Package 'JMH'

January 20, 2025

Type Package

Title Joint Model of Heterogeneous Repeated Measures and Survival Data

Version 1.0.3

Date 2024-02-19

Maintainer Shanpeng Li <lishanpeng0913@ucla.edu>

Description Maximum likelihood estimation for the semi-parametric joint modeling of competing risks and longitudinal data in the presence of heterogeneous within-subject variability, proposed by Li and colleagues (2023) <arXiv:2301.06584>. The proposed method models the within-subject variability of the biomarker and asso-

ciates it with the risk of the competing risks event. The time-to-event data is modeled using a (cause-specific) Cox proportional hazards regression model with time-fixed covariates. The longitudinal outcome is modeled using a mixed-

effects location and scale model. The association is captured by shared random effects. The model is estimated using an Expectation Maximization algorithm.

License GPL (\geq 3)

NeedsCompilation yes

Imports Rcpp (>= 1.0.7), parallel, dplyr, stats, caret, timeROC

LinkingTo Rcpp, RcppEigen

Depends R (>= 3.5.0), survival, nlme, utils, MASS, statmod

RoxygenNote 7.2.3

Suggests testthat (>= 3.0.0), spelling

Language en-US

LazyData true

Author Shanpeng Li [aut, cre], Jin Zhou [ctb], Hua Zhou [ctb], Gang Li [ctb]

Repository CRAN

Date/Publication 2024-02-20 06:40:02 UTC

Contents

AUCJMMLSM	2
cdata	3
JMMLSM	4
MAEQJMMLSM	7
PEJMMLSM	8
plot.survfitJMMLSM	10
print.JMMLSM	11
print.survfitJMMLSM	11
summary.AUCJMMLSM	12
summary.MAEQJMMLSM	
summary.PEJMMLSM	13
survfitJMMLSM	
vcov	
ydata	16
	17

Index

AUCJMMLSM

Time-dependent AUC for joint models

Description

Time-dependent AUC for joint models

Usage

```
AUCJMMLSM(
   object,
   seed = 100,
   landmark.time = NULL,
   horizon.time = NULL,
   obs.time = NULL,
   method = c("Laplace", "GH"),
   quadpoint = NULL,
   maxiter = 1000,
   n.cv = 3,
   survinitial = TRUE,
   ...
)
```

object	object of class 'JMMLSM'.
seed	a numeric value of seed to be specified for cross validation.
landmark.time	a numeric value of time for which dynamic prediction starts

cdata

horizon.time	a numeric vector of future times for which predicted probabilities are to be com- puted.
obs.time	a character string of specifying a longitudinal time variable.
method	estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the pseudo-adaptive Gauss-Hermite quadrature is used.
quadpoint	the number of pseudo-adaptive Gauss-Hermite quadrature points if method = "GH".
maxiter	the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
n.cv	number of folds for cross validation. Default is 3.
survinitial	Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM

cdata

Simulated competing risks data

Description

The cdata data frame has 200 rows and 6 columns.

Usage

data(cdata)

Format

This data frame contains the following columns:

ID patient identifier.

survtime event time.

cmprsk event indicator. Ø denotes censoring, 1 risk 1, and 2 risk 2.

- var1 treatment indicator. 0 denotes the placebo group and 1 the treatment group.
- var2 continuous variable.
- var3 continuous variable.

JMMLSM

Joint Modeling for Continuous outcomes

Description

Joint modeling of longitudinal continuous data and competing risks

Usage

```
JMMLSM(
 cdata,
 ydata,
 long.formula,
  surv.formula,
 variance.formula,
  random,
 maxiter = 1000,
 epsilon = 1e-04,
 quadpoint = NULL,
 print.para = FALSE,
  survinitial = TRUE,
 initial.para = NULL,
 method = "adaptive",
 opt = "nlminb",
  initial.optimizer = "BFGS"
)
```

cdata	a survival data frame with competing risks or single failure. Each subject has one data entry.	
ydata	a longitudinal data frame in long format.	
long.formula	a formula object with the response variable and fixed effects covariates to be included in the longitudinal sub-model.	
surv.formula	a formula object with the survival time, event indicator, and the covariates to be included in the survival sub-model.	
variance.formula		
	an one-sided formula object with the fixed effects covariates to model the vari- ance of longitudinal sub-model.	

