Package ‘FlexParamCurve’

January 20, 2025

Title Tools to Fit Flexible Parametric Curves

Version 1.5-6

Date 2023-12-10

Author Stephen Oswald [aut, cre]

Maintainer Stephen Oswald <steve.oswald@psu.edu>

Description Model selection tools and 'selfStart' functions to fit parametric curves in 'nls’, 'nl-
sList' and 'nlme' frameworks.

License GPL-2
Encoding UTF-8

URL https://pennstate.academia.edu:443/SteveOswald
Depends nlme

Imports stats, utils

LazyData true

NeedsCompilation no

RoxygenNote 6.1.1

Repository CRAN

Date/Publication 2023-12-11 04:50:06 UTC

Contents

FlexParamCurve-package
change.pnparametersl
extraF . . . L
extraFinls L.
getmod L L e e e
logist.data
modpar e e e e e e
penguindata L. e e e e e
PRmMOd.COMPATE v v v i e e e e e e e e e e e e e e
pnmodselect.step L.

https://pennstate.academia.edu:443/SteveOswald

2 FlexParamCurve-package

posneg.data e e e e e 38
posnegRichards.calls 39
posnegRichards.eqn e 40
SSposnegRichards L 46
tern.data L. L e e 58
Index 60

FlexParamCurve-package
Tools to Fit Flexible Parametric Curves

Description

selfStart functions and model selection tools to fit parametric curves in

nls, nlsList and nlme frameworks.

Details

General approach for using package (also see examples below)

1) Run modpar to produce initial parameter estimates and estimates of parameter bounds for your
dataset.

These are used to accomodate fixed parameters and are saved in user-specified 1ist object
All parameters and options in this list can be edited manually or using change.pnparameters. The

list could be created manually given that the elements were labelled sufficiently. Note that this step
is

unnecessary when using the model selection routines pn.mod.compare and pn.modselect.step as
they

will automatically call modpar if parameter estimates are missing.
2) Determine most appropriate model (number of necessary parameters) for your data

using pn.mod.compare or pn.modselect.step (these rank competing model and then compare
nested models using

extraF’). This may take some time as many nlsList objects are fitted.

Note that if you perform this step, then you do not need to perform step 1.

If you are sure of your model (e.g. it is a simple logistic) Step 2 may be unnecessary.

3) Fit nls or nlsList or nlme models using SSposnegRichards specifying

the appropriate model number and the list of parameters and options (specified pn.options object).

Note if required model is monotonic (i.e. contains no recession parameters, modno= 12 or 32)
recessional parameters

will be ignored unless "force.nonmonotonic" option is TRUE in the specified pn.options list
object (see modpar) in which case they will be included as fixed values from the list object.

Parameter bounds can be refinedto improve fits by altering this list, either manually or using

FlexParamCurve-package 3

change.pnparameters.

4) Plot your curves using posnegRichards.eqn specifying the appropriate model number and list
of parameters/options.

User level functions include:

pn.mod.compare

all-model selection for positive-negative Richards nlsList models

pn.modselect.step

backward stepwise model selection for positive-negative Richards nlsList models

SSposnegRichards

selfStart function for estimating parameters of 36 possible reductions of the 8-parameter

positive-negative Richards model (double-Richards)

posnegRichards.eqn

function for evaluating 36 possible reductions of the 8-parameter

positive-negative Richards model (double-Richards)

modpar

estimates mean parameters (and parameter bounds) for 8-parameter positive-negative Richards
models or 4-parameter Richards models and saves in objects pnmodelparams

and pnmodelparamsbounds. (required prior to use of the above functions)

4 FlexParamCurve-package

change.pnparameters

simple function to update pnmodelparams and pnmodelparamsbounds

with user specified values

extralF

performs extra sum-of-squares F test for two nested nlsList models

extaF.nls

performs extra sum-of-squares F test for two nested nls models

Note

Version 1.5 saves many variables, and internal variables in the package environment:
FlexParamCurve:::FPCEnv. By default, the pn.options file is copied to the environment
specified by the functions (global environment by default). Model selection routines
also copy from FPCenv to the global environment all nlsList models fitted during
model selection to provide backcompatibility with code for earlier versions. The user
can redirect the directory to copy to by altering the Envir argument when calling the

function.

Author(s)

Stephen Oswald <steve.oswald @psu.edu>

References

Oswald, S.A. et al. 2012. FlexParamCurve: R package for flexible

fitting of nonlinear parametric curves. Methods in Ecology and Evolution. 3(6): 1073-77.
doi: 10.1111/3j.2041-210X.2012.00231.x (see also tutorial and introductory videos at:

http://www.methodsinecologyandevolution.org/view/@/podcasts.html

FlexParamCurve-package 5

posted September 2012 - if no longer at this link, check the archived videos (and comments) at:

http://www.methodsinecologyandevolution.org/view/@/VideoPodcastArchive.html#allcontent)

See Also

nlme

SSlogis
Examples
#Code is provided here for an illustrative overview of using FlexParamCurve to select,
fit, analyze and plot the most appropriate non-linear curves for a dataset.
NOTE: autorun is disabled for these examples since more detailed examples are provided for the
individual functions in their associated help files and runtime for this overview approximates

5 mins. To run, simply copy and paste code from this help file into the R GUI.

run all-model selection for posneg.data object (Step 2) without need to run any previous functions
Not run:
modseltable <- pn.mod.compare(posneg.data$age, posneg.data$mass,

posneg.data$id, existing = FALSE, pn.options = "myoptions”)
End(Not run)

run backwards stepwise model selection (Step 2) for logist.data object
#without need to run any previous functions
Not run:

modseltable <- pn.modselect.step(logist.data$age, logist.data$mass,

logist.data$id, existing = FALSE, pn.options = "myoptions")
End(Not run)

estimate fixed parameters use data object posneg.data (Step 1)

FlexParamCurve-package

Not run:

modpar (posneg.data$age,posneg.data$mass, pn.options = "myoptions”)
End(Not run)

change fixed values of M and constrain hatching mass to 45.5 in a growth curve (Step 1)
Not run:

change.pnparameters(M=1,RM=0.5,first.y=45.5, pn.options = "myoptions”)
End(Not run)

fit nlsList object using 6 parameter model with values M and RM (Step 3)
fixed to value in pnmodelparams and then fit nlme model
Not run:
richardsR22.1is <- nlsList(mass ~ SSposnegRichards(age, Asym = Asym, K = K,
Infl = Infl, RAsym = RAsym, Rk = Rk, Ri = Ri,
modno = 22, pn.options = "myoptions”), data = posneg.data)

richardsR22.nlme <- nlme(richardsR22.1is, random = pdDiag(Asym + Infl ~ 1))
End(Not run)

fit reduced nlsList model and then compare performance with extraF (manual version of Step 2)
Not run:
richardsR20.1is <- nlsList(mass ~ SSposnegRichards(age, Asym = Asym, K = K,
Infl = Infl, modno = 20, pn.options = "myoptions”), data = posneg.data)

extraF(richardsR20.1lis,richardsR22.1is)
End(Not run)

fit and plot a logistic curve (M=1) to data, note - all parameters set to 1 are ignored
note code here forces \eqn{modpar} to only estimate 4 curve parameters (simple Richards curve)
#create list for fixed parameters

Not run:

change.pnparameters 7

modpar (logist.data$age,logist.data$mass, forced4par=TRUE, pn.options = "myoptions”)
change.pnparameters(M=1, pn.options = "myoptions”) # set M to 1 for subsequent fit
richardsR20.nls <- nls(mass ~ SSposnegRichards(age, Asym = Asym, K = K,

Infl = Infl, modno = 20, pn.options = "myoptions”), data = logist.data)
plot(logist.data$age , logist.data$mass, xlab = "age"”, ylab = "mass"”, pch = ".", cex = 0.7)

par <- coef(richardsR20.nls)
End(Not run)

#(Step 4)
Not run:
curve(posnegRichards.eqn(x, Asym = par[1], K = par[2], Infl = par[3], modno = 20

, pn.options = "myoptions”), add= TRUE)
End(Not run)

change.pnparameters Change Fixed Parameter Values

Description

Function to alter values of parameters to be used by SSposnegRichards
or posnegRichards.eqn

as the fixed values in equations where parameters are fixed

Usage

change.pnparameters(Asym = NA,

K = NA,

Infl = NA,

change.pnparameters

RAsym = NA,
Rk = NA,

Ri = NA,

RM = NA,

Amin = NA,
Amax = NA,
Kmin = NA,
Kmax = NA,
Imin = NA,
Imax = NA,
Mmin = NA,
Mmax = NA,
RAmin = NA,
RAmax = NA,
Rkmin = NA,

Rkmax = NA,

change.pnparameters

Rimin = NA,
Rimax = NA,
RMmin = NA,
RMmax = NA,
first.y = NA,

x.at.first.y = NA,

last.y = NA,

x.at.last.y = NA,

twocomponent.x = NA,

verbose = NA,

forcedpar = NA,

pn.options,

Envir = .GlobalEnv)

Arguments
Asym a numeric value for the asymptote of the positive (increasing) curve
K a numeric value for the rate parameter of the positive (increasing) curve
Infl a numeric value for the point of inflection of the positive (increasing) curve

