Package 'FastJM'

June 22, 2025

Type Package

Title Semi-Parametric Joint Modeling of Longitudinal and Survival Data

Version 1.5.0

Date 2025-06-22

Maintainer Shanpeng Li <lishanpeng0913@ucla.edu>

Encoding UTF-8

Description Maximum likelihood estimation for the semi-parametric joint modeling of competing risks and (multivariate) longitudinal data applying customized linear scan algorithms, proposed by Li and colleagues (2022) <doi:10.1155/2022/1362913>.

The time-to-event data is modelled using a (cause-

specific) Cox proportional hazards regression model with time-fixed covariates. The longitudinal outcome is modelled using a linear mixed effects model. The association is captured by shared random effects. The model

is estimated using an Expectation Maximization algorithm.

License GPL (>= 3)

NeedsCompilation yes

Imports Rcpp (>= 1.0.7), dplyr, nlme, caret, timeROC

LinkingTo Rcpp, RcppEigen

Depends R (>= 3.5.0), survival, utils, MASS, statmod, magrittr

RoxygenNote 7.3.2

LazyData true

Suggests testthat (>= 3.0.0), spelling

Language en-US

Config/testthat/edition 3

Author Shanpeng Li [aut, cre], Ning Li [ctb], Hong Wang [ctb], Jin Zhou [ctb], Hua Zhou [ctb], Gang Li [ctb]

Repository CRAN Date/Publication 2025-06-22 09:00:02 UTC

Contents

anova	2
AUCjmcs	3
cdata	5
fitted	5
fixef	6
jmcs	7
MAEQjmcs	11
mvcdata	13
mvjmcs	13
mvydata	16
PEjmcs	17
plot.jmcs	18
print	19
print.survfitjmcs	20
ranef	20
residuals	
simmvJMdata	
summary	
summary.AUCjmcs	
summary.MAEQjmcs	
summary.PEjmcs	
survfitjmcs	
vcov	
ydata	29
	30
	30

Index

anova

Anova Method for Fitted Joint Models

Description

Performs a likelihood ratio test between two nested joint models.

Usage

```
## S3 method for class 'jmcs'
anova(object, object2, digits = 4, ...)
```

Arguments

object	an object inheriting from class jmcs, nested in object2.
object2	an object inheriting from class jmcs.
digits	the number of significant digits to use when printing. Default is 4.
	further arguments passed to or from other methods.

AUCjmcs

Value

A table to summarize the likelihood ratio test.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs

Examples

AUCjmcs

Time-dependent AUC/Cindex for joint models

Description

Time-dependent AUC/Cindex for joint models

```
AUCjmcs(
   seed = 100,
   object,
   landmark.time = NULL,
   horizon.time = NULL,
   obs.time = NULL,
   method = c("Laplace", "GH"),
   quadpoint = NULL,
   maxiter = NULL,
   n.cv = 3,
   survinitial = TRUE,
```

```
initial.para = FALSE,
LOCF = FALSE,
LOCFcovariate = NULL,
clongdata = NULL,
metric = c("AUC", "Cindex"),
....)
```

seed	a numeric value of seed to be specified for cross validation.
object	object of class 'jmcs'.
landmark.time	a numeric value of time for which dynamic prediction starts
horizon.time	a numeric vector of future times for which predicted probabilities are to be com- puted.
obs.time	a character string of specifying a longitudinal time variable.
method	estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the pseudo-adaptive Gauss-Hermite quadrature is used.
quadpoint	the number of pseudo-adaptive Gauss-Hermite quadrature points if method = "GH".
maxiter	the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
n.cv	number of folds for cross validation. Default is 3.
survinitial	Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
initial.para	Initial guess of parameters for cross validation. Default is FALSE.
LOCF	a logical value to indicate whether the last-observation-carried-forward approach applies to prediction. If TRUE, then LOCFcovariate and clongdata must be specified to indicate which time-dependent survival covariates are included for dynamic prediction. Default is FALSE.
LOCFcovariate	a vector of string with time-dependent survival covariates if LOCF = TRUE. De- fault is NULL.
clongdata	a long format data frame where time-dependent survival covariates are incorpo- rated. Default is NULL.
metric	a string to indicate which metric is used.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

4

cdata

See Also

jmcs, survfitjmcs

cdata

Simulated competing risks data correlated with ydata

Description

The cdata data frame has 1000 rows and 7 columns.