JMMLSM

random	a one-sided formula object describing the random effects part of the longitudinal sub-model. For example, fitting a random intercept model takes the form ~ 1 ID. Alternatively. Fitting a random intercept and slope model takes the form ~ $x1 + + xn$ ID.
maxiter	the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
epsilon	Tolerance parameter. Default is 0.0001.
quadpoint	the number of Gauss-Hermite quadrature points to be chosen for numerical in- tegration. Default is 15 which produces stable estimates in most dataframes.
print.para	Print detailed information of each iteration. Default is FALSE, i.e., not to print the iteration details.
survinitial	Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
initial.para	a list of initialized parameters for EM iteration. Default is NULL.
method	Method for proceeding numerical integration in the E-step. Default is adaptive.
opt	Optimization method to fit a linear mixed effects model, either nlminb (default) or optim.
initial.optimizer	
	Method for numerical optimization to be used. Default is BFGS.

Value

Object of class JMMLSM with elements

ydata	the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata.
cdata	the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times.
PropEventType	a frequency table of number of events.
beta	the vector of fixed effects for the mean trajectory in the mixed effects location and scale model.
tau	the vector of fixed effects for the within-subject variability in the mixed effects location and scale model.
gamma1	the vector of fixed effects for type 1 failure for the survival model.
gamma2	the vector of fixed effects for type 2 failure for the survival model. Valid only if CompetingRisk = TRUE.
alpha1	the vector of association parameter(s) for the mean trajectory for type 1 failure.
alpha2	the vector of association parameter(s) for the mean trajectory for type 2 failure. Valid only if CompetingRisk = TRUE.
vee1	the vector of association parameter(s) for the within-subject variability for type 1 failure.
vee2	the vector of association parameter(s) for the within-subject variability for type 2 failure. Valid only if CompetingRisk = TRUE.

H01	the matrix that collects baseline hazards evaluated at each uncensored event time for type 1 failure. The first column denotes uncensored event times, the second column the number of events, and the third columns the hazards obtained by Breslow estimator.	
H02	the matrix that collects baseline hazards evaluated at each uncensored event time for type 2 failure. The data structure is the same as H01. Valid only if CompetingRisk = TRUE.	
Sig	the variance-covariance matrix of the random effects.	
iter	the total number of iterations until convergence.	
convergence	convergence identifier: 1 corresponds to successful convergence, whereas 0 to a problem (i.e., when 0, usually more iterations are required).	
vcov	the variance-covariance matrix of all the fixed effects for both models.	
sebeta	the standard error of beta.	
setau	the standard error of tau.	
segamma1	the standard error of gamma1.	
segamma2	the standard error of gamma2. Valid only if CompetingRisk = TRUE.	
sealpha1	the standard error of alpha1.	
sealpha2	the standard error of alpha2. Valid only if CompetingRisk = TRUE.	
sevee1	the standard error of vee1.	
sevee2	the standard error of vee2. Valid only if CompetingRisk = TRUE.	
seSig	the vector of standard errors of covariance of random effects.	
loglike	the log-likelihood value.	
EFuntheta	a list with the expected values of all the functions of random effects.	
CompetingRisk	logical value; TRUE if a competing event are accounted for.	
quadpoint	the number of Gauss Hermite quadrature points used for numerical integration.	
LongitudinalSubmodelmean		
the component of the long.formula. LongitudinalSubmodelvariance		
Longituumaisu	the component of the variance.formula.	
SurvivalSubmodel		
	the component of the surv.formula.	
random	the component of the random.	
call	the matched call.	

Examples

```
require(JMH)
data(ydata)
data(cdata)
## fit a joint model
## Not run:
fit <- JMMLSM(cdata = cdata, ydata = ydata,</pre>
```

```
long.formula = Y ~ Z1 + Z2 + Z3 + time,
surv.formula = Surv(survtime, cmprsk) ~ var1 + var2 + var3,
variance.formula = ~ Z1 + Z2 + Z3 + time,
quadpoint = 6, random = ~ 1|ID, print.para = FALSE)
## make dynamic prediction of two subjects
cnewdata <- cdata[cdata$ID %in% c(122, 152), ]
ynewdata <- ydata[ydata$ID %in% c(122, 152), ]
survfit <- survfitJMMLSM(fit, seed = 100, ynewdata = ynewdata, cnewdata = cnewdata,
u = seq(5.2, 7.2, by = 0.5), Last.time = "survtime",
obs.time = "time", method = "GH")
oldpar <- par(mfrow = c(2, 2), mar = c(5, 4, 4, 4))
plot(survfit, include.y = TRUE)
par(oldpar)
```

End(Not run)

MAEQJMMLSM

A metric of prediction accuracy of joint model by comparing the predicted risk with the empirical risks stratified on different predicted risk group.

