Package 'HDCD'

January 20, 2025

Type Package

Title High-Dimensional Changepoint Detection

Version 1.1

Date 2024-06-02

Maintainer Per August Jarval Moen <pamoen@math.uio.no>

Description Efficient implementations of the following multiple changepoint detection algorithms: Efficient Sparsity Adaptive Change-point estimator by Moen, Glad and Tveten (2023) <doi:10.48550/arXiv.2306.04702>, Informative Sparse Projection for Estimating Changepoints by Wang and Samworth (2017) <doi:10.1111/rssb.12243>, and the method of Pilliat et al (2023) <doi:10.1214/23-EJS2126>.

License GPL-3

Encoding UTF-8

RoxygenNote 7.2.3

Imports mclust, Rdpack

RdMacros Rdpack

NeedsCompilation yes

Author Per August Jarval Moen [cre, aut] (<https://orcid.org/0009-0003-9990-8341>)

Repository CRAN

Date/Publication 2024-06-02 23:20:26 UTC

Contents

ARI																									2
CUSUM																									3
ESAC																									4
ESAC_calibrate																									6
ESAC_test	•	•		•			•		•	•		•	•	•		•	•	•	•	•					8
ESAC_test_calibrate	•	•		•			•		•	•		•	•	•		•	•	•	•	•					10
hausdorff																									12

Inspect	12
Inspect_calibrate	14
Inspect_test	16
Inspect_test_calibrate	18
Pilliat	19
Pilliat_calibrate	22
Pilliat_test	24
Pilliat_test_calibrate	26
rescale_variance	28
single_CUSUM	29
single_ESAC	30
single_Inspect	31
single_SBS	32
single_SBS_calibrate	34
	36

Index

ARI

ARI

Description

Computes the Adjusted Rand Index (ARI) of a vector of estimated change-points.

Usage

ARI(etas, eta_hats, n)

Arguments

etas	Vector of true change-points
eta_hats	Vector of estimated change-points
n	Sample size

Value

The ARI

```
library(HDCD)
n = 400
true_changepoints = c(50,100)
est_changepoints = c(51,110)
ARI(true_changepoints, est_changepoints,n)
```

Description

R wrapper for C function computing the CUSUM transformation of a matrix over an interval (s, e]. For compatibility with C indexing, the user should subtract 1 from both s and e when supplying the arguments to the function. If start and stop are not supplied, the CUSUM is computed over the full data, so (s, e] = (0, n]. In this case, CUSUM returns the same result as cusum. transform in the package InspectChangepoint (Wang and Samworth 2020).

Usage

CUSUM(X, start = NULL, stop = NULL)

Arguments

Х	Matrix of observations, where each row contains a time series
start	Starting point of interval over which the CUSUM should be computed, sub- tracted by one
stop	Ending point of interval over which the CUSUM should be computed, subtracted by one

Value

A matrix of CUSUM values. The (i, j)-th element corresponds to the CUSUM transformation of the *i*-th row of X, computed over the interval (start + 1, end + 1] and evaluated at position start+1+j, i.e. $\sqrt{\frac{e-v}{(e-s)(v-s)}} \sum_{t=s+1}^{v} X_{i,t} - \sqrt{\frac{v-s}{(e-s)(e-v)}} \sum_{t=v+1}^{e} X_{i,t}$, where s = (start+1), e = (stop+1) and v = start+1+j.

References

Wang T, Samworth R (2020). *InspectChangepoint: High-Dimensional Changepoint Estimation via* Sparse Projection. R package version 1.1, https://CRAN.R-project.org/package=InspectChangepoint.

```
n = 10
p = 10
set.seed(101)
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# CUSUM over the full data (s,e] = (0,n]
X_cusum = CUSUM(X)
# CUSUM over (s,e] = (3,9]:
s = 3
e = 9
X_cusum = CUSUM(X, start = s-1, stop = e-1)
```

ESAC

Description

R wrapper for C function implementing the full ESAC algorithm (see Moen et al. 2023).

Usage

```
ESAC(
 Χ,
  threshold_d = 1.5,
  threshold_s = 1,
  alpha = 1.5,
 K = 5,
  debug = FALSE,
  empirical = FALSE,
  tol = 0.001,
 N = 1000,
  thresholds = NULL,
  thresholds_test = NULL,
  threshold_d_test = threshold_d,
  threshold_s_test = threshold_s,
  fast = FALSE,
  rescale_variance = TRUE,
  trim = FALSE,
 NOT = TRUE,
 midpoint = FALSE
)
```

Arguments

Х	Matrix of observations, where each row contains a time series
threshold_d	Leading constant for $\lambda(t) \propto r(t)$ for $t = p$. Only relevant when thresholds=NULL
threshold_s	Leading constant for $\lambda(t) \propto r(t)$ for $t \leq \sqrt{p\log n}.$ Only relevant when thresholds=NULL
alpha	Parameter for generating seeded intervals
К	Parameter for generating seeded intervals
debug	If TRUE, diagnostic prints are provided during execution
empirical	If TRUE, detection thresholds are based on Monte Carlo simulation using ${\tt ESAC_calibrate}$
tol	If empirical=TRUE, tol is the false error probability tolerance
Ν	If empirical=TRUE, N is the number of Monte Carlo samples used
thresholds	Vector of manually chosen values of $\lambda(t)$ for $t \in \mathcal{T}$, decreasing in t

ESAC

thresholds_test					
	Vector of manually chosen values of $\gamma(t)$ for $t \in \mathcal{T}$, decreasing in t				
threshold_d_te	st				
	Leading constant for $\gamma(t)\propto r(t)$ for $t=p.$ Only relevant when <code>empirical=FALSE</code> and <code>thresholds_test=NULL</code>				
threshold_s_te	st				
	Leading constant for $\gamma(t) \propto r(t)$ for $t \leq \sqrt{p \log n}$. Only relevant when empirical=FALSE and thresholds_test=NULL				
fast	If TRUE, ESAC only tests for a change-point at the midpoint of each seeded interval				
rescale_variance					
	If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance				
trim	If TRUE, interval trimming is performed				
NOT	If TRUE, ESAC uses Narrowest-Over-Threshold selection of change-points				
midpoint	If TRUE, change-point positions are estimated by the mid-point of the seeded interval in which the penalized score is the largest				