M a numeric value for the shape parameter of the positive (increasing) curve

10

RAsym
Rk

Ri

RM

Amin
Amax
Kmin
Kmax
Imin
Imax
Mmin
Mmax
RAmin
RAmax
Rkmin
Rkmax
Rimin
Rimax
RMmin
RMmax
first.y
x.at.first.y
last.y
x.at.last.y

twocomponent. x

verbose

forcedpar

pn.options

Envir

change.pnparameters

a numeric value for the asymptote of the negative (decreasing) curve

a numeric value for the rate parameter of the negative (decreasing) curve
a numeric value for the point of inflection of the negative (decreasing) curve
a numeric value for the shape parameter of the negative (decreasing) curve
a numeric value for the minimum bound of Asym

a numeric value for the maximum bound of Asym

a numeric value for the minimum bound of K

a numeric value for the maximum bound of K

a numeric value for the minimum bound of Infl

a numeric value for the maximum bound of Infl

a numeric value for the minimum bound of M

a numeric value for the maximum bound of M

a numeric value for the minimum bound of RAsym

a numeric value for the maximum bound of RAsym

a numeric value for the minimum bound of Rk

a numeric value for the maximum bound of Rk

a numeric value for the minimum bound of Ri

a numeric value for the maximum bound of Ri

a numeric value for the minimum bound of RM

a numeric value for the maximum bound of RM

the value of y at minimum x when it is required to be constrained

the final value of x - 0 value is used if not specified when last.y is not NA
the value of y at maximum x when it is required to be constrained

the final value of x - this is option is currently disabled

a numerical specifying the x-value (e.g. age) of intersection if a double model
of

two separate components is to be fitted. Alternatively a logical of value

= TRUE if the same type of model is to be fitted but the x of

intersection is unknown

logical indicating whether information on successful optimization and
parameters should be returned during when using SSposnegRichards
logical specifying whether parameters of the negative Richards
should be ignored - effectively using simple Richards curve

required character string specifying the name of a list object currently

populated with starting parameter estimates, fitting options and bounds to be
modified

a valid R environment to find pn.options in, by default this is the global environ-
ment

change.pnparameters 11

Details

This function provides a simple way for the user to update

the a user-named list that holds fixed values and options

for fitting and solving positive-negative Richards curves with

SSposnegRichards and posnegRichards.eqn,

respectively. Running this function also concurrently updates the parameterbounds
in the same list which are vthe maximum and minimum values

for parameters to be used by optim and nls

during parameter estimation

in SSposnegRichards. The list is written automatically by the function but

it is also output as a return value for assignation in the usual way [myoptions<- change.pnparameters(...)].
The list specified by pn.options must exist before this function is called. Use modpar

to estimate values for all parameters and easily generate a suitable list. See modpar for details of
bounding.

Value

a list of values for all above arguments,

with new values substituted where specified in the call

Note

Requires modpar to be have been run prior to execution

Version 1.5 saves many variables, and internal variables in the package environment:
FlexParamCurve:::FPCEnv. By default, the pn.options file is copied to the environment
specified by the functions (global environment by default). Model selection routines
also copy from FPCenv to the global environment all nlsList models fitted during
model selection to provide backcompatibility with code for earlier versions. The user
can redirect the directory to copy to by altering the Envir argument when calling the

function.

Author(s)

Stephen Oswald <steve.oswald @psu.edu>

See Also

modpar SSposnegRichards posnegRichards.egn

12 extraF

Examples

change all fixed values except K and Rk

modpar (posneg.data$age, posneg.data$mass, pn.options = "myoptions”)

change.pnparameters(Asym = 10000, Infl = 80, M = 5, RAsym = 10000,

Ri = 240, RM = 5, pn.options = "myoptions”)

change fixed values of M and constrain hatching mass to 45.5 in a growth curve

change.pnparameters(M = 1, RM = 0.5, first.y = 45.5, pn.options = "myoptions”)

extraF Compare Two nlsList Models Using Extra Sum-of-Squares F-Tests

Description

Function to compare two nested models using extra sum-of-squares F-Tests.

Usage

extraF (submodel = 1,

genmodel = 1,

warn = TRUE)

Arguments
submodel nlsList model with fewer curve parameters (reduced model)
genmodel nlsList model with more curve parameters (general model)

warn logical specifying whether to report working R environment if previously exists

extraF 13

Details

Models must be entered in the correct order with the reduced model appearing

first in the call and the more general model appearing later. These must be nested models,

i.e. the general model must contain all of the curve parameters in the reduced model and more.
Entering models with the same number of parameters will produce NAs in the output, but

the function will produce seemingly adequate output with non-nested models. The user must
check that models are nested prior to use.

This function is primarily designed to be called by the model selection functions
pn.modselect.step and pn.mod. compare but can be used independently.

Extra sum-of-squares is obtained from:
F = (SS1 - SS2)/(df1 - df2) / (SS2 / df2)

where SS = sum-of-squares and df = degrees of freedom, for the more reduced model (1) and the
more general model (2), respectively.

If the F value is significant then the more general model provides a significant improvement
over the reduced model, but if the models are not significantly different then the reduced
parameter model is to be preferred.

In extraF (formulated especially for nlsList models), the root mean square error

(and sum of squares) is inflated to the value expected if all groups (levels) were

fitted [i.e. RSE = RSE* (sqrt(n1) / sqrt(n0)), where RSE is root mean square error, n0 is the sample
size (total

number of data points used in fit) for the model with missing levels, and nl is the inflated sample
size (total number

of data points in dataset)]. This is based on RSE changing with the square root of sample size, as
discussed in the help file for

pn.mod. compare. Degrees of freedom are then increased to the vaue if all individuals had been
fitted successfully,

i.e. total df - (# curve parameters * # levels). Thus, RSE and df are enlarged for models with missing
levels so all models are

compared based on the variability expected if all levels had been fitted . This allows the Fstat from
extraF to be independent of missing levels

in either of the two models.

Value

A data. frame listing the names of the models compared, F,
numerator degrees of freedom,
demonimator degrees of freedom, P value and the residual sum of squares for both the general

and reduced models

14 extraF

Author(s)

Stephen Oswald <steve.oswald @psu.edu>

References

Ritz, C. and Streibigg, J. C. (2008) NonlinearregressionwithR.
Springer-Verlag, New York.

See Also

extraF.nls
nlsList
pn.modselect.step

pn.mod. compare
Examples

#compare two nested nlsList models (4 vs 8 parameter models)

modpar (posneg.data$age, posneg.data$mass, pn.options = "myoptions"”)

(only first 4 group levels in data used for example's sake)

subdata<-subset(posneg.data, as.numeric(row.names (posneg.data)) < 53)

richardsR2.1lis <- nlsList(mass ~ SSposnegRichards(age, Asym = Asym, K = K,

Infl = Infl, M = M, RAsym = RAsym, Rk = Rk, Ri = Ri,modno = 2, pn.options = "myoptions")

, data = subdata)

richardsR12.1is <- nlsList(mass ~ SSposnegRichards(age, Asym = Asym, K =

|
=

Infl = Infl, M = M, modno = 12, pn.options = "myoptions”)

, data = subdata)

extraF(richardsR12.1is, richardsR2.1is)

extraF.nls

15

extraF.nls Compare Two nls Models Using Extra Sum-of-Squares F-Tests

Description

Function to compare two nested n1s models using extra

sum-of-squares F-Tests.

Usage

extraF.nls(submodel,

genmodel)
Arguments
submodel nls model with fewer curve parameters (reduced model)
genmodel nls model with more curve parameters (general model)
Details

Models must be entered in the correct order with the reduced model appearing

first in the call and the more general model appearing later. These must be nested models,

i.e. the general model must contain all of the curve parameters in the reduced model and more.

Entering models with the same number of parameters will produce NAs in the output, but
the function will produce seemingly adequate output with non-nested models. The user must
check that models are nested prior to use.

This function is not promoted for use in model selection as differences in curves of

different grouping levels in the dataset may be obscured when curves are fitted to the

entire dataset, as in nls.

Extra sum-of-squares is obtained from:

F = (SS1 - SS2)/(df1 - df2) / (SS2 / df2)

16 extraF.nls

where SS = sum-of-squares and df = degrees of freedom, for the more reduced model (1) and the
more general model (2), respectively. To account for missing individuals for different fits

df are scaled in all models to the value they would be if all individuals fit successfully (note

that if all individuals had the same fit, this would not influence extra sum of squares).

If the F value is significant then the more general model provides a significant improvement
over the reduced model, but if the models are not significantly different then the reduced

parameter model is to be preferred.

Value

A data. frame listing the names of the models compared, F,
numerator degrees of freedom,
demonimator degrees of freedom, P value and the residual sum of squares for both the general

and reduced models

Author(s)

Stephen Oswald <steve.oswald @psu.edu>

References

Ritz, C. and Streibigg, J. C. (2008) NonlinearregressionwithR.
Springer-Verlag, New York.

See Also

extraF
nls
pn.modselect.step

pn.mod.compare

Examples

#fit and compare two nested nls models (7 vs 8 parameter models)

#create list for fixed parameters

modpar (posneg.data$age, posneg.data$mass, pn.options = "myoptions”)

richardsR1.nls <- nls(mass ~ SSposnegRichards(age, Asym = Asym, K = K,

Infl = Infl, M =M, RAsym = RAsym, Rk = Rk, Ri = Ri, RM = RM, modno = 1, pn.options = myoptions)

get.mod 17

, data = posneg.data)

richardsR2.nls <- nls(mass ~ SSposnegRichards(age, Asym = Asym, K = K,

Infl = Infl, M = M, RAsym = RAsym, Rk = Rk, Ri = Ri, modno = 2, pn.options = myoptions)

, data = posneg.data)

extraF.nls(richardsR2.nls, richardsR1.nls)

get.mod Copy objects between R environments

Description

Function to copy objects between R environments

Usage

get.mod(modelname = 1ls(FPCEnv, pattern=".lis"),
from.envir = FPCEnv, to.envir = .GlobalEnv,

write.mod = FALSE, silent = FALSE)

Arguments
modelname a character or character vector of object names
from.envir R environment currently containing the object(s)
to.envir destination R environment to copy the object(s) to
write.mod logical specifying if single models should be assigned or simply returned
silent logical specifying whether additional confirmation should be printed to the screen
Details

All arguments are optional. With defaults, this function copies any nlsList models

from the FlexParamCurve working environment to the Global Environment. However, user could
use

18 get.mod

this function to move any objects between any environments.

Default behavior is to assign models to an environment if more than 1 modelname is provided but
to

simply return the model from the function if only 1 modelname is given. Notes are printed to the

screen to detail any models moved or any errors encountered.

Value

If only 1 modelname is provided, the contents of the object is returned. If more
more than 1 modelname is provided or if write.mod is FALSE then the object(s) will be assigned

to the environment and no value is returned.

Note

The default function works by detecting the suffix .lis rather than object class, so will
only return models with this suffix, not necessarily all nlsList models if they have

different suffixes.

