Package ‘Haplin’

January 20, 2025
Title Analyzing Case-Parent Triad and/or Case-Control Data with SNP
Haplotypes
Version 7.3.2
Date 2024-08-16
Type Package
Maintainer Hakon K. Gjessing <hakon.gjessing@uib.no>
Depends R (>=3.5.0)
Imports tools, mgcv, MASS, ff, rlang, methods
Suggests knitr, Rmpi, ggplot2, testthat, rmarkdown

Description Performs genetic association analyses of case-parent triad (trio) data with multiple mark-
ers. It can also incorporate complete or incomplete control triads, for instance independent con-
trol children. Estimation is based on haplotypes, for instance SNP haplo-
types, even though phase is not known from the genetic data. 'Haplin' estimates rela-
tive risk (RR + conf.int.) and p-value associated with each haplotype. It uses maximum likeli-
hood estimation to make optimal use of data from triads with missing genotypic data, for in-
stance if some SNPs has not been typed for some individuals. 'Haplin' also allows estima-
tion of effects of maternal haplotypes and parent-of-origin effects, particularly appropri-
ate in perinatal epidemiology. 'Haplin' allows special models, like X-inactivation, to be fit-
ted on the X-chromosome. A GxE analysis allows testing interactions between environ-
ment and all estimated genetic effects. The models were originally described in " * Gjess-
ing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fe-
tal and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396".

License GPL (>=2)

URL https://haplin.bitbucket.io
VignetteBuilder knitr

RoxygenNote 7.3.1

BuildVignettes yes
NeedsCompilation yes

Author Hakon K. Gjessing [aut, cre],
Miriam Gjerdevik [ctb] (functions 'lineByLine', 'cbindFiles',
'tbindFiles', 'snpPower', 'snpSampleSize', 'hapSim', 'hapRun',

1

https://haplin.bitbucket.io

2 Contents

'hapPower’, 'hapPowerAsymp', and 'hapRelEff"),
Julia Romanowska [ctb] (<https://orcid.org/0000-0001-6733-1953>, new
data format, parallelisation, new documentation),
Oivind Skare [ctb] (TDT tests)
Repository CRAN

Date/Publication 2024-08-20 14:30:14 UTC

Contents
chindFiles 3
finishParallelRun e 4
genDataGetPart e 5
genDatalload L 7
genDataPreprocess e 7
genDataRead 9
getChildren L 11
getDyads L L e e 12
getFathers e 13
getFullTriads e 14
getMothers e e e 15
BXC o v v v e e e e e e e e e e e e 16
haplin 18
haplinSlide e e 23
haplinStrat L 26
hapPower L 28
hapPowerAsymp e e e e e e 30
hapRelEff e 33
hapRun e 37
hapSim e e e 41
haptable 45
initParallelRun oL 47
lineByLine e e e 48
nfam 50
nindiv . ..o e 50
DSNPS + v v o e e e e e e e e e e e e e e 51
OULPUL . o o v vttt e e e e e e e e e e e e e e 52
plothaplin e e e 53
plothaplinSlide 54
plothaplinStrat L 56
plothaptable e e 57
plotPValues L 58
PQQ . . e 60
printhaplin e e e 61
print.summary.haplin 0oL 62
rbindFiles L 63
showGen 65

showPheno e 66

https://orcid.org/0000-0001-6733-1953

cbindFiles 3

showSNPnames 66
SNPPOS . . L e e 67
snpPowero L e 69
snpSampleSize 71
SUBSE . o v v o e e e e e e e e e e e e e e 72
summary.haplin e e e 74
toDataFrame e 75

Index 77

cbindFiles Combine a sequence of files by columns
Description

Takes a sequence of files and combines them column-wise (side-by-side), i.e. reads each file line
by line, pastes corresponding lines, then writes to outfile. Combining files line by line is especially
useful when working with large datasets, where the reading of entire files may be time consuming
and require a large amount of memory.

Usage

cbindFiles(infiles, outfile, col.sep, ask = TRUE, verbose = TRUE)

Arguments
infiles A character vector of names (and paths) of the files to combine.
outfile A character string giving the name of the resulting file. The name of the file is
relative to the current working directory, unless the file name contains a definite
path.
col.sep Specifies the column separator which will be inserted between files.
ask Logical. Default is "TRUE". If set to "FALSE", an already existing outfile will
be overwritten without asking.
verbose Logical. Default is "TRUE", which means that the line number is displayed for
each iteration, i.e. each combined line.
Details

The function cbind combines R objects by columns. However, reading large datafiles may require
a large amount of memory and be extremely time consuming. cbindFiles combines the files
column-wise, one line at a time, and then writes each line to outfile. This avoids reading the full
files into memory.

If infiles contains only one file, this file will be copied directly to outfile, i.e. without any
line-by-line modifications.

Value

There is no useful output; the objective of cbindFiles is to produce outfile.

4 finishParallelRun

Author(s)

Miriam Gjerdevik,

with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Web Site: https://haplin.bitbucket.io

See Also

rbindFiles, 1ineByLine

Examples

Not run:

Combines the three infiles side-by-side
cbindFiles(infiles = c("myfilel.txt", "myfile2.txt",
"myfile3.txt"), outfile = "myfile_combined_by_columns.txt",
col.sep = " ", ask = TRUE, verbose = TRUE)

End(Not run)

finishParallelRun Closing the Rmpi cluster

Description

This function closes all the slaves spawned in initParallelRun and finishes the mpi routines. This
function MUST BE called after all the haplinSlide calls and right before exiting the script/R session!

Usage

finishParallelRun()

https://haplin.bitbucket.io

genDataGetPart 5

genDataGetPart Extracting part of genetic data.

Description

This function enables to extract (and save for later use) part of genetic data read in with gen-
DataRead.

Usage

genDataGetPart(

data.in = stop(”No data given!"”, call. = FALSE),
design = stop("Design type must be given!"),

markers,

indiv.ids,

rows,

cc,

sex,

file.out = "my_data_part”,
dir.out = ".",

overwrite = NULL,

)
Arguments
data.in The data object (in format as the output of genDataRead).
design The design used in the study - choose from:
* triad - (default), data includes genotypes of mother, father and child;
¢ cc - classical case-control;
* cc.triad - hybrid design: triads with cases and controls;
Any of the following can be given to narrow down the dataset:
markers Vector with numbers or names indicating which markers to choose.
indiv.ids Character vector giving IDs of individuals. CAUTION: in a standard PED file,
individual IDs are not unique, so this will select all individuals with given IDs.
rows Numeric vector giving the positions - this will select only these rows.
cc One or more values to choose based on case-control status (’cc’ column).
sex One or more values to choose based on the ’sex’ column.
file.out The base for the output filename (default: "my_data_part").
dir.out The path to the directory where the output files will be saved.
overwrite Whether to overwrite the output files: if NULL (default), will prompt the user

to give answer; set to TRUE, will automatically overwrite any existing files; and
set to FALSE, will stop if the output files exist.

6 genDataGetPart

If any additional covariate data are available in data.in, the user can choose
based on values of these (see the Examples section).

Details

The genetic data from GWAS studies can be quite large, and thus the analysis is time-consuming.
If a user knows where they want to focus the analysis, they can use this function to extract part of
the entire dataset and use only this part in subsequent Haplin analysis.

Value

A list object with three elements:

* cov.data - a data. frame with covariate data (if available in the input file)

* gen.data - alist with chunks of the genetic data; the data is divided column-wise, using 10,000
columns per chunk; each element of this list is a ff matrix

* aux - a list with meta-data and important parameters.

This now contains only the selected subset of data.

Warning

No checks are performed when choosing a subset of the data - it is the user’s obligation to check
whether the data subset contains correct number of individuals (especially important when using
the triad design study) and/or markers!

Examples

The argument 'overwrite' is set to TRUE!

Read the data:

examples.dir <- system.file("extdata"”, package = "Haplin”)

example.file <- file.path(examples.dir, "HAPLIN.trialdata2.txt")
my.gen.data.read <- genDataRead(file.in = example.file, file.out = "trial_data”,

dir.out = tempdir(check = TRUE), format = "haplin”, allele.sep = "", n.vars = 2,
cov.header = c("smoking"”, "sex"), overwrite = TRUE)
my.gen.data.read
Extract part with only men:
men.subset <- genDataGetPart(my.gen.data.read, design = "triad”, sex = 1,
dir.out = tempdir(check = TRUE), file.out = "gen_data_men_only", overwrite = TRUE)
men.subset
Extract the part with only smoking women:
women. smoke. subset <- genDataGetPart(my.gen.data.read, design = "triad",

dir.out = tempdir(check = TRUE), sex = @, smoking = c(1,2), overwrite = TRUE)
women . smoke. subset

genDatal_oad 7

genDataload Loading the data previously read in and saved by "genDataRead"

Description

This function loads the data from the saved .ffData and .RData files, and prepares the data to subse-
quent analysis.

Usage
genDatalLoad(filename = stop(”'filename' must be given!"”), dir.in = ".")
Arguments
filename The base of the filenames; i.e. if the data is saved in "my_data_gen.ffData",
"my_data_gen.RData" and "my_data_cov.RData", then the ’filename’ should be
"my_data".
dir.in The path to the directory where files were saved (defaults to the current direc-
tory).
Value

A list object with three elements:

* cov.data - a data. frame with covariate data (if available in the input file)

* gen.data - alist with chunks of the genetic data; the data is divided column-wise, using 10,000
columns per chunk; each element of this list is a ff matrix

* aux - a list with meta-data and important parameters.

genDataPreprocess Pre-processing of the genetic data

Description

This function prepares the data to be used in Haplin analysis

Usage

genDataPreprocess(
data.in = stop("You have to give the object to preprocess!"),
map.file,
map.header = FALSE,
design = "triad",
file.out = "data_preprocessed”,
dir.out = ".",
ncpu = 1,

overwrite = NULL

8 genDataPreprocess

Arguments
data.in Input data, as loaded by genDataRead or genDatal.oad.
map.file Filename (with path if the file is not in current directory) of the .map file holding
the SNP names, if available.
map . header Logical: does the map.file contain a header in the first row? Default: FALSE.
design The design used in the study - choose from:
* triad - (default), data includes genotypes of mother, father and child;
¢ cc - classical case-control;
* cc.triad - hybrid design: triads with cases and controls
file.out The core name of the files that will contain the preprocessed data (character
string); ready to load next time with genDatalLoad function; default: "data_preprocessed".
dir.out The directory that will contain the saved data; defaults to current working direc-
tory.
ncpu The number of CPU cores to use - this speeds up the process for large datasets
significantly. Default is 1 core, maximum is 1 less than the total number of
cores available on a current machine (even if the number given by the user is
more than that).
overwrite Whether to overwrite the output files: if NULL (default), will prompt the user
to give answer; set to TRUE, will automatically overwrite any existing files; and
set to FALSE, will stop if the output files exist.
Value

A list object with three elements:

* cov.data - a data. frame with covariate data (if available in the input file)

* gen.data - a list with chunks of the genetic data; the data is divided column-wise, using 10,000
columns per chunk; each element of this list is a ff matrix

* qux - a list with meta-data and important parameters:

— variables - tabulated information of the covariate data;

— variables.nas - how many NA values per each column of covariate data;

— alleles - all the possible alleles in each marker;

— alleles.nas - how many NA values in each marker;

— nrows.with.missing - how many rows contain any missing allele information;
— which.rows.with.missing - vector of indices of rows with missing data (if any)

Details

The .map file should contain at least two columns, where the second one contains SNP names. Any
additional columns should be separated by a whitespace character, but will be ignored. The file
should contain a header.

genDataRead 9

Examples

The argument 'overwrite' is set to TRUE!
First, read the data:

examples.dir <- system.file("extdata”, package = "Haplin”)

example.file <- file.path(examples.dir, "exmpl_data.ped”)

ped.data.read <- genDataRead(example.file, file.out = "exmpl_ped_data"”,

dir.out = tempdir(check = TRUE), format = "ped”, overwrite = TRUE)

ped.data.read

Take only part of the data (if needed)

ped.data.part <- genDataGetPart(ped.data.read, design = "triad”, markers = 10:12,
dir.out = tempdir(check = TRUE), file.out = "exmpl_ped_data_part"”, overwrite = TRUE)
Preprocess as "triad” data:

ped.data.preproc <- genDataPreprocess(ped.data.part, design = "triad”,

dir.out = tempdir(check = TRUE), file.out = "exmpl_data_preproc”, overwrite = TRUE)
ped.data.preproc

genDataRead Reading the genetic data from a file

Description

This function will read in data from PED or haplin formatted file.

Usage

genDataRead(
file.in = stop(”"Filename must be given!”, call. = FALSE),
file.out = NULL,
dir.out = ".",
format = stop("Format parameter is required!"),
header = FALSE,
n.vars,
cov.file.in,
cov.header,
map.file,
map.header = FALSE,
allele.sep = ";",
na.strings = "NA",

col.sep = ,
overwrite = NULL

Arguments

file.in The name of the main input file with genotype information.

file.out The base for the output filename (by default, constructed from the input file
name).

10

dir.out

format

header

n.vars

cov.file.in

cov.header

map.file

map . header
allele.sep
na.strings

col.sep

overwrite

Details

genDataRead

The path to the directory where the output files will be saved.
Format of data (will influence how data is processed) - choose from:

* haplin - data already in one row per family,

* ped - data from .ped file, each row represents an individual.

Whether the first line of the main input file contains column names; default:
FALSE; NB: this is useful only for "haplin’-formatted files!

The number of columns with covariate data (if any) in the main file; NB: if the
main file is in PED format, it is assumed that the first 6 columns contain the
standard PED-covariates (i.e., family ID, ID of the child, father and mother, sex
and case-control status), so in this case setting 'n.vars’ is useful only if the PED
file contains more than 6 covariate columns.

Name of the file containing additional covariate data, if any. Caution: unless the
"cov.header’ argument is used, it is assumed that the first line of this file contains
the header (i.e., the column names of the additional data).

The character vector containing the names of covariate columns (in the file with
additional covariate data if given by the ’cov.file.in’ argument; or in the main
file, if it’s a "haplin"-formatted file).

Filename (with path if the file is not in current directory) of the .map file holding
the SNP names, if available (see Details).

Logical: does the map.file contain a header in the first row? Default: FALSE.
Character: separator between two alleles (default: ";").
Character or NA: how the missing data is coded (default: "NA").

Character: separator between the columns (i.e., markers; default: any whites-
pace character).

Whether to overwrite the output files: if NULL (default), will prompt the user
to give answer; set to TRUE, will automatically overwrite any existing files; and
set to FALSE, will stop if the output files exist.

The function reads in all the data in the file, creates ff objects to store the genetic information and
data.frame to store covariate data (if any). These objects are saved in .RData and . ffData files,
which can be later on easily uploaded to R (with genDatal.oad) and re-used.

Value

A list object with three elements:

* cov.data - a data. frame with covariate data (if available in the input file)

* gen.data - alist with chunks of the genetic data; the data is divided column-wise, using 10,000
columns per chunk; each element of this list is a ff matrix

* aux - a list with meta-data and important parameters.

getChildren 11

Details

The .map file should contain at least two columns, where the second one contains SNP names. Any
additional columns should be separated by a whitespace character, but will be ignored. The file
should contain a header.

Usage note

When reading in a covariate file together with the genotype information, it is advised to include the
header in the file, so that there is no doubt to the naming of the data columns.