Value

A list containing

changepoints	vector of estimated change-points				
changepointnum	ber				
	number of changepoints				
CUSUMval	the penalized score at the corresponding change-point in changepoints				
coordinates	a matrix of zeros and ones indicating which time series are affected by a change in mean, with each row corresponding to the change-point in changepoints				
scales	vector of estimated noise level for each series				
startpoints	start point of the seeded interval detecting the corresponding change-point in changepoints				
endpoints	end point of the seeded interval detecting the corresponding change-point in changepoints				
thresholds	vector of values of $\lambda(t)$ for $t \in \mathcal{T}$ in decreasing order				
thresholds_test					
	vector of values of $\gamma(t)$ for $t \in \mathcal{T}$ in decreasing order				

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Examples

```
library(HDCD)
n = 50
p = 50
set.seed(100)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1
# Vanilla ESAC:
res = ESAC(X)
res$changepoints
# Manually setting leading constants for \lambda(t) and \gamma(t)
res = ESAC(X,
           threshold_d = 2, threshold_s = 2, #leading constants for \lambda(t)
           threshold_d_test = 2, threshold_s_test = 2 #leading constants for \gamma(t)
)
res$changepoints #estimated change-point locations
# Empirical choice of thresholds:
res = ESAC(X, empirical = TRUE, N = 100, tol = 1/100)
res$changepoints
# Manual empirical choice of thresholds (equivalent to the above)
thresholds_emp = ESAC_calibrate(n,p, N=100, tol=1/100)
res = ESAC(X, thresholds_test = thresholds_emp[[1]])
res$changepoints
```

ESAC_calibrate Generates empirical penalty function $\gamma(t)$ for the ESAC algorithm using Monte Carlo simulation

Description

R wrapper for C function choosing the penalty function $\gamma(t)$ by Monte Carlo simulation, as described in Appendix B in Moen et al. (2023).

Usage

```
ESAC_calibrate(
    n,
    p,
    alpha = 1.5,
    K = 5,
    N = 1000,
    tol = 0.001,
    bonferroni = TRUE,
```

6

ESAC_calibrate

```
fast = FALSE,
rescale_variance = TRUE,
tdf = NULL,
debug = FALSE
)
```

Arguments

n	Number of observations
р	Number time series
alpha	Parameter for generating seeded intervals
К	Parameter for generating seeded intervals
Ν	Number of Monte Carlo samples used
tol	False error probability tolerance
bonferroni	If TRUE, a Bonferroni correction applied and the empirical penalty function $\gamma(t)$ is chosen by simulating leading constants of $r(t)$ through Monte Carlo simulation.
fast	If TRUE, ESAC only tests for a change-point at the midpoint of each seeded interval
rescale_varian	ce
	If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance
tdf	If NULL, samples are drawn from a Gaussian distribution. Otherwise, they are drawn from a t distribution with tdf degrees of freedom.
debug	If TRUE, diagnostic prints are provided during execution

Value

A list containing				
without_partial				
	a vector of values of $\gamma(t)$ for $t \in \mathcal{T}$ decreasing in t			
with_partial	same as without_partial			
as	vector of threshold values $a(t)$ for $t \in \mathcal{T}$ decreasing in t			
nu_as	vector of conditional expectations $\nu_{a(t)}$ of a thresholded Gaussian, for $t \in \mathcal{T}$ decreasing in t			

#'

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Examples

```
library(HDCD)
n = 50
p = 50
set.seed(100)
thresholds_emp = ESAC_calibrate(n,p, N=100, tol=1/100)
set.seed(100)
thresholds_emp_without_bonferroni = ESAC_calibrate(n,p, N=100, tol=1/100,bonferroni=FALSE)
thresholds_emp[[1]] # vector of \gamma(t) for t = p,...,1
thresholds_emp_without_bonferroni[[1]] # vector of \gamma(t) for t = p,...,1
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2
res = ESAC(X, thresholds_test = thresholds_emp[[1]])
res$changepoints
```

ESAC_test

ESAC single change-point test

Description

R wrapper for C function testing for a single change-point using ESAC (see Moen et al. 2023).

Usage

```
ESAC_test(
   X,
   threshold_d = 1.5,
   threshold_s = 1,
   debug = FALSE,
   empirical = FALSE,
   thresholds = NULL,
   fast = FALSE,
   tol = 0.001,
   N = 1000,
   rescale_variance = TRUE
)
```

Arguments

Х	Matrix of observations, where each row contains a time series
threshold_d	Leading constant for $\gamma(t) \propto r(t)$ for $t = p$. Only relevant when empirical=FALSE
	and thresholds=NULL

8

ESAC_test

threshold_s	Leading constant for $\gamma(t) \propto r(t)$ for $t \leq \sqrt{p \log n}$. Only relevant when empirical=FALSE and thresholds=NULL					
debug	If TRUE, diagnostic prints are provided during execution					
empirical	If TRUE, detection thresholds are based on Monte Carlo simulation using ${\tt ESAC_test_calibrate}$					
thresholds	Vector of manually chosen values of $\gamma(t)$ for $t \in \mathcal{T}$, decreasing in t					
fast	If TRUE, ESAC only tests for a change-point at the midpoint of each seeded interval					
tol	If empirical=TRUE, tol is the false error probability tolerance					
Ν	If empirical=TRUE, N is the number of Monte Carlo samples used					
rescale_varian	rescale_variance					
	If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance					