Author(s)

Stephen Oswald <steve.oswald @psu.edu>

See Also

pn.mod. compare

pn.modselect.step
Examples

#transfer all nlsList models from the FlexParamCurve working environmment (FPCEnv)
#to the Global Environment. Note: unless pn.mod.compare or
#pn.modselect.step have been run, in which case this is default
#1. subset data object (only 3 individuals) to expediate model selection
subdata <- subset(posneg.data, as.numeric(row.names (posneg.data)) < 40)
#2. run model selection in FPCEnv using pn.mod.compare. Only two models (#1 and #5)
#specified to be run here to reduce processing time. see pn.mod.compare
modseltable <- pn.mod.compare(subdata$age, subdata$mass,
subdata$id, existing = FALSE, pn.options = "myoptions”, mod.subset = c(1,5)

, Envir = FlexParamCurve:: :FPCEnv)

logist.data 19

#3. retrieve models from FlexParamCurve working environmment

get.mod()

#transfer an options file called myoptions from FPCEnv to the Global Environment
#note data are forced to fit a monotonic curve in this example

modpar (logist.data$age, logist.data$mass, pn.options = "myoptions.1"”, force4par = TRUE,
Envir = FlexParamCurve:::FPCEnv)

get.mod(modelname = "myoptions.1", write.mod = TRUE)

logist.data Simulated growth of whiskered terns

Description

The logist.data data frame has 1100 rows and 3 columns of records of the simulated masses for
whiskered tern chicks between 0 and 21 days of age.

Usage

logist.data

Format

This object of class c("nfnGroupedData”, "nfGroupedData”, "groupedData”, "data.frame")
containing the following columns:

mass a numeric vector of chick masses (g).

age a numeric vector of chick ages (days).

id an ordered factor indicating unique id of each simulated individual, i.e. which data belongs to
which individual.

Details

No published parameter estimates with associated variability are available for positive-negative
growth curves. These data were simulated using an 3-parameter positive-negative Richards curve
(SSposnegRichards (model 20)), using parameters drawn from normal distributions with the fol-
lowing means (standard deviations):

Asym=92.35 (15.65)
K=0.06 (0.138)
Infl=0.294 (1.72)

20 modpar

These values were taken from Pallisson et al. (2008) for 75 chicks reported. Each simulated in-
dividual had 11 measurements stratified through the development period, with 1-2 day random
differences in timing of each measurement. This data object has methods for nlme grouped-data
classes.

Source

Paillisson, J.-M., Latraube, F. & Reeber, S. (2008) Assessing growth and age of Whiskered Tern
Chlidoniashybrida chicks using biometrics. Ardea, 96, 271-277.

Examples

require(stats); require(graphics)
#view data
logist.data
#create list for fixed parameters
modpar (logist.data$age, logist.data$mass, forcedpar = TRUE, pn.options = "myoptions")
plot(mass ~ age, data = logist.data, subset = id == "0.002",
xlab = "Chick age (day)"”, las =1,
ylab = "Chick mass (g)",
main = "logist.data and fitted curve (Chick #2 only)")
change.pnparameters(M=1, pn.options = "myoptions”) # set curve to logistic (M=1) in subsequent fit
fml <- nls(mass ~ SSposnegRichards(age,Asym=Asym,K=K,Infl=Infl,
modno=20, pn.options = "myoptions”),
data = logist.data, subset = id == "0.002")
age <- seq(@, 166, length.out = 101)
lines(age, predict(fml, list(age = age)))

modpar Estimate Values to be Used for Fixed FlexParamCurve Parameters

Description

This function creates the object pnmodelparams

which holds estimates of values for all 8§ FlexParamCurve

parameters used for fitting and solving positive-negative Richards curves with
SSposnegRichards and posnegRichards.eqn,

respectively.

Usage

modpar (x,

Y,

pn.options = NA,

modpar

first.y = NA,
x.at.first.y =

last.y = NA,

21

NA,

x.at.last.y = NA,

twocomponent. x
verbose =

force8par =

forcedpar

suppress.text =

taper.ends = 0.

width.bounds

bounds.error =

Envir =

force.nonmonotonic =

Arguments

X
y

first.y
x.at.first.y
last.y
x.at.last.y

twocomponent. x

verbose

= NA,

FALSE,
FALSE,

FALSE,

FALSE,

45,

1,

FALSE,

.GlobalEnv,

FALSE,

a numeric vector of primary predictor variable

a numeric vector of response variable

the value of y at minimum x when it is required to be constrained

the final value of x - 0 value is used if not specified when last.y is not NA
the value of y at maximum x when it is required to be constrained

the final value of x - must be specified if last.y is not NA

a numerical specifying the x-value (e.g. age) of intersection if a double model
of

two separate components is to be fitted. Alternatively a logical of value

= TRUE if the same type of model is to be fitted but the x of

intersection is unknown

logical indicating whether information on successful optimization and
parameters should be returned during when using SSposnegRichards

22

force8par

force4par

pn.options

suppress. text

taper.ends

width.bounds

bounds.error

Envir

modpar

logical specifying whether parameters of the negative Richards
curve should be set to defaults if they cannot be estimated

logical specifying whether parameters of the negative Richards
should be ignored - effectively using simple Richards curve

character string specifying name of 1ist object populated with starting
parameter estimates, fitting options and bounds or the destination for modpar to
write a new list

logical specifying whether modpar should return descriptive text to the screen
during execution

numeric representing the proportion of the range of the x variable for which data
are extended at

the two ends of the data set. This is used in initial estimation (prior to optim and
nls optimizations) and can

speed up subsequent optimizations by imposing a more pronounced S-shape to
both first and second curves. Defaults to 0.45.

a numeric indicating the proportion of the usual width of parameter bounds to
be imposed during optimizations.

Large values may slow or terminate computations, however they could better
accomodate data in which different levels exhibit very different

parameter values.

a logical. If true parameter estimation will terminate if initial estimation of
parameters leads to

values outside specified bounds in pn.options. If false, more appropriate bounds
will be determined automatically.

a valid R environment to find pn.options in and export any output to, by default
this is the global environment

force.nonmonotonic

Details

if set to TRUE fixed recessional parameter estimates will be used for the two
monotonic equations

(modno #12 or #32), otherwise these two models will use RAsym = 0, Ri = 0,
Rk =1, RM = 1 to prevent non-monotonic relationships

in these cases.

additional optional arguments to be passed to nlsList

This function creates a formatted 1ist object as named by the argument pn.options. This list

holds estimates of values for all 8 FlexParamCurve parameters, fitting options and parameter bounds

used for

fitting and solving double-Richards curves with SSposnegRichards and posnegRichards.eqgn,

respectively. Parameter bounds are the maximum and minimum parameters values that can be used

by optim

and nls during parameter estimation. For definitions of parameters see either SSposnegRichards

modpar 23

or posnegRichards.eqgn. The list is written automatically by the function (to ".pntemplist") but it
is

also output as a return value for assignation and subsequent use in the usual way [myoptions<-
change.pnparameters(...)].

Estimates are produced by fitting positive-negative or double Richards curves in
nls using

SSposnegRichards for the full 8 parameter model (R1).

If this fails, the function getInitial is called to

attempt to produce initial estimates using the same 8 parameter model.

If this also fails, estimates are attempted in the same way using the

4 parameter (positive only) model (R12). In this case, only the positive
parameters are returned (NAs are substituted for negative parameters)

unless argument force8par=TRUE, in which case negative parameters are
defaulted to: RAsym = 0.05*Asym, Rk = K, Ri = Infl, RM = M.

This function can now fit biphasic (and more generally

double-Richards) curves, where the final curve is effectively either two positive curves
or two negative curves, as well as negative-positive curves. This functionality is default
and does not need to be specified.

Parameter bounds estimated here for use in optim and nls

fits within SSposnegRichards are

applicable to a wide range of curves, although user may

change these manually in 1ist object specified by pn.options.

Bounds are estimated by modpar by adding or subtracting multiples

of fixed parameter values to estimated mean parameter values:

-Asym*0.5 and +Asym*2.5,

-K*0.5 and +K*0.5,

-Infl*2.5 and +Infl*10

-M*2 and +M*2

-RAsym*0.5 and +RAsym*2.5,

-Rk*0.5 and +Rk*0.5,

-Ri*2.5 and +Ri*5

-RM*2 and +RM*2.

Use force8par = TRUE if initial call to modpar produces estimates for

only 4 parameters and yet an 8 parameter model is desired for SSposnegRichards
or posnegRichards.eqn.

Use forcedpar = TRUE if you desire to produces estimates only for the four parameters of

a single Richards curves. This should also be used if you wish to fit simple logistic

24

modpar

Gompertz or von Bertalanffy curves: see SSposnegRichards for more details. If

the specified model in subsequent S'SposnegRichards, model selection or ploting calls

is monotonic (i.e. contains no recession parameters: modno= 12 or 32) recessional parameters
will not be included for these two models unless "force.nonmonotonic" option is TRUE,

in the specified pn.options list object, in which case parameters will be drawn from the specified
pn.options list object.

When specified, first.y and last.y are saved in list object specified by pn.options to instruct
SSposnegRichards to add this as the first or last value of the response, respectively,

during estimation.

To fit two-component double-curves, in which one curve equation is used up to (and including)
the x of intersection and a separate equation is used for x-values greater than the x of intersection
the argument twocomponent.x should be set to the value for the x of intersection. If this argument
is anything other than NA then a two-component model will be fitted when SSposnegRichards

is called. This option will be saved in list object specified by pn.options and can be changed at
will.

taper.ends can be used to speed up optimization as it extends the dataset at maximum and minimum
extremes

of x by repeatedly pasting the y values at these extremes for a specified proportion of the range of
X.

taper.ends is a numeric value representing the proportion of the range of x values are extended for
and

defaults to 0.45 (45

tend towards a zero slope this is a suitable values. If tapered ends are not desirable then choose
taper.ends = 0.

If the argument verbose = TRUE then details concerning the optimization processes within
SSposnegRichards are printed on screen whenever SSposnegRichards is called.

