## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(IndonesiAPIs) library(ggplot2) library(dplyr) ## ----indonesia-gdp,echo = TRUE,message = FALSE,warning = FALSE,results = 'markup'---- indonesia_gdp <- head(get_indonesia_gdp()) print(indonesia_gdp) ## ----indonesia-life-expectancy,echo = TRUE,message = FALSE,warning = FALSE,results = 'markup'---- indonesia_life_expectancy <- head(get_indonesia_life_expectancy()) print(indonesia_life_expectancy) ## ----indonesia-population,echo = TRUE,message = FALSE,warning = FALSE,results = 'markup'---- indonesia_population <- head(get_indonesia_population()) print(indonesia_population) ## ----indonesia-wage-plot, message=FALSE, warning=FALSE, fig.width=9, fig.height=5---- # Bar chart with better formatted x-axis indonesia_minwage_tbl_df %>% filter(YEAR >= 2015) %>% group_by(REGION) %>% summarise(avg_salary = mean(SALARY, na.rm = TRUE), .groups = 'drop') %>% arrange(desc(avg_salary)) %>% slice_head(n = 10) %>% ggplot(aes(x = reorder(REGION, avg_salary), y = avg_salary)) + geom_col(fill = "steelblue", alpha = 0.8) + coord_flip() + scale_y_continuous( labels = function(x) format(x, big.mark = ",", scientific = FALSE) ) + labs( title = "Top 10 Regions with Highest Average Minimum Wage (2015-2023)", subtitle = "Indonesian Minimum Wage by Region", x = "Region", y = "Average Minimum Wage (IDR)", caption = "Source: IndonesiAPIs package" ) + theme_minimal() + theme( plot.title = element_text(size = 14, face = "bold"), plot.subtitle = element_text(size = 12), axis.text = element_text(size = 10), axis.title = element_text(size = 11) )