Value

1 if a change-point is detected, 0 otherwise

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

```
library(HDCD)
n = 50
p = 50
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +1
# Vanilla ESAC:
resX = ESAC_test(X)
resX
resY = ESAC_test(Y)
resY
# Manually setting leading constants for \lambda(t) and \gamma(t)
resX = ESAC_test(X,
                 threshold_d = 2, threshold_s = 2, #leading constants for \gamma(t)
)
resX
resY = ESAC_test(Y,
                 threshold_d = 2, threshold_s = 2, #leading constants for \gamma(t)
)
resY
```

```
# Empirical choice of thresholds:
resX = ESAC_test(X, empirical = TRUE, N = 100, tol = 1/100)
resX
resY = ESAC_test(Y, empirical = TRUE, N = 100, tol = 1/100)
resY
# Manual empirical choice of thresholds (equivalent to the above)
thresholds_test_emp = ESAC_test_calibrate(n,p, N=100, tol=1/100,bonferroni=TRUE)
resX = ESAC_test(X, thresholds = thresholds_test_emp[[1]])
resX
resY = ESAC_test(Y, thresholds = thresholds_test_emp[[1]])
resY
```

ESAC_test_calibrate Generates empirical penalty function $\gamma(t)$ for single change-point testing using Monte Carlo simulation

Description

R wrapper for C function choosing the penalty function $\gamma(t)$ by Monte Carlo simulation, as described in Appendix B in Moen et al. (2023), for testing for a single change-point.

Usage

```
ESAC_test_calibrate(
    n,
    p,
    bonferroni = TRUE,
    N = 1000,
    tol = 1/1000,
    fast = FALSE,
    rescale_variance = TRUE,
    debug = FALSE
)
```

Arguments

n	Number of observations
р	Number time series
bonferroni	If TRUE, a Bonferroni correction applied and the empirical penalty function $\gamma(t)$ is chosen by simulating leading constants of $r(t)$ through Monte Carlo simulation.
Ν	Number of Monte Carlo samples used
tol	False positive probability tolerance
fast	If TRUE, ESAC only tests for a change-point at the midpoint of the interval $(0, \ldots, n]$

rescale_variance		
	If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance	
debug	If TRUE, diagnostic prints are provided during execution	

Value

A list containing a vector of values of $\gamma(t)$ for $t \in \mathcal{T}$ decreasing (element #1), a vector of corresponding values of the threshold a(t) (element # 3), a vector of corresponding values of $\nu_{a(t)}$

A list containingwithout_partiala vector of values of $\gamma(t)$ for $t \in \mathcal{T}$ decreasing in twith_partialasvector of threshold values a(t) for $t \in \mathcal{T}$ decreasing in t

nu_as	vector of conditional expectations $ u_{a(t)}$ of a thresholded Gaussian, for $t \in \mathcal{T}$
	decreasing in t

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

```
library(HDCD)
n = 50
p = 50
set.seed(100)
thresholds_emp = ESAC_test_calibrate(n,p, bonferroni=TRUE,N=100, tol=1/100)
set.seed(100)
thresholds_emp_without_bonferroni = ESAC_test_calibrate(n,p, bonferroni=FALSE,N=100, tol=1/100)
thresholds_emp[[1]] # vector of gamma(t) for t = p,...,1
thresholds_emp_without_bonferroni[[1]] # vector of \gamma(t) for t = p,...,1
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +2
resX = ESAC_test(X, thresholds = thresholds_emp[[1]])
resX
resY = ESAC_test(Y, thresholds = thresholds_emp[[1]])
resY
```

hausdorff

Description

Computes the Hausdorff distance between two sets represented as vectors v1 and v2. If v1 == NULL and v2 != NULL, then the largest distance between an element of v1 and the set $\{1, n\}$ is returned, and vice versa. If both vectors are NULL, \emptyset is returned.

Usage

hausdorff(v1, v2, n)

Arguments

v1	Vector representing set 1
v2	Vector representing set 2
n	Sample size (only relevant when either v1 or v2 is NULL)

Value

The Hausdorff distance between v1 and v2

Examples

```
library(HDCD)
n = 400
true_changepoints = c(50,100)
est_changepoints = c(51,110)
hausdorff(true_changepoints, est_changepoints,n)
hausdorff(true_changepoints, NULL,n)
hausdorff(NULL, est_changepoints,n)
hausdorff(NULL,NULL)
```

Inspect

Informative sparse projection for estimating change-points (Inspect)

Description

R wrapper for C function implementing a Narrowest-Over-Threshold variant of Inspect Wang and Samworth (2018) as specified in Appendix C in Moen et al. (2023). Note that the algorithm is only implemented for $S = S_2$, in the notation of Moen et al. (2023).

Inspect

Usage

```
Inspect(
    X,
    lambda = NULL,
    xi = NULL,
    alpha = 1.5,
    K = 5,
    eps = 1e-10,
    empirical = FALSE,
    maxiter = 10000,
    N = 100,
    tol = 1/100,
    rescale_variance = TRUE,
    debug = FALSE
)
```

Arguments

Х	Matrix of observations, where each row contains a time series	
lambda	Manually specified value of λ (can be NULL, in which case $\lambda \leftarrow \sqrt{\log(p \log n)/2}$)	
xi	Manually specified value of ξ (can be NULL, in which case $\xi \leftarrow 4\sqrt{\log(np)}$)	
alpha	Parameter for generating seeded intervals	
К	Parameter for generating seeded intervals	
eps	Threshold for declaring numerical convergence of the power method	
empirical	If TRUE, the detection threshold xi is based on Monte Carlo simulation using Inspect_calibrate	
maxiter	Maximum number of iterations for the power method	
Ν	If empirical=TRUE, N is the number of Monte Carlo samples used	
tol	If empirical=TRUE, tol is the false error probability tolerance	
rescale_variance		
	If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance	
debug	If TRUE, diagnostic prints are provided during execution	

Value

```
A list containing
```

changepoints	vector of estimated change-points
changepointnumber	
	number of changepoints
CUSUMval	vector with the sparse projected CUSUMs corresponding to changepoints
coordinates	a matrix of zeros and ones indicating which time series are affected by a change in mean, with each row corresponding to the change-point in changepoints
scales	vector of estimated noise level for each series

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Wang T, Samworth RJ (2018). "High dimensional change point estimation via sparse projection." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **80**(1), 57–83. ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/ 10.1111/rssb.12243.