These include whether optimization of the first or second parts of the curve or simultaneous opti-
mizations

are successful, if these have been further refined by nls, whether default parameters were used or
the

parameterization was aborted and what parameter values were finally exported by SSposnegRichards.

This option will be saved in the list object specified by pn.options and can be changed at will.

Value

a list of estimated fixed values for all

above arguments

modpar

Note

Version 1.5 saves many variables, and internal variables in the package environment:
FlexParamCurve:::FPCEnv. By default, the pn.options file is copied to the environment
specified by the functions (global environment by default). Model selection routines
also copy from FPCenv to the global environment all nlsList models fitted during
model selection to provide backcompatibility with code for earlier versions. The user
can redirect the directory to copy to by altering the Envir argument when calling the

function.

Author(s)

Stephen Oswald <steve.oswald @psu.edu>

Examples

estimate fixed parameters use data object posneg.data

modpar (posneg.data$age, posneg.data$mass, pn.options = "myoptions”)

estimate fixed parameters use data object posneg.data (only first
4 group levels for example's sake) and specify a fixed hatching
mass for curve optimization using \code{\link{SSposnegRichards}}
modpar (posneg.data$age, posneg.data$mass, pn.options = "myoptions”)
subdata <- subset(posneg.data,posneg.data$id == as.character(36)
| posneg.data$id == as.character(9)
| posneg.data$id == as.character(32)
| posneg.data$id == as.character(43))
richardsR22.1lis <- nlsList(mass ~ SSposnegRichards(age, Asym = Asym,
K = K, Infl = Infl, RAsym = RAsym, Rk = Rk, Ri = Ri,

modno = 22, pn.options = "myoptions”), data = subdata)

force an 8 parameter estimate on logistic data

26 penguin.data

modpar(logist.data$age,logist.data$mass, force8par=TRUE, pn.options = "myoptions”)

force an 4 parameter model on logistic data

modpar (logist.data$age,logist.data$mass, forced4par=TRUE, pn.options = "myoptions”)

troubleshoot the fit of a model

modpar (posneg.data$age, posneg.data$mass,verbose=TRUE, pn.options = "myoptions")

fit a two component model - enter your own data in place of "mydata”
this details an approach but is not run for want of appropriate data
if x of intersection unknown
Not run:
modpar (mydata$x,mydata$y, twocomponent.x=TRUE, pn.options = "myoptions")
if x of intersection = 75
modpar (mydata$x,mydatas$y, twocomponent.x=75, pn.options = "myoptions”)
richardsR1.nls <- nls(y~ SSposnegRichards(x, Asym = Asym, K = K,
Infl = Infl, M = M, RAsym = RAsym, Rk = Rk, Ri = Ri, RM = RM,
modno = 1, pn.options = "myoptions")

, data = mydata)
End(Not run)

penguin.data Field data on growth of little penguins Eudyptulaminor

Description

The penguin.data data frame has 2244 rows and 11 columns of records of the measured masses
for little penguin chicks between 13 and 74 days of age collected at Philip Island, Victoria, Australia
in 2000 and 2002 (see Chiaradia & Nisbet 2006).

penguin.data 27

Usage

penguin.data

Format

This object of class c("nfnGroupedData”, "nfGroupedData”, "groupedData”, "data.frame")
containing the following columns:

site Three character factor for the site (only one site in dataset).

year A factor specifying the year of measurement.

bandid an ordered factor indicating unique id of each individual: the union of the laying date of
the nest relative to the colony and the band combination

siteyear A factor specifying levels of year for different sites (only one site in dataset).
weight a numeric vector of chick masses (g).
ckage a numeric vector of chick ages (days).

Jdate a numeric vector of first egg-laying date of the nest(days), relative to the mean laying date
for all nests in that year.

nest A factor of unique codes that identify each nest.

ck A factor of hatching order for each chick (A = first hatched, B = second hatched).

outcome A factor of codes for fate of each chick (F = fledged; only fledged chicks included).
clutch A factor of size of clutch/brood that each chick comes from (either 1- or 2-chick brood).

Details

Data were collected as outlined in Chiaradia & Nisbet (2006). Penguin chicks are generally consid-
ered to exhibit a double-Gompertz growth form.Please contact Andre Chiaradia (a.chiaradia@ penguins.org.au)
for use in collaborations.

Source

Chiaradia, A. & Nisbet, I.C.T. (2006) Plasticity in parental provisioning and chick growth in Little
Penguins Eudyptulaminor in years of high and low breeding success. Ardea, 94, 257-270.

Examples
require(stats); require(graphics)
#view data
penguin.data
modpar (penguin.data$ckage, penguin.data$weight, pn.options = "myoptions")

plot(weight ~ ckage, data = penguin.data, subset = bandid == penguin.data$handid[1],
xlab = "Chick age (day)", las =1,
ylab = "Chick mass (g)",
main = "penguin.data and fitted curve (Chick #307 only)")
fml <- nls(weight ~ SSposnegRichards(ckage,Asym=Asym,K=K,Infl=Infl, RAsym=RAsym,
modno=31, pn.options= "myoptions"”),
data = penguin.data, subset = bandid == penguin.data$bandid[1])
ckage <- seq(@, 74, length.out = 101)
lines(ckage, predict(fml, list(ckage = ckage)))

28 pn.mod.compare

pn.mod.compare Compare All Possible Positive-Negative Richards nlslist Models

Description

This function performs model selection for nlsList models fitted using

SSposnegRichards.

Usage

pn.mod. compare(x,

grp,

pn.options,

forcemod

9,

existing = FALSE,

penaliz = "1/sqrt(n)”,

taper.ends = 0.45,

mod. subset = c(NA),

Envir = .GlobalEnv,

pn.mod.compare 29

Arguments

X a numeric vector of the primary predictor

y a numeric vector of the response variable

grp a factor of same length as x and y that distinguishes groups within
the dataset

pn.options required character string specifying name of
list object populated with starting
parameter estimates, fitting options and bounds

forcemod optional numeric value to constrain model selection (see Details)

existing optional logical value specifying whether some of the relevant models
have already been fitted

penaliz optional character value to determine how models are ranked (see Details)

taper.ends numeric representing the proportion of the range of the x variable for which data
are extended at
the two ends of the data set. This is used in initial estimation (prior to optim and
nls optimizations) and can
speed up subsequent optimizations by imposing a more pronounced S-shape to
both first and second curves. Defaults to 0.45.

mod. subset optional vector containing modno of models that the user desires to be estimated.
If not NA, only
nlslList models in mod.subset will be fitted and ranked

Envir a valid R environment to find pn.options in and export any output to, by default
this is the global
environment
additional optional arguments to be passed to nlsList

Details

First, whether parameter M should be fixed

(see SSposnegRichards) is determined by fitting models 12 and 20 and comparing

their perfomance using extraF. Note that model 20 is identical to model 32.

If model 12 provides superior performance (variable values of M) then 16 models that estimate M
are run

(models 1 through 16), otherwise the models with fixed M are fitted (models 21 through 36).
Fitting these nlsList models can be time-consuming (2-4 hours using the dataset
posneg.data that encompasses 100 individuals) and if several of the relevant

models are already fitted the option existing=TRUE can be used to avoid refitting models that
already exist globally (note that a model object in which no grouping levels were successfully
parameterized will be refitted, as will objects that are not of class nlsList).

Specifying forcemod=3 will force model selection to only consider fixed M models and setting

30 pn.mod.compare

forcemod=4 will force model selection to consider models with varying values of M only.
If fitting both models
12 and 20 fails, fixed M models will be used by default.

taper.ends can be used to speed up optimization as it extends the dataset at maximum and minimum
extremes

of x by repeatedly pasting the y values at these extremes for a specified proportion of the range of
X.

taper.ends is a numeric value representing the proportion of the range of x values are extended for
and

defaults to 0.45 (45

tend towards a zero slope this is a suitable values. If tapered ends are not desirable then choose
taper.ends = 0.

Models are ranked by modified pooled residual square error. By default residual standard error

is divided by the square root of sample size. This exponentially penalizes models for which very
few

grouping levels (individuals) are successfully parameterized (the few individuals that are
parameterized in these models are fit unsuprisingly well) using a function based on the relationship
between standard error and sample size. However, different users may have different preferences
and these can be specified in the argument penaliz (which residual

standard error is multiplied by). This argument must be a character value

that contains the character n (sample size) and must be a valid right hand side (RHS) of a formula:

e.g. 1*(n), (n)*2. It cannot contain more than one n but could be a custom function, e.g. FUN(n).

Value

A list object with two components: $Model rank table’ contains the

statistics from extraF ranked by the modified residual standard error,

and $’P values from pairwise extraF comparison’ is a matrix of P values from

extraF for legitimate comparisons (nested and successfully fitted models).

The naming convention for models is a concatenation of ’richardsR’, the modno and ’.lis’
which is shortened in the matrix output, where the number of parameters has been

pasted in parentheses to allow users to easily distinguish the more general model from
the more reduced model

(see extraF and SSposnegRichards).

For extra flexibility, mod.subset can specify a vector of modno values (a number of different models)
that

can be fitted in nlsList and then evaluated by model selection. This prevents fitting of unwanted
models or

attempts to fit models that are known to fail. If the nlsList model already exists it will not be
refitted

and thus existing models can be included in the ranking table without adding noticeably to process-
ing time.

pn.mod.compare 31

Note

If appropriate bounds (or starting parameters) are not available in the list specified by the variable
supplied

to pn.options, modpar will be called automatically prior to model selection.

During selection, text is output to the screen to inform the user of the progress of model selection
(which model is being fitted, which were fit successfully)

Version 1.5 saves many variables, and internal variables in the package environment:
FlexParamCurve:::FPCEnv. By default, the pn.options file is copied to the environment

specified by the functions (global environment by default). Model selection routines

also copy from FPCenv to the global environment all nlsList models fitted during

model selection to provide backcompatibility with code for earlier versions. The user

can redirect the directory to copy to by altering the Envir argument when calling the

function.