Usage

data(cdata)

Format

This data frame contains the following columns:

ID patient identifier.

surv event time.

failure_type event indicator. 0 denotes censoring, 1 risk 1, and 2 risk 2.

x1 continuous variable.

x2 treatment indicator. Ø denotes the placebo group and 1 the treatment group.

gender gender indicator.

race race indicator.

fitted

Fitted values for joint models

Description

Extract fitted values for joint models.

```
## S3 method for class 'jmcs'
fitted(
   object,
   type = c("Marginal", "Subject"),
   process = c("Longitudinal", "Event"),
   ...
)
```

an object inheriting from class jmcs.
for which type of fitted values to calculate.
for which sub-model to calculate the fitted values.
further arguments passed to or from other methods.

Value

a numeric vector of fitted values.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

Examples

fixef

Estimated coefficients estimates for joint models

Description

Extracts the fixed effects for a fitted joint model.

Usage

```
fixef(object, process = c("Longitudinal", "Event"), ...)
```

Arguments

object	an object inheriting from class jmcs or mvjmcs.
process	for which sub-model to extract the estimated coefficients.
	further arguments passed to or from other methods.

jmcs

Value

A numeric vector or a list of the estimated parameters for the fitted model.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

Examples

jmcs

Joint modeling of longitudinal continuous data and competing risks

Description

Joint modeling of longitudinal continuous data and competing risks

```
jmcs(
 ydata,
  cdata,
 long.formula,
  random = NULL,
  surv.formula,
 REML = TRUE,
  quadpoint = NULL,
 maxiter = 10000,
 print.para = FALSE,
  initial.para = NULL,
  survinitial = TRUE,
  tol = 1e-04,
 method = "pseudo-adaptive",
  opt = "nlminb"
)
```

ydata	a longitudinal data frame in long format.
cdata	a survival data frame with competing risks or single failure. Each subject has one data entry.
long.formula	a formula object with the response variable and fixed effects covariates to be included in the longitudinal sub-model.
random	a one-sided formula object describing the random effects part of the longitudi- nal sub-model. For example, fitting a random intercept model takes the form ~ 1 ID. Alternatively. Fitting a random intercept and slope model takes the form ~ $x1 + + xn$ ID.
surv.formula	a formula object with the survival time, event indicator, and the covariates to be included in the survival sub-model.
REML	a logic object that indicates the use of REML estimator. Default is TRUE.
quadpoint	the number of pseudo-adaptive Gauss-Hermite quadrature points. to be chosen for numerical integration. Default is 6 which produces stable estimates in most dataframes.
maxiter	the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
print.para	Print detailed information of each iteration. Default is FALSE, i.e., not to print the iteration details.
initial.para	a list of initialized parameters for EM iteration. Default is NULL.
survinitial	Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
tol	Tolerance parameter. Default is 0.0001.
method	Method for proceeding numerical integration in the E-step. Default is pseudo- adaptive.
opt	Optimization method to fit a linear mixed effects model, either nlminb (default) or optim.

Value

Object of class jmcs with elements

beta	the vector of fixed effects for the linear mixed effects model.
gamma1	the vector of fixed effects for type 1 failure for the survival model.
gamma2	the vector of fixed effects for type 2 failure for the survival model. Valid only if CompetingRisk = TRUE.
nu1	the vector of association parameter(s) for type 1 failure.
nu2	the vector of association parameter(s) for type 2 failure. Valid only if CompetingRisk = TRUE.
H01	the matrix that collects baseline hazards evaluated at each uncensored event time for type 1 failure. The first column denotes uncensored event times, the second column the number of events, and the third columns the hazards obtained by Breslow estimator.