Description

A metric of prediction accuracy of joint model by comparing the predicted risk with the empirical risks stratified on different predicted risk group.

Usage

```
MAEQJMMLSM(
   seed = 100,
   object,
   landmark.time = NULL,
   horizon.time = NULL,
   obs.time = NULL,
   method = c("Laplace", "GH"),
   quadpoint = NULL,
   maxiter = 1000,
   survinitial = TRUE,
   n.cv = 3,
   quantile.width = 0.25,
   opt = "nlminb",
   initial.para = FALSE,
   ...
)
```

Arguments

seed	a numeric value of seed to be specified for cross validation.
object	object of class 'JMMLSM'.
landmark.time	a numeric value of time for which dynamic prediction starts
horizon.time	a numeric vector of future times for which predicted probabilities are to be com- puted.
obs.time	a character string of specifying a longitudinal time variable.
method	estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the standard Gauss-Hermite quadrature is used.
quadpoint	the number of standard Gauss-Hermite quadrature points if method = "GH".
maxiter	the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
survinitial	Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
n.cv	number of folds for cross validation. Default is 3.
quantile.width	a numeric value of width of quantile to be specified. Default is 0.25.
opt	Optimization method to fit a linear mixed effects model, either nlminb (default) or optim.
initial.para	Initial guess of parameters for cross validation. Default is FALSE.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM

PEJMMLSM	A metric of prediction accuracy of joint model by comparing the pre-
	dicted risk with the counting process.

Description

A metric of prediction accuracy of joint model by comparing the predicted risk with the counting process.

PEJMMLSM

Usage

```
PEJMMLSM(
  seed = 100,
  object,
  landmark.time = NULL,
  horizon.time = NULL,
  obs.time = NULL,
  method = c("Laplace", "GH"),
  quadpoint = NULL,
  maxiter = 1000,
  n.cv = 3,
  survinitial = TRUE,
  ...
)
```

Arguments

seed	a numeric value of seed to be specified for cross validation.
object	object of class 'JMMLSM'.
landmark.time	a numeric value of time for which dynamic prediction starts
horizon.time	a numeric vector of future times for which predicted probabilities are to be com- puted.
obs.time	a character string of specifying a longitudinal time variable.
method	estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the pseudo-adaptive Gauss-Hermite quadrature is used.
quadpoint	the number of pseudo-adaptive Gauss-Hermite quadrature points if method = "GH".
maxiter	the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
n.cv	number of folds for cross validation. Default is 3.
survinitial	Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM

plot.survfitJMMLSM *Plot conditional probabilities for new subjects*

Description

Plot conditional probabilities for new subjects. If CompetingRisk = FALSE, print the survival probabilities. Otherwise, print the cumulative incidence probabilities for each failure type.

Usage

```
## S3 method for class 'survfitJMMLSM'
plot(
    x,
    include.y = FALSE,
    xlab = NULL,
    ylab = NULL,
    xlim = NULL,
    ylim.long = NULL,
    ylim.surv = NULL,
    ...
)
```

Arguments

х	x of class survfitJMMLSM.
include.y	include longitudinal responses of this subject versus time. Default is FALSE.
xlab	X axis label.
ylab	Y axis label.
xlim	X axis support.
ylim.long	Y axis support for the longitudinal outcome.
ylim.surv	Y axis support for the event / survival probability.
	further arguments passed to or from other methods.

Value

plots of conditional probabilities over different pre-specified time points for subjects. If single failure type, then survival probabilities will be returned. Otherwise, cumulative incidence probabilities for each failure type will be returned.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

survfitJMMLSM

print.JMMLSM Print JMMLSM

Description

Print contents of JMMLSM object.

Usage

S3 method for class 'JMMLSM'
print(x, digits = 4, ...)