Author(s)

Stephen Oswald <steve.oswald @psu.edu>

See Also

extraF
SSposnegRichards

nlsList

Examples

#these examples will take a long while to run as they have to complete the 32 model comparison

#run model selection for posneg.data object (only first 3 group levels for example's sake)

try(rm(myoptions),silent = TRUE)

subdata <- subset(posneg.data, as.numeric(row.names (posneg.data)) < 40)

modseltable <- pn.mod.compare(subdata$age, subdata$mass,

subdata$id, existing = FALSE, pn.options = "myoptions”)

32 pn.mod.compare

modseltable

#fit nlsList model initially and then run model selection

#for posneg.data object when at least one model is already fit

#(only first 3 group levels for example's sake)

richardsR22.1is <- nlsList(mass ~ SSposnegRichards(age, Asym = Asym, K = K,

Infl = Infl, RAsym = RAsym, Rk = Rk, Ri = Ri , modno = 22, pn.options = "myoptions")

,data = subdata)

modseltable <- pn.mod.compare(subdata$age, subdata$mass,

subdata$id, forcemod = 3, existing = TRUE, pn.options = "myoptions")

modseltable

#run model selection ranked by residual standard error*(1/sample size)

modseltable <- pn.mod.compare(subdata$age, subdata$mass,

subdata$id, penaliz='1%(1/n)', existing = TRUE, pn.options = "myoptions")

modseltable

pn.modselect.step

pn.modselect.step Backwards Stepwise Selection of Positive-Negative Richards nlslist
Models

Description

This function performs backawards stepwise model selection for nlsList
models fitted using
SSposnegRichards.

Usage

pn.modselect.step(x,

grp,

pn.options,

forcemod = 0,
existing = FALSE,
penaliz = "1/sqrt(n)",

taper.ends = 0.45,

Envir = .GlobalEnv,

Arguments

X a numeric vector of the primary predictor

34

pn.modselect.step

y a numeric vector of the response variable

grp a factor of same length as x and y that distinguishes groups within
the dataset

pn.options required character string specifying name of
list object populated with starting
parameter estimates, fitting options and bounds

forcemod optional numeric value to constrain model selection (see Details)

existing optional logical value specifying whether some of the relevant models
have already been fitted
penaliz optional character value to determine how models are ranked (see Details)
taper.ends numeric representing the proportion of the range of the x variable for which data
are extended at

the two ends of the data set. This is used in initial estimation (prior to optim and
nls optimizations) and can

speed up subsequent optimizations by imposing a more pronounced S-shape to
both first and second curves. Defaults to 0.45.

Envir a valid R environment to find pn.options in and export any output to, by default
this is the global
environment

additional optional arguments to be passed to nlsList

Details

First, whether parameter M should be fixed

(see SSposnegRichards) is determined by fitting models 12 and 32 and comparing

their perfomance using extraF.

If model 12 provides superior performance (variable values of M) then 16 models that estimate M
are run (models 1 through 16), otherwise the models with fixed M are fitted (models 21 through 36).
Model selection then proceeds by fitting the most general model (8-parameter, model 1 for variable
M;

7-parameter, model 21 for fixed M). At each subsequent step reduced models are evaluated

by creating nlsList models through removal of a single parameter from the decreasing

section of the curve (i.e. RAsym, Rk, Ri or RM). This is repeated until all possible models with

one less parameter have been fitted and then these models are then ranked by modified pooled
residual

standard error (see below) to determine which reduced parameter model provides the best fit. This
ranking

esnures that in all cases subsequent extra sum-of-squares F-tests are only made between fully nested
models.

The best ranked reduced parameter model is then compared with the more general model retained
from the

pn.modselect.step 35

the previous step using the function extraF to determine whether the more general

model provides significant improvement over the best reduced model. The most appropriate model
is then retained to be used as the general model in the next step. This process continues

for up to six steps (all steps will be attempted even if the general model provides better
performance to allow for much more reduced models to also be evaluated). The most reduced model
possible to evaluate in this function contains only parameters for the positive section of the curve
(4-parameters for variable M, 3-parameters for fixed M).

Fitting these nlsList models can be time-consuming (2-4 hours using the dataset

posneg.data that encompasses 100 individuals) and if several of the relevant

models are already fitted the option existing=TRUE can be used to avoid refitting models that
already exist globally (note that a model object in which no grouping levels were successfully
parameterized will be refitted, as will objects that are not of class n1sList).

Specifying forcemod=3 will force model selection to only consider fixed M models and setting
forcemod=4 will force model selection to consider models with varying values of M only.

If fitting both models 12 and 32 fails, fixed M models will be used by default.

taper.ends can be used to speed up optimization as it extends the dataset at maximum and minimum
extremes

of x by repeatedly pasting the y values at these extremes for a specified proportion of the range of
X.

taper.ends is a numeric value representing the proportion of the range of x values are extended for
and

defaults to 0.45 (45

tend towards a zero slope this is a suitable values. If tapered ends are not desirable then choose
taper.ends = 0.

Competing non-nested models are ranked by modified pooled residual square error. By default this
is residual

standard error divided by the square root of sample size. This exponentially penalizes models for
which very few

grouping levels (individuals) are successfully parameterized (the few individuals that are
parameterized in these models are fit unsuprisingly well) using a function based on the relationship
between standard error and sample size. However, different users may have different preferences
and these can be specified in the argument penaliz (which residual

standard error is multiplied by). This argument must be a character value

that contains the character n (sample size) and must be a valid right hand side (RHS) of a formula:

e.g. 1*(n), (n)*2. It cannot contain more than one n but could be a custom function, e.g. FUN(n).

36 pn.modselect.step

Value

A data. frame containing statistics produced by extraF

evaluations at each step, detailing the name of the general and best reduced model at each
step. The overall best model evaluated by the end of the function is saved globally as
pn.bestmodel.lis

The naming convention for models is a concatenation of 'richardsR’, the modno and ’.lis’

(see SSposnegRichards).

Note
If appropriate bounds (or starting parameters) are not available in the list specified by the variable
supplied
to pn.options, modpar will be called automatically prior to model selection.
During selection, text is output to the screen to inform the user of the progress of model selection
(which model is being fitted)
Version 1.5 saves many variables, and internal variables in the package environment:
FlexParamCurve:::FPCEnv. By default, the pn.options file is copied to the environment
specified by the functions (global environment by default). Model selection routines
also copy from FPCenv to the global environment all nlsList models fitted during
model selection to provide backcompatibility with code for earlier versions. The user
can redirect the directory to copy to by altering the Envir argument when calling the

function.

Author(s)

Stephen Oswald <steve.oswald @psu.edu>

See Also

pn.mod.compare
extraF
SSposnegRichards

nlsList

Examples

#these examples will take a long while to run as they have to complete the 32 model comparison

#run model selection for posneg.data object (only first 3 group levels for example's sake)

pn.modselect.step 37

try(rm(myoptions), silent = TRUE)

subdata <- subset(posneg.data, as.numeric(row.names (posneg.data)) < 40)

modseltable <- pn.modselect.step(subdata$age, subdata$mass,

subdata$id, existing = FALSE, pn.options = "myoptions")

modseltable

#fit nlsList model initially and then run model selection

#for posneg.data object when at least one model is already fit

#(only first 3 group levels for example's sake)

richardsR22.1is <- nlsList(mass ~ SSposnegRichards(age, Asym = Asym, K = K,

Infl = Infl, RAsym = RAsym, Rk = Rk, Ri = Ri , modno = 22, pn.options = "myoptions")

,data = subdata)

modseltable <- pn.modselect.step(subdata$age, subdata$mass,

subdata$id, forcemod = 3, existing = TRUE, pn.options = "myoptions")

modseltable

#run model selection ranked by residual standard error*sample size

38 posneg.data

#(only first 3 group levels for example's sake)

modseltable <- pn.modselect.step(subdata$age, subdata$mass,

subdata$id, penaliz='1%(n)', existing = TRUE, pn.options = "myoptions"”)

modseltable

posneg.data Simulated growth of black-browed albatrosses

Description

The posneg.data data frame has 1300 rows and 3 columns of records of the simulated masses for
black-browed albatross chicks between 0 and 166 days of age.

Usage

posneg.data

Format

This object of class c("nfnGroupedData”, "nfGroupedData”, "groupedData”, "data.frame")
containing the following columns:

mass a numeric vector of chick masses (g).

age a numeric vector of chick ages (days).

id an ordered factor indicating unique id of each simulated individual, i.e. which data belongs to
which individual.

Details

No published parameter estimates with associated variability are available for positive-negative
growth curves. These data were simulated using an 8-parameter positive-negative Richards curve
(SSposnegRichards (model 1)), using parameters drawn from normal distributions with the fol-
lowing means (standard deviations):

Asym=4300 (180)
K=0.06 (0.01)
Infl=23 (0.4)

posnegRichards.calls 39

M=0.1 (0.05)

RAsym=1433.3 (540) #1/3 of Asym, more variable

Rk=0.108 (0.03) #1.8 times faster recession, more variable
Ri=Infl1+87.259 (1.7) # more variable but linked to Infl
RM=M (0.15) #more variable

These values were chosen through comparison of growth curves with Huin and Prince (2000) Fig 2
and variability observed between individual chicks of little penguins in a 10 year dataset (Chiaradia
and Nisbet unpublished data). Each simulated individual had 13 measurements stratified through
the development period, with 1-13 day random differences in timing of each measurement. This
data object has methods for nlme grouped-data classes.

Source

Huin, N. & Prince, P.A. (2000) Chick growth in albatrosses: curve fitting with a twist. Journal of
Avian Biology, 31, 418-425.