Examples

The argument 'overwrite' is set to TRUE!
examples.dir <- system.file("extdata"”, package = "Haplin”)
ped format:
example.file2 <- file.path(examples.dir, "exmpl_data.ped”)
ped.data.read <- genDataRead(example.file2, file.out = "exmpl_ped_data”,
dir.out = tempdir(check = TRUE), format = "ped”, overwrite = TRUE)
ped.data.read
haplin format:
example.filel <- file.path(examples.dir, "HAPLIN.trialdata2.txt"”)
haplin.data.read <- genDataRead(file.in = example.filel,
file.out = "exmpl_haplin_data”, format = "haplin”, allele.sep = "", n.vars = 2,
cov.header = c("smoking"”, "sex"), overwrite = TRUE,
dir.out = tempdir(check = TRUE))
haplin.data.read

getChildren Getter for all rows with children data

Description

Wrapper function for genDataGetPart that returns a subset of the data containing only children.

Usage

getChildren(
data.in = stop(”No data given!"”, call. = FALSE),
file.out = "my_data_onlyChildren”,
dir.out = ".",
overwrite = NULL

12 getDyads

Arguments
data.in The data object (in format as the output of genDataRead); note that the design
of the data is assumed to be triad.
file.out The base for the output filename (default: "my_data_onlyChildren").
dir.out The path to the directory where the output files will be saved.
overwrite Whether to overwrite the output files: if NULL (default), will prompt the user
to give answer; set to TRUE, will automatically overwrite any existing files; and
set to FALSE, will stop if the output files exist.
Value

A list object with three elements:

* cov.data - a data. frame with covariate data (if available in the input file)

* gen.data - alist with chunks of the genetic data; the data is divided column-wise, using 10,000
columns per chunk; each element of this list is a ff matrix

* aux - a list with meta-data and important parameters.

This now contains only the selected subset of data.

getDyads Getter only for all dyads (child and one parent)

Description
Wrapper function for genDataGetPart that returns a subset of the data containing only dyads (where
the child and only one parent have genetic data), i.e., not triads.

Usage

getDyads(
data.in = stop(”"No data given!"”, call. = FALSE),
file.out = "my_data_onlyDyads",

dir.out = ".”
overwrite = NULL
)
Arguments
data.in The data object (in format as the output of genDataRead); note that the design
of the data is assumed to be "triad".
file.out The base for the output filename (default: "my_data_onlyDyads").
dir.out The path to the directory where the output files will be saved (default: ".", the
current directory).
overwrite Whether to overwrite the output files: if NULL (default), will prompt the user

to give answer; set to TRUE, will automatically overwrite any existing files; and
set to FALSE, will stop if the output files exist.

getFathers 13

Value
A list object with three elements:

* cov.data - a data. frame with covariate data (if available in the input file)

* gen.data - alist with chunks of the genetic data; the data is divided column-wise, using 10,000
columns per chunk; each element of this list is a ff matrix

* aux - a list with meta-data and important parameters.

This now contains only the selected subset of data.

getFathers Getter for all rows with fathers’ data

Description

Wrapper function for genDataGetPart that returns a subset of the data containing only fathers.

Usage

getFathers(
data.in = stop(”"No data given!"”, call. = FALSE),
file.out = "my_data_onlyFathers”,

dir.out = ".",
overwrite = NULL
)
Arguments
data.in The data object (in format as the output of genDataRead); note that the design
of the data is assumed to be triad.
file.out The base for the output filename (default: "my_data_onlyFathers").
dir.out The path to the directory where the output files will be saved.
overwrite Whether to overwrite the output files: if NULL (default), will prompt the user
to give answer; set to TRUE, will automatically overwrite any existing files; and
set to FALSE, will stop if the output files exist.
Value

A list object with three elements:

* cov.data - a data. frame with covariate data (if available in the input file)

* gen.data - a list with chunks of the genetic data; the data is divided column-wise, using 10,000
columns per chunk; each element of this list is a ff matrix

* aux - a list with meta-data and important parameters.

This now contains only the selected subset of data.

14 getFullTriads

getFullTriads Getter for all full triads

Description

Wrapper function for genDataGetPart that returns a subset of the data containing only full triads
(where all, the child, the mother and the father have genetic data).

Usage

getFullTriads(
data.in = stop(”No data given!"”, call. = FALSE),
file.out = "my_data_onlyTriads”,

dir.out = "."
overwrite = NULL
)
Arguments
data.in The data object (in format as the output of genDataRead); note that the design
of the data is assumed to be triad.
file.out The base for the output filename (default: "my_data_onlyTriads").
dir.out The path to the directory where the output files will be saved.
overwrite Whether to overwrite the output files: if NULL (default), will prompt the user
to give answer; set to TRUE, will automatically overwrite any existing files; and
set to FALSE, will stop if the output files exist.
Value

A list object with three elements:

* cov.data - a data. frame with covariate data (if available in the input file)

* gen.data - alist with chunks of the genetic data; the data is divided column-wise, using 10,000
columns per chunk; each element of this list is a ff matrix

* qux - a list with meta-data and important parameters.

This now contains only the selected subset of data.

getMothers 15

getMothers Getter for all rows with mothers’ data

Description

Wrapper function for genDataGetPart that returns a subset of the data containing only mothers.

Usage

getMothers(
data.in = stop(”No data given!"”, call. = FALSE),
file.out = "my_data_onlyMothers”,

dir.out = ".",
overwrite = NULL
)
Arguments
data.in The data object (in format as the output of genDataRead); note that the design
of the data is assumed to be triad.
file.out The base for the output filename (default: "my_data_onlyMothers").
dir.out The path to the directory where the output files will be saved.
overwrite Whether to overwrite the output files: if NULL (default), will prompt the user
to give answer; set to TRUE, will automatically overwrite any existing files; and
set to FALSE, will stop if the output files exist.
Value

A list object with three elements:

* cov.data - a data. frame with covariate data (if available in the input file)

* gen.data - a list with chunks of the genetic data; the data is divided column-wise, using 10,000
columns per chunk; each element of this list is a ff matrix

* aux - a list with meta-data and important parameters.

This now contains only the selected subset of data.

16 gxe

gxe Test for gene-environment interaction

Description

Performes a gene-environment test to check if haplin estimates of relative risks change over strata
of environment. It is typically applied to the output from haplinStrat

Usage

gxe(object.list)

Arguments

object.list A list of haplin results, almost always the output from haplinStrat. The first
element is the result of running haplin on all data; the remaining elements are
the results for each stratum separately.

Details

haplinStrat runs haplin first on the entire input data file, then on each stratum separately. The re-
sults from haplinStrat are similar to just manually splitting the file into strata and running haplin
on each, with one important difference, however: Since some strata may be small etc., haplin might
conceivably choose different haplotypes in different strata, and also choose different reference hap-
lotypes. When first running haplin on the entire file, haplinStrat saves the selected haplotypes
and chosen reference category. Then, in the strata-specific runs haplinStrat forces haplin to choose
the same haplotypes/reference category in all runs, so that results from different strata are compa-
rable. When applying gxe to the output from haplinStrat, it will test whether there is a statistically
significant change in parameter estimates from stratum to stratum, i.e. a gene-environment interac-
tion since strata usually are defined by an environmental exposure. gxe uses Wald tests to test for
interactions. It always tests whether there is change in haplotype frequencies from stratum to stra-
tum. More importantly, it separately tests whether any genetic effects, such as fetal genetic effects,
maternal effects, or parent-of-origin effects, change significantly over strata. gxe can also be run
from within haplinSlide by using the strata argument in haplinSlide.

Value

A dataframe with one row for each test that is performed (haplo.freq is the first, the remaining de-
pend on the model that has been estimated). The Wald chi-squared test value, degrees-of-freedom,
and resulting p-value are reported.

NOTE:

In the future, the structure of the output from gxe will change. In particular, measures of ratios of
relative risks will be reported in addition to the p-values

gxe 17
Note
Further information is found on the web page.
Author(s)
Hakon K. Gjessing
Professor of Biostatistics
Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>
References
Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.
Web Site: https://haplin.bitbucket.io
See Also
haplin, haplinStrat, haplinSlide
Examples
Not run:
All standard haplin runs can be done with haplinStrat.
Below is an illustration. See the haplin help page for more
examples.
#
Analyzing the effect of fetal genes, including triads with missing data,
using a multiplicative response model. The first column of the data file
in this example contains the stratification variable.
result <- haplinStrat("C:/work/data.dat”, strata = 1, use.missing = T, response = "mult”,
reference = "ref.cat”, winlength = 1)
Provide summary of separate results:
lapply(result, summary)
Plot results separately:
par(ask = T)
lapply(result, plot)
#
Convert results to table format and stack them over strata:
haptable(result)

Test for interaction between haplotype risk estimates and the strata variable:
gxe(result)

End(Not run)

https://haplin.bitbucket.io

18

haplin

haplin

Fitting log-linear models to case-parent triad and/or case-control data

Description

haplin fits a log-linear model to case-parent triads, case-control data, or combined (hybrid) case-
parent control-parent triads or dyads. It estimates marker or haplotype frequencies, and uses the EM
algorithm to reconstruct haplotypes and, if requested, impute missing genotypes. haplin prints and
plots estimates of relative risks associated with fetal and maternal haploypes, and in addition allows
splitting fetal haplotype effects into maternally and paternally inherited effects. It allows special
models, like x-inactivation, to be fitted on the X-chromosome. The result is an object of class
haplin, which can be explored with summary, plot, and haptable.

Usage

haplin(data, markers = "ALL",

design = "triad"”, use.missing = FALSE,

xchrom = FALSE, maternal = FALSE, test.maternal = FALSE,
poo = FALSE, scoretest = "no"”, ccvar = NULL, strata = NULL,

sex = NULL, comb.sex = "double"”,

reference = "reciprocal”, response = "free”,

threshold = 0.01, max.haplos = NULL, haplo.file = NULL,
resampling = "no”, max.EM.iter = 50, data.out = "no",

verbose = TRUE, printout = TRUE)

Arguments

data

markers

design

An R-object which is the result of using genDataPreprocess. See the web page
for a detailed description of how to use this function.

Default is "ALL", which means haplin uses all available markers in the data set
in the analysis. For the current version of haplin the number of markers used at
a single run should probably not exceed 4 or 5 due to the computational burden.
The markers argument can be used to select appropriate markers from the file
without creating a new file for the selected markers. The relevant markers can be
specified by giving a vector or numbers (e.g., markers = c(1, 3:10) will use the
10 first markers except marker 2) or characters (e.g., markers = c("m1"”, "m3",
"rs35971")). When running haplin, it may be a good idea to start exploring a
few markers at a time, using this argument.

The value "triad" is used for the standard case triad design, without independent
controls. The value "cc.triad" means a combination of case triads and control
triads. This requires the argument ccvar to point to the data column contain-
ing the case-control variable. The value "cc" means a simple case-control de-
sign, where the parents have not been genotyped (there are no data columns for
parental genes). NOTE: design is also set in genDataPreprocess. Almost al-
ways, the two arguments should be equal. Occasionally, however, the user might
want to override the original argument by switching from ’cc.triad’ to "triad’ or
vice versa.

haplin

use.missing

xchrom

maternal
test.maternal

poo

scoretest

ccvar

strata

sex

comb. sex

reference

19

A logical value used to determine whether triads with missing data should be
included in the analysis. When set to TRUE, haplin uses the EM algorithm
to obtain risk estimates, also taking into account triads with missing data. The
standard errors and p-values are adjusted to correct for this. The default, how-
ever, is FALSE. When FALSE, all triads having any sort of missing data are
excluded before the analysis is run. Note that haplin only looks at markers ac-
tually used in the analysis, so that if the markers argument (see below) is used
to select a collection of markers for analysis, haplin only excludes triads with
missing data on the included markers.

Logical, defaults to "FALSE". If set to "TRUE", haplin assumes the markers
are on the x-chromosome. This option should be combined with specifying
the sex argument. In addition, comb.sex can be useful. xchrom=T can be
combined with poo = T and/or maternal =T.

If TRUE, maternal effects are estimated as well as the standard fetal effects.
Not yet implemented.

Parent-Of-Origin effects. If TRUE, haplin will split single-dose effects into
two separate effect estimates, one for the maternally inherited haplotype, and
one for the paternally inherited haplotype. Double dose will be estimated as
before.

Special interest only. If "no", no score test is computed. If "yes", an overall score
p-value is included in the output, and the individual score values are returned in
the haplin object. If "only", haplin is only run under the null hypothesis, and a
simple score object is returned instead of the full haplin object. Useful if only
score testing is needed.

Numeric. Should give the column number for the column containing the case-
control indicator in the data file. Needed for the "cc" and "cc.triad" designs. The
column should contain two numeric values, of which the largest one is always
used to denote cases.

Not yet implemented.

To be used with xchrom = TRUE. A numeric value specifying which of the data
columns that contains the sex variable. The variable should be coded 1 for males
and 2 for females.

To be used with xchrom = TRUE. A character value that specifies how to handle
gender differences on the X-chromosome. If set to "males" or "females", analy-
ses are done either for just males or just females, respectively. If set to "single"
or "double", males and females are used in a combined analysis. Specifically,
when "single", the effect of a (single) allele in males is assumed to equal the
effect of a single allele dose in females, and similarly, when "double", a single
allele in males is assumed to have the same effect as a double allele dose in fe-
males. Default is "double", which corresponds to X-inactivation. See separate
description for more details.

Decides how haplin chooses its reference category for the effect estimates. De-
fault value is "reciprocal”. With the reciprocal reference the effect of a single or
double dose of each haplotype is measured relative to the remaining haplotypes.
This means that a new reference category is used for each single haplotype.
Other possible values are "population” (which is similar to reciprocal, but where

20

response

threshold

max . haplos
haplo.file
resampling

max.EM.iter

data.out

verbose

printout

Details

haplin

the reference category is always the total population), and "ref.cat", where a sin-
gle haplotype is used as reference for all the rest. For ref.cat, the default is to
choose the most frequent haplotype as the reference haplotype. The reference
haplotype can be set explicitly by giving a numeric value for the reference ar-
gument. Note that the numeric value refers to the haplotype’s position among
the haplotypes selected for analysis by haplin. This means that one should run
haplin once first to see what haplotypes are used before giving a numeric value
to reference.

The default value "free" means that both single- and double dose effects are esti-
mated. Choosing "mult" instead specifies a multiplicative dose-response model.

Sets the (approximate) lower limit for the haplotype frequencies of those hap-
lotypes that should be retained in the analysis. Hapotypes that are less frequent
are removed, and information about this is given in the output. Default is 0.01.

Not yet implemented.
Not yet implemented.

Mostly for testing. Default is "no". When "no", the individual haplotypes re-
constructed by the EM algorithm as assumed known when computing CIs and
p-values. If set to "jackknife" a jackknife-based resampling procedure is used
when computing confidence intervals and p-values for effect estimates. This
takes more time, but corrects the Cls and p-values for the uncertainty contained
in unphased data. Note: in all recent versions of haplin, the resampling is no
longer needed since the confidence intervals and p-values are already corrected
in the standard computation.

The maximum number of iterations used by the EM algorithm. This value can
be increased if necessary, which sometimes is the case with e.g. case-control
data which a substantial amount of missing. However, for triad data with little
missing information there is usually no need for many iterations.

non non

Character. Accepts values "no", "prelim", "null" or "full", with "no" as default.
For values other than default, haplin returns the data file prepared for analysis
rather than the usual haplin estimation results. The data file contains the hap-
lotypes identified for each triad, and a vector of weights giving the probability
distribution of different haplotype configurations within a triad. The probabil-
ities are computed from preliminary haplotype frequency estimates, from the
null model or from the full likelihood model. The "prelim" option will be much
faster but somewhat less precise than the likelihood models.

Default is T (=TRUE). During the EM algorithm, haplin prints the estimated
parameters and deviance for each step. To avoid the output, set this argument to
F (=FALSE).

Logical. If TRUE (default), haplin prints a full summary of the results after
finishing the estimation. If FALSE, no such printout is given, but the summary
function can later be applied to a saved result to get the same summary.