Examples

```
library(HDCD)
n = 50
p = 50
set.seed(100)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1
# Vanilla Inspect:
res = Inspect(X)
res$changepoints
# Manually setting leading constants for \lambda(t) and \gamma(t)
res = Inspect(X,
              lambda = sqrt(log(p*log(n))/2),
              xi = 4*sqrt(log(n*p))
)
res$changepoints #estimated change-point locations
# Empirical choice of thresholds:
res = Inspect(X, empirical=TRUE, N = 100, tol = 1/100)
res$changepoints
# Manual empirical choice of thresholds (equivalent to the above)
thresholds_emp = Inspect_calibrate(n,p, N=100, tol=1/100)
res = Inspect(X, xi = thresholds_emp$max_value)
res$changepoints
```

Inspect_calibrate	Generates empirical detection threshold ξ using Monte Carlo simula-
	tion

Description

R wrapper for C function choosing empirical detection threshold ξ for the Narrowest-Over-Threshold variant of Inspect (as specified in section 4.2 in Moen et al. 2023) using Monte Carlo simulation.

Inspect_calibrate

Usage

```
Inspect_calibrate(
    n,
    p,
    N = 100,
    tol = 1/100,
    lambda = NULL,
    alpha = 1.5,
    K = 5,
    eps = 1e-10,
    maxiter = 10000,
    rescale_variance = TRUE,
    debug = FALSE
)
```

Arguments

n	Number of observations
р	Number time series
Ν	Number of Monte Carlo samples used
tol	False positive probability tolerance
lambda	Manually specified value of λ (can be NULL, in which case $\lambda \leftarrow \sqrt{\log(p \log n)/2}$)
alpha	Parameter for generating seeded intervals
К	Parameter for generating seeded intervals
eps	Threshold for declaring numerical convergence of the power method
maxiter	Maximum number of iterations for the power method
rescale_variance	
	If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance
debug	If TRUE, diagnostic prints are provided during execution

Value

A list containing max_value the empirical threshold

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Examples

library(HDCD) n = 50 p = 50

```
set.seed(100)
thresholds_emp = Inspect_calibrate(n,p, N=100, tol=1/100)
thresholds_emp$max_value # xi
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2
res = Inspect(X, xi = thresholds_emp$max_value)
res$changepoints
```

Inspect_test Inspect single change-point test

Description

R wrapper for C function testing for a single change-point using Inspect Wang and Samworth (2018).

Usage

```
Inspect_test(
   X,
   lambda = NULL,
   xi = NULL,
   eps = 1e-10,
   empirical = FALSE,
   N = 100,
   tol = 1/100,
   maxiter = 10000,
   rescale_variance = TRUE,
   debug = FALSE
)
```

Arguments

Х	Matrix of observations, where each row contains a time series
lambda	Manually specified value of λ (can be NULL, in which case $\lambda \leftarrow \sqrt{\log(p\log n)/2}$)
xi	Manually specified value of ξ (can be NULL, in which case $\xi \leftarrow 4\sqrt{\log(np)}$)
eps	Threshold for declaring numerical convergence of the power method
empirical	If TRUE, the detection threshold xi is based on Monte Carlo simulation using Inspect_test_calibrate
Ν	If empirical=TRUE, N is the number of Monte Carlo samples used
tol	If empirical=TRUE, tol is the false error probability tolerance

16

Inspect_test

maxiter	Maximum number of iterations for the power method
rescale_varianc	e
	If TRUE, each row of the data is re-scaled by a MAD estimate using $rescale_variance$
debug	If TRUE, diagnostic prints are provided during execution

Value

1 if a change-point is detected, 0 otherwise

References

Wang T, Samworth RJ (2018). "High dimensional change point estimation via sparse projection." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **80**(1), 57–83. ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/ 10.1111/rssb.12243.

```
library(HDCD)
n = 50
p = 50
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +1
# Vanilla Inspect:
resX = Inspect_test(X)
resX
resY = Inspect_test(Y)
resY
# Manually setting \lambda and \xi:
resX = Inspect_test(X,
                    lambda = sqrt(log(p*log(n))/2),
                    xi = 4*sqrt(log(n*p))
)
resX
resY = Inspect_test(Y,
                    lambda = sqrt(log(p*log(n))/2),
                    xi = 4*sqrt(log(n*p))
)
resY
# Empirical choice of thresholds:
resX = Inspect_test(X, empirical = TRUE, N = 100, tol = 1/100)
resX
resY = Inspect_test(Y, empirical = TRUE, N = 100, tol = 1/100)
```

```
resY
# Manual empirical choice of thresholds (equivalent to the above)
thresholds_test_emp = Inspect_test_calibrate(n,p, N=100, tol=1/100)
resX = Inspect_test(X, xi = thresholds_test_emp$max_value)
resX
resY = Inspect_test(Y, xi = thresholds_test_emp$max_value)
resY
```

Inspect_test_calibrate

Generates empirical detection threshold ξ for single change-point testing using Monte Carlo simulation

Description

R wrapper for C function choosing the empirical detection threshold ξ for Inspect Wang and Samworth (2018) for single change-point testing using Monte Carlo simulation.

Usage

```
Inspect_test_calibrate(
    n,
    p,
    N = 100,
    tol = 1/100,
    lambda = NULL,
    eps = 1e-10,
    maxiter = 10000,
    rescale_variance = TRUE,
    debug = FALSE
)
```

Arguments

n	Number of observations	
р	Number time series	
Ν	Number of Monte Carlo samples used	
tol	False positive probability tolerance	
lambda	Manually specified value of λ (can be NULL, in which case $\lambda \leftarrow \sqrt{\log(p \log n)/2}$)	
eps	Threshold for declaring numerical convergence of the power method	
maxiter	Maximum number of iterations for the power method	
rescale_variance		
	If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance	
debug	If TRUE, diagnostic prints are provided during execution	

18

Pilliat

Value

A list containing

max_value the empirical threshold

References

Wang T, Samworth RJ (2018). "High dimensional change point estimation via sparse projection." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **80**(1), 57–83. ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/ 10.1111/rssb.12243.