Examples

require(stats); require(graphics)
#view data
posneg.data
#create list for fixed parameters
modpar (posneg.data$age, posneg.data$mass, pn.options = "myoptions”)
plot(mass ~ age, data = posneg.data, subset = id == "1",
xlab = "Chick age (day)"”, las =1,
ylab = "Chick mass (g)",
main = "posneg.data data and fitted curve (Chick #1 only)")
fml <- nls(mass ~ SSposnegRichards(age,Asym=Asym,K=K,Infl=Infl, RAsym=RAsym,
Rk=Rk,Ri=Ri,modno=22, pn.options= "myoptions"),
data = posneg.data, subset = id == "1")
age <- seq(@, 166, length.out = 101)
lines(age, predict(fm1, list(age = age)))

posnegRichards.calls List of calls for fitting 33 SSposnegRichards models in nlsList

Description

The posnegRichards.calls list has two components of 17 and 16 rows and 1 column, respec-
tively, called "Examples of calls for FlexParamCurve models that estimate parameter m’ (models
with 4 estimable first curve parameters) and "Examples of calls for FlexParamCurve models that
fix parameter m" (models with 3 estimable second curve parameters, i.e. M is fixed to value in
pnmodelparams. Individual calls can be accessed by indexing first the component number and
then the model number - see examples below. Note that model 17 is formulated differently (see
SSposnegRichards)

Usage

posnegRichards.calls

40 posnegRichards.eqn

Format

This object of class 1ist containing the components:

Examples of calls for FlexParamCurve models that estimate parameter m a list of 16 possible
reductions (nos. 1-16) of the FlexParamCurve double-Richards model that estimate parameter
m. Also includes a custom model (17; see SSposnegRichards).

Examples of calls for FlexParamCurve models that fix parameter m alist of 16 possible reduc-
tions (nos. 21-36) of the FlexParamCurve double-Richards model that do not estimate param-
eter m but instead fix it to a mean across the dataset or user-specified value.

Details

A list object to provide users with examples of how to fit 33 different n1sList models using the
selfStart function SSposnegRichards.

Examples

see all possible calls
posnegRichards.calls
extract the call for fitting a nls model with 8-parameter double-Richards curve (model 1)
#for an example just fit a subset of the data, 3 group levels (individuals)
data <- subset(posneg.data, as.numeric(row.names (posneg.data)) < 40)
modtofit <- as.character(
posnegRichards.calls [[2]] [row.names(posnegRichards.calls [[2]]) == "22",])
#change the data source
modtofit <- sub("posneg.data”,"data",modtofit)
modtofit <- parse(text = modtofit)
#create list for fixed parameters

modpar (posneg.data$age, posneg.data$mass, pn.options = "myoptions”)
#create a new nlsList object called richards22.1lis
eval (modtofit)

#view object
richardsR22.1is

view call for model 1
posnegRichards.calls [[1]] [row.names(posnegRichards.calls [[1]]) == "1",]

view call for model 21

posnegRichards.calls [[2]] [row.names(posnegRichards.calls [[2]]) == "21",]
posnegRichards.eqgn Equations of the FlexParamCurve Family
Description

Function to solve any of the equations in the FlexParamCurve family,

depending on user-specified parameters and model choice

posnegRichards.eqn

Usage

posnegRichards.egn(x,

Asym =

K = NA,

NA,

Infl = NA,

RAsym

NA,

Rk = NA,

Ri = NA,

RM = NA,

modno,

pn.options,

Envir

Arguments

X
Asym
K
Infl
M
RAsym

.GlobalEnv)

a numeric vector of the primary predictor variable

a numeric value for the asymptote of the positive (increasing) curve

a numeric value for the rate parameter of the positive (increasing) curve

a numeric value for the point of inflection of the positive (increasing) curve
a numeric value for the shape parameter of the positive (increasing) curve

a numeric value for the asymptote of the negative (decreasing) curve

41

42 posnegRichards.eqn

Rk a numeric value for the rate parameter of the negative (decreasing) curve

Ri a numeric value for the point of inflection of the negative (decreasing) curve

RM a numeric value for the shape parameter of the negative (decreasing) curve

modno a numeric value (currently integer only) between 1 and 36 specifying the identi-
fication

number of the equation to be fitted

pn.options a character vector specifying a list of parameters and options for plotting
Envir a valid R environment to find pn.options, by default this is the global environ-
ment
Details

This function fits 1 of 32 possible FlexParamCurve equations (plus custon model #17). Equations
can fit both monotonic and non-monotonic curves (two different trajectories).

These equations have also been described as double-Richards curves, or positive-negative Richards
curves.

From version 1.2 onwards this function can fit curves that exhibit negative followed by positive
trajectories or double-positive or double-negative trajectories. This function can now also fit two

component (biphasic) models, where the first curve is used up to the x-value (e.g. age) of intersec-
tion and the

second curve is used afterwards, thus the curves are not joined as in standard models (see SSposnegRichards
for details.

The 32 possible equations are all based on the subtraction of one Richards curve from another,
producing:

y=A/([1+mexp(—k(t—1i))]1/m)—A"/([L+m exp(—K'(t—1i'))]1/m’), where A=Asym, k=K,
i=Infl, m=M,

A’=RAsym, k’=Rk, i’=Ri, m’=RM; as described in the Arguments section above.

All 32 possible equations are simply reformulations of this equation, in each case fixing a parameter
or

multiple parameters to (by default) the mean parameter across all individuals in the dataset (such as
produced by a nls

model). All models are detailed in the SSposnegRichards help file. Any models that require
parameter fixing

(i.e. all except model #1) extract appropriate values from the specified list passed by name to
pn.options for the fixed parameters.

This object is most easily created by running modpar and can be adjusted manually or by using
change.pnparameters to user required specification.

If parameters are omitted in the call but required by the modno specified in the call, then they will
be automatically extracted

from the pn.options object supplied, with the appropriate warning. Thus, it is not necessary to list
out parameters and modno but is

posnegRichards.eqn 43

a useful exercise if you are unfamiliar or in doubt of exactly which model is being specified by
modno, see SSposnegRichards

for a list. If a parameter is supplied separately with the call then this value will override those stored
in for the same parameter in modno:

see examples below.

Value

the solution of the equation specified (by modno), given the user-entered parameters

Note

Any models that require parameter fixing (i.e. all except model #1) extract appropriate values from
the specified

list passed to pn.options for the fixed parameters. This object is most easily created by running
modpar

and can be adjusted manually or by using change.pnparameters to user required specification.
Version 1.5 saves many variables, and internal variables in the package environment:
FlexParamCurve:::FPCEnv. By default, the pn.options file is copied to the environment
specified by the functions (global environment by default). Model selection routines

also copy from FPCenv to the global environment all nlsList models fitted during

model selection to provide backcompatibility with code for earlier versions. The user

can redirect the directory to copy to by altering the Envir argument when calling the

function.

Author(s)

Stephen Oswald <steve.oswald @psu.edu>

See Also
SSposnegRichards

modpar

Examples

require(graphics)

calculate y (dependent variable) for a given x for an 8-parameter double-Richards model

#create pnmodelparams for fixed parameters

modpar (posneg.data$age, posneg.data$mass, pn.options = "myoptions”)

44 posnegRichards.eqn

y <- posnegRichards.egn(x, 1000, 0.5, 25, 1, 100, 0.5, 125,

1, modno = 1, pn.options = "myoptions”)

print(c(x = x, y =y))

plot 8-parameter model using saved parameter values from modpar

plot(posneg.data$age, posneg.data$mass, pch = ".")

curve(posnegRichards.eqn(x,modno = 1, pn.options = "myoptions”), add = TRUE, lwd = 3)

plot 3-parameter model using saved parameter values from modpar

curve(posnegRichards.egn(x,modno = 32, pn.options = "myoptions”), add = TRUE, col =2

, lwd = 3)

tweak the plot of a 3-parameter model by user specifying a lower asymptote:

ie give some parameter values

directly and others through pn.options by default

curve(posnegRichards.eqn(x,modno = 32, Asym = 3200, pn.options = "myoptions"”),

posnegRichards.eqn 45

add = TRUE, col =5, lwd = 3)

calculate y (dependent variable) for a given x for a 4-parameter Richards model

(note that second curve parameters are unneeded) and replaced with value from pn.options.

User-supplied variables over-ride those stored in pn.options object

y <- posnegRichards.eqn(x, 1000, 0.5, 25, 1,

1, modno = 12, pn.options = "myoptions")

print(c(x = x, y =y))

plot a logistic curve (M=1), note that second curve parameters are unneeded

plot(1:200, posnegRichards.eqn(1:200, Asym = 1000, K = 0.5, Infl = 25, M =1,

modno = 12, pn.options = "myoptions”), xlim = c(1, 200), xlab = "x",

ylab = "y", pch = 1, cex = 0.7)

plot a double-logistic curve (M=1, RM=1),

#note that second curve parameters are unneeded

plot(1:200, posnegRichards.eqn(1:200, Asym = 1000, K = 0.5, Infl = 25, M =1,

46 SSposnegRichards

RAsym = -100, Rk = 0.5, Ri = 125, RM = 1,

modno = 1, pn.options = "myoptions”), xlim = c(1, 200), xlab = "x",

ylab = "y", pch = 1, cex = 0.7)

SSposnegRichards Self-Starting Positive-Negative Richards Model (double-Richards)

Description

This selfStart function evaluates a range of flexible logistic
functions. It also has an initial attribute that creates
initial estimates of the parameters

for the model specified.

Usage
SSposnegRichards(x,

Asym = NA,
K = NA,

Infl = NA,

RAsym = NA,
Rk = NA,

Ri = NA,

RM = NA,
modno,
pn.options,

Envir = ".GlobalEnv")

SSposnegRichards 47

Arguments

X a numeric vector of the primary predictor
variable at which to evaluate the model

Asym a numeric value for the asymptote of the
positive (increasing) curve

K a numeric value for the rate parameter of
the positive (increasing) curve

Infl a numeric value for the point of inflection
of the positive (increasing) curve

M a numeric value for the shape parameter of
the positive (increasing) curve

RAsym a numeric value for the asymptote of the
negative (decreasing) curve

Rk a numeric value for the rate parameter of
the negative (decreasing) curve

Ri a numeric value for the point of inflection
of the negative (decreasing) curve

RM a numeric value for the shape parameter of
the negative (decreasing) curve

modno a numeric value (currently integer only)
between 1 and 36 specifying the identification
number of the equation to be fitted

pn.options character string specifying name of
list object populated with starting
parameter estimates, fitting options and bounds

Envir a character vector that represents the valid R environment in which to
find pn.options in and write any output to,
by default this is the global environment

Details

This selfStart function evaluates a range of flexible logistic

functions. It also has an initial attribute that creates

initial estimates of the parameters

for the model specified. Equations can fit both monotonic and non-monotonic
curves (two different trajectories). These equations have also been described as
double-Richards curves, or positive-negative Richards curves. **From version 1.2
onwards this function can fit curves that exhibit negative followed by positive
trajectories or double positive or double negative trajectories.***

The 32 possible equations (plus custom model #17) are all based on the subtraction of one Richards

48

SSposnegRichards

curve from another, producing:

y=A/([1 + mexp(—k(t —1))]1/m)+ A" /([1 + m/exp(—k'(t —3))]1/m’),

where A=Asym, k=K, i=Infl, m=M,

A’=RAsym, k’=Rk, i’=Ri, m’=RM; as described in the Arguments section above.