jmcs

H02	the matrix that collects baseline hazards evaluated at each uncensored event time for type 2 failure. The data structure is the same as H01. Valid only if CompetingRisk = TRUE.
Sig	the variance-covariance matrix of the random effects.
sigma	the variance of the measurement error for the linear mixed effects model.
iter	the total number of iterations until convergence.
convergence	convergence identifier: 1 corresponds to successful convergence, whereas 0 to a problem (i.e., when 0, usually more iterations are required).
VCOV	the variance-covariance matrix of all the fixed effects for both models.
sebeta	the standard error of beta.
segamma1	the standard error of gamma1.
segamma2	the standard error of gamma2. Valid only if CompetingRisk = TRUE.
senu1	the standard error of nu1.
senu2	the standard error of nu2. Valid only if CompetingRisk = TRUE.
seSig	the vector of standard errors of covariance of random effects.
sesigma	the standard error of variance of measurement error for the linear mixed effects model.
loglike	the log-likelihood value.
fitted	a list with the fitted values:
	resid the vector of estimated residuals for the linear mixed effects model. fitted the vector of fitted values for the linear mixed effects model.
	fittedmar the vector of marginal fitted values for the linear mixed effects model. residmar the vector of estimated marginal residuals for the linear mixed effects model.
fittedSurv	residmar the vector of estimated marginal residuals for the linear mixed effects
fittedSurv FUNB	residmar the vector of estimated marginal residuals for the linear mixed effects model.
	residmar the vector of estimated marginal residuals for the linear mixed effects model.the estimated survival rate evaluated at each uncensored event time.
FUNB	 residmar the vector of estimated marginal residuals for the linear mixed effects model. the estimated survival rate evaluated at each uncensored event time. the estimated random effects for each subject.
FUNB CompetingRisk	 residmar the vector of estimated marginal residuals for the linear mixed effects model. the estimated survival rate evaluated at each uncensored event time. the estimated random effects for each subject. logical value; TRUE if a competing event are accounted for.
FUNB CompetingRisk quadpoint	 residmar the vector of estimated marginal residuals for the linear mixed effects model. the estimated survival rate evaluated at each uncensored event time. the estimated random effects for each subject. logical value; TRUE if a competing event are accounted for. the number of Gauss Hermite quadrature points used for numerical integration. the input longitudinal dataset for fitting a joint model. It has been re-ordered in
FUNB CompetingRisk quadpoint ydata	 residmar the vector of estimated marginal residuals for the linear mixed effects model. the estimated survival rate evaluated at each uncensored event time. the estimated random effects for each subject. logical value; TRUE if a competing event are accounted for. the number of Gauss Hermite quadrature points used for numerical integration. the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata. the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times. a frequency table of number of events.
FUNB CompetingRisk quadpoint ydata cdata PropEventType LongitudinalSuk	<pre>residmar the vector of estimated marginal residuals for the linear mixed effects model. the estimated survival rate evaluated at each uncensored event time. the estimated random effects for each subject. logical value; TRUE if a competing event are accounted for. the number of Gauss Hermite quadrature points used for numerical integration. the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata. the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times. a frequency table of number of events. omodel the component of the long.formula.</pre>
FUNB CompetingRisk quadpoint ydata cdata PropEventType	residmar the vector of estimated marginal residuals for the linear mixed effects model. the estimated survival rate evaluated at each uncensored event time. the estimated random effects for each subject. logical value; TRUE if a competing event are accounted for. the number of Gauss Hermite quadrature points used for numerical integration. the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata. the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times. a frequency table of number of events. omodel the component of the long.formula.
FUNB CompetingRisk quadpoint ydata cdata PropEventType LongitudinalSub SurvivalSubmode	residmar the vector of estimated marginal residuals for the linear mixed effects model. the estimated survival rate evaluated at each uncensored event time. the estimated random effects for each subject. logical value; TRUE if a competing event are accounted for. the number of Gauss Hermite quadrature points used for numerical integration. the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata. the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times. a frequency table of number of events. model the component of the long.formula.
FUNB CompetingRisk quadpoint ydata cdata PropEventType LongitudinalSuk SurvivalSubmode random	<pre>residmar the vector of estimated marginal residuals for the linear mixed effects model. the estimated survival rate evaluated at each uncensored event time. the estimated random effects for each subject. logical value; TRUE if a competing event are accounted for. the number of Gauss Hermite quadrature points used for numerical integration. the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata. the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times. a frequency table of number of events. omodel the component of the long.formula. el the component of the surv.formula. the component of the random.</pre>
FUNB CompetingRisk quadpoint ydata cdata Cdata PropEventType LongitudinalSub SurvivalSubmode random call	<pre>residmar the vector of estimated marginal residuals for the linear mixed effects model. the estimated survival rate evaluated at each uncensored event time. the estimated random effects for each subject. logical value; TRUE if a competing event are accounted for. the number of Gauss Hermite quadrature points used for numerical integration. the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata. the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times. a frequency table of number of events. model the component of the long.formula. the component of the surv.formula. the matched call.</pre>
FUNB CompetingRisk quadpoint ydata cdata PropEventType LongitudinalSuk SurvivalSubmode random	<pre>residmar the vector of estimated marginal residuals for the linear mixed effects model. the estimated survival rate evaluated at each uncensored event time. the estimated random effects for each subject. logical value; TRUE if a competing event are accounted for. the number of Gauss Hermite quadrature points used for numerical integration. the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata. the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times. a frequency table of number of events. omodel the component of the long.formula. el the component of the surv.formula. the component of the random.</pre>

