## ----fig.width=8, fig.height=5, echo=FALSE------------------------------------ set.seed(100) n <- 10000 n_perturb <- n Z_sample <- abs(rnorm(n=n)) Z_sample <- sort(Z_sample, decreasing=TRUE) Z_sample[1:n_perturb] <- Z_sample[1:n_perturb] + rep(0.15, n_perturb) p_values <- 1-pchisq(Z_sample^2, df=1) observed <- sort(-log10(p_values), decreasing=TRUE) expected <- -log10((1:n)/(n+1)) plot(expected, observed) abline(0,1) ## ----fig.width=8, fig.height=5------------------------------------------------ library(GEint) beta_list <- list(1, 1, 1, 0, c(1,1), 1) rho_list <- list(0.1, c(0.1, 0.1), c(0.1,0.1), 0.1, 0.1, c(0.1, 0.1)) prob_G <- 0.3 cov_Z <- matrix(data=c(1, 0.2, 0.2, 1), nrow=2, ncol=2) cov_W <- 1 normal_assumptions <- GE_bias_normal_squaredmis(beta_list=beta_list, rho_list=rho_list, prob_G=prob_G, cov_Z=cov_Z, cov_W=cov_W) ## ----fig.width=8, fig.height=5------------------------------------------------ cov_list <- normal_assumptions$cov_list cov_mat_list <- normal_assumptions$cov_mat_list mu_list <- normal_assumptions$mu_list HOM_list <- normal_assumptions$HOM_list no_assumptions <- GE_bias(beta_list, cov_list, cov_mat_list, mu_list, HOM_list) # The results should match: unlist(no_assumptions) unlist(normal_assumptions$alpha_list) ## ----fig.width=8, fig.height=5------------------------------------------------ set.seed(100) n <- 500 Y_continuous <- rnorm(n=n) Y_binary <- rbinom(n=n, size=1, prob=0.5) E <- rnorm(n=n) G <- rbinom(n=n, size=2, prob=0.3) design_mat <- cbind(1, G, E, G*E) GE_BICS(outcome=Y_continuous, design_mat=design_mat, desired_coef=4, outcome_type='C') GE_BICS(outcome=Y_binary, design_mat=design_mat, desired_coef=4, outcome_type='D')