary heart
disease (Consortium et al., 2007).

The framework of the multiple hypothesis testing problem considered here is as follows. For an
ith SNP, ¢ = 1,2,..., N, the null hypothesis Hy; : A; = 0 is tested against the alternative hypothesis
Hy; : A, = 1, where A; is an indicator that there is an association between SNP i and the disease. Under
the null hypothesis, i.e. A4, = 0, the ith SNP is supposed not to be associated with (affected by) the
underlying disease or treatment.



3.3 Local False Discovery Rates Estimation

LFDR is the posterior probability that an SNP is not associated with a particular disease (Karim-
nezhad and Bickel, 2016a). In a biological sense, the data are reduced to some test statistics t1, ta,.. ..ty
and each test statistic t; represents a value for a particular SNP, say SNP; (i.e. t; represents SNPq,
to represents SNPs,. .., ty represents SNPy). Then, LFDR;, i.e. the probability that SNP; is not as-
sociated with the underlying disease given the information that the value of the test statistics is ¢;, is
estimated.

3.4 Bayes Action on LFDRs Applied to Hypothesis Testing

A Bayes action is used to test a particular null hypothesis A;. Once an estimated LFDR for SNP 4
is available, the Bayes action (decision) correspoding to that SNP is considered as below

0 if estimated LFDR; > threshold,

Decision = ) ) (1)
1 if estimated LFDR,; < threshold.

The interpretation of such a decision is as follows. If an estimated LFDR; corresponding to SNP; is
less than or equal to the pre-determined threshold, then the null hypothesis is rejected and as a result,
the SNP; is considered to be associated with the disease. Otherwise, the null hypothesis would fail to
be rejected and consequently, SNP; is inferred not be be associated with the disease (Karimnezhad and
Bickel, 2016a). The threshold considered above is determined by considering some loss values which are
the subject of the next part.

3.4.1 Zero-One Loss Function

The threshold considered in the previous subsection is determind by considering some loss values
as important components in the decision theory. The loss values considered are based on type-I (false-
positive) and type-II (false-negative) errors. In using loss values, a value or a weight is assigned to either
one of a type-I error or a type-II error. The weight is based on an incurred penalty associated in obtaining
one of those errors. Introducing the fact that a type-I error is a less desirable outcome than a type-I1
error, the weighting of a loss value associated with a type-I would be higher than that of a type-II error.

Referring to the type-I and type-II errors by the loss values I; and [l;;, Karimnezhad and Bickel
(2016a) use the following loss function

0if §; = A; € {0,1},
LZO: l] lf(Sz:l,AZ:(),
lirif6; =0, A; =1,

where 6; = §(t;) is the decision rule (1).

The decision rule (1) is called the Bayes rule if the threshold is taken to be

lrr
threshold = . 2
resho P (2)

Recalling that type-I error should be avoided as much as possible, it is recommended that [; be
greater than I;;. Following this recommendation, a threshold of 0.2 was chosen (Efron, 2005), assigning
a value of 4 to [; and a value of 1 to l;; .

In addition to the Bayes action, caution.parameter.actions uses a decision-theoretic approach in
forming a large scale hypothesis problem and draws conclusions based on the experimental data set.



caution.parameter.actions applies some additional information in terms of reference classes (two or
more) to test the null hypothesis based on some avaialbe estimated LFDR values. The output from this
function gives two values 0 and 1 for each caution-type decision.

3.4.2 Squared Error Loss Function

In estimating the hypothesis indicator A4;, Karimnezhad and Bickel (2016a) use the following squared
error loss function

Lspr = (6; — Ay),

where §; = 0(¢;) is an arbitrary decision rule with support (—oo, +00).

4 The Maximum Entropy Method

The maximum entropy method, where ME.log is the corresponding function, provides a vector of
more reliable LFDR estimates based on comparing two likelihood functions constructed based on two
alternative reference classes. It overcomes the lack of knowledge that specifies whether a separate ref-
erence class or a combined reference class should be used to get more reliable estimates of LFDRs for
SNPs. This approach leads to a “selected reference class” and giving credit to the selected reference class,
an estimate of LFDR is computed for each SNP.