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

ranef, fixef, fitted.jmcs, residuals.jmcs, survfitjmcs, plot.jmcs, vcov.jmcs

Examples

```
require(FastJM)
require(survival)
# Load a simulated longitudinal dataset
data(ydata)
# Load a simulated survival dataset with two competing events
data(cdata)
# Fit a joint model
fit <- jmcs(ydata = ydata, cdata = cdata,</pre>
            long.formula = response ~ time + gender + x1 + race,
            surv.formula = Surv(surv, failure_type) \sim x1 + gender + x2 + race,
            random = ~ time| ID)
fit
# Extract the parameter estimates of longitudinal sub-model fixed effects
fixef(fit, process = "Longitudinal")
# Extract the parameter estimates of survival sub-model fixed effects
fixef(fit, process = "Event")
# Obtain the random effects estimates for first 6 subjects
head(ranef(fit))
# Obtain the variance-covariance matrix of all parameter estimates
vcov(fit)
# Obtain the result summaries of the joint model fit
summary(fit, process = "Longitudinal")
summary(fit, process = "Event")
# Prediction of cumulative incidence for competing risks data
# Predict the conditional probabilities for two patients who are alive (censored)
ND <- ydata[ydata$ID %in% c(419, 218), ]
ID <- unique(ND$ID)</pre>
NDc <- cdata[cdata$ID %in% ID, ]</pre>
survfit <- survfitjmcs(fit,</pre>
                       ynewdata = ND,
                       cnewdata = NDc,
                       u = seq(3, 4.8, by = 0.2),
                       method = "GH",
                       obs.time = "time")
survfit
PE <- PEjmcs(fit, seed = 100, landmark.time = 3, horizon.time = c(3.6, 4, 4.4),
             obs.time = "time", method = "GH",
             quadpoint = NULL, maxiter = 1000, n.cv = 3,
             survinitial = TRUE)
Brier <- summary(PE, error = "Brier")</pre>
Brier
```

```
MAEQ <- MAEQjmcs(fit, seed = 100, landmark.time = 3, horizon.time = c(3.6, 4, 4.4),
                 obs.time = "time", method = "GH",
                 quadpoint = NULL, maxiter = 1000, n.cv = 3,
                 survinitial = TRUE)
APE <- summary(MAEQ, digits = 3)
APE
## evaluate prediction accuracy of fitted joint model using cross-validated mean AUC
AUC <- AUCjmcs(fit, seed = 100, landmark.time = 3, horizon.time = c(3.6, 4, 4.4),
               obs.time = "time", method = "GH",
               quadpoint = NULL, maxiter = 1000, n.cv = 3, metric = "AUC")
summary(AUC, digits = 3)
## or using cross-validated mean C-index
Cindex <- AUCjmcs(fit, seed = 100, landmark.time = 3, horizon.time = c(3.6, 4, 4.4),
               obs.time = "time", method = "GH",
               quadpoint = NULL, maxiter = 1000, n.cv = 3, metric = "Cindex")
summary(Cindex, digits = 3)
```

MAEQjmcs

A metric of prediction accuracy of joint model by comparing the predicted risk with the empirical risks stratified on different predicted risk group.