Arguments

х	Object of class 'JMMLSM'.
digits	number of digits of decimal to be printed.
	Further arguments passed to or from other methods.

Value

a summary of data, joint model, log likelihood, and parameter estimates.

Author(s)

Shanpeng Li

See Also

JMMLSM

print.survfitJMMLSM Print survfitJMMLSM

Description

Print survfitJMMLSM

Usage

S3 method for class 'survfitJMMLSM'
print(x, ...)

x	x of class 'survfitJMMLSM'.
	Further arguments passed to or from other methods.

12

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM

summary.AUCJMMLSM Print AUCJMMLSM

Description

Print AUCJMMLSM

Usage

S3 method for class 'AUCJMMLSM' summary(object, digits = 4, ...)

Arguments

object	object of class 'AUCJMMLSM'.
digits	number of digits of decimal to be printed.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM

summary.MAEQJMMLSM Print MAEQJMMLSM

Description

Print MAEQJMMLSM

Usage

S3 method for class 'MAEQJMMLSM'
summary(object, digits = 3, ...)

Arguments

object	object of class 'MAEQJMMLSM'.
digits	number of decimal points to be rounded.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM

summary.PEJMMLSM Print PEJMMLSM

Description

Print PEJMMLSM

Usage

```
## S3 method for class 'PEJMMLSM'
summary(object, error = c("MAE", "Brier"), ...)
```

Arguments

object	object of class 'PEJMMLSM'.
error	a character string that specifies the loss function.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM, survfitJMMLSM

survfitJMMLSM Prediction in Joint Models

Description

This function computes the conditional probability of surviving later times than the last observed time for which a longitudinal measurement was available.

Usage

```
survfitJMMLSM(
   object,
   seed = 100,
   ynewdata = NULL,
   cnewdata = NULL,
   u = NULL,
   Last.time = NULL,
   obs.time = NULL,
   method = c("Laplace", "GH"),
   quadpoint = NULL,
   ...
)
```

object	an object inheriting from class JMMLSM.
seed	a random seed number to proceed non-parametric bootstrap. Default is 100.
ynewdata	a data frame that contains the longitudinal and covariate information for the
	subjects for which prediction of survival probabilities is required.

cnewdata	a data frame that contains the survival and covariate information for the subjects for which prediction of survival probabilities is required.
u	a numeric vector of times for which prediction survival probabilities are to be computed.
Last.time	a numeric vector or character string. This specifies the known time at which each of the subjects in cnewdata was known to be alive. If NULL, then this is automatically taken as the survival time of each subject. If a numeric vector, then it is assumed to be greater than or equals to the last available longitudinal time point for each subject. If a character string, then it should be a variable in cnewdata.
obs.time	a character string of specifying a longitudinal time variable in ynewdata.
method	a character string specifying the type of probability approximation; if Laplace, then a first order estimator is computed. If GH, then the standard Gauss-Hermite quadrature is used instead.
quadpoint	number of quadrature points used for estimating conditional probabilities when method = "GH". Default is NULL. If method = "GH", then 15 is used.
•••	further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM

VCOV	Variance-covariance matrix of the estimated parameters for joint mod-
	els

Description

Extract variance-covariance matrix for joint models.

Usage

S3 method for class 'JMMLSM'
vcov(object, ...)

object	an object inheriting from class JMMLSM.
	further arguments passed to or from other methods.

Value

a matrix of variance covariance of all parameter estimates.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

JMMLSM

ydata

Simulated longitudinal data

Description

The ydata data frame has 1353 rows and 6 columns.

Usage

data(ydata)

Format

This data frame contains the following columns:

ID patient identifier.

Y response variable.

time visit time.

- Z1 treatment indicator. 0 denotes the placebo group and 1 the treatment group.
- Z2 continuous variable..
- Z3 continuous variable..

Index

* datasets cdata, 3 ydata, <mark>16</mark> AUCJMMLSM, 2 cdata, 3 JMMLSM, 3, 4, 8, 9, 11–16 MAEQJMMLSM, 7 PEJMMLSM, 8 plot.survfitJMMLSM, 10print.JMMLSM, 11 print.survfitJMMLSM, 11summary.AUCJMMLSM, 12 summary.MAEQJMMLSM, 13 summary.PEJMMLSM, 13 survfitJMMLSM, 3, 8-10, 12-14, 14 vcov, 15 ydata, 16