Input data can be either a haplin format data file, or a PED data. These have to be loaded into R
first, using genDataRead or genDatal.oad functions, and then pre-processed with the genDataPre-
process function. If the PED data file is used, the arguments filename, n.vars, sep, allele.sep,

haplin 21

na.strings, ccvar, and sex need not be specified.
The output can be examined by print, summary, plot and haptable.

Value

An object of class haplin is returned. (The only exception is when data. out is set different from
"no", where haplin will produce a data file with haplotypes identified.)

Warning

Typically, some of the included haplotypes will be relatively rare, such as a frequency of 1% -
5%. For those haplotypes there may be too little data to estimate the double doses properly, so the
estimates may be unreliable. This is seen from the extremely wide confidence intervals. The rare
double dose estimates should be disregarded, but the remaining single and double dose estimates
are valid. To avoid the problem one can also reduce the model to a purely multiplicative model by
setting response = "mult"” combined with reference = "ref.cat"”.

Note

Further information is found on the web page.

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

See Also

summary.haplin, plot.haplin, pedToHaplin, haptable, haplinSlide, genDataload, genDataRead,
genDataPreprocess

Examples

setting up the directory with exemplary data
dir.in <- system.file("extdata”, package = "Haplin"”)
file.in <- file.path(dir.in, "data.dat”)

reading data in

data.in <- genDataRead(file.in, file.out = "poo_exmpl_data_read”, format = "haplin”,
dir.out = tempdir(check = TRUE), n.vars = 1, allele.sep =" ", col.sep =" ",
overwrite = TRUE)

https://haplin.bitbucket.io

22

haplin

preprocessing the data
data.preproc <- genDataPreprocess(data.in, design = "triad",
file.out = "poo_exmpl_data_preproc”, dir.out = tempdir(check = TRUE), overwrite = TRUE)

running haplin, calculating POO

res.P00 <- haplin(data.preproc, markers = 2, poo = TRUE, response = "mult”,
reference = 2, use.missing = TRUE)

res.PO0O

Not run:

1. Read the data:
my.haplin.data <- genDataRead(file.in = "HAPLIN.trialdata.txt”, file.out =
"trial_datal”, dir.out = ".", format = "haplin”, n.vars = @)

2. Run pre-processing:
haplin.data.prep <- genDataPreprocess(data.in = my.haplin.data, format =
"haplin”, design = "triad", file.out = "trial_datal_prep”, dir.out = ".")

3. Analyze:
Standard run:
haplin(haplin.data.prep)

Specify path, estimate maternal effects:
haplin(haplin.data.prep, maternal = T)

Specify path, use haplotype no. 2 as reference:
haplin(haplin.data.prep, reference = 2)

Remove more haplotypes from estimation by increasing the threshold
to 5%:
haplin(haplin.data.prep, threshold = 0.05)

Estimate maternal effects, using the most frequent haplotype as reference.
Use all data, including triads with missing data. Select

markers 3, 4 and 8 from the supplied data.

haplin(haplin.data.prep, use.missing = T, maternal =T,

reference = "ref.cat"”, markers = c(3,4,8))

Note: in this version of haplin, the jackknife is

no longer necessary since the standard errors are already corrected.

Some examples showing how to save the haplin result and later
recall plot and summary results:

Same analysis as above, saving the result in the object "result.1”:
result.1 <- haplin(haplin.data.prep, use.missing = T, maternal =T,
reference = "ref.cat"”, markers = c(3,4,8))

Replot the saved result (fetal effects):
plot(result.1)

Replot the saved result (maternal effects):
plot(result.1, plot.maternal =T)

haplinSlide 23

Print a very short summary of saved result:
result.1

A full summary of saved result, with confidence intervals and
p-values (the same as haplin prints when running):
summary(result.1)

Some examples when the data file contains two covariates,
the second is the case-control variable:

The following standard triad run is INCORRECT since it disregards
case status:
haplin(”data.dat"”, use.missing = T, n.vars = 2, design = "triad")

Combined run on "hybrid” design, correctly using both case-parent
triads and control-parent triads:

haplin(my.haplin.data, use.missing = T, n.vars = 2, ccvar = 2,
design = "cc.triad”)

If parent columns are not in the file, a plain case-control
run can be used:

haplin(my.haplin.data, use.missing = T, n.vars = 2, ccvar = 2,
design = "cc", response = "mult”, reference = "ref.cat”)

An example of how to produce a data file with all possible haplotypes
identified for each triad, together with their probaility weights:
result.data <- haplin(my.haplin.data, use.missing =T,

markers = c(3,4,8), data.out = "prelim”)

result.data will then contain the data file, with a vector of

probabilities (freq) computed from the preliminary haplotype

frequencies.

End(Not run)

haplinSlide Run haplin analysis in a series of sliding windows over a sequence of
markers/SNPs

Description

Produces a list, each element of which is an object of class haplin, which is the result of fitting the
log-linear haplin models to the data one "window" at a time.

Usage

haplinSlide(data, markers = "ALL"”, winlength = 1,
strata = NULL, table.output = TRUE, cpus = 1, para.env = NULL, slaveOutfile = "",
printout = FALSE, verbose = FALSE, ...)

24

Arguments

data

markers

winlength

strata

table.output

cpus

para.env

slaveOutfile

printout

verbose

Details

haplinSlide

R-object of class "haplin.ready"”, which is e.g., output from genDataPreprocess
or genDataload, and contains covariate and genetic data.

Defaultis "ALL", which means haplinSlide uses all available markers in the data
set in the analysis. Alternatively, the relevant markers can be specified by giving
a vector or numbers (e.g., markers = c(1, 3:10) will use the 10 first markers
except marker 2) or characters (e.g., markers =c("m1"”, "m3", "rs35971")).
haplinSlide will then run haplin on a series of windows selected from the
supplied markers. The winlength argument decides the length of the windows.
See details.

Length of the sliding, overlapping windows to be run along the markers. See
details.

A single numeric value specifying which data column contains the stratification
variable.

If TRUE, the haptable function will be applied to each result after estimation,
greatly reducing the size of the output. If FALSE, each element of the output list
is a standard haplin object. To preserve memory, default is set to TRUE.

haplinSlide allows parallel processing of its analyses. The cpus argument
should preferably be set to the number of available cpu’s. If set lower, it will
save some capacity for other processes to run. Setting it too high should not
cause any serious problems.

The user can choose parallel environment to use — "parallel" (default) or "Rmpi"
(for use on clusters); this option is used only when cpus argument is larger than
1.

Character. To be used when cpus > 1. If slaveOutfile = "" (default), output
from all running cores will be printed in the standard R session window. Alter-
natively, the output can be saved to a file by specifying the file path and name.

Default is FALSE. If TRUE, provides a full summary of each haplin result
during the run of haplinSlide.

Same as for haplin, but defaults to FALSE to reduce output size.

Remaining arguments to be used by haplin in each run.

haplinSlide runs haplin on a series of overlapping windows of the chosen markers. Except for
the markers and winlength arguments, all arguments are used exactly as in haplin itself. For
instance, if markers =c(1, 3, 4, 5, 7, 8) and winlength =4, haplinSlide will run haplin on
first the markers c(1, 3, 4, 5), then on c(3, 4, 5, 7), and finally on c(4, 5, 7, 8). The results
are returned in a list. The elements are named "1-3-4-5" etc., and can be extracted with, say,
summary(res[["1-3-4-5"1]) etc., where res is the saved result. Or the output can be examined
by, for instance, using lapply(res, summary) and lapply(res, plot).

When running haplinSlide on a large number of markers, the output can become prohibitively
large. In that case table.output should be set to TRUE, and haplinSlide will return a list of
summary "haptables”. This list can then be stacked into a single dataframe using toDataFrame. To
avoid exessive memory use, the default is table.output = TRUE.

haplinSlide 25

When multiple cores are available, set the cpus to the number of cores that should be used. This
will run haplinSlide in parallel on the chosen number of cores. Note that feedback is provided by
each of the cores separately, and some cores may start working on markers far out in the sequence.

Value

A list of objects of class haplin is returned.

Note

Further information is found on the web page.

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

See Also

haplin, summary.haplin, plot.haplin, haptable, toDataFrame

Examples

Not run:

(Almost) all standard haplin runs can be done with haplinSlide.
Below is an illustration. See the haplin help page for more

examples.

#

1. Read the data:
my.haplin.data <- genDataRead(file.in = "HAPLIN.trialdata.txt"”, file.out =
"trial_datal”, dir.out = tempdir(check = TRUE), format = "haplin”, n.vars = 0)

2. Run pre-processing:

haplin.data.prep <- genDataPreprocess(data.in = my.haplin.data,
format = "haplin”, design = "triad"”, file.out = "trial_datal_prep”,
dir.out = tempdir(check = TRUE))

3. Analyze:
Analyzing the effect of fetal genes, including triads with missing data,
using a multiplicative response model. When winlength = 1, separate

https://haplin.bitbucket.io

26 haplinStrat

markers are used. To make longer windows, winlength can be increased

correspondingly:

result.1 <- haplinSlide(haplin.data.prep, use.missing = T, response = "mult”,
reference = "ref.cat”, winlength = 1, table.output = F)

Provide summary of separate results:

lapply(result.1, summary)

Plot results:

par(ask = T)

lapply(result.1, plot)

End(Not run)

haplinStrat Fit haplin to each subset/stratum of data, determined by the argument
strata

Description

Produces a list, each element of which is an object of class haplin, which is the result of fitting the
log-linear haplin models to each strata stratum independently.

Usage
haplinStrat(data, strata = NULL, ...)
Arguments
data R-object of class "haplin.ready", which is e.g., output from genDataPreprocess
or genDatal oad, and contains covariate and genetic data.
strata A single integer specifying the number of the column in the covariate data that
contains the stratification variable
Remaining arguments to be used by haplin in each run.
Details

haplinStrat runs haplin first on the entire input data file, then on each stratum separately. Strata
are defined by the strata variable, which can be coded as numerical or character. However, one
should use only a moderate number of levels/strata, since haplin will be run independetly on each,
and some strata may otherwise have an insufficient amount of data. Running haplinStrat is thus
just a simplification of manually splitting the file into strata and running haplin on each; the end
result would be the same. The main reason for running haplinStrat is to test for gene-environment
interactions. This is achieved by running postTest on the result from haplinStrat. haplinStrat
can also be run from within haplinSlide by using the strata argument in haplinSlide.

haplinStrat 27

Value

A list of objects of class haplin is returned. The first element contains the result of running haplin
on the entire data file; the remaining elements are the results from each of the strata. The names of
the list correspond to the values of the strata variable.

Note

Further information is found on the web page.

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

See Also

haplin, summary.haplin, plot.haplin, haptable, toDataFrame, haplinSlide, gxe

Examples

setting up the directory with exemplary data
dir.in <- system.file("extdata"”, package = "Haplin”)
file.in <- paste@(dir.in, "/data.dat"”)

reading data in

data.in <- genDataRead(file.in, file.out = "poo_exmpl_data_read”, format = "haplin”,
dir.out = tempdir(check = TRUE), n.vars = 1, allele.sep =" ", col.sep =" "
overwrite = TRUE)

preprocessing the data

data.preproc <- genDataPreprocess(data.in, design = "triad”,
file.out = "poo_exmpl_data_preproc”, dir.out = tempdir(check = TRUE), overwrite = TRUE)

’

running haplinStrat, checking for gene-environment interactions

res.GxE <- haplinStrat(data.preproc, markers = 2, strata = 1, poo = FALSE,
response = "mult”, reference = 2, use.missing = TRUE)

res.GxE

running haplinStrat, checking for POO-environment interactions
res.POOXE <- haplinStrat(data.preproc, markers = c(1,2,3), strata
response = "mult”, reference = "ref.cat”, use.missing = TRUE)

res.POOXE

1, poo = TRUE,

https://haplin.bitbucket.io

28 hapPower

Not run:

All standard haplin runs can be done with haplinStrat.

Below is an illustration. See the haplin help page for more

examples.

#

Analyzing the effect of fetal genes, including triads with missing data,
using a multiplicative response model. The first column of the data file
in this example contains the stratification variable.

result <- haplinStrat("C:/work/data.dat”, strata = 1, use.missing = T, response = "mult”,
reference = "ref.cat”, winlength = 1)

Provide summary of separate results:

lapply(result, summary)

Plot results separately:

par(ask = T)

lapply(result, plot)

#

Convert results to table format and stack them over strata:

haptable(result)

Test for interaction between haplotype risk estimates and the strata variable:
postTest(result)

End(Not run)

hapPower Power simulation for association analyses with Haplin

Description

Simulates the statistical power of genetic analyses assessing fetal effects, maternal effects and/or
parent-of-origin effects. Effects of X-chromosome genes and gene-environment interaction effects
are also allowed.

Usage

hapPower (hapRun.result, alpha = 0.05)

Arguments

hapRun.result The result of running hapRun

alpha alpha is the Type I Error probablity. Equals 0.05 by default.

Details

The Haplin framework includes different modules for assessing genetic effects: haplin, haplinStrat
and haplinSlide. hapPower simulates the power of these analyses, which enables power calcula-
tions of fetal effects, maternal effects and/or parent-of-origin effects. Various family designs, i.e.,

hapPower 29

triads, case-control, the hybrid design, and all intermediate designs, are possible. It also allows
power calculation of gene-environment interaction effects and effects on X-chromosome markers.

hapPower calculates statistical power using the result of hapRun, and the target effects must be
specified in this function, see Examples below, and details in https://haplin.bitbucket.io/
docu/Haplin_power.pdf.

Value

hapPower returns the simulated power.

Author(s)

Miriam Gjerdevik,

with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health

<hakon.gjessing@uib.no>

References

Web Site: https://haplin.bitbucket.io

See Also

haplin, haplinSlide, hapSim, hapRun, snpPower, snpSampleSize , hapPowerAsymp

Examples

Not run:

Simulate power from 100 files using haplin.

The files consist of fetal effects at two diallelic markers,

corresponding to haplo.freq = rep(0.25, 4), RR = ¢(2,1,1,1) and RRstar = c(1,1,1,1).
The power is simulated for the combination of 100 case triads

and 100 control triads with no missing data at a .05 significance level,

applying a multiplicative model.

hapRun.res <- hapRun(nall = c(2,2), n.strata =1, cases = c(mfc=100), controls = c(mfc=100),
haplo.freq = rep(0.25,4), RR = ¢c(2,1,1,1), RRstar = c(1,1,1,1),

hapfunc = "haplin”, response = "mult”, n.sim = 100, dire = "simfiles"”, ask = FALSE)
hapPower (hapRun.res)

Simulate power from 100 files applying haplinStrat.

The files consist of fetal and maternal effects at two diallelic markers.

The data is simulated for 500 case triads and 200 control families in the first stratum,
and 500 case triads and 500 control trids in the second.

The fetal effects vary across strata,

whereas the maternal effects are the same.

One percent of the case triads are missing at random in the second stratum.
hapRun.res <- hapRun(nall = c(2,2), n.strata = 2, cases = c(mfc=500),

controls = list(c(mfc=200),c(mfc=500)), haplo.freq = rep(0.25,4), maternal = TRUE,

https://haplin.bitbucket.io/docu/Haplin_power.pdf
https://haplin.bitbucket.io/docu/Haplin_power.pdf
https://haplin.bitbucket.io

30 hapPowerAsymp

RR = list(c(1.5,1,1,1),c(1,1,1,1)), RRstar = c(1,1,1,1),

RR.mat = ¢(1.5,1,1,1), RRstar.mat = c(1,1,1,1), gen.missing.cases = list(NULL,0.01),
use.missing = TRUE, hapfunc = "haplinStrat”, n.sim = 100, ask = FALSE)

hapPower (hapRun.res)

Simulate power at the @.1 significance level from 1000 files using haplin.