4.1 Inputs of ME.log

The inputs of ME.log are the following:

e stat: test statistic values corresponding to SNPs in the separate and combined reference classes
e 1fdr.C: estimated LFDRs for SNPs in the combined reference class

e p0.C: proportion of unassociated SNPs belonging to the combined class

e p0.8S: proportion of unassociated SNPs belonging to the separate class

e ncp.C: the non-centrality parameter of a chi-square distribution for associated SNPs belonging to
the combined reference class

e ncp.S: the non-centrality parameter of a chi-square distribution for associated SNPs belonging to
the separate reference class

Within the ME.log function, there are a series of parameters. Different positive values can be chosen
for parameter a indicating grades of evidence against the separate reference class and in favor of its
alternative. The defalut value for this parameter is set to 3 (Bickel, 2015)

The parameter p0O indicates the proportion of SNPs that are not associated with the disease. The
parameters lower.p0O and upper.pO represent pre-assumed lower and upper bounds of p0, respectively.
By default, those values are set to 0 and 1, respectively. lower.ncp and upper.ncp are used to denote
the lower and upper limits of the non-centrality parameter ncp, respectively. By default, those values
are set to 0.1 and 50, respectively. The methodolgy behind the ME method requires that the interval
[Lower.pO,upper.p0] be divided to length.pO partitions. As well, the interval [Lower.ncp,upper.ncp]
is be divided to length.ncp partitions. By default, length.pO and length.ncp values are set to 200.

The function ME.log depends on the function 1fdr.mle for obtaining LFDR estimates. The LFDR
estimates are then used in 1fdr.C for the input of ME. log.



5 Using ME.log

The following subsections demonstrates the steps needed to use the ME.log function.

5.1 Obtaining Test Statistics and Associated Parameters

The code below is an example of a simulation study. Artificial SNPs are created, and test statistics are
obtained. It is assumed that the separate reference class 20 artificial SNPs that are not associated with a
specific disease. Also, it is assumed that the separate reference class is a subset of a combined reference
class which contains 20 nonassociated and 20 associated SNPs. Given that the separate reference class
is a subset of the combined reference class, the 20 SNPs in the separate reference class, each has two

possible LEDR estimates.

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVYV

#import function "lfdr.mle" from package "LFDR.MLE"

library (LFDR.MLE)

##From the simulation study, create artificial SNPs and obtain test statistics.
sdORS<-sdORC<-sqrt(.02) #some parameters required for simulation.
real.OR1.5<-1.25

real.OR1.C<-1.25

nS1<-0 ##Number of artificial SNPs associated with a

## disease in a separate reference class.

nS2<-20 ## Number of artificial SNPs not associated with

## a specific disease in a separate reference class.

nC1<-20 ##Number of artificial SNPs associated with a specific disease

## outside the separate reference class but inside a combined reference class.
nC2<-0 ##Number of artificial SNPs not associated with a specific disease

## outside the separate reference class but inside a combined reference class.

##zS51 generates test statistics for artificial SNPs associated with a
##specific disease in the separate reference class.
zS1<-rnorm(nS1,mean=log(real.0OR1.S),sd=sdORS)

##zS2 generates test statistics for artificial SNPs not associated with a
##specific disease in the separate reference class.
zS2<-rnorm(nS2,mean=1og (1) ,sd=sdORS) ##

zSmall<-c(zS1,zS2) ## test statistics from the 20 artificial SNPs

##2zC1 generates test statistics for artificial SNPs associated with a specific
##disease in the combined reference class.
zC1<-rnorm(nC1,mean=log(real.OR1.C),sd=sdORC)

##zC2 generates test statistics for artificial SNPs not associated with a
##specific disease in the combined reference class.
zC2<-rnorm(nC2,mean=1og (1) ,sd=sdORC)

zBig<-c(zSmall,zC1,zC2) ## test statistics from the 40 artificial SNPs

5.2 Obtaining LFDR Estimates Using 1fdr.mle

Prior to using the function ME. log, chi-square test statistics need to be obtained. The test statistics
from the separate and combined reference class, are transformed in order to obtain a chi-square distri-
bution. The function ME.log then uses the function 1fdr.mle from the package LFDR.MLE to compute

LFDR estimates (Padilla et al., 2012).

>
>

##Then obtain chi-square test statistics
## Separate reference class



xS1<-(zS1/sd0ORS) "2

x82<-(zS2/sd0ORS) "2

xSmall<-c(xS1,xS2) ##chi-square test statistics from 20 SNPs

## Combined reference class

xC1<-(zC1/sdORC) "2

xC2<-(zC2/sd0ORC) "2

xBig<-c(xSmall,xC1,xC2) ##chi-square test-statistics from 40 SNPs

#Using 1fdr.mle, a series of arguments are used.

dFUN=dchisq;df=1;

Jower.ncp = .1;upper.ncp = 5

Jower.pO = O;upper.p0 = 1;

#Estimate the corresponding LFDRs using lfdr.mle

## Separate reference class

opt.S<-1fdr.mle(x =xSmall, dFUN = dFUN, lower.ncp = lower.ncp, upper.ncp = upper.ncp,
lower.p0 = lower.pO, upper.pO = upper.p0,df=df)

1fdr.S <- opt.S$LFDR.hat ## Estimate the corresponding LFDRs

p0.S<-opt.S$p0.hat

ncp.S<-opt.S$ncp.hat

## Combined reference class

opt.C<-1fdr.mle(x =xBig, dFUN = dFUN, lower.ncp = lower.ncp, upper.ncp = upper.ncp,
lower.p0 = lower.pO, upper.pO = upper.p0,df=df)

1fdr.C <- opt.C$LFDR.hat

pO.C<-opt.C$p0.hat

ncp.C<-opt.C$ncp.hat

VVVV+VVVVYV+VVVVVVVVVYVVYVVYV

5.3 Illustrating ME.log

Now the parameters from the previous subsections can be used into the ME.log function.