All 32 possible equations are simply reformulations of this equation, in each

case fixing a parameter or multiple parameters to (by default) the mean parameter across
all individuals in the dataset (such as produced by a nls

model). Thus, a model in which one parameter is fixed has a 7-parameter equation,

and one in which four are fixed has a 4-parameter equation, thus reducing

complexity and computation and compensatory parameter changes when a parameter does not
vary across group levels (e.g individuals)

[the most appropriate equation can be determined using model selection in
pn.modselect.step or pn.mod. compare].

Any models that require parameter fixing (i.e. all except #1)

extract appropriate values from the list object specified by pn.options for the fixed
parameters. This object is most easily created by running

modpar and can be adjusted manually or by using

change . pnparameters to user-required specification.

Each of the 32 equations is identified by an integer value for modno (1 to 36).Models
21-36 are the same as 1-16 except that in the former the first curve parameter m

is fixed and not estimated. All equations (except 17 - see below) contain parameters Asym, K, and
Infl.

The list below summarizes which of the other 5 parameters are contained in
which of the models (Y indicates that the parameter is estimated, blank indicates
it is fixed).

modno M RAsym Rk Ri RM NOTES

1 Y Y Y Y Y 8 parameter model
2 Y Y Y Y

3 Y Y Y

4 Y Y Y

5 Y Y

SSposnegRichards 49

7 Y Y Y Y

8 Y Y Y Y

9 Y Y Y

10 Y Y

11 Y Y

12 Y 4 parameter, standard Richards model

13 Y Y Y

14 Y Y Y

15 Y Y Y

16 Y Y

17 see below

18 see below

19 see below

20 see below

21 Y Y Y Y 7 parameter model, 4 recession params
22 Y Y Y 6 parameter (double-logistic/double-Gompertz/double-Von Bertalannfy)

23 Y Y

24 Y Y

25 Y

26 Y Y Y

27 Y Y Y

28 Y Y Y

29 Y Y

30 Y

50

SSposnegRichards

31 Y

32 only 3 parameters (used for logistic, Gompertz or Von Bertalannfy - see below)

33 Y Y
34 Y Y
35 Y Y
36 Y

modno 17 represents a different parameterization for a custom model:
(Asym/ 1 + exp(Infl - x)/ M) - (RAsym/ 1 + exp(Ri - x)/ RM), in

which M and RM actually represent scale parameters not shape parameters. This model and a suite
of reductions:

modno 17.1:

modno 17.2:

modno 17.3:

are designed for use in modeling migration, sensu. Bunnefeld et al. 2011, Singh et al. 2012.
modnos 18, 19 and 20 are reserved for internal use by modpar.

To access common 3 parameter sigmoidal models use modno = 32, fixing

parameters (using change . pnparameters) to M = 1 for logistic,

M = 0.1 for Gompertz, and M= -0.3 for von Bertalanffy. The same settings can be

used with modno = 2 to fit the double-logistic, double-Gompertz or double-Von Bertalannfy.
Note that to fit only 3 or 4 parameter curves, the option forcedpar = TRUE should be specified
when running modpar-.

The call for SSposnegRichards only differs from

conventional selfStart models in that it requires a value for modno and a list of fitting options
and values from modpar to which to fix parameters in the reduced models.

Depending on the model chosen, different combinations of the 8 possible

parameters are required: if one is missing the routine will stop with an

appropriate error, if an extra one is added, it will be ignored (provided

that it is labelled, e.g. M = 1; this is good practice to prevent accidental

misassignments).

Here are two examples (7 parameter and 3 parameter):

richardsR2.lis <- nlsList(mass ~ SSposnegRichards(age,

Asym = Asym, K = K, Infl = Infl, M = M, RAsym = RAsym, Rk = Rk, Ri = Ri,

SSposnegRichards

, modno = 2), data = posneg.data)

#tcorrect call includes all necessary parameters

richardsR20.1is <- nlsList(mass ~ SSposnegRichards(age,
Asym = Asym, K = K, Infl = Infl, modno = 2), data = logist.data)
#incorrect call missing required parameters,

#function terminates and generates an error message

Examples for all models can be found in the list object

posnegRichards.calls.

If specified using modpar optional constraints

may be placed to specify response values at the minimum value and/or

maximum values of the predictor. Such constraint allows realistic fits for

datasets which are missing data

at either end of the curve (e.g. hatching weight for some growth curves).

Estimates are produced by splitting the two curves into separate positive

and negative curves and estimating parameters for each curve separately

in a similar manner to SSlogis. Each curve is fit first by

optim using the parameter bounds in pnmodelparamsbounds

(see modpar) and a subsequent refinement is attempted using

nls with more restrictive parameter bounds. Finally, both curves

are annealed

and parameters are again estimated using restrictive bounds and starting values
already determined during separate estimates. Equations for which the positive
curve was inestimable are not estimated further, but if negative curve estimation

or overall curve estimation fail, partial estimates are used: either default

negative parameters (RAsym = 0.05*Asym, Rk = K, Ri = Infl, RM = M) annealed to positive
curves or separate estimates annealed; both with compensation for interation
between asymptotes.

From version 1.2 onwards, this function can now fit two component models, where
the first curve is used up to the x-value (e.g. age) of intersection and the second curve is used
afterwards. Confusingly, these are also called "double Richards", "double Gompertz"
or "double logistic": see Murphy et al. (2009) or Ross et al. (1995) for examples.

To specify such models set twocomponent.x = TRUE (this will estimate the x of

51

52 SSposnegRichards

intersection) when running modpar. Alternatively, if known, the

x of intersection can be set directly by setting

twocomponent.x = # (where # is the x of intersection). When modpar

is run this option will be saved in pnmodelparas and can be changed at will,

either manually or using change.pnparameters.

From version 1.2 onwards, this function can now fit bilogistic (and more generally
biRichards) curves, where the final curve is effectively either two positive curves

or two negative curves. See Meyer (1994) for examples. This functionality is default

and does not need to be specified.

Value

a numeric vector of the same length as x containing parameter
estimates for equation specified (fixed parameters

are not return but are substituted in calls to nls

nlsList and nlme with the fixed parameters

stored in pnmodelparams; see modpar

Note

Any models that require parameter fixing (i.e. all except #1)

extract appropriate values from the object pnmodelparams for the fixed

parameters. This object is created by running

modpar and can be adjusted manually or by using

change.pnparameters to user required specification.

Output may show errors and warnings especially during a nlsList

fit, in which the function is called repeatedly: once for each group level in the

dataset. Warnings indicate conditions for which default parameters or incomplete estimates
are used - see Details section - and errors occur from insufficient data or singularities.

As a result of possible interaction and correlation between the parameters in some models,
singularities may be common, but do not be alarmed by repeated error messages, as
examination of a fitted n1sList model may releave a large number of

well estimated group levels, thus the elimation of unsuitable outlying groups only. Also,
because very few of the 32 equations are likely to be suitable for the majority

of datasets, consideration of the model being fitted is crucial when examining the output. Functions
pn.modselect.step and pn.mod. compare provide the ability

for model selection of these equations through stepwise backward deletion or all

model comparison, respectively. These offer powerful ways to determine the

best equation for your dataset.

SSposnegRichards 53

To increase the ability of optimization routines to deal with

a wide variety of values, particularly negative values for M or RM,

only real component of complex numbers are modelled and integer versions

of M and RM are used during estimation if floating values cause conversion

issues.

Speed of the function depends on the complexity of the data being fit.

Version 1.5 saves many variables, and internal variables in the package environment:
FlexParamCurve:::FPCEnv. By default, the pn.options file is copied to the environment
specified by the functions (global environment by default). Model selection routines
also copy from FPCenv to the global environment all nlsList models fitted during
model selection to provide backcompatibility with code for earlier versions. The user
can redirect the directory to copy to by altering the Envir argument when calling the

function.

Author(s)

Stephen Oswald <steve.oswald @psu.edu>

References

Oswald, S.A. et al. (2012) FlexParamCurve: R package for flexible
fitting of nonlinear parametric curves. Methods in Ecology and Evolution 3: 1073-1077.

doi: 10.1111/3j.2041-210X.2012.00231.x
(see also tutorial and introductory videos at:
http://www.methodsinecologyandevolution.org/view/@/podcasts.html

(posted September 2012 - if no longer at this link, check the archived videos at:

http://www.methodsinecologyandevolution.org/view/@/VideoPodcastArchive.html#allcontent

#1# Nelder, J.A. (1962) Note: an alternative form of a generalized

logistic equation. Biometrics, 18, 614-616.

#2#

Huin, N. & Prince, P.A. (2000) Chick growth in albatrosses: curve fitting
with a twist. Journal of Avian Biology, 31, 418-425.

#3#

Meyer, P. (1994) Bi-logistic growth. Technological Forecasting and Social

54 SSposnegRichards

Change. 47: 89-102

#4#

Murphy, S. et al. (2009) Importance of biological parameters in assessing

the status of Delphinus delphis. Marine Ecology Progress Series 388: 273-291.
#5#

Pinheiro, J. & Bates, D. (2000) Mixed-Effects Models in S and S-Plus.

Springer Verlag, Berlin.

#HO#

Ross, J.L. et al. (1994) Age, growth, mortality, and reproductive biology

of red drums in North Carolina waters. Transactions of the American Fisheries
Society 124: 37-54.