The files consist of fetal effects at one diallelic locus,

corresponding to haplo.freq = c(0.1,0.9), RR = c(2,1) and RRstar = c(1,1).
The data consists of a combination of 100 case triads and 100 control triads.
hapRun.res <- hapRun(nall = c(2), cases = c(mfc=100), controls = c(mfc=100),
haplo.freq = ¢(0.1,0.9), RR = c(2,1), RRstar = c(1,1),

hapfunc = "haplin”, response = "mult”, n.sim = 1000, ask = FALSE)

hapPower (hapRun.res, alpha= 0.10)

The latter example, applying response = "mult”, should be comparable to
the theoretic calculations of snpPower.

snpPower (cases = list(mfc=100), controls = list(mfc=100),

RR = 2, MAF = 0.1, alpha = 0.10)

End(Not run)

hapPowerAsymp Asymptotic power calculations for genetic association analyses with
Haplin

Description

Computes the asymptotic power for genetic analyses assessing fetal effects, maternal effects and/or
parent-of-origin effects. Effects of X-chromosome genes and gene-environment interaction effects
are also allowed.

Usage

hapPowerAsymp(nall = 2, n.strata = 1, cases, controls, haplo.freq,
RR, RRcm, RRcf, RRstar, RR.mat, RRstar.mat,

xchrom = F, sim.comb.sex = "double"”, BR.girls,
response = "mult”, alpha = 0.05, ...)
Arguments
nall A vector of the number of alleles at each locus. By default a diallellic SNP.
n.strata The number of strata.
cases A list of the number of case families. Each element is a vector of the number

of families of the specified family design in the corresponding stratum. The
possible family designs, i.e., the possible names of the elements, are "mfc” (full
triad), "mc” (mother-child dyad), "fc" (father-child dyad) or "c” (a single case
child).

hapPowerAsymp

controls

haplo.freq

RR

RRcm

RRcf

RRstar

RR.mat
RRstar.mat

xchrom

sim.comb.sex

BR.girls

response

alpha

Details

31

A list of the number of control families. Each element is a vector of the number
of families of the specified family design in the corresponding stratum. The
possible family designs are "mfc” (full triad), "mc” (mother-child-dyad), "fc"
(father-child dyad), "mf" (mother-father dyad), "c” (a single control child), "m"
(a single control mother) or "f" (a single control father).

A list of which each element is a numeric vector of the haplotype frequencies
in each stratum. The frequencies are normalized and sum to one. The Details
section shows how to implement this argument in agreement with the possible
haplotypes.

A list of which each element is a numeric vector of the relative risks in each stra-
tum. The Details section shows how to implement this argument in agreement
with the possible haplotypes.

A list of numeric vectors. Each vector contains the relative risks associated with
the haplotypes transmitted from the mother for this stratum. See Details for
description of how to implement this argument in agreement with the possible
haplotypes.

A list of numeric vectors. Each vector contains the relative risks associated
with the haplotypes transmitted from the father for this stratum. See Details for
description of how to implement this argument in agreement with the possible
haplotypes.

A list of numeric vectors. Estimates how much double-dose children would
deviate from the risk expected in a multiplicative dose-response relationship.
The interpretation is similar to RR but for maternal genetic effects.

The interpretation is similar to RRstar but for maternal genetic effects.

Logical. Equals FALSE by default, which indicates analyses of autosomal mark-
ers. If TRUE, hapPowerAsymp performs power analyses of X-linked markers.

To be used with xchrom = TRUE. A character value that specifies how to handle
gender differences on the X-chromosome. If "single”, the effect of a (single)
allele in males is equal to the effect of a single allele dose in females, and simi-
larly, if "double”, a single allele in males has the same effect as a double allele
dose in females. Default is "double", which corresponds to X-inactivation.

To be used with xchrom = TRUE. Gives the ratio of baseline risk for females
relative to the baseline risk for males.

The default value "mult" specifies a multiplicative dose-response model. response
= "free" is not yet implemented.

alpha is the Type I Error probablity. Equals 0.05 by default.

Could include argument reference. By default, the most frequent allele or
haplotype is chosen as reference. The reference haplotype can be set explicitly
by giving a numeric value for the reference argument.

The Haplin framework includes different modules for assessing genetic effects: haplin, haplinStrat
and haplinSlide. hapPowerAsymp computes the asymptotic power for these analyses, which en-
ables power calculations of fetal effects, maternal effects and/or parent-of-origin effects. Various

32 hapPowerAsymp

family designs, i.e., triads, case-control, the hybrid design, and all intermediate designs, are pos-
sible. It also allows power calculation of gene-environment interaction effects and effects on X-
chromosome markers.

hapPower computes power through "brute force" simulations using hapRun. This is a robust way
of checking software implementations, asymptotic approximations and attained significance level.
However, both power and the corresponding sample size calculations can be performed much more
efficiently using asymptotic approximations. The asymptotic power is calculated applying the non-
centrality parameter of the Wald tests, which use the asymptotic normal distribution of the log-scale
parameter. The function hapCovar (used by hapPowerAsymp) computes the variance-covariance
matrix by applying the log-linear model combined with the EM algorithm.

Specifying haplotype risks:

The number of haplotypes used in the simulations is determined by the nall argument, since
prod(nall) different haplotypes can be made from the specified number of markers, length(nall).
The arguments haplo. freq, RR, RRcm, RRcf, RRstar, RR.mat, and RRstar.mat are all lists where
each element represents a stratum. Within each stratum, the arguments are vectors of length equal
to the number of haplotypes, specifying the relative risk etc. associated with each haplotype. The
stratum specific arguments may be simplified if the number of strata is one, or if the arguments are
equal across all strata. The haplotypes are determined by creating all possible haplotypes from the
given markers, in a sequence where the first marker varies mostly quickly. For instance, if nall =
c(3,2), the first marker has 3 alleles, the second has 2, and 6 haplotypes are possible. Taken in or-
der, the haplotypes are 1-1, 2-1, 3-1, 1-2, 2-2, and 3-2. When specifying, say, RR = c(1,2,1,1,1,1)
the haplotype 2-1 has a double risk compared to the rest. With, for instance, two strata, the speci-
fication RR = 1ist(c(1,2,1,1,1,1), c(1,1,1,1,1,1)) would mean that the risk associated with
2-1 is elevated only in the first stratum, not the second. The simplest example would be with nall
=c(2) and RR = c(1, 2), which would simulate a single SNP where the second allele has a double
risk.

Specifying genetic effects:

Standard fetal effects are specified by the arguments RR and RRstar, whereas parent-of-origin ef-
fects are addressed by the arguments RRcm, RRcf and RRstar. Maternal effects are included by the
additional arguments RRmat and RRstar.mat.

Value

hapPowerAsymp returns the asymptotic power for the relevant genetic effects. The first element of
the list depicts the power for each haplotype analyzed separately. If there are more than two possible
haplotypes, the second element displays the overall power for all haplotypes combined.

Author(s)

Miriam Gjerdevik,

with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health

<hakon.gjessing@uib.no>

hapRelEff 33

References

Web Site: https://haplin.bitbucket.io

See Also

haplin, haplinSlide, haplinStrat, hapSim, hapRun, snpPower, hapPower

Examples

Calculate the asymptotic power for a triad design

when the minor allele increases the fetal risk by twofold.

Assumes a multiplicative dose-response relationship.
hapPowerAsymp(nall = c(2), n.strata = 1, cases = list(c(mfc=120)),
haplo.freq = ¢(0.1,0.9), RR = c(2,1), RRstar = c(1,1))

Calculate the asymptotic power for the hybrid design when

the minor allele increases the fetal risk by twofold

in the first stratum and no effect is seen in the second

i.e., gene-environment interaction (GxE) effects.
hapPowerAsymp(nall = c(2), n.strata = 2, cases = list(c(mfc=100)),
controls = list(c(mfc=100)), haplo.freq = c(0.1,0.9),

RR = list(c(2,1), c(1,1)), RRstar = c(1,1))

Calculate the asymptotic GxE power assessing maternal- and

parent-of-origin effects at two diallelic loci.

hapPowerAsymp(nall = c(2,2), n.strata = 2, cases = c(mfc=500),

haplo.freq = ¢(0.1,0.2,0.3,0.4),

RRcm = list(c(3,1,1,1), c(1,1,1,1)), RRcf = c¢(1,1,1,1), RRstar = c(1,1,1,1),
RR.mat = list(c(1.5,1,1,1),c(1,1,1,1)), RRstar.mat = c(1,1,1,1))

hapRelEff Relative efficiency comparing different study designs in genetic asso-
ciation analysis with Haplin

Description

Computes the relative efficiency for different study designs in genetic association analysis.

Usage

hapRelEff(nall = 2, cases.comp, controls.comp,
cases.ref, controls.ref, haplo.freq,

RR, RRcm, RRcf, RRstar, RR.mat, RRstar.mat,
xchrom = F, sim.comb.sex = "double"”, BR.girls,
response = "mult”, ...)

https://haplin.bitbucket.io

Arguments

nall

cases.comp

controls.comp

cases.ref

controls.ref

haplo.freq

RR

RRcm

RRcf

RRstar

RR.mat
RRstar.mat

xchrom

sim.comb.sex

BR.girls

response

hapRelEff

A vector of the number of alleles at each locus. By default a diallellic SNP.

A list of the number of case families in the comparison design. Its element is
a vector of the number of families of the specified family design. The possible
family designs, i.e., the possible names of the elements, are "mfc” (full triad),
"mc"” (mother-child dyad), "fc" (father-child dyad) or "c" (a single case child).

A list of the number of control families in the comparison design. Its element is
a vector of the number of families of the specified family design. The possible
family designs are "mfc"” (full triad), "mc"” (mother-child-dyad), "fc" (father-
child dyad), "mf" (mother-father dyad), "c" (a single control child), "m" (a sin-
gle control mother) or "f" (a single control father).

A list of the number of case families in the reference design. The options are the
same as for cases. comp.

A list of the number of control families in the reference design. The options are
the same as for controls. comp.

A list of which its element is a numeric vector of the haplotype frequencies. The
frequencies are normalized and sum to one. The Details section shows how to
implement this argument in agreement with the possible haplotypes.

A list of which its element is a numeric vector of the relative risks. The Details
section shows how to implement this argument in agreement with the possible
haplotypes.

A numeric vector in list format containing the relative risks associated with the
haplotypes transmitted from the mother. See Details for description of how to
implement this argument in agreement with the possible haplotypes.

A numeric vector in list format containing the relative risks associated with the
haplotypes transmitted from the father. See Details for description of how to
implement this argument in agreement with the possible haplotypes.

A numeric vector in list format. Estimates how much double-dose children
would deviate from the risk expected in a multiplicative dose-response relation-
ship.

The interpretation is similar to RR but for maternal genetic effects.
The interpretation is similar to RRstar but for maternal genetic effects.

Logical. Equals FALSE by default, which indicates analyses of autosomal mark-
ers. If TRUE, analyses are perfomed on X-linked markers.

To be used with xchrom = TRUE. A character value that specifies how to handle
gender differences on the X-chromosome. If "single”, the effect of a (single)
allele in males is equal to the effect of a single allele dose in females, and simi-
larly, if "double”, a single allele in males has the same effect as a double allele
dose in females. Default is "double", which corresponds to X-inactivation.

To be used with xchrom = TRUE. Gives the ratio of baseline risk for females
relative to the baseline risk for males.

The default value "mult" specifies a multiplicative dose-response model. response
= "free" is not yet implemented.

hapRelEff 35

Could include argument reference. By default, the most frequent allele or
haplotype is chosen as reference. The reference haplotype can be set explicitly
by giving a numeric value for the reference argument.

Details

hapRelEff compares two study designs for genetic association analysis, using a term called rel-
ative efficiency. The relative efficiency is defined as the ratio of variances of estimators for the
same parameter, computed from two different designs, or equivalently, the ratio of the sample sizes
needed for each of the two designs to achieve the same level and power. The number of genotyped
individuals within each design is accounted for. The relative efficiency estimated under the null hy-
pothesis, i.e., when all relative risks are equal to one, is known as the Pitman efficiency. To compute
the variance-covariance estimates for each design, hapRelEff calls the function hapCovar, which
calculates the asymptotic variance-covariance matrix by applying the log-linear model combined
with the EM algorithm.

The relative efficiency can be computed for fetal effects, maternal effects and parent-of-origin effect,
as well as effects on X-chromosome markers. Various study designs, i.e., case-parent triads, the
standard case-control design, the hybrid design, and all intermediate designs, can be compared.

Note that the exact number of case families and control families in the reference or comparison
design is irrelevant, as this will be accounted for in the relative efficiency estimate. However, the
ratio of control families to case families within the reference or comparison design must be specified
correctly. See the Examples section.

Specifying haplotype risks:

The number of haplotypes used in the simulations is determined by the nall argument, since
prod(nall) different haplotypes can be made from the specified number of markers, length(nall).
The arguments haplo.freq, RR, RRcm, RRcf, RRstar, RR.mat, and RRstar.mat are all lists, con-
taining vectors of length equal to the number of haplotypes, specifying the relative risk etc. as-
sociated with each haplotype. However, the function will work without using the list format. The
haplotypes are determined by creating all possible haplotypes from the given markers, in a sequence
where the first marker varies mostly quickly. For instance, if nall = c(3, 2), the first marker has 3
alleles, the second has 2, and 6 haplotypes are possible. Taken in order, the haplotypes are 1-1, 2-1,
3-1, 1-2, 2-2, and 3-2. When specifying, say, RR = c(1,2,1,1,1,1) the haplotype 2-1 has a dou-
ble risk compared to the rest. The simplest example would be with nall = c¢(2) and RR = c(1,2),
which would simulate a single SNP where the second allele has a double risk.

Specifying genetic effects:

Standard fetal effects are specified by the arguments RR and RRstar, whereas parent-of-origin ef-
fects are addressed by the arguments RRcm, RRcf and RRstar. Maternal effects are included by the
additional arguments RRmat and RRstar.mat.

Value

hapRelEff returns the relative efficiency estimate, comparing two study designs. The first element
of the list depicts the relative efficiency for each haplotype analyzed separately. If there are more
than two possible haplotypes, the second element displays the overall relative efficiency for all
haplotypes combined.

36 hapRelEff

Author(s)

Miriam Gjerdevik,

with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health

<hakon.gjessing@uib.no>

References

Web Site: https://haplin.bitbucket.io

See Also

haplin, hapPowerAsymp, hapRun, snpPower, hapPower

Examples

Child effects: Calculate the efficiency of the standard case-control design
(with an equal number of case and control children)

relative to the case-parent triad design

under the null hypothesis when the minor allele frequency is @.1.
hapRelEff(nall = c(2), cases.comp = c(c=1),

controls.comp = c(c=1), cases.ref = c(mfc=1),

haplo.freq = ¢(0.1,0.9), RR = c(1,1))

Child effects: Calculate the efficiency of the standard case-control design,
with twice as many cases as controls, relative to the case-parent triad design
under the null hypothesis when the minor allele frequency is 0.2.
hapRelEff(nall = c(2), cases.comp = c(c=2),

controls.comp = c(c=1), cases.ref = c(mfc=1),

haplo.freq = ¢(0.2,0.8), RR = c(1,1))

Child and maternal effects: Calculate the efficiency of the case-mother dyad design
relative to the case-parent triad design

under the null hypothesis when the minor allele frequency is 0.1.

hapRelEff(nall = c(2), cases.comp = c(mc=1), cases.ref = c(mfc=1),

haplo.freq = ¢(0.1,0.9), RR = c(1,1), RR.mat=c(1,1))

PoO effects: Calculate the efficiency of the full hybrid design,
with twice as many control families as case families,

relative to the case-parent triad design

under the null hypothesis when the minor allele frequency is 0.1.
hapRelEff(nall = c(2), cases.comp = c(mfc=1),

controls.comp = c(mfc=2), cases.ref = c(mfc=1),

haplo.freq = ¢(0.1,0.9), RRcm = c(1,1), RRcf = c(1,1))

https://haplin.bitbucket.io

hapRun

37

hapRun

Simulates genetic data and runs Haplin for each simulation

Description

Calculates Haplin results by first simulating genetic data, allowing a various number of family de-
signs, and then running Haplin on the simulations. The simulated data may contain of fetal effects,
maternal effects and/or parent-of-origin effects. The function allows for simulations and calcu-
lations on both autosomal and X-chromosome markers, assuming Hardy-Weinberg equilibrium.
It enables simulation and calculation of gene-environment interaction effects, i.e, the input (rela-
tive risks, number of cases etc.) may vary across strata. hapRun calls haplin, haplinStrat or
haplinSlide to run on the simulated data files.