Description

A metric of prediction accuracy of joint model by comparing the predicted risk with the empirical risks stratified on different predicted risk group.

```
MAEQjmcs(
   seed = 100,
   object,
   landmark.time = NULL,
   horizon.time = NULL,
   obs.time = NULL,
   method = c("Laplace", "GH"),
   quadpoint = NULL,
   maxiter = 1000,
   n.cv = 3,
   survinitial = TRUE,
   quantile.width = 0.25,
   initial.para = FALSE,
   LOCF = FALSE,
   LOCFcovariate = NULL,
```

```
clongdata = NULL,
   ...
)
```

seed	a numeric value of seed to be specified for cross validation.
object	object of class 'jmcs'.
landmark.time	a numeric value of time for which dynamic prediction starts
horizon.time	a numeric vector of future times for which predicted probabilities are to be com- puted.
obs.time	a character string of specifying a longitudinal time variable.
method	estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the pseudo-adaptive Gauss-Hermite quadrature is used.
quadpoint	the number of pseudo-adaptive Gauss-Hermite quadrature points if method = "GH".
maxiter	the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
n.cv	number of folds for cross validation. Default is 3.
survinitial	Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
quantile.width	a numeric value of width of quantile to be specified. Default is 0.25.
initial.para	Initial guess of parameters for cross validation. Default is FALSE.
LOCF	a logical value to indicate whether the last-observation-carried-forward approach applies to prediction. If TRUE, then LOCFcovariate and clongdata must be specified to indicate which time-dependent survival covariates are included for dynamic prediction. Default is FALSE.
LOCFcovariate	a vector of string with time-dependent survival covariates if LOCF = TRUE. De- fault is NULL.
clongdata	a long format data frame where time-dependent survival covariates are incorpo- rated. Default is NULL.
•••	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs, survfitjmcs

mvcdata

Description

The mvcdata data frame has 500 rows and 5 columns.

Usage

data(mvcdata)

Format

This data frame contains the following columns:

ID patient identifier. survtime event time. cmprsk event indicator. Ø denotes censoring, 1 risk 1, and 2 risk 2. X21 X21. X22 X22.

mvjmcs

Joint modeling of multivariate longitudinal and competing risks data

Description

Joint modeling of multivariate longitudinal continuous data and competing risks

```
mvjmcs(
  ydata,
  cdata,
  long.formula,
  random = NULL,
  surv.formula,
  maxiter = 10000,
  opt = "nlminb",
  tol = 0.005,
  print.para = TRUE,
  initial.para = NULL
)
```

ydata	A longitudinal data frame in long format.
cdata	A survival data frame with competing risks or single failure. Each subject has one data entry.
long.formula	A list of formula objects specifying fixed effects for each longitudinal outcome.
random	A formula or list of formulas describing random effects structures (e.g., ~ 1 ID).
surv.formula	A formula for the survival sub-model, including survival time and event indica- tor.
maxiter	Maximum number of EM iterations. Default is 10000.
opt	Optimization method for mixed model. Default is "nlminb".
tol	Convergence tolerance for EM algorithm. Default is 0.0001.
print.para	Logical; if TRUE, prints parameter values at each iteration.
initial.para	Optional list of initialized parameters. Default is NULL.

Details

Function fits a joint model for multiple longitudinal outcomes and competing risks using a fast EM algorithm.

Value

Object of class mvjmcs with elements

beta	the vector of all biomarker-specific fixed effects for the linear mixed effects sub- models.
betaList	the list of biomarker-specific fixed effects for the linear mixed effects sub-model.
gamma1	the vector of fixed effects for type 1 failure for the survival model.
gamma2	the vector of fixed effects for type 2 failure for the survival model. Valid only if CompetingRisk = TRUE.
alpha1	the vector of association parameter(s) for type 1 failure.
alpha2	the vector of association parameter(s) for type 2 failure. Valid only if CompetingRisk = TRUE.
HØ1	the matrix that collects baseline hazards evaluated at each uncensored event time for type 1 failure. The first column denotes uncensored event times, the second column the number of events, and the third columns the hazards obtained by Breslow estimator.
H02	the matrix that collects baseline hazards evaluated at each uncensored event time for type 2 failure. The data structure is the same as H01. Valid only if CompetingRisk = TRUE.
Sig	the variance-covariance matrix of the random effects.
sigma	the vector of the variance of the biomarker-specific measurement error for the linear mixed effects sub-models.
iter	the total number of iterations until convergence.