#T#

Bunnefeld et al. (2011) A model-driven approach to quantify migration patterns:
individual, regional and yearly differences. Journal of Animal Ecology 80: 466-476.
#8#

Singh et al. (2012) From migration to nomadism: movement variability in a northern

ungulate across its latitudinal range. Ecological Applications 22: 2007-2020.

See Also

SSlogis
SSgompertz

posnegRichards.eqn
Examples

set.seed(3) #for compatability issues

require(graphics)
retrieve mean estimates of 8 parameters using getlInitial
and posneg.data object

modpar (posneg.data$age, posneg.data$mass,verbose=TRUE, pn.options = "myoptions”, width.bounds=2)

getInitial(mass ~ SSposnegRichards(age, Asym, K, Infl, M,

RAsym, Rk, Ri, RM, modno = 1, pn.options = "myoptions”), data = posneg.data)

retrieve mean estimates and produce plot to illustrate fit for

curve with M, Ri and Rk fixed

SSposnegRichards 55

pars <- coef(nls(mass ~ SSposnegRichards(age,
Asym = Asym, K = K, Infl = Infl, RAsym = RAsym,
RM = RM, modno = 24, pn.options = "myoptions"”), data = posneg.data,
control=list(tolerance = 10)))
plot(posneg.data$age, posneg.data$mass, pch=".")
curve(posnegRichards.eqn(x, Asym = pars[1], K = pars[2],
Infl = pars[3], RAsym = pars[4],
RM = pars[5], modno = 24, pn.options = "myoptions”), xlim = c(0,

200), add = TRUE)

following example not run as appropriate data are not available in the package
retrieve mean estimates and produce plot to illustrate fit for custom model 17
Not run:
pars<-as.numeric(getInitial(mass ~ SSposnegRichards(age, Asym, K, Infl,
M, RAsym, Rk, Ri, RM, modno = 17, pn.options = "myoptions”), data = datansd))
plot(datansd$jday21March, datansd$moosensd)
curve(posnegRichards.egn(x, Asym = pars[1], K = 1, Infl = pars[2],
M = pars[3], RAsym = pars[4], Rk = 1, Ri = pars[5], RM = pars[6],

modno = 17, pn.options = "myoptions”), lty = 3, xlim = c(@, 200) , add = TRUE)
End(Not run)

fit nls object using 8 parameter model

note: ensure data object is a groupedData object

richardsR1.nls <- nls(mass ~ SSposnegRichards(age, Asym = Asym,

56

SSposnegRichards

K = K, Infl = Infl, M = M, RAsym = RAsym, Rk = Rk, Ri = Ri,

RM = RM, modno = 1, pn.options = "myoptions”), data = posneg.data)

following example not run as it fits very few levels in these data - as noted
such a comprehensive equation is rarely required
fit nlsList object using 8 parameter model
note: ensure data object is a groupedData object
also note: not many datasets require all 8 parameters

Not run:

richardsR1.1lis <- nlsList(mass ~ SSposnegRichards(age, Asym = Asym,
K = K, Infl = Infl, M = M, RAsym = RAsym, Rk = Rk, Ri = Ri,
RM = RM, modno = 1, pn.options = "myoptions”), data = posneg.data)

summary(richardsR1.1is)
End(Not run)

fit nlsList object using 6 parameter model with value M and RM
fixed to value in pnmodelparams and then fit nlme model
note data is subset to provide estimates for a few individuals

as an example

subdata <- subset(posneg.data,posneg.data$id == as.character(26)

| posneg.data$id == as.character(1)

| posneg.data$id == as.character(32))

richardsR22.1lis <- nlsList(mass ~ SSposnegRichards(age, Asym = Asym,
K = K, Infl = Infl, RAsym = RAsym, Rk = Rk, Ri = Ri,

modno = 22, pn.options = "myoptions”), data = subdata)

SSposnegRichards 57

summary(richardsR22.1lis)
richardsR22.nlme <- nlme(richardsR22.1lis, random = pdDiag(Asym + Infl ~ 1))

summary (richardsR22.nlme)

fit nls object using simple logistic model, with

M, RAsym, Rk, Ri, and RM fixed to values in pnmodelparams

modpar (logist.data$age, logist.data$mass ,forced4par = TRUE, pn.options = "myoptions”)
change.pnparameters(M = 1, pn.options = "myoptions”) #set to logistic (M =1) prior to fit
richardsR32.nls <- nls(mass ~ SSposnegRichards(age, Asym = Asym,
K = K, Infl = Infl, modno = 32, pn.options = "myoptions”), data = logist.data)

coef (richardsR32.nls)

fit a two component model - enter your own data in place of "mydata”
this is not run for want of an appropriate dataset
if x of intersection unknown
Not run:
modpar (mydata$x,mydata$y, twocomponent.x=TRUE, pn.options = "myoptions")
if x of intersection = 75
modpar (mydata$x,mydatas$y, twocomponent.x=75, pn.options = "myoptions")
richardsR1.nls <- nls(y~ SSposnegRichards(x, Asym = Asym, K = K,

Infl = Infl, M = M, RAsym = RAsym, Rk = Rk, Ri = Ri, RM = RM,

modno = 1, pn.options = "myoptions”)

, data = mydata)

coef(richardsR1.nls)
End(Not run)

58 tern.data

tern.data Field data on growth of common terns Sternahirundo

Description

The tern.data data frame has 1164 rows and 12 columns of records of the measured masses for
common tern chicks between 1 and 30 days of age collected at at Grays Beach, MA, in 1973 (Nisbet
1975) and Monomoy, MA, in 1975 (Nisbet et al. 1978)

Usage

tern.data

Format

This object of class c("nfnGroupedData”, "nfGroupedData”, "groupedData”, "data.frame")
containing the following columns:

site Four character factor for the two sites (MYMA: Monomoy Island, MA; GBCT: Grays Beach,
CT).
year A factor specifying the year of measurement: 1973 or 1976.

bandid an ordered factor indicating unique id of each individual: the union of the laying date of
the nest relative to the colony and the band combination

siteyear A factor specifying levels of year for different sites (different years at each site).
weight a numeric vector of chick masses (g).
ckage a numeric vector of chick ages (days).

Jdate a numeric vector of first egg-laying date of the nest(days), relative to the mean laying date
for all nests in that year.

nest A factor of unique codes that identify each nest.

ck A factor of hatching order for each chick (A = first hatched, B = second hatched C = third
hatched).

outcome A factor of codes for fate of each chick (F = fledged; only fledged chicks included).
eggmass A numeric vector of the mass of the egg (from which the chick hatched) at laying.

clutch A factor of size of clutch/brood that each chick comes from (either 1- or 2-chick brood).

Details

Data were collected as outlined in Nisbet (1975)[Grays Beach, MA, 1973] and Nisbet et al.(1978)
[Monomoy, MA, 1975]. Please contact Ian Nisbet <icnisbet@verizon.net> for use in collaborations.

Source

Nisbet, I.C.T. (1975) Selective effects of predation in a tern colony. Condor, 77, 221-226. Nisbet,
L.C.T., Wilson, K.J. & Broad, W.A. (1978) Common Terns raise young after death of their mates.
Condor, 80, 106-109.

tern.data

Examples

59

require(stats); require(graphics)

#view data
tern.data

#create pnmodelparams for fixed parameters

modpar (tern
plot(weight
xlab =
ylab =
main =

.data$ckage, tern.data$weight, forced4par = TRUE, pn.options = "myoptions")

~ ckage, data = tern.data, subset = bandid == tern.data$bandid[1],
"Chick age (day)"”, las =1,

"Chick mass (g)",

"tern.data and fitted curve (Chick #156 only)")

fml <- nls(weight ~ SSposnegRichards(ckage,Asym=Asym,K=K,Infl=Infl,modno=32,

pn.options= "myoptions"”),

data = tern.data, subset = bandid == tern.data$bandid[1])
ckage <- seq(@, 30, length.out = 101)

lines(ckage,

predict(fm1, list(ckage = ckage)))

Index

* Curve fit
FlexParamCurve-package, 2
* Growth
FlexParamCurve-package, 2
+x Parametric curves
FlexParamCurve-package, 2
x datasets
logist.data, 19
penguin.data, 26
posneg.data, 38
posnegRichards.calls, 39
tern.data, 58
* double logistic
FlexParamCurve-package, 2
* logistic equation
FlexParamCurve-package, 2
+ nlme
FlexParamCurve-package, 2
+ nlsList
FlexParamCurve-package, 2
* positive negative curve
FlexParamCurve-package, 2

change.pnparameters, 3, 7, 42, 43, 48, 50, 52
data.frame, 13, 16, 36

extraF, 12, 16, 29-31, 34-36
extraF.nls, /4,15

FlexParamCurve-package, 2

get.mod, 17
getInitial, 23

list, 2,11, 22-24, 29, 34,40, 47
logist.data, 19

modpar, 11, 20, 23, 31, 36, 42, 43, 48, 50-52

nlme, 2, 5, 20, 39, 52

nls, 2, 11,15, 16,22, 23,42, 48,51, 52
nlslList, 2, 14, 28-31, 33-36, 39, 40, 52

optim, 11,22, 23,51

penguin.data, 26
pn.mod.compare, 13, 14, 16, 18, 28, 36,48, 52
pn.modselect.step, 13, 14, 16, 18, 33,48, 52
posneg.data, 29, 35, 38
posnegRichards.calls, 39, 51
posnegRichards.eqn, 7, 11, 20, 22, 23, 40, 54

SSgompertz, 54

SSlogis, 5,51, 54

SSposnegRichards, 7, 11, 19, 20, 22-24,
28-31, 33, 34, 36, 3840, 42, 43, 46,
50

tern.data, 58

	FlexParamCurve-package
	change.pnparameters
	extraF
	extraF.nls
	get.mod
	logist.data
	modpar
	penguin.data
	pn.mod.compare
	pn.modselect.step
	posneg.data
	posnegRichards.calls
	posnegRichards.eqn
	SSposnegRichards
	tern.data
	Index