> library(stats)

> library(matrixStats)

> # Using 1fdr.mle, a series of arguments are used.

> ## if ommitted they will have the default values.

> LFDR.ME<-ME.log(xSmall,1lfdr.C,p0.C,ncp.C,p0.S,ncp.S,a=3,lower.p0=0,upper.p0=1,lower.ncp=0.1,
+ upper .ncp=50,length.p0=200, length.ncp=200)

> LFDR.ME

$p0.hat
[1] 0.6281289 0.6281289 0.6281289 0.6281289 0.6281289 0.6281289 0.6281289
[8] 0.6281289 0.6281289 0.6281289 0.6281289 0.6281289 0.6281289 0.6281289
[15] 0.6281289 0.6281289 0.6281289 0.6281289 0.6281289 0.6281289

$ncp.hat
[1] 3.550765 3.550765 3.550765 3.550765 3.550765 3.550765 3.550765 3.550765
[9] 3.550765 3.550765 3.550765 3.550765 3.550765 3.550765 3.550765 3.550765
[17] 3.550765 3.550765 3.550765 3.550765

$LFDR.hat
[1] 0.8767839 0.8444716 0.6904314 0.8336484 0.9031935 0.9084548 0.5537349
[8] 0.9043444 0.8555761 0.9087873 0.8550451 0.7369274 0.9025667 0.8285536
[15] 0.5080896 0.2707493 0.8800038 0.8952452 0.8361598 0.8998372



LFDR estimates were obtained from the output as $LFDR.hat. The LFDRs are of same length as the
test statistic vector (stat) of the input. In fact, the new LFDR estimates have the same length as the
SNPs falling into the intersection of both reference classes. Each $LFDR.hat is based on the corresponding
pO and ncp given by $p0.hat and $ncp.hat. These $p0.hat and $ncp.hat are determined according to
the likelihood set constructed based on two likelihood functions generated on the basis of the separate
and combined reference classes. For more details refer to Karimnezhad and Bickel (2016a).

6 caution.parameter.actions

This function provides three actions based on three different values for a caution parameter defined
in Karimnezhad and Bickel (2016a).

6.1 Input

The function caution.parameter.actions allows for a user to input two vectors of LFDR estimates
of any size. The two inputs vectors x1 and x2 should be of the same size. These vectors refer to LFDR
estimates for SNPs falling into the intersection of the two reference classes defined in subsection 3.1.

6.2 Output

The output of caution.parameter.actions is a list containing three vectors of actions which have
been extensively discussed in Karimnezhad and Bickel (2016a).

e CGM1I: refers to conditional-Gamma minimax action with caution parameter 1
e CGMO: refer to conditional-Gamma minimin action with caution parameter 0

e CGMO.5: refers to a caution-type action with caution parameter 0.5 which is a balance between
CGMO and CGM1

CGM1, the caution-type estimator describes the maximum amount of caution taken towards ambigu-
ity while CGMO describes the minimal caution towards ambiguity (Bickel, 2015). Given an individual’s
prior belief of their subjective probability estimates, once the outcome is given, the individual’s belief is
updated. Note that the prior beliefs cannot be assessed with certainty. In this case, an individual must
perform a best guess based on the prior information given to them. This is defined as ambiguity (Dobbs,
1991).

The theory behind these actions involves the loss fucntion Lz introduced earlier Part 3.4.1. The
outputs from the three caution-type decisions is either 0 or 1.

6.2.1 Interpreting the results from caution.parameter.actions

When interpreting the results of the function, the three caution-type decisions should be considered
independently. In order to simplify matters, a vector of size 1, which corresponds to SNP1, is used to
help illustrate a hypothetical case.

Example 1: Consider the following cases:
$CGM1
[11 0
$CGMO
[11 o



$CGMO.5
[1]1 1

By Example 1, the outputs of CGM1 and CGMO contain the same value. Interpreting the values of
CGM1 and CGMO of SNP1, the two show a value of O reflecting that there is no association between SNP1
and the disease. In this case, the null hypothesis is failed to be rejected. On the other hand, the result
of CGMO.5 is a value of 1. Thus, the null hypothesis is rejected and it is interpreted that there is an
associaiton between SNP1 and the disease. Depending on the caution-type estimator chosen, the decision
can be different depending on which of CGM1, CGMO or CGMO.5 the user chooses.