Examples

```
library(HDCD)
n = 50
p = 50
set.seed(100)
thresholds_emp = Inspect_test_calibrate(n,p,N=100, tol=1/100)
thresholds_emp
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +2
resX = Inspect_test(X, xi = thresholds_emp$max_value)
resX
resY = Inspect_test(Y, xi = thresholds_emp$max_value)
resY
```

Pilliat

Pilliat multiple change-point detection algorithm

Description

R wrapper function for C implementation of the multiple change-point detection algorithm by Pilliat et al. (2023), using seeded intervals generated by Algorithm 4 in Moen et al. (2023). For the sake of simplicity, detection thresholds are chosen independently of the width of the interval in which a change-point is tested for (so r = 1 is set for all intervals).

Usage

```
Pilliat(
 Χ,
  threshold_d_const = 4,
  threshold_bj_const = 6,
  threshold_partial_const = 4,
 K = 2,
  alpha = 1.5,
  empirical = FALSE,
  threshold_dense = NULL,
  thresholds_partial = NULL,
  thresholds_bj = NULL,
 N = 100,
  tol = 0.01,
  rescale_variance = TRUE,
  test_all = FALSE,
 debug = FALSE
)
```

Arguments

Х	Matrix of observations, where each row contains a time series	
threshold_d_co		
	Leading constant for the analytical detection threshold for the dense statistic	
threshold_bj_c	onst	
	Leading constant for p_0 when computing the detection threshold for the Berk-	
4 h	Jones statistic	
threshold_part		
	Leading constant for the analytical detection threshold for the partial sum statis-	
	tic	
К	Parameter for generating seeded intervals	
alpha	Parameter for generating seeded intervals	
empirical	If TRUE, detection thresholds are based on Monte Carlo simulation using Pilliat_calibrate	
threshold_dens	e	
	Manually specified value of detection threshold for the dense statistic	
thresholds_partial		
	Vector of manually specified detection thresholds for the partial sum statistic,	
	for sparsities/partial sums $t=1,2,4,\ldots,2^{\lfloor \log_2(p) floor}$	
thresholds_bj	Vector of manually specified detection thresholds for the Berk-Jones statistic,	
	order corresponding to $x = 1, 2, \dots, x_0$	
Ν	If empirical=TRUE, N is the number of Monte Carlo samples used	
tol	If empirical=TRUE, tol is the false error probability tolerance	
rescale_variance		
	If TRUE, each row of the data is re-scaled by a MAD estimate (see rescale_variance)	
test_all	If TRUE, the algorithm tests for a change-point in all candidate positions of each	
	considered interval	
debug	If TRUE, diagnostic prints are provided during execution	

20

Pilliat

Value

A list containing

changepoints	vector of estimated change-points
number_of_changepoints	
	number of changepoints
scales	vector of estimated noise level for each series
startpoints	start point of the seeded interval detecting the corresponding change-point in changepoints
endpoints	end point of the seeded interval detecting the corresponding change-point in changepoints

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Pilliat E, Carpentier A, Verzelen N (2023). "Optimal multiple change-point detection for high-dimensional data." *Electronic Journal of Statistics*, **17**(1), 1240 – 1315.

```
library(HDCD)
n = 50
p = 50
set.seed(100)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2
# Vanilla Pilliat:
res = Pilliat(X)
res$changepoints
# Manually setting leading constants for detection thresholds
res = Pilliat(X, threshold_d_const = 4, threshold_bj_const = 6, threshold_partial_const=4)
res$changepoints #estimated change-point locations
# Empirical choice of thresholds:
res = Pilliat(X, empirical = TRUE, N = 100, tol = 1/100)
res$changepoints
# Manual empirical choice of thresholds (equivalent to the above)
thresholds_emp = Pilliat_calibrate(n,p, N=100, tol=1/100)
thresholds_emp$thresholds_partial # thresholds for partial sum statistic
thresholds_emp$thresholds_bj # thresholds for Berk-Jones statistic
thresholds_emp$threshold_dense # thresholds for Berk-Jones statistic
res = Pilliat(X, threshold_dense =thresholds_emp$threshold_dense,
              thresholds_bj = thresholds_emp$thresholds_bj,
```

thresholds_partial =thresholds_emp\$thresholds_partial)
res\$changepoints

Pilliat_calibrate Generates detection thresholds for the Pilliat algorithm using Monte Carlo simulation

Description

R wrapper for function choosing detection thresholds for the Dense, Partial sum and Berk-Jones statistics in the multiple change-point detection algorithm of Pilliat et al. (2023) using Monte Carlo simulation. When Bonferroni==TRUE, the detection thresholds are chosen by simulating the leading constant in the theoretical detection thresholds given in Pilliat et al. (2023), similarly as described in Appendix B in Moen et al. (2023) for ESAC. When Bonferroni==TRUE, the thresholds for the Berk-Jones statistic are theoretical and not chosen by Monte Carlo simulation.