Usage

hapRun(nall, n.strata= 1, cases, controls, haplo.freq,
RR, RRcm, RRcf, RRstar, RR.mat, RRstar.mat, hapfunc = "haplin”,
gen.missing.cases = NULL, gen.missing.controls = NULL,

n.sim = 1000, xchrom = FALSE, sim.comb.sex = "double”, BR.girls, dire,
ask = TRUE, cpus = 1, slaveQOutfile = "", ...)
Arguments

nall A vector of the number of alleles at each locus.

n.strata The number of strata.

cases A list of the number of case families. Each element is a vector of the number
of families of the specified family design(s) in the corresponding stratum. The
possible family designs, i.e., the possible names of the elements, are "mfc” (full
triad), "mc"” (mother-child dyad), "fc" (father-child dyad) or "c” (a single case
child). See Details for a thorough description.

controls A list of the number of control families. Each element is a vector of the number
of families of the specified family design(s) in the corresponding stratum. The
possible family designs are "mfc” (full triad), "mc” (mother-child-dyad), "fc"
(father-child dyad), "mf" (mother-father dyad), "c"” (a single control child), "m"
(a single control mother) or "f"” (a single control father). See Details for a
thorough description.

haplo.freq A list of which each element is a numeric vector of the haplotype frequencies
in each stratum. The frequencies are normalized and sum to one. The Details
section shows how to implement this argument in agreement with the possible
haplotypes.

RR A list of which each element is a numeric vector of the relative risks in each stra-

tum. The Details section shows how to implement this argument in agreement
with the possible haplotypes.

38

RRcm

RRcf

RRstar

RR.mat

RRstar.mat

hapfunc

hapRun

A list of numeric vectors. Each vector contains the relative risks associated with
the haplotypes transmitted from the mother for this stratum. See Details for
description of how to implement this argument in agreement with the possible
haplotypes.

A list of numeric vectors. Each vector contains the relative risks associated
with the haplotypes transmitted from the father for this stratum. See Details for
description of how to implement this argument in agreement with the possible
haplotypes.

A list of numeric vectors. Estimates how much double-dose children would
deviate from the risk expected in a multiplicative dose-response relationship.
The interpretation is similar to RR when simulating genetic data with maternal
effects.

The interpretation is similar to RRstar when simulating genetic data with ma-
ternal effects.

Defines which haplin function to run, the options being "haplin”, "haplinSlide”
or "haplinStrat”. "haplinSlide” is however only partially implemented.

gen.missing.cases

Generates missing values at random for the case families. Set to NULL by de-
fault, i.e., no missing values generated. See Details for description of how to
implement this argument.

gen.missing.controls

n.sim
xchrom

sim.comb.sex

BR.girls

dire

ask

cpus

slaveQOutfile

Generates missing values at random for the control families. Set to NULL by
default, i.e., no missing values generated. See Details for description of how to
implement this argument.

The number of simulations, i.e., the number of simulated data files.

Logical. Equals FALSE by default, which indicates simulation of autosomal
markers. If TRUE, hapSim simulates X-linked genes.

To be used with xchrom = TRUE. A character value that specifies how to handle
gender differences on the X-chromosome. If "single”, the effect of a (single)
allele in males is equal to the effect of a single allele dose in females, and simi-
larly, if "double”, a single allele in males has the same effect as a double allele
dose in females. Default is "double", which corresponds to X-inactivation.

To be used with xchrom = TRUE. Gives the ratio of baseline risk for females to
the baseline risk for males.

Gives the directory of the simulated data files. Missing by default, which means
that none of the files are saved to files.

Logical. If TRUE, hapSim will ask before overwriting the files in an already
existing directory.

Allows parallel processing of its analyses. The cpus argument should preferably
be set to the number of available CPUs. If set lower, it will save some capacity
for other processes to run. Setting it too high should not cause any serious
problems.

Character. If slaveOutfile ="" (default), output from all running cores will
be printed in the standard R session window. Alternatively, the output can be
saved to a file by specifying the file path and name.

Arguments to be used by haplin, haplinSlide or haplinStrat.

hapRun 39

Details

hapRun applies haplin, haplinSlide or haplinStrat on each data file simulated by hapSim. It
provides simulations on various family designs, i.e., triads, case-control, the hybrid design, and
all intermediate designs. The simulated files may accomodate fetal effects, maternal effects and/or
parent-of-origin effects. hapRun allows simulation of both autosomal and X-chromosome mark-
ers, assuming Hardy-Weinberg equilibrium. It also enables simulation and calculation of gene-
environment interaction effects.

Details on how to implement the arguments listed above are provided by hapSim and the Examples
section below. The stratum specific arguments may be simplified if the number of strata is one, or
if the arguments are equal across all strata.

haplin, haplinStrat and haplinSlide will run with default values unless otherwise specified
by hapRun. For example, if hapfunc = "haplin”, haplin will use response = "free" unless
response = "mult"” is explicitly given as an argument in hapRun. Moreover, triads with miss-
ing data are only included in the haplin analysis if the argument use.missing equals TRUE (default
in hapRun). Please confer https://haplin.bitbucket.io/docu/Haplin_power.pdf for further
details and examples.

For information on the arguments to be passed on to haplin, haplinStrat and haplinSlide,
please consult their help pages.

Note that RR.mat and RRstar.mat and RRcm and RRcf are required for hapSim to simulate maternal
and parent-of-origin effects, respectively. To calculate these effects, however, arguments maternal
= TRUE and/or poo = TRUE must be specified.

gen.missing.cases and gen.missing.controls are flexible arguments. By default, both equal
NULL, which means that no missing data are generated at random. If the arguments are single
numbers, missing data are generated at random with this proportion for all cases and/or controls.
If the arguments are vectors of length equal to the number of loci, missing data are generated with
the corresponding proportion for each locus. The arguments can also be matrices with the number
of rows equal to the number of loci and three columns. Each row corresponds to a locus, and the
columns correspond to mothers, fathers and children, respectively.

Value

If hapfunc = "haplin”, hapRun returns a dataframe consisting of results from running haplin on
each simulated file. The first two columns are:

sim.no The name of the directory from which the results are calculated, i.e., the simu-
lation number

row.no The row number within each simulation

haptable gives detailed information of the full dataframe.

If hapfunc = "haplinSlide”, hapRun returns a list of which each element contains the results
from a single run of haplinSlide. Consult suest for a thorough description of the output. Note,
however, that hapfunc = "haplinSlide” is currently only implemented for diallelic markers, and
the reference category is always chosen to be the first haplotype (see hapSim for a description of
the haplotype grid).

If hapfunc = "haplinStrat”, haplinStrat is used to estimate gene-effects in each stratum of the
exposure covariate, and the results from all strata are compared using gxe. hapRun returns a list,
where each element is the result of a single run of gxe.

https://haplin.bitbucket.io/docu/Haplin_power.pdf

40 hapRun

Additionaly, if dire is not missing by default, the simulated files from which the Haplin results are
calculated, are stored in the given directory.

Author(s)

Miriam Gjerdevik,

with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health

<hakon.gjessing@uib.no>

References

Web Site: https://haplin.bitbucket.io

See Also

haplin, haplinSlide, hapSim, haptable, suest, hapPower, hapPowerAsymp

Examples

Not run:

Simulate Haplin results from 100 files using the multiplicative model in haplin.
The files consist of fetal effects at two diallelic markers,

corresponding to haplo.freq = rep(0.25, 4), RR = c(2,1,1,1)

and RRstar = c(1,1,1,1). That is, the first allele has a doubled risk

relative to the rest. The data consists of a combination of

100 case triads and 100 control triads with no missing data.

No environmental factors are considered, i.e. the number of strata is one.
hapRun(nall = c(2,2), n.strata = 1, cases = c(mfc=100), controls = c(mfc=100),
haplo.freq = rep(0.25,4), RR = ¢c(2,1,1,1), RRstar = c(1,1,1,1),

hapfunc = "haplin”, response = "mult”, n.sim = 100, dire = "simfiles"”, ask = FALSE)

Simulate power from 100 files applying haplinStrat.

The files consist of fetal and maternal effects at two diallelic markers.

The data is simulated for 500 case triads and 200 control families in the first stratum,
and 500 case triads and 500 control trids in the second.

The fetal effects vary across strata,

whereas the maternal effects are the same.

One percent of the case triads are missing at random in the second stratum.
hapRun(nall = c(2,2), n.strata = 2, cases = c(mfc=500),

controls = list(c(mfc=200),c(mfc=500)), haplo.freq = rep(0.25,4), maternal = TRUE,
RR = list(c(1.5,1,1,1),c(1,1,1,1)), RRstar = c(1,1,1,1),

RR.mat = ¢(1.5,1,1,1), RRstar.mat = c(1,1,1,1),

gen.missing.cases = list(NULL,0.01), use.missing = TRUE, hapfunc = "haplinStrat”,
n.sim = 100, ask = FALSE)

Simulate Haplin results from 100 files using haplin.
The files consist of fetal effects at one diallelic locus,

https://haplin.bitbucket.io

hapSim 41

corresponding to haplo.freq = rep(0.5,2), RR = c¢(1.5,1) and RRstar = c(1,1).
We have a combination of 100 case triads and

100 control triads with no missing data.

No environmental effects are considered.

hapRun(nall = c(2), n.strata = 1, cases = c(mfc=100), controls = c(mfc=100),
haplo.freq = rep(0.5,2), RR = c(1.5,1), RRstar = c(1,1),

hapfunc = "haplin”, n.sim = 100, dire = "simfiles"”, ask = FALSE)

End(Not run)

hapSim Simulation of genetic data in Haplin format

Description

Simulates genetic data in Haplin format, consisting of fetal effects, maternal effects and/or parent-
of-origin effects. Allows for simulation of both autosomal and X-linked markers, assuming Hardy-
Weinberg equilibrium. Enables stratified simulations for gene-environment interaction analyses, i.e
the input (relative risks, number of cases etc) may vary across different strata.

Usage

hapSim(nall, n.strata = 1, cases, controls, haplo.freq,

RR, RRcm, RRcf, RRstar, RR.mat, RRstar.mat,

gen.missing.cases = NULL, gen.missing.controls = NULL,

n.sim = 1000, xchrom = F, sim.comb.sex = "double”, BR.girls, dire = "simfiles”,
ask = TRUE, verbose = TRUE, cpus = 1)

Arguments

nall A vector of the number of alleles at each locus.
n.strata The number of strata.

cases A list of the number of case families. Each element is a vector of the number
of families of the specified family design(s) in the corresponding stratum. The
possible family designs, i.e., the possible names of the elements, are "mfc” (full
triad), "mc"” (mother-child dyad), "fc" (father-child dyad) or "c” (a single case
child). See Details for a thorough description.

controls A list of the number of control families. Each element is a vector of the number
of families of the specified family design(s) in the corresponding stratum. The
possible family designs are "mfc"” (full triad), "mc” (mother-child-dyad), "fc"
(father-child dyad), "mf" (mother-father dyad), "c” (a single control child), "m"
(a single control mother) or "f" (a single control father). See Details for a
thorough description.

haplo.freq A list of which each element is a numeric vector of the haplotype frequencies in
each stratum. The frequencies will be normalized so that they sum to one. The
Details section shows how to implement this argument in agreement with the
possible haplotypes.

42

RR

RRcm

RRcf

RRstar

RR.mat

RRstar.mat

hapSim

A list of which each element is a numeric vector of the relative risks in each stra-
tum. The Details section shows how to implement this argument in agreement
with the possible haplotypes.

A list of numeric vectors. Each vector contains the relative risks associated with
the haplotypes transmitted from the mother for this stratum. See Details for
description of how to implement this argument in agreement with the possible
haplotypes.

A list of numeric vectors. Each vector contains the relative risks associated
with the haplotypes transmitted from the father for this stratum. See Details for
description of how to implement this argument in agreement with the possible
haplotypes.

A list of numeric vectors. Estimates how much double-dose children would
deviate from the risk expected in a multiplicative dose-response relationship.

The interpretation is similar to RR when simulating genetic data with maternal
effects.

The interpretation is parallel to RRstar when simulating genetic data with ma-
ternal effects.

gen.missing.cases

Generates missing values at random for the case families. Set to NULL by de-
fault, i.e., no missing values generated. See Details for description of how to
implement this argument.

gen.missing.controls

n.sim

xchrom

sim.comb.sex

BR.girls

dire

ask

verbose

cpus

Generates missing values at random for the control families. Set to NULL by
default, i.e., no missing values generated. See Details for description of how to
implement this argument.

The number of simulations, i.e., the number of simulated data files.

Logical. Equals FALSE by default, which indicates simulation of autosomal
markers. If TRUE, hapSim simulates X-linked genes.

To be used with xchrom = TRUE. A character value which specifies how to handle
gender differences on the X-chromosome. If "single”, the effect of a (single)
allele in males is equal to the effect of a single allele dose in females, and simi-
larly, if "double”, a single allele in males has the same effect as a double allele
dose in females. Default is "double”, which corresponds to X-inactivation.

To be used with xchrom = TRUE. Gives the ratio of baseline risk for females to
the baseline risk for males.

Gives the directory of the simulated data files.

Logical. If TRUE, hapSim will ask before overwriting the files in an already
existing directory.

Logical. Default is TRUE, which means that the file name is displayed for each
iteration. Works only when cpus = 1.

Allows simulations to be performed in parallel. The cpus argument should
preferably be set to the number of available cores. If set lower, it will save
some capacity for other processes to run. Setting it too high should not cause
any serious problems.

hapSim 43

Details

hapSim simulates allele values for case and control families at multiple markers (typically in LD)
simultaneously. The number of markers/SNPs involved will typically be in the range 1 to 6. Data
are simulated to produce relative risks of disease as specified by the user input. Simulations can be
performed separately over a number of strata so as to simulate gene-environment interactions.

Specifying haplotype risks:

The number of haplotypes used in the simulations is determined by the nall argument, since
prod(nall) different haplotypes can be made from the specified number of markers, length(nall).
The arguments haplo. freq, RR, RRcm, RRcf, RRstar, RR.mat, and RRstar.mat are all lists where
each element represents a stratum. Within each stratum, the arguments are vectors of length equal
to the number of haplotypes, specifying the relative risk etc. associated with each haplotype. The
stratum specific arguments may be simplified if the number of strata is one, or if the arguments are
equal across all strata.