A more realistic example on how to interpret the results can be illustrated more effectively. From the
R documentation LFDREmpiricalBayes, an example was provided where two vectors of size 4 are used.
Noting that each index corresponds to a particular SNP value (e.g. index 1 corresponds to SNP1, index
2 corresponds to SNP2, etc.) a more detailed explanation is presented below.

Example 2: A basic interpretation of the outputs.

> LFDR.Separate <- c(.14,.8,.16,.30)

> LFDR.Combined <- c¢(.21,.61,.12,.10)

> output <- caution.parameter.actions(LFDR.Separate, LFDR.Combined)
> output

$CGM1
[11 1010

$CGMO
[1] 1011

$CGMO.5
[11 1010

In this example, there are 4 SNPs. Here, SNP1, SNP2 and SNP3 have the same output for the three
caution-type estimators. SNP4, on the other hand, has the same result for caution-type decisions CGM1
and CGMO.5 but a different result for CGMO. Thus, CGM1 and CGMO.5 reflects that there is no association
between SNP4 and the disease, whereas on the basis of CGMO there is an association between SNP4 and
the disease (the null hypothesis is rejected). Ultimately, the user would have to choose amongst one of
the three caution-type estimators for their analysis. For example, in the simulation studies performed
with the coronary artery disease in Karimnezhad and Bickel (2016a), CGM1 and CGMO.5 were shown to
perform better than CGMO.

7 SEL.caution.parameter

This function provides three actions based on three different values for a caution parameter defined
in Karimnezhad and Bickel (2016a). Unlike the function caution.parameter.actions which is based
on the Lz loss function, this function is based on the Lgg loss function introduced earlier in Part 3.4.2.

7.1 Input

Much like caution.parameter.actions, SEL.caution.parameter accepts two vectors x1 and x2
which correspond to the two vectors of the separate and combined reference classes that were used in
the former function.

10



7.2 QOutput

This output of this function is a list containing three vectors. The name of the three vectors are the
same as the ones in caution.parameter.actions, i.e. CGM1, CGMO, and CGMO.5. Unlike the function
caution.parameter.actions, which returns a 0 or a 1 value, this function returns any value between 0
to 1. The closer the value it is to zero, the higher the accuracy is interpreted in estimating the hypothesis
indicator A; (Karimnezhad and Bickel, 2016a).

7.3 Examples

For a better clarificiation of performance of the function SEL. caution.parameter, the same example
as seen in caution.parameter.actions is used.

Example 1: Consider the same Example 1 in caution.parameter.actions.
> LFDR.Separate <- c¢(.14,.8,.16,.3)
> LFDR.Combined <- c(.21,.61,.12,.1)

> output <- SEL.caution.parameter (LFDR.Separate, LFDR.Combined)
> output

$CGM1
[1] 0.86 0.20 0.88 0.90

$CGMO
[1] 0.825 0.295 0.860 0.800

$CGMO.5
[1] 0.79 0.39 0.84 0.70

Notice that the vectors have the same length in both the outputs of both caution.parameter.
actions and SEL.caution.parameter. In this case, each corresponding element gives an estimate of
the hypothesis indicator A; from the three caution-type actions seen in caution.parameter.
actions.

8 PRGM.action

PRGM.action is a function that computes the posterior regret Gamma minimax estimate of the
hypothesis indicator A; based on the two reference classes discussed earlier in Subsection 3.1. The
thoery behind this function is on the basis the Lgg loss function introduced in Part 3.4.2.

8.1 Input

Similar to the functions caution.parameter.actions and SEL.caution.parameter, the inputs are
two vectors of LFDR estimates x1 and x2 coresponding to the reference classes.

8.2 Output

The output of PRGM.action is equivalent to the output CGMO from the function SEL.caution.
parameter. It returns a list which is one minus the average of x1 and x2.

11



8.3 Examples

The following example will provide a small demonstratation of the relationship between the output
of PRGM and the CGMO output vector of SEL.caution.parameter.

Example 1: Demonstrating the equivalence of PRGM and CGMO.

> LFDR.Separate <- c¢(.14,.8,.16,.3)

> LFDR.Combined <- c(.21,.61,.12,.1)

> output <- PRGM.action(x1 = LFDR.Separate, x2 = LFDR.Combined)
> output

$PRGM
[1] 0.825 0.295 0.860 0.800

Comparing the outputs of PRGM and that of CGMO of SEL.caution.paramter, as seen in Subsection 7.3,
the outputs are the same.
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