Usage

```
Pilliat_calibrate(
    n,
    p,
    N = 100,
    tol = 0.01,
    bonferroni = TRUE,
    threshold_bj_const = 6,
    K = 2,
    alpha = 1.5,
    rescale_variance = TRUE,
    test_all = FALSE,
    debug = FALSE
)
```

Arguments

n	Number of observations	
р	Number time series	
Ν	Number of Monte Carlo samples used	
tol	False error probability tolerance	
bonferroni	If TRUE, a Bonferroni correction applied and the detection thresholds for each statistic is chosen by simulating the leading constant in the theoretical detection thresholds	
threshold_bj_const		
	Leading constant for p_0 for the Berk-Jones statistic	
К	Parameter for generating seeded intervals	
alpha	Parameter for generating seeded intervals	

Pilliat_calibrate

rescale_variance		
	If TRUE, each row of the data is re-scaled by a MAD estimate (see <code>rescale_variance</code>)	
	If TRUE, a change-point test is applied to each candidate change-point position in each interval. If FALSE, only the mid-point of each interval is considered	
debug	If TRUE, diagnostic prints are provided during execution	

Value

A list containing	
thresholds_part	tial
	vector of thresholds for the Partial Sum statistic (respectively for $t = 1, 2, 4, \dots, 2^{\lfloor \log_2(p) \rfloor}$
	number of terms in the partial sum)
threshold_dense	2
	threshold for the dense statistic
thresholds_bj	vector of thresholds for the Berk-Jones static (respectively for $x=1,2,\ldots,x_0$)

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Pilliat E, Carpentier A, Verzelen N (2023). "Optimal multiple change-point detection for high-dimensional data." *Electronic Journal of Statistics*, **17**(1), 1240 – 1315.

```
library(HDCD)
n = 50
p = 50
set.seed(100)
thresholds_emp = Pilliat_calibrate(n,p, N=100, tol=1/100)
thresholds_emp$thresholds_partial # thresholds for partial sum statistic
thresholds_emp$thresholds_bj # thresholds for Berk-Jones statistic
thresholds_emp$threshold_dense # thresholds for Berk-Jones statistic
set.seed(100)
thresholds_emp_without_bonferroni = Pilliat_calibrate(n,p, N=100, tol=1/100,bonferroni = FALSE)
thresholds_emp_without_bonferroni$thresholds_partial # thresholds for partial sum statistic
thresholds_emp_without_bonferroni$thresholds_bj # thresholds for Berk-Jones statistic
thresholds_emp_without_bonferroni$threshold_dense # thresholds for Berk-Jones statistic
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +2
res = Pilliat(X, threshold_dense =thresholds_emp$threshold_dense,
              thresholds_bj = thresholds_emp$thresholds_bj,
              thresholds_partial =thresholds_emp$thresholds_partial )
res$changepoints
```

```
Pilliat_test
```

Description

R wrapper function testing for a single change-point using the three test statistics in the multiple change point detection algorithm of Pilliat et al. (2023). See also Appendix E in Moen et al. (2023).

Usage

```
Pilliat_test(
    X,
    empirical = FALSE,
    N = 100,
    tol = 0.05,
    thresholds_partial = NULL,
    threshold_dense = NULL,
    threshold_d_const = 4,
    threshold_bj_const = 6,
    threshold_partial_const = 4,
    rescale_variance = TRUE,
    fast = FALSE,
    debug = FALSE
)
```

Arguments

Х	Matrix of observations, where each row contains a time series	
empirical	If TRUE, detection thresholds are based on Monte Carlo simulation	
Ν	If empirical=TRUE, N is the number of Monte Carlo samples used	
tol	If empirical=TRUE, tol is the false error probability tolerance	
thresholds_par	tial	
	Vector of manually specified detection thresholds for the partial sum statistic, for sparsities/partial sums $t = 1, 2, 4, \ldots, 2^{\lfloor \log_2(p) \rfloor}$	
threshold_dense		
	Manually specified value of detection threshold for the dense statistic	
thresholds_bj	Vector of manually specified detection thresholds for the Berk-Jones statistic, order corresponding to $x = 1, 2,, x_0$	
threshold_d_const		
	Leading constant for the analytical detection threshold for the dense statistic	
threshold_bj_const		
	Leading constant for p_0 when computing the detection threshold for the Berk-Jones statistic	

Pilliat_test

threshold_partial_const		
	Leading constant for the analytical detection threshold for the partial sum statis-	
	tic	
rescale_varian	ce	
	If TRUE, each row of the data is re-scaled by a MAD estimate (see rescale_variance)	
fast	If TRUE, only the mid-point of $(0, \ldots, n]$ is tested for a change-point. Otherwise a test is performed at each candidate change-point poisition	
debug	If TRUE, diagnostic prints are provided during execution	

Value

1 if a change-point is detected, 0 otherwise

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Pilliat E, Carpentier A, Verzelen N (2023). "Optimal multiple change-point detection for high-dimensional data." *Electronic Journal of Statistics*, **17**(1), 1240 – 1315.

```
library(HDCD)
n = 200
p = 200
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 100:200] = X[1:5, 100:200] +1
# Vanilla Pilliat test:
resX = Pilliat_test(X)
resX
resY = Pilliat_test(Y)
resY
# Manually setting leading constants for the theoretical thresholds for the three
# test statistics used
resX = Pilliat_test(X,
                    threshold_d_const=4,
                    threshold_bj_const=6,
                    threshold_partial_const=4
)
resX
resY = Pilliat_test(Y,
                    threshold_d_const=4,
                    threshold_bj_const=6,
```

```
threshold_partial_const=4
)
resY
# Empirical choice of thresholds:
resX = Pilliat_test(X, empirical = TRUE, N = 100, tol = 1/100)
resX
resY = Pilliat_test(Y, empirical = TRUE, N = 100, tol = 1/100)
resY
# Manual empirical choice of thresholds (equivalent to the above)
thresholds_test_emp = Pilliat_test_calibrate(n,p, N=100, tol=1/100,bonferroni=TRUE)
resX = Pilliat_test(X,
                    threshold_dense=thresholds_test_emp$threshold_dense,
                    thresholds_bj = thresholds_test_emp$thresholds_bj,
                    thresholds_partial = thresholds_test_emp$thresholds_partial
)
resX
resY = Pilliat_test(Y,
                    threshold_dense=thresholds_test_emp$threshold_dense,
                    thresholds_bj = thresholds_test_emp$thresholds_bj,
                    thresholds_partial = thresholds_test_emp$thresholds_partial
)
resY
```

```
Pilliat_test_calibrate
```

Generates detection thresholds for the Pilliat algorithm for testing for a single change-point using Monte Carlo simulation

Description

R wrapper for function choosing detection thresholds for the Dense, Partial sum and Berk-Jones statistics in the multiple change-point detection algorithm of Pilliat et al. (2023) for single change-point testing using Monte Carlo simulation. When Bonferroni==TRUE, the detection thresholds are chosen by simulating the leading constant in the theoretical detection thresholds given in Pilliat et al. (2023), similarly as described in Appendix B in Moen et al. (2023) for ESAC. When Bonferroni==TRUE, the thresholds for the Berk-Jones statistic are theoretical and not chosen by Monte Carlo simulation.