The haplotypes are determined by creating all possible haplotypes from the given markers, in a
sequence where the first marker varies mostly quickly. For instance, if nall = c(3,2), the first
marker has 3 alleles, the second has 2, and 6 haplotypes are possible. Taken in order, the haplotypes
are 1-1, 2-1, 3-1, 1-2, 2-2, and 3-2. When specifying, say, RR=c(1,2,1,1,1,1) the haplotype
2-1 has a double risk compared to the rest. With, for instance, two strata, the specification RR =
list(c(1,2,1,1,1,1), c(1,1,1,1,1,1)) would mean that the risk associated with 2-1 is ele-
vated only in the first stratum, not the second.

The simplest example would be with nall = c(2) and RR = c¢(1, 2), which would simulate a single
SNP where the second allele has a double risk.

Output file format:

The format of the simulated files is relatively flexible and allows multi-allelic markers and various
designs. If both case and control families are present, the simulated files contain a leading column
of the case/control status (1/0). If xchrom=TRUE, the neighboring column to the left of the genetic
data contains the sex information (1 = male, 2 = female). Each line represents genotypes for a case
or control triad.

There are six columns for each locus, two for the mother (M), two for the father (F) and two for
the child (C). The columns are placed in the following sequence: M11 M12 F11 F12 C11 C12 M21
M22 F21 F22 C21 C22... etc, where the first number indicates marker, and the second number
indicates the first or second allele at this locus. Columns are separated by a single white space, and
missing data are coded as NA.

Intermediate designs, for instance mother-child dyads, are represented as full triads with columns
of absent family members set to missing. In the case of a pure case-control design, however, each
line represents a single individual, and there are no columns representing mothers and fathers.

There are no row or column names in the files.

Some examples are given below. See https://haplin.bitbucket.io/docu/haplin_data_format.
html for a thorough description of the Haplin format. Note that this description separates the two
alleles for an individual within a locus by a semi-colon, such as 1;2. This is, however, not necessary.
Confer the document https://haplin.bitbucket.io/docu/Haplin_power.pdf for details and
examples on how to perform the simulations.

gen.missing.cases and gen.missing.controls are flexible arguments. By default, both equal
NULL, which means that no missing data are generated at random. If the arguments are single

https://haplin.bitbucket.io/docu/haplin_data_format.html
https://haplin.bitbucket.io/docu/haplin_data_format.html
https://haplin.bitbucket.io/docu/Haplin_power.pdf

44 hapSim

numbers, missing data are generated at random with this proportion for all cases and/or controls.
If the arguments are vectors of length equal to the number of loci, missing data are generated with
the corresponding proportion for each locus. The arguments can also be matrices with the number
of rows equal to the number of loci and three columns. Each row corresponds to a locus, and the
columns correspond to mothers, fathers and children, respectively.

Author(s)

Miriam Gjerdevik,

with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health

<hakon.gjessing@uib.no>

References

Web Site: https://haplin.bitbucket.io

See Also

haplin, hapRun, hapPower

Examples

Not run:

Simulate genetic data (100 files) at two diallelic markers, consisting of fetal effects
corresponding to haplo.freq = rep(0.25, 4), RR = ¢(2,1,1,1) and RRstar = c(1,1,1,1),

for the combination of 1000 case triads and 1000 control triads with no missing data.
Only one stratum.

hapSim(nall = c(2,2), n.strata = 1, cases = c(mfc=1000),

controls = c¢c(mfc=1000), haplo.freq = rep(0.25,4),

RR = ¢c(2,1,1,1), RRstar = c(1,1,1,1), n.sim = 100, dire = "simfiles")

Simulate genetic data (100 files) at two diallelic markers,

consisting of fetal and maternal effects corresponding to

haplo.freq = rep(0.25, 4), RR = c(2,1,1,1), RRstar = c(1,1,1,1),

RR.mat = c(2,1,1,1) and RRstar.mat = c(1,1,1,1),

for 1000 case triads and zero control families.

One percent of the case triads are missing at random. One stratum only.
hapSim(nall = c(2,2), n.strata=1, cases = c(mfc=1000),

controls = c(mfc=0), haplo.freq = rep(@.25,4), RR = c(2,1,1,1),

RRstar = ¢(1,1,1,1), RR.mat = c(2,1,1,1), RRstar.mat = c(1,1,1,1),
gen.missing.cases = .01, n.sim = 100, dire = "simfiles")

Simulate genetic data (100 files) at two diallelic markers. In the first stratum,
we have a combination of 500 case triads and 500 control triads with

haplo.freq = rep(0.25, 4), RR = c(2,1,1,1) and RRstar = c(1,1,1,1).

In the second stratum, we have 300 case triads and 500 control triads with

haplo.freq = rep(0.25, 4), RR = ¢(1,1,1,1) and RRstar = c(1,1,1,1).

https://haplin.bitbucket.io

haptable

One percent of the control triads are missing at random in the first stratum.

hapSim(nall = c(2,2), n.strata= 2, cases = list(c(mfc=500),c(mfc=300)),
controls = c(mfc=500),haplo.freq = rep(0.25,4),

RR = list(c(2,1,1,1),c(1,1,1,1)), RRstar = c(1,1,1,1),
gen.missing.controls = 1ist(@.01,NULL), n.sim = 100, dire = "simfiles")

End(Not run)

45

haptable

Create haplin table

Description

Create a comprehensive table of haplin output

Usage
haptable(object)
Arguments
object A haplin object, i.e. the result of running haplin.
Details

haptable extracts the most important information from a haplin object to produce a summary
table. The table can then be saved with, for instance, write.table, making the results easily

accessible to other applications. You can also use output to produce and save the same results.

Value

—- A dataframe is returned, with the following columns: —-

marker
alleles
counts
HWE . pv
Original
After.rem.NA

Name(s) of marker(s) investigated

A listing of the alleles found at each marker

Frequency counts of alleles at each marker

P-value from Hardy-Weinberg equilibrium test at each marker
Number of triads before removal

Number of triads after removal of missing

After.rem.Mend.inc.

Number of triads after removal of Mendelian inconsistencies

After.rem.unused.haplos

pv.overall
haplos
haplofreq

Number of triads after removal of unused (rare) haplotypes
Overall likelihood ratio p-value (test of all genetic effects combined)
Haplotypes (or single-marker alleles) found during estimation

Estimated haplotype frequencies

46

haplofreq. lower

haplofreq. upper

reference
RR.est.
RR.lower
RR.upper
RR.p.value
RRdd.est.
RRdd. lower
RRdd . upper
RRdd.p.value
NOTE1
RRm.est.
RRm. lower
RRm. upper
RRm.p.value
RRmdd.est.
RRmdd. lower
RRmdd. upper
RRmdd.p.value
NOTE?2

RRcm.est.
RRcm. lower
RRcm. upper
RRcm.p.value
RRcf.est.
RRcf. lower
RRcf . upper
RRcf.p.value

RRcm_RRcf . est.
RRcm_RRcf. lower

RRcm_RRcf . upper

haptable

Lower 95% ClI for estimated haplotype frequencies

Upper 95% CI for estimated haplotype frequencies

Reference method. If ref.cat is used, the reference category is labeled "ref"
Estimated single dose relative risk

Lower 95% CI for single dose relative risk

Upper 95% CI for single dose relative risk

P-values for individual single dose effect

Estimated double dose relative risk

Lower 95% CI for double dose relative risk

Upper 95% CI for double dose relative risk

P-values for individual double dose effect

When maternal = TRUE, there will be additional columns:
Estimated single dose relative risk for maternal haplotype

Lower 95% CI for single dose relative risk for maternal haplotype
Upper 95% CI for single dose relative risk for maternal haplotype
P-values for individual single dose effect of maternal haplotype
Estimated double dose relative risk for maternal haplotype

Lower 95% CI for double dose relative risk for maternal haplotype
Upper 95% CI for double dose relative risk for maternal haplotype
P-values for individual double dose effect of maternal haplotype

When poo = TRUE, the RR.est., RR.lower, and RR.upper columns will be re-
placed by the following columns:

Estimated single dose relative risk, when inherited from the mother

Lower 95% CI for single dose relative risk, when inherited from the mother
Upper 95% ClI for single dose relative risk, when inherited from the mother
P-values for individual single dose effects, when inherited from the mother
Estimated single dose relative risk, when inherited from the father

Lower 95% CI for single dose relative risk, when inherited from the father
Upper 95% CI for single dose relative risk, when inherited from the father
P-values for individual single dose effects, when inherited from the father

An estimate of parent-of-origin effect, i.e. the ratio RRcm/RRcf

Lower 95% CI for ratio RRem/RRcf

Upper 95% CI for ratio RRcm/RRcf

RRcm_RRcf.p.value

P-value for parent-of-origin effect RRcm/RRcf at that marker

initParallelRun 47

Note

Further information is found on the web page

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology

Norwegian Institute of Public Health

<hakon.gjessing@uib.no>
References

Web Site: https://haplin.bitbucket.io

See Also
haplin, output
Examples
Not run:
Produce a table containing the most important output from haplin:
res <- haplin("data.dat"”, use.missing = T, maternal = T)

haptable(res)

End(Not run)

initParallelRun Initialization of the Rmpi cluster

Description
This function prepares a cluster using Rmpi package. The initialization is paired with closing of the
cluster using the finishParallelRun function.

Usage

initParallelRun(cpus)

Arguments

cpus Number of cores to use (optional). If given, only that number of CPUs will be
used. By default (if not set), the Rmpi will check how many CPUs are available
in the system and take the maximum number.

https://haplin.bitbucket.io

48 lineByLine

lineByLine Line-by-line modification of files

Description

Modifies a data file line by line, i.e. reads a file line by line, converts each line, then writes to the
modified file. This method is especially useful when modifying large datasets, where the reading of
entire files may be time consuming and require a large amount of memory.

Usage
lineByLine(infile, outfile, linefunc = identity, choose.lines = NULL,
choose.columns = NULL, col.sep = " ", ask = TRUE,
blank.lines.skip = TRUE, verbose = TRUE, ...)
Arguments
infile A character string giving the name and path of the file to be modified.
outfile A character string giving the name of the modified file. The name of the file is
relative to the current working directory, unless the file name contains a definite
path.
linefunc lineByLine modifies each line using 1inefunc. Default is the identity function.

The user may define his or her own line-modifying functions, see Details for a
thorough description.

choose.lines A numeric vector of lines to be selected or dropped from infile. Positive values
refer to lines to be chosen, whereas negative values refer to lines to be skipped.
The vector cannot include both positive and negative values at the same time. If
"NULL" (default), all lines are selected.

choose.columns A numeric vector of columns to be selected (positive values) or skipped (nega-
tive values) from infile. The vector cannot include both positive and negative
values at the same time. By default, all columns are selected without reordering
among the columns. Duplication and reordering among the selected columns
will occur in the modified file corresponding to the order in which the columns
are listed.

col.sep Specifies the separator that splits the columns in infile. By default, col.sep
=" " (space). To split at all types of spaces or blank characters, set col.sep =
"[[:space:]1]" or col.sep="[[:blank:1]".

ask Logical. Default is "TRUE". If set to "FALSE", an already existing outfile will
be overwritten without asking.

blank.lines.skip
Logical. If "TRUE" (default), 1ineByLine ignores blank lines in the input.

verbose Logical. Default is "TRUE", which means that the line number is displayed
for each iteration, in addition to output from linefunc. If choose.columns
contains invalid column numbers, this will also be displayed.

Further arguments to be passed to linefunc.

lineByLine 49

Details

When reading large datafiles, functions such as read. table can use a large amount of memory and
be extremely time consuming. Instead of reading the entire file at once, 1ineByLine reads one line
at a time, modifies the line using 1inefunc, and then writes the line to outfile.

The user may specify his or her own line-converting function. This function must take the argument
X, a character vector representing a single line of the file, split at spaces. However, additional
arguments may be included. If verbose equals "TRUE", output should be displayed. The modified
vector is returned.

The framework of the line-modifying function may look something like this:

lineModify <- function(x){
.Xnew <- x

Define any modifications, for instance recoding missing values in a dataset from NA to @:
.xnew[is.na(.xnew)] <- @

Just to monitor progress, display, for instance, 10 first elements, without newline:
cat(paste(.xnew[1:min(10, length(.xnew))1, collapse = " "))

Return converted vector
return(.xnew)

}
See Haplin:::1lineConvert for an additional example of a line-modifying function.

Value
lineByLine returns the number of lines read, although invisible. The main objective is the modified
file.

Author(s)

Miriam Gjerdevik,

with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health

<hakon.gjessing@uib.no>

References

Web Site: https://haplin.bitbucket.io

See Also

convertPed

https://haplin.bitbucket.io

50 nindiv

Examples

Not run:

Extract the first ten columns from "myfile.txt",

without reordering

lineByLine(infile = "myfile.txt", outfile = "myfile_modified.txt",
choose.columns = c(1:10))

End(Not run)

nfam Count the number of families in the data

Description
This is a help function to count the number of families in an object read in with genDataRead (or
loaded with genDatalLoad). Note: it is assumed that the study design is either ’triad’ or ’cc.triad’.
Usage

nfam(data.in)

Arguments

data.in The data read in by genDataRead.

Value

How many families (integer).

nindiv Count the number of individuals in the data

Description
This is a help function to count the number of individuals in an object read in with genDataRead
(or loaded with genDatalLoad).

Usage

nindiv(data.in, design = "triad")

nsnps 51

Arguments
data.in The data read in by genDataRead.
design The design used in the study - choose from:
* triad (default) - data includes genotypes of mother, father and child;
¢ cc - classical case-control;
* cc.triad - hybrid design: triads with cases and controls
Value

How many individuals (integer).

nsnps Count the number of markers in the data

Description

This is a help function to count the number of markers in an object read in with genDataRead (or
loaded with genDatal.oad).

Usage
nsnps(data.in, design = "triad”)
Arguments
data.in The data read in by genDataRead.
design The design used in the study - choose from:
* triad (default) - data includes genotypes of mother, father and child;
¢ cc - classical case-control;
* cc.triad - hybrid design: triads with cases and controls
Value

How many markers (integer).

52 output

output Save files with summary, table, and plot from a haplin object.

Description
Create summary tables and figure from a haplin object. Save results as separate files in a specified
directory.

Usage

output(object, dirname, ask = T)

Arguments
object A haplin object, i.e. the result of running haplin.
dirname Text string, for instance "c:/work/haplinresults”. Name of directory where re-
sults should be saved. Default is to save results in the current working directory.
ask Logical. If TRUE (default), you will be asked before overwriting any files with
the same name. If FALSE, output will overwrite without warning.
Details

After having run haplin and saved the result (in the R workspace), the output function will extract
summary results, a summary table, and a plot of the results and save them to the specified direc-
tory. The filenames will be haplin_summary.txt, haplin_table.txt and haplin_plot.jpg, respectively.
output simply uses the available functions summary, haptable, and plot to produce the files, but
is a quick way of saving all the relevant results.

Note

Further information is found on the web page.

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

https://haplin.bitbucket.io

plot.haplin

See Also

haplin

Examples

Not run:

53

Run haplin and save results in separate files

in the c:\work\haplinresults directory:

res <- haplin("data.dat”, use.missing = T, maternal = T)
output(res, dirname = "c:/work/haplinresults”)

End(Not run)

plot.haplin

Plot a haplin object

Description

Plot a haplin object and (optionally) produce picture files

Usage

S3 method for class 'haplin'
plot(x, reference, separate.plots = F, filename,

filetype = "png", use.dd, ...)
Arguments
X A haplin object, i.e. the result of running haplin. This is the only required
argument.
reference Same as reference argument in haplin. Note that when plotting, you can

separate.plots

filename

filetype
use.dd

only choose "reciprocal”, "population” or "ref.cat”. You cannot use a
numeric value to change the reference category, to do that haplin must be run
over again. (See the reference argument of haplin.)