mvjmcs

convergence	convergence identifier: 1 corresponds to successful convergence, whereas 0 to a problem (i.e., when 0, usually more iterations are required).	
vcov	the variance-covariance matrix of all the fixed effects for both models.	
sebeta	the standard error of beta.	
segamma1	the standard error of gamma1.	
segamma2	the standard error of gamma2. Valid only if CompetingRisk = TRUE.	
sealpha1	the standard error of nu1.	
sealpha2	the standard error of nu2. Valid only if CompetingRisk = TRUE.	
seSig	the vector of standard errors of covariance of random effects.	
sesigma	the standard error of variance of biomarker-specific measurement error for the linear mixed effects sub-models.	
pos.mode	the posterior mode of the conditional distribution of random effects.	
pos.cov	the posterior covariance of the conditional distribution of random effects.	
CompetingRisk	logical value; TRUE if a competing event are accounted for.	
ydata	the input longitudinal dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times in cdata.	
cdata	the input survival dataset for fitting a joint model. It has been re-ordered in accordance with descending observation times.	
PropEventType	a frequency table of number of events.	
LongitudinalSubmodel		
а : <u>1</u> ан н	the component of the long.formula.	
SurvivalSubmod	et the component of the surv.formula.	
random	the component of the random.	
call	the matched call.	
id	the grouping vector for the longitudinal outcome.	
opt	the numerical optimizer for obtaining the initial guess of the parameters in the linear mixed effects sub-models.	
runtime	the total computation time.	

Examples

```
require(FastJM)
require(survival)
data(mvcdata)
data(mvydata)
```

mvydata

mvydata

Simulated bivariate longitudinal data

Description

The mvydata data frame has 4060 rows and 6 columns.

Usage

data(mvydata)

Format

This data frame contains the following columns:

ID patient identifier.

time visit time.

- Y1 response variable of biomarker 1.
- Y2 response variable of biomarker 2.
- X11 X11.
- X12 X12.

PEjmcs

A metric of prediction accuracy of joint model by comparing the predicted risk with the counting process.

Description

A metric of prediction accuracy of joint model by comparing the predicted risk with the counting process.

Usage

```
PEjmcs(
  seed = 100,
  object,
  landmark.time = NULL,
 horizon.time = NULL,
 obs.time = NULL,
 method = c("Laplace", "GH"),
 quadpoint = NULL,
 maxiter = NULL,
 n.cv = 3,
  survinitial = TRUE,
  initial.para = FALSE,
  LOCF = FALSE,
 LOCFcovariate = NULL,
  clongdata = NULL,
  . . .
)
```

Arguments

seed	a numeric value of seed to be specified for cross validation.
object	object of class 'jmcs'.
landmark.time	a numeric value of time for which dynamic prediction starts
horizon.time	a numeric vector of future times for which predicted probabilities are to be com- puted.
obs.time	a character string of specifying a longitudinal time variable.
method	estimation method for predicted probabilities. If Laplace, then the empirical empirical estimates of random effects is used. If GH, then the pseudo-adaptive Gauss-Hermite quadrature is used.
quadpoint	the number of pseudo-adaptive Gauss-Hermite quadrature points if method = "GH".
maxiter	the maximum number of iterations of the EM algorithm that the function will perform. Default is 10000.
n.cv	number of folds for cross validation. Default is 3.

survinitial	Fit a Cox model to obtain initial values of the parameter estimates. Default is TRUE.
initial.para	Initial guess of parameters for cross validation. Default is FALSE.
LOCF	a logical value to indicate whether the last-observation-carried-forward approach applies to prediction. If TRUE, then LOCFcovariate and clongdata must be specified to indicate which time-dependent survival covariates are included for dynamic prediction. Default is FALSE.
LOCFcovariate	a vector of string with time-dependent survival covariates if LOCF = TRUE. Default is NULL.
clongdata	a long format data frame where time-dependent survival covariates are incorporated. Default is NULL.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs, survfitjmcs

plot.jmcs

Fitted values for joint models

Description

Plot Diagnostics for Joint Models.

Usage

```
## S3 method for class 'jmcs'
plot(x, add.smooth = getOption("add.smooth"), ...)
```

Arguments

Х	x of class 'jmcs'.
add.smooth	logical; if TRUE a smooth line is superimposed in the "Residuals vs Fitted" plot.
	further arguments passed to or from other methods.