Usage

```
Pilliat_test_calibrate(
   n,
   p,
   N = 100,
   tol = 1/100,
   threshold_bj_const = 6,
   bonferroni = TRUE,
```

```
rescale_variance = TRUE,
fast = FALSE,
debug = FALSE
```

Arguments

)

n	Number of observations	
р	Number time series	
Ν	Number of Monte Carlo samples used	
tol	False error probability tolerance	
threshold_bj_co	onst	
	Leading constant for p_0 for the Berk-Jones statistic	
bonferroni	If TRUE, a Bonferroni correction applied and the detection thresholds for each statistic is chosen by simulating the leading constant in the theoretical detection thresholds	
rescale_variance		
	If TRUE, each row of the data is rescaled by a MAD estimate	
fast	If FALSE, a change-point test is applied to each candidate change-point position in each interval. If FALSE, only the mid-point of each interval is considered	
debug	If TRUE, diagnostic prints are provided during execution	

Value

A list containing thresholds_partial vector of thresholds for the Partial Sum statistic (respectively for $t = 1, 2, 4, \dots, 2^{\lfloor \log_2(p) \rfloor}$ number of terms in the partial sum) threshold_dense threshold for the dense statistic thresholds_bj vector of thresholds for the Berk-Jones static (respectively for $x = 1, 2, \dots, x_0$)

```
# Generating data
```

```
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 25:50] = X[1:5, 25:50] +2
resX = Pilliat_test(X,
                    threshold_dense=thresholds_test_emp$threshold_dense,
                    thresholds_bj = thresholds_test_emp$thresholds_bj,
                    thresholds_partial = thresholds_test_emp$thresholds_partial
)
resX
resY = Pilliat_test(Y,
                    threshold_dense=thresholds_test_emp$threshold_dense,
                    thresholds_bj = thresholds_test_emp$thresholds_bj,
                    thresholds_partial = thresholds_test_emp$thresholds_partial
)
resY
```

rescale_variance *Re-scales each row of matrix by its MAD estimate*

Description

R wrapper for C function computing the (rescaled) median absolute difference in differences for each row of the input matrix. The rescaling factor is set to 1.05 (corresponding to the Normal distribution). Each row of the input matrix then re-scaled by the corresponding noise estimate.

Usage

```
rescale_variance(X, debug = FALSE)
```

Arguments

Х	A $p \times n$ matrix
debug	If TRUE, diagnostic prints are provided during execution

Value

A list containing

Х	the input matrix, variance re-scaled and flattened
scales	vector of MAD estimates of the noise level of each row of the input matrix

single_CUSUM

Examples

```
library(HDCD)
n = 200
p = 500
set.seed(101)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
ret = rescale_variance(X)
ret$X #rescaled matrix
ret$scales #estimated noise level for each time series (each row)
# Note that the rescaled matrix is in (column wise) vector form. To transform it back to a matrix,
# do the following:
rescaled_X = matrix(ret$X, nrow = p, ncol=n)
```

single_CUSUM

CUSUM transformation of matrix at a specific position

Description

R wrapper for C function computing the CUSUM transformation of matrix over an interval (s, e] evaluated at a specific position. For compatibility with C indexing, the user should subtract 1 from s, e and v when supplying the arguments to the function. If start and stop are not supplied, the CUSUM is computed over the full data, so (s, e] = (0, n].

Usage

single_CUSUM(X, start = NULL, stop = NULL, pos)

Arguments

Х	Matrix of observations, where each row contains a time series
start	Starting point of interval over which the CUSUM should be computed, sub- tracted by one
stop	Ending point of interval over which the CUSUM should be computed, subtracted by one
pos	Position at which the CUSUM should be evaluated, subtracted by one

Value

A vector of CUSUM values, each corresponding to a row of the input matrix. The *i*-th element corresponds to the CUSUM transformation of the *i*-th row of X, computed over the interval (start + 1, end+1] and evaluated at position pos, i.e. $\sqrt{\frac{e-v}{(e-s)(v-s)}} \sum_{t=s+1}^{v} X_{i,t} - \sqrt{\frac{v-s}{(e-s)(e-v)}} \sum_{t=v+1}^{e} X_{i,t}$, where s = (start + 1), e = (stop + 1) and v = pos + 1.

Examples

```
n = 10
p = 10
set.seed(101)
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# CUSUM over the full data (s,e] = (0,n] evaluated at position v=4
position = 4
X_cusum_single = single_CUSUM(X,pos = position-1)
X_cusum_single
# verifying that this corresponds to the 4-th row of output of CUSUM():
X_cusum = CUSUM(X)
X_cusum[,4]
```

single_ESAC	Efficient	Sparsity	Adaptive	Change-point	estimator	for	a	single
	change-p	oint						

Description

R wrapper for C function implementing ESAC for single change-point estimation, as described in section 3.1 in Moen et al. (2023)

Usage

```
single_ESAC(
   X,
   threshold_d = 1.5,
   threshold_s = 1,
   rescale_variance = FALSE,
   debug = FALSE
)
```

Arguments

Х	Matrix of observations, where each row contains a time series
threshold_d	Leading constant for $\lambda(t) \propto r(t)$ for $t = p$
threshold_s	Leading constant for $\lambda(t) \propto r(t)$ for $t \leq \sqrt{p \log n}$.
rescale_variand	ce
	If TRUE, each row of the data is re-scaled by a MAD estimate using <code>rescale_variance</code>
debug	If TRUE, diagnostic prints are provided during execution

Value

A list containing

pos	estimated change-point location
s	the value of $t \in \mathcal{T}$ at which the sparsity specific score is maximized

30

single_Inspect

References

Moen PAJ, Glad IK, Tveten M (2023). "Efficient sparsity adaptive changepoint estimation." Arxiv preprint, 2306.04702, https://doi.org/10.48550/arXiv.2306.04702.