Logical. If you estimate effects of both fetal and maternal genes you can de-
cide whether or not to plot them in the same plot. The default is the same plot
(TRUE), the alternative (FALSE) means in separate plots. If you choose sepa-
rate plots you may have to set the graphics window to "recording" to make sure
you can scroll back to the first plot.

If you want a file containing the plot to be produced, give a character string for
the filename.

The default filetype is "png", alternatively you can choose " jpeg".

Numeric vector indicating which double dose estimates should be plotted. For
instance, if set to c¢(1,3) only the first and third haplotypes will be drawn with
double dose estimates. This is useful if some haplotypes are rare and you want
to exclude the uncertain estimates from the plot.

Further arguments to be passed on to the plot function

54 plot.haplinSlide

Note

Further information is found on the web page.

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology

Norwegian Institute of Public Health

<hakon.gjessing@uib.no>
References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

See Also
haplin
Examples
Not run:
Produce separate plots for child and mother, dump plots to files:

res <- haplin("data.dat”, use.missing = T, maternal = T)
plot(res, separate.plots = T, filename = "Haplinres.png")

End(Not run)

plot.haplinSlide Plotter function for haplinSlide.

Description

This will plot any haplinSlide object in one figure.

Usage

S3 method for class 'haplinSlide'
plot(

X,

filename,

title,

windows,

https://haplin.bitbucket.io

plot.haplinSlide

55

plot.signif.only = FALSE,
signif.thresh = 0.05,

y.lim,
x.title,
y.title,
file.width,
file.height,

Arguments

X

filename

title

windows

The haplinSlide object (NB: only the output produced by running haplinSlide
with the table.output argument set to TRUE!)

If the plot should be saved to the disk, give the name of the output file including
the file extension.

If the user wishes to override the default title of the plot, give it here.

Numerical vector. If given, this will only plot the chosen windows.

plot.signif.only

signif.thresh

y.lim
x.title
y.title
file.width
file.height

Details

Logical: whether to filter out the "non-significant" markers from the plot. De-
fault: FALSE, i.e., plot everything.

The threshold defining the significant p-values: if plot.signif.only == TRUE,
then only the markers with relative risk p-values lower than the threshold will
be kept for plotting. Default: 0.05.

Vector with two numbers setting the Y limits of the plotted graph.
Title for the X axis (default: "marker").

Title for the Y axis (default: "RR (log scale)").

Width (in inches) for the output plot, if a filename was given.
Height (in inches) for the output plot, if a filename was given.

other arguments (ignored).

The haplinSlide object is a list of haplin results - by default in haptable form. This is used to
plot the relative risk estimates for all the markers in one plot, to enable easy comparison. NB: those
estimates that have infinite confidence interval will not be plotted.

Value

ggplot object.

56

plot.haplinStrat

plot.haplinStrat

Plotter function for haplinStrat results.

Description

This will automatically plot all haplinStrat results on one figure.

Usage

S3 method for class 'haplinStrat'

plot(
X,
filename,
title,
windows,

plot.signif.only = FALSE,
signif.thresh = 0.05,

y.lim,
x.title,
y.title,
file.width,

file.height,

Arguments

X

filename

title

windows

The haplinSlide object (NB: only the output produced by running haplinSlide
with the table.output argument set to TRUE!)

If the plot should be saved to the disk, give the name of the output file including
the file extension.

If the user wishes to override the default title of the plot, give it here.

Numerical vector. If given, this will only plot the chosen windows.

plot.signif.only

signif.thresh

y.lim
x.title
y.title
file.width
file.height

Logical: whether to filter out the "non-significant" markers from the plot. De-
fault: FALSE, i.e., plot everything.

The threshold defining the significant p-values: if plot.signif.only == TRUE,
then only the markers with relative risk p-values lower than the threshold will
be kept for plotting. Default: 0.05.

Vector with two numbers setting the Y limits of the plotted graph.
Title for the X axis (default: "marker").

Title for the Y axis (default: "RR (log scale)").

Width (in inches) for the output plot, if a filename was given.
Height (in inches) for the output plot, if a filename was given.

other arguments (ignored).

plot.haptable 57

Details

This function uses the same style as plot.haplinSlide and plots all of the haplinStrat results
on one figure, for easy comparison. NB: those estimates that have infinite confidence interval will
not be plotted.

Value

ggplot object.

plot.haptable Plot a haptable object

Description
Plot a haptable object, which is the result of running haptable on a haplin result, and (optionally)
produce picture files.

Usage

S3 method for class 'haptable'
plot(x, separate.plots = F, filename,

filetype = "png", use.dd, verbose =T, ...)
Arguments
X A haptable object, i.e. the result of running haptable on a result from haplin.

This is the only required argument.

separate.plots Logical. If you estimate effects of both fetal and maternal genes you can de-
cide whether or not to plot them in the same plot. The default is the same plot
(TRUE), the alternative (FALSE) means in separate plots. If you choose sepa-
rate plots you may have to set the graphics window to "recording" to make sure
you can scroll back to the first plot.

filename If you want a file containing the plot to be produced, give a character string for
the filename.

filetype The default filetype is "png", alternatively you can choose " jpeg”.

use.dd Numeric vector indicating which double dose estimates should be plotted. For

instance, if set to c¢(1,3) only the first and third haplotypes will be drawn with
double dose estimates. This is useful if some haplotypes are rare and you want
to exclude the uncertain estimates from the plot.

verbose Turns on or off some minor comments when plotting

Further arguments to be passed on to the plot function

Note

Further information is found on the web page.

58 plotPValues

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

See Also

haplin

Examples

Not run:

Directly plotting the haplin result. Produce separate plots for child and mother,
dump plots to files:

res <- haplin("data.dat”, use.missing = T, maternal = T)

plot(res, separate.plots = T, filename = "Haplinres.png")

Create haptable from the haplin result and plot the results in the table:
res <- haplin("data.dat”, use.missing = T, maternal = T)

tab <- haptable(res)

plot(tab)

Create haptables for the 10 first markers of a data file using haplinSlide.

Create plots for each result:

res <- haplinSlide("data.dat”, markers = 1:10, use.missing = T, maternal = T, table.output =T)
lapply(res, plot)

End(Not run)

plotPValues Plotting p-values for relative risks

Description

This function plots p-values for the relative risks calculated by haplinSlide.

https://haplin.bitbucket.io

plotPValues

Usage

plotPValues(
object,
windows,

59

which.p.val = "overall”,
plot.signif.only = FALSE,
signif.thresh = 0.05,

title,
filename

Arguments

object
windows

which.p.val

The haplinSlide results: list of haptable objects.
Numerical vector; if given, the plot will be restricted to only those.

Character string specifying which p-values to choose for plotting: "overall” (de-
fault), "child", "child.double", "maternal", "maternal.double”, "paternal". The
last three options can be chosen only if haplinSlide was run with maternal =
TRUE or poo = TRUE.

plot.signif.only

signif.thresh

title

filename

Details

Logical: whether to filter out the "non-significant" markers from the plot. De-
fault: FALSE, i.e., plot everything.

The threshold defining the significant p-values: if plot.signif.only == TRUE,
then only the markers with relative risk p-values lower than the threshold will
be kept for plotting. Default: 0.05.

Optional character string for the title of the figure.

If the plot should be saved to the disk, give the name of the output file including
the file extension.

The output of haplinSlide can be very lengthy and not suitable for an overall plot of all the relative
risks (RR) on one figure. Therefore, it’s advised to first plot only the p-values for each window (user
can choose which p-values to plot - see parameter which.p.val), and only then plot the RRs for
specific windows, for which the p-values are significant.

Value

Invisibly returns the table with only the plotted p-values.

60

pQQ

pQQ

QQ-plot with confidence intervals for a vector of p-values

Description

Produces a QQ-plot of p-values. The x-axis is -log10 of the expected p-values (under a null hy-
pothesis of no effects), the y-axis is -log10 values of the actual p-values. A (pointwise) confidence
interval can be drawn, and names of snps/genes corresponding to the most significant ones can be

added.
Usage

pQQ(pvals, nlabs = 6, conf = 0.95, lim, mark = 0.05, ...)
Arguments

pvals A vector of p-values.

nlabs The number of (most significant) p-values to be labeled using names(pvals).

conf The confidence level of the pointwise confidence band. The default is 0.95.
The confidence intervals are computed under the assumption of the p-values
being drawn independently from a uniform [0,1] distribution. To leave out the
confidence interval, set this to FALSE.

lim A vector of length 2 giving the plot limits (on a log10 scal, for instance c(0,4)).
Plot limits are computed automatically. However, if other plot limits are desire-
able, they can be set using this argument.

mark By default, the 0.05 significance level is marked by lines. Can be changed to a
different value, or set to FALSE.

Other arguments passed on to the plotting function.
Details

The pvals argument should be a vector of p-values to be plotted. If the vector has names corre-
sponding to marker (snp) names, the plot will label some of the most significant points with the

marker names.

Value

No value is returned.

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

print.haplin 61

References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

print.haplin Print a haplin object

Description

Print basic information about a haplin object

Usage
S3 method for class 'haplin'
print(x, ...)
Arguments
X A haplin object, i.e. the result of running haplin.
Other arguments, passed on to print.
Note

Further information is found on the web page

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology

Norwegian Institute of Public Health

<hakon.gjessing@uib.no>
References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

See Also

haplin

https://haplin.bitbucket.io
https://haplin.bitbucket.io

62 print.summary.haplin

print.summary.haplin Print the summary of a haplin object

Description

Print the result of applying summary to a haplin object

Usage
S3 method for class 'summary.haplin'
print(x, digits, ...)
Arguments
X A haplin object, i.e. the result of running haplin.
digits The number of digits to be used in the printout. Defaults to 3.

Other arguments (ignored).

Note

Further information is found on the web page

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

See Also

haplin

https://haplin.bitbucket.io

rbindFiles 63

Examples

Not run:

Standard summary:

res <- haplin("data.dat”, use.missing = T, maternal = T)
summary(res)

Increase number of digits in printout

print(summary(res), digits = 8)

End(Not run)

rbindFiles Combine a sequence of files by rows

Description

Takes a sequence of files and combines them by rows, without reading the full files into memory.
This is especially useful when dealing with large datasets, where the reading of entire files may be
time consuming and require a large amount of memory.

Usage

rbindFiles(infiles, outfile, col.sep, header = FALSE, ask = TRUE,
verbose = FALSE, add.file.number = FALSE, blank.lines.skip = FALSE)

Arguments

infiles A character vector of names (and paths) of the files to combine.

outfile A character string giving the name of the modified file. The name of the file is
relative to the current working directory, unless the file name contains a definite
path.

col.sep Specifies the separator used to split the columns in the files. To split at all
types of spaces or blank characters, set col.sep = "[[:space:]]" or col.sep
="[[:blank:J]".

header A logical variable which indicates if the first line in each file contains the names
of the variables. If "TRUE", outfile will display this header in its first row,
assuming the headers for each file are identical. Equals FALSE by default, i.e.
no headers assumed.

ask Logical. Default is "TRUE". If set to "FALSE", an already existing outfile will
be overwritten without asking.

verbose Logical. Default is "TRUE", which means that the line number is displayed for

each iteration, i.e. each combined line.

64 rbindFiles

add.file.number
A logical variable which equals "FALSE" by deafult. If "TRUE", an extra first
column will be added to the outfile, consisting of the file numbers for each line.
blank.lines.skip
Logical. If "TRUE" (default), 1ineByLine ignores blank lines in the input.

Details

The function rbind combines R objects by rows. However, reading large data files may require a
large amount of memory and be extremely time consuming. rbindFiles avoids reading the full
files into memory. It reads the files line by line, possibly modifies each line, then writes to outfile.
If however, header, verbose, add.file.number and blank.lines.skip are all set to "FALSE"
(their default values), the files are appended directly, thus evading line-by-line modifications. In the
case where infiles contains only one file and no output or modifications are requested (verbose,
add.file.number and blank.lines.skip equal "FALSE"), an identical copy of this file is made.

Value

There is no useful output; the objective of rbindFiles is to produce outfile.

Note

Combining the files by reading each file line by line is less time efficient than appending the files
directly. For this reason, if header = FALSE, changing the values of the logical variables verbose,
add.file.number and blank.lines.skip from "FALSE" to "TRUE" should not be done unless
absolutely necessary.

Author(s)

Miriam Gjerdevik,

with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Web Site: https://haplin.bitbucket.io

See Also

chindFiles, lineByLine
Examples
Not run:

Combines the three infiles, by rows
rbindFiles(file.names = c("myfilel.txt"”, "myfile2.txt", "myfile3.txt"),

https://haplin.bitbucket.io

showGen 65

outfile = "myfile_combined_by_rows.txt"”, col.sep = " ", header = TRUE, verbose = TRUE)

End(Not run)

showGen Display chosen genotypes

Description

This is a help function to extract genotypes from an object read in with genDataRead (or loaded
with genDatal_oad).

Usage
showGen(data.in, design = "triad”, n = 5, from, to, sex, markers = 1:5)
Arguments
data.in The data read in by genDataRead.
design The design used in the study - choose from:
* triad - data includes genotypes of mother, father and child;
e cc - classical case-control;
* cc.triad - hybrid design: triads with cases and controls;
n Number of rows to display or "all" (default: 5).
from From which row to display (optional, default: from the first).
to To which row to display (optional).
sex If the sex column is part of the phenotypic information, the user can choose
based on one of the categories used in this column (optional); NB: this does not
combine with the ’to’ and ’from’ arguments.
markers A vector specifying which markers to display or "all" (default: first 5); NB: the
user can specify the markers by numbers or by their names.
Value

A table with genotypes extracted from ’data.in’.

66 showSNPnames

showPheno Display phenotype part of data

Description
This is a help function to extract phenotypic (and covariate) data from an object read in with gen-
DataRead (or loaded with genDataload).

Usage

showPheno(data.in, n = 5, from, to, sex)

Arguments
data.in The data read in by genDataRead).
n Number of rows to display or "all" (default: 5).
from From which row to display (optional, default: from the first).
to To which row to display (optional).
sex If the sex column is part of the phenotypic information, the user can choose
based on one of the categories used in this column (optional); NB: this does not
combine with the ’to’ and ’from’ arguments.
Value

A table with phenotypic and covariate data (if any) extracted from ’data.in’.

showSNPnames Display marker names

Description
This is a help function to extract marker names from an object generated by genDataRead, genDat-
alLoad, genDataGetPart or genDataPreprocess.

Usage

showSNPnames(data.in, n = 5, from, to)

Arguments
data.in The data as outputted by genDataRead, genDatalLoad, genDataGetPart or gen-
DataPreprocess.
n Number of names to display or "all" (default: 5).
from From which marker to display (optional, default: from the first).

to To which marker to display (optional).

snpPos 67

Value

A vector with marker names, as read in from map.file or generated dummy names.

snpPos Find the column numbers of SNP identifiers/SNP numbers in a ped file

Description

Gives the column numbers of SNP identifiers or SNP numbers in a standard ped file, calculated
from the SNP’s positions in the corresponding map file. The column numbers are sorted in the
same order as snp.select. These positions may be useful when extracting a selection of SNPs
from a ped file.

Usage

snpPos(snp.select, map.file, blank.lines.skip = TRUE)

Arguments
snp.select A character vector of the SNP identifiers (RS codes) or a numeric vector of the
SNP numbers.
map.file A character string giving the name and path of the standard map file to be used.

See Details for a description of the standard map format.

blank.lines.skip
Logical. If "TRUE" (default), snpPos ignores blank lines in map.file.

Details

To extract certain SNPs from a standard ped file, one has to know their positions in the ped file.
This can be obtained from the corresponding map file.