Examples

```
library(HDCD)
n = 500
p = 500
set.seed(101)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 201:500] = X[1:5, 201:500] +1
res = single_ESAC(X,rescale_variance=TRUE)
res$pos
# Manually setting the leading constants for \lambda(t):
# here \lambda(t) = 2 (\sqrt{p \log(n^4)} + \log (n^4)) for t=p
                  = 2 (t \log (ep \log n^4 / t^2) + \log(n^4))
# and
res = single_ESAC(X, threshold_d = 2, threshold_s = 2)
res$pos
```

single_Inspect Inspect for single change-point estimation

Description

R wrapper for C function for single change-point estimation using Inspect (Wang and Samworth 2018). Note that the algorithm is only implemented for $S = S_2$, in the notation of Wang and Samworth (2018).

Usage

```
single_Inspect(
   X,
   lambda = sqrt(log(p * log(n))/2),
   eps = 1e-10,
   rescale_variance = FALSE,
   maxiter = 10000,
   debug = FALSE
)
```

Arguments

X	Matrix of observations, where each row contains a time series
lambda	Manually specified value of λ (can be NULL, in which case $\lambda \leftarrow \sqrt{\log(p\log n)/2})$

single_SBS

eps	Threshold for declaring numerical convergence of the power method			
rescale_variance				
	If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance			
maxiter	Maximum number of iterations for the power method			
debug	If TRUE, diagnostic prints are provided during execution			

Value

A list containing

pos	estimated change-point location
CUSUMval	projected CUSUM value at the estimated change-point position

References

Wang T, Samworth RJ (2018). "High dimensional change point estimation via sparse projection." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, **80**(1), 57–83. ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/ 10.1111/rssb.12243.

Examples

```
library(HDCD)
n = 500
p = 500
set.seed(101)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 201:500] = X[1:5, 201:500] +1
res = single_Inspect(X,rescale_variance=TRUE)
res$pos
# Manually setting the value of \lambda:
res = single_Inspect(X, lambda = 2*sqrt(log(p*log(n))/2))
res$pos
```

single_SBS

Sparsified Binary Segmentation for single change-point estimation

Description

R wrapper for C function for single change-point estimation using Sparsified Binary Segmentation Cho and Fryzlewicz (2015).

single_SBS

Usage

```
single_SBS(
   X,
   threshold = NULL,
   rescale_variance = TRUE,
   empirical = FALSE,
   N = 100,
   tol = 1/100,
   debug = FALSE
)
```

Arguments

Х	Matrix of observations, where each row contains a time series	
threshold	Manually specified value of the threshold π_T	
rescale_variance		
	If TRUE, each row of the data is re-scaled by a MAD estimate using rescale_variance	
empirical	If TRUE, the threshold is based on Monte Carlo simulation	
Ν	If empirical=TRUE, N is the number of Monte Carlo samples used	
tol	If empirical=TRUE, tol is the false error probability tolerance	
debug	If TRUE, diagnostic prints are provided during execution	

Value

A list containing

pos	estimated change-point location
maxval	maximum thresholded and aggregated CUSUM at the estimated change-point position

References

Cho H, Fryzlewicz P (2015). "Multiple-change-point detection for high dimensional time series via sparsified binary segmentation." *Journal of the Royal Statistical Society. Series B (Statistical Methodology)*, **77**(2), 475–507. ISSN 1369-7412, Publisher: [Royal Statistical Society, Wiley], https://www.jstor.org/stable/24774746.

```
# Single SBS
library(HDCD)
n = 50
p = 50
set.seed(101)
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1
```

```
res = single_SBS(X,threshold=7,rescale_variance=TRUE)
res$pos
# Choose threhsold by Monte Carlo:
res = single_SBS(X,empirical=TRUE,rescale_variance=TRUE)
res$pos
```

single_SBS_calibrate Generates threshold π_T for Sparsified Binary Segmentation for single change-point detection

Description

R wrapper for function choosing empirical threshold π_T using Monte Carlo simulation for single change-point Sparsified Binary Segmentation. More specifically, the function returns the empirical upper tol quantile of CUSUMs over p time series, each of length n, based on N number of runs.

Usage

```
single_SBS_calibrate(
    n,
    p,
    N = 100,
    tol = 1/100,
    rescale_variance = TRUE,
    debug = FALSE
)
```

Arguments

n	Number of observations	
р	Number time series	
Ν	Number of Monte Carlo samples used	
tol	False positive probability tolerance	
rescale_variance		
	If TRUE, each row of the data is rescaled by a MAD estimate	
debug	If TRUE, diagnostic prints are provided during execution	

Value

Threshold

34

```
library(HDCD)
n = 50
p = 50
set.seed(101)
# Simulate threshold
pi_T_squared = single_SBS_calibrate(n=n,p=p,N=100, tol=1/100, rescale_variance = TRUE)
pi_T_squared
```

```
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point:
X[1:5, 26:n] = X[1:5, 26:n] +1
```

```
# Run SBS
res = single_SBS(X,threshold=sqrt(pi_T_squared),rescale_variance=TRUE)
res$pos
```

Index

ARI, 2CUSUM, 3 ESAC, 4 ESAC_calibrate, 4, 6 ESAC_test, 8 ESAC_test_calibrate, 9, 10 hausdorff, 12Inspect, 12 Inspect_calibrate, 13, 14 Inspect_test, 16 Inspect_test_calibrate, 16, 18 Pilliat, 19 Pilliat_calibrate, 20, 22 Pilliat_test, 24 Pilliat_test_calibrate, 26 rescale_variance, 5, 7, 9, 11, 13, 15, 17, 18, 20, 23, 25, 28, 30, 32, 33 single_CUSUM, 29 single_ESAC, 30 single_Inspect, 31 single_SBS, 32 single_SBS_calibrate, 34