The map file should look something like this:

Chromosome SNP-identifier Base-pair-position

1 RS9629043 554636
1 RS12565286 711153
1 RS12138618 740098

Alternatively, the map file could contain four columns. The column values should then be: Chro-
mosome, SNP-identifier, Genetic-distance, Base-pair-position.
A header must be added to the map file if this does not already exist.

The format of the corresponding ped file should be something like this:

68

1104
1104
1104
1105
1105
1105

1104-1
1104-2
1104-3
1105-1
1105-2
1105-3

1104-2 1104-3

1
1
2
1105-2 1105-3 2
1
2

0 0
0 0

0 0
0 0

O SN
N ST NN N
[N Y o J e gy
WNNSON W
NNV O NN

snpPos

The column values are: Family id, Individual id, Father’s id, Mother’s id, Sex (1 = male, 2 = female,
alternatively: 1 = male, 0 = female), and Case-control status (1 = controls, 2 = cases, alternatively:
0 = controls, 1 = cases).
Column 7 and onwards contain the genotype data, with alleles in separate columns. A “0” is used
to denote missing data.

Value

A vector of the column numbers of the SNP identifiers/SNP numbers in the ped file, sorted in the
same order as given in snp.select.

Note

The function does not check if the map file is formatted correctly or if the map and ped file have the
same number of SNPs. The corresponding positions of the SNPs in the ped file may not be correct
if the ped file has a different format from the given example.

Author(s)

Miriam Gjerdevik,
with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Web Site: https://haplin.bitbucket.io

See Also

convertPed, 1ineByLine

Examples

Not

Find the column numbers of the SNP identifiers "RS9629043" and "RS12565286"

run:

a standard ped file
snpPos(snp.select =

c("RS9629043", "RS12565286"), map.file

"mygwas.map")

in

https://haplin.bitbucket.io

snpPower

End(Not run)

69

snpPower

Power calculations for a single SNP

Description

Calculates power for a single SNP. Allows for power computations of several combinations simul-

taneously.

Usage

snpPower (cases, controls, RR, MAF, alpha = 0.05)

Arguments

cases

controls

RR
MAF
alpha

Details

A list of the number of case families. Each element contains the number of
families of a specified family design. The possible family designs, i.e. the
possible names of the elements, are "mfc” (full triad), "mc” (mother-child dyad),
"fc" (father-child dyad) or "c” (a single case child).

A list of the number of control families. Each element contains the number of
families of a specified family design. The possible family designs are "mfc”
(full triad), "mc” (mother-child-dyad), "fc" (father-child dyad), "mf"” (mother-
father dyad), "c"” (a single control child), "m" (a single control mother) or "f"
(a single control father).

A numeric vector of the relative risks (the effect sizes of interest).
A numeric vector of the minor allele frequencies.

A numeric vector of the Type I Errors. Equals 0.05 by default.

snpPower computes power for a single SNP by counting the number of "real" case alleles, "real"
control alleles and pseudo-control alleles. The pseudo-control alleles are the non-transmitted alle-
les, possibly from both case families and control families. It assumes a multiplicative dose-response
model. snpPower uses the asymptotic normal approximation for the natural logarithm of the odds
ratio for calculating power (the relative risks and odds ratios are used interchangeably due to the
"rare disease assumption").

snpPower allows for power calculations for mixtures of the possible case family designs and control
family designs. The argument cases could, for example, consist of a combination of 1000 full case
triads (family design "mfc") and 500 single case children (family design "c"). It is also feasible to
compute power for several combinations of the input variables simultaneously. See Examples for

further details.

70 snpPower

Value

snpPower returns a data frame containing the combinations of input variables and the corresponding
power calculations.

Author(s)

Miriam Gjerdevik,

with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health

<hakon.gjessing@uib.no>

References

Skare O, Jugessur A, Lie RT, Wilcox AJ, Murray JC, Lunde A, Nguyen TT, Gjessing HK. Appli-
cation of a novel hybrid study design to explore gene-environment interactions in orofacial clefts.
Annals of Human Genetics (2012) 76, pp. 221-236.

Web Site: https://haplin.bitbucket.io

See Also

haplin, snpSampleSize, hapRun, hapPower, hapPowerAsymp

Examples

Compute power for a single SNP,
for the combination of 1000 case triads, RR = 1.2, MAF = 0.1 and alpha = 0.05
snpPower (cases = list(mfc = 1000), controls = list(mfc = @), RR = 1.2, MAF = 0.1)

Compute power for a single SNP,

for the combination of 1000 case triads and 500 single case children (altogether),
5000 control triads, RR = 1.1, MAF = 0.1 and alpha = 0.05

snpPower (cases = list(mfc = 1000, c = 500), controls = list(mfc=5000),

RR = 1.1, MAF = 0.1, alpha = 0.05)

Compute power for a single SNP,

for the combination of 500 case triads, 10000 control triads,

relative risk of 1.2 and minor allele frequency of 0.1,

and also for the combination of 1000 case triads, 10000 control triads,
relative risk of 1.1 and minor allele frequency of 0.1

snpPower (cases = list(mfc = c(500, 1000)), controls = list(mfc = 10000),
RR = c(1.2, 1.1), MAF = 0.1)

https://haplin.bitbucket.io

snpSampleSize 71

snpSampleSize Sample size calculations for a single SNP

Description

Sample size calculations for a single SNP. Allows for sample size calculations of several combina-
tions simultaneously.

Usage

snpSampleSize(fam.cases, fam.controls, fraction = 0.5,
RR, MAF, alpha = 0.05, power = 0.80)

Arguments

fam.cases A character vector of the case family design. The possible family designs are
"mfc” (full triad), "mc"” (mother-child dyad), "fc" (father-child dyad) and "c"
(a single case child).

fam.controls A character vector of the control family design. The possible family designs
are "mfc"” (full triad), "mc"” (mother-child-dyad), "fc" (father-child dyad), "mf"
(mother-father dyad), "c” (a single control child), "m"” (a single control mother),
"f" (a single control father) or "no_controls” (no control families).

fraction A numeric vector of the proportion of case families. Equals 0.5 by default, i.e.
there are as many case families as control families. If fam.controls equals
"no_controls”, fraction is automatically set to 1.

RR A numeric vector of the relative risks (the effect sizes of interest).

MAF A numeric vector of the minor allele frequencies.

alpha A numeric vector of the Type I Errors. Equals 0.05 by default.

power A numeric vector of the desired probability of identifying a difference in the

relative risks. Default is 0.80.

Details

snpSampleSize computes the number of case and control families required for a single SNP to at-
tain the desired power. It assumes a multiplicative dose-response model. snpSampleSize calculates
the fraction of case alleles corresponding to the given family designs and then uses the asymptotic
normal approximation for the natural logarithm of the odds ratio for calculating the sample sizes
(the relative risks and odds ratios are used interchangeably due to the "rare disease assumption").

snpSampleSize allows for sample size calculations of several combinations of the input variables
at once. The Examples section provides further details.

Value

snpSampleSize returns a data frame containing the combinations of input variables and the corre-
sponding sample size calculations.

72 suest

Author(s)

Miriam Gjerdevik,

with Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health

<hakon.gjessing@uib.no>

References

Skare O, Jugessur A, Lie RT, Wilcox AJ, Murray JC, Lunde A, Nguyen TT, Gjessing HK. Appli-
cation of a novel hybrid study design to explore gene-environment interactions in orofacial clefts.
Annals of Human Genetics (2012) 76, pp. 221-236.

Web Site: https://haplin.bitbucket.io

See Also

haplin, snpPower

Examples

Compute sample sizes for a single SNP,

when the specified case family design is a full triad, there are no control families,
RR = 1.1, MAF = 0.1, alpha = 0.05 and power = 0.9

snpSampleSize(fam.cases = "mfc”, fam.controls = "no_controls”,

RR = 1.1, MAF = 0.1, alpha = 0.05, power = 0.9)

Compute sample sizes for a single SNP,

for the combination of case triads, control triads, fraction = 0.5, RR = 1.2,

MAF = 0.1, alpha = 0.05 and power = 0.8, and also for the combination of case triads,
control children, fraction = 0.5, RR = 1.2, MAF = 0.1, alpha = 0.05 and power = 0.9
snpSampleSize(fam.cases = "mfc”, fam.controls = c("mfc”, "c"),

RR = 1.2, MAF = 0.1, alpha = 0.05, power = c(0.8, 0.9))

suest Compute a joint p-value for a list of haplin fits (usually from a sliding
window approach), correcting for multiple testing.

Description

The first argument to suest should be a list of haplin estimation results (from the same data file),
usually the output from haplinSlide. suest produces as a result a joint overall p-value based
on aggregating the individual p-values and then correcting for multiple testing. The correction
is achieved by using the principle of "seemingly unrelated" estimation, taking into account the
correlation between the individual estimation results.

https://haplin.bitbucket.io

suest 73

Usage
suest(reslist)
Arguments
reslist A list whose elements are different haplin runs on the same data file, typically
the output of haplinSlide.
Details

haplinSlide runs haplin on a series of overlapping windows of markers from the same data file,
typically within the same gene. Since each run produces a separate overall p-value, suest computes
a joint overall p-value for the gene (or region) that has been scanned. It corrects the overall p-value
for multiple testing, also taking into account the fact that the sequence of estimates produced by
haplinSlide will be dependent, both because they are computed on the same data set and also
since the windows are overlapping (if the window length is larger than 1). If the suest estimation
fails (which doesn’t happen very often), a standard Bonferroni correction is used instead. Important:
haplinSlide must be run with the option table.output = FALSE to provide suest with enough
information.

Value
A list is returned, the most important elements of which are:
pval.obs The overall score p-values from each haplin run

pval.obs.corr The joint p-value, corrected for multiple testing

bonferroni A logical, usually FALSE, which means the suest estimation went well. If
TRUE, it means that the suest estimation failed for some reason, and a standard
Bonferroni correction was used instead.

Note

Further information is found on the web page.

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

https://haplin.bitbucket.io

74 summary.haplin

See Also

haplin, haplinSlide

Examples
Not run:
(Almost) all standard haplin runs can be done with haplinSlide.
Below is an illustration. See the haplin help page for more
examples.
#
Analyzing the effect of fetal genes, including triads with missing data,
using a multiplicative response model. When winlength = 1, separate
markers are used. To make longer windows, winlength can be increased
correspondingly:
result.1 <- haplinSlide("”C:/work/data.dat”, use.missing = T, response = "mult”,
reference = "ref.cat”, winlength = 1, table.output = F)

Provide summary of separate results:

lapply(result.1, summary)

Plot results:

par(ask = T)

lapply(result.1, plot)

Compute an overall p-value for the scan, corrected for multiple testing
and dependencies between windows:

suest(result.1)

End(Not run)

summary.haplin Summary of a haplin object

Description

Provides detailed information about estimation results from a haplin object.

Usage
S3 method for class 'haplin'
summary(object, reference, ...)
Arguments
object A haplin object, i.e. the result of running haplin.
reference Same as reference argument in haplin. Note that when producing the sum-

mary, you can only choose "reciprocal”, "population” or "ref.cat”. You
cannot use a numeric value to change the reference category, to do that haplin
must be run over again. (See the reference argument of haplin.)

Other arguments (ignored).

toDataFrame 75

Note

Further information is found on the web page

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

See Also

haplin

Examples

Not run:
Produce separate plots for child and mother, dump plots to files:

res <- haplin("data.dat”, use.missing = T, maternal = T)
summary(res)

End(Not run)

toDataFrame Stack dataframes from haplinSlide into a single dataframe

Description

When haplinSlide is run with the option table.output = T, the result is a list of haptables, i.e.
tables with summary haplin results for each window haplinSlide is run on. toDataFrame stacks
the separate dataframes into one large dataframe containing all results.

Usage

toDataFrame(x, reduce = F)

https://haplin.bitbucket.io

76 toDataFrame

Arguments
X The output from haplinSlide run with option table.output = TRUE.
reduce Reduce output to one line per marker

Details

When haplinSlide is run with winlength =1 on SNP markers, each table in the output has only
two rows, and can be condensed to a single row. By setting the argument reduce to TRUE,
toDataFrame reduces each table to one line and returns a dataframe with one line for each SNP.
In more general situations, with multi-allelic markers or, more commonly, winlength set to 2 or
more, each output table will typically have more than two rows and cannot be reduced, so reduce
should be set to FALSE.

Value

The output is a dataframe. First column contains the marker names. Second column are row num-
bers, counted within each output table. The remaining columns are identical to the individual output
columns, which are described in more detail in the help file for haptable.

Author(s)

Hakon K. Gjessing

Professor of Biostatistics

Division of Epidemiology
Norwegian Institute of Public Health
<hakon.gjessing@uib.no>

References

Gjessing HK and Lie RT. Case-parent triads: Estimating single- and double-dose effects of fetal
and maternal disease gene haplotypes. Annals of Human Genetics (2006) 70, pp. 382-396.

Web Site: https://haplin.bitbucket.io

https://haplin.bitbucket.io

Index

cbind, 3
cbindFiles, 3, 64
convertPed, 49, 68

data.frame, 10

ff, 6-8, 10, 12—-15
finishParallelRun, 4,47

genDataGetPart, 5, 11-15, 66

genDataload, 7, 8, 10, 20, 21, 24, 26, 50, 51
65, 66

genDataPreprocess, 7, 18, 20, 21, 24, 26, 66

genDataRead, 5, 8,9, 12-15, 20, 21, 50, 51,
65, 66

getChildren, 11

getDyads, 12

getFathers, 13

getFullTriads, 14

getMothers, 15

ggplot, 55, 57

gxe, 16, 27, 39

haplin, 17, 18, 24-29, 31, 33, 3640, 44, 47,
53-55,58,61, 62,70,72,74, 75

haplinSlide, 4, 17, 21,23, 27-29, 31, 33,
37-40, 55, 56, 58, 59, 72-74

haplinStrat, 17, 26, 28, 31, 33, 37-39, 57

hapPower, 28, 32, 33, 36, 40, 44, 70

hapPowerAsymp, 29, 30, 36, 40, 70

hapRelEff, 33

hapRun, 28, 29, 32, 33, 36, 37, 44, 70

hapSim, 29, 33, 39, 40, 41

haptable, 21, 25, 27, 39, 40, 45, 55, 59, 76

initParallelRun, 4, 47
lineByLine, 4, 48, 64, 68

nfam, 50
nindiv, 50

nsnps, 51
output, 47, 52

pedToHaplin, 21/
plot.haplin, 21, 25, 27,53
plot.haplinSlide, 54, 57
plot.haplinStrat, 56
plot.haptable, 57
plotPValues, 58

pQQ, 60

print.haplin, 61
print.summary.haplin, 62

rbind, 64
rbindFiles, 4, 63
read. table, 49

showGen, 65

showPheno, 66
showSNPnames, 66

snpPos, 67
snpPower, 29, 33, 36, 69, 72
snpSampleSize, 29, 70, 71
suest, 39, 40, 72
summary.haplin, 21, 25, 27,74

toDataFrame, 25, 27,75

	cbindFiles
	finishParallelRun
	genDataGetPart
	genDataLoad
	genDataPreprocess
	genDataRead
	getChildren
	getDyads
	getFathers
	getFullTriads
	getMothers
	gxe
	haplin
	haplinSlide
	haplinStrat
	hapPower
	hapPowerAsymp
	hapRelEff
	hapRun
	hapSim
	haptable
	initParallelRun
	lineByLine
	nfam
	nindiv
	nsnps
	output
	plot.haplin
	plot.haplinSlide
	plot.haplinStrat
	plot.haptable
	plotPValues
	pQQ
	print.haplin
	print.summary.haplin
	rbindFiles
	showGen
	showPheno
	showSNPnames
	snpPos
	snpPower
	snpSampleSize
	suest
	summary.haplin
	toDataFrame
	Index