Value

The first two plots are longitudinal sub-model diagnostics and the last two are marginal survival function and marginal cumulative hazard.

print

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

Examples

print

Print jmcs

Description

Print jmcs Print mvjmcs

Usage

S3 method for class 'jmcs'
print(x, digits = 4, ...)

S3 method for class 'mvjmcs'
print(x, digits = 4, ...)

Arguments

Х	Object of class 'mvjmcs'.
digits	the number of significant digits to use when printing.
	Further arguments passed to or from other methods.

Value

a summary of data, joint model, log likelihood, and parameter estimates. a summary of data, joint model, log likelihood, and parameter estimates.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

ranef

See Also

jmcs

mvjmcs

print.survfitjmcs Print survfitjmcs

Description

Print survfitjmcs

Usage

```
## S3 method for class 'survfitjmcs'
print(x, ...)
```

Arguments

х	x of class 'survfitjmcs'.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs, survfitjmcs

ranef

Random effects estimates for joint models

Description

Extracts the posterior mean of the random effects for a fitted joint model.

Usage

ranef(object, ...)

20

residuals

Arguments

object	an object inheriting from class jmcs or mvjmcs.
	further arguments passed to or from other methods.

Value

a matrix of random effects estimates.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs

Examples

head(ranef(fit))

residuals

Residuals for joint models

Description

Extract residuals for joint models.

Usage

```
## S3 method for class 'jmcs'
residuals(object, type = c("Marginal", "Subject"), ...)
```

Arguments

object	an object inheriting from class jmcs.
type	what type of residuals to calculate.
	further arguments passed to or from other methods.

Value

a vector of residuals of the longitudinal sub-model.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs

Examples

simmvJMdata

Joint modeling of multivariate longitudinal and competing risks data

Description

Data simulation from the joint model of multivariate longitudinal biomarkers and time-to-event data

```
simmvJMdata(
    seed = 100,
    N = 200,
    increment = 0.7,
    beta = list(beta1 = c(5, 1.5, 2, 1), beta2 = c(10, 1, 2, 1)),
    sigma = c(0.5, 0.5),
    gamma1 = c(1, 0.5),
    gamma2 = c(-0.5, 0.5),
    alpha1 = list(alpha11 = c(0.5, 0.7), alpha12 = c(-0.5, 0.5)),
    alpha2 = list(alpha21 = c(0.5, 0.7), alpha22 = c(-0.5, 0.5)),
    lambda1 = 0.05,
    lambda2 = 0.025,
    CL = 5,
```

simmvJMdata

```
CU = 10,
covb = diag(rep(1, 4)),
missprob = 0,
CR = TRUE
)
```

Arguments

seed	a random seed number specified for simulating a joint model dataset.
Ν	an integer to specify the sample size.
increment	a scalar to specify the increment of visit time for longitudinal measurements.
beta	a list of true parameters for the linear mixed effects sub-models. Each compo- nent of the list correspond to a specific biomarker.
sigma	a vector of true error variance for all biomarkers.
gamma1	a vector of true parameters of survival fixed effects for failure 1.
gamma2	a vector of true parameters of survival fixed effects for failure 2.
alpha1	a list of true parameters for the association parameters for failure 1. Each com- ponent of the list correspond to a specific biomarker.
alpha2	a list of true parameters for the association parameters for failure 2. Each com- ponent of the list correspond to a specific biomarker.
lambda1	the baseline hazard rate of failure 1. An exponential distribution with a rate parameter of lambda1 is assumed.
lambda2	the baseline hazard rate of failure 2. An exponential distribution with a rate parameter of lambda2 is assumed.
CL	a lower limit of a uniform distribution to be specified for the censoring time.
CU	an upper limit of a uniform distribution to be specified for the censoring time.
covb	a matrix of variance-covariance matrix of random effects.
missprob	a scalar (ranging from 0 to 1) to specify the probability of missing longitudinal observations. Default is 0.
CR	logical; if TRUE, simulate competing risks time-to-event data with 2 failures. Default is TRUE.

Value

a list of datasets for both longitudinal and survival data with the elements

mvydata	a long-format data frame of longitudinal data.
mvcdata	a dataframe of survival data.

summary

Description

Produce result summaries of a joint model fit. Produce result summaries of a joint model fit.

Usage

```
## S3 method for class 'jmcs'
summary(object, process = c("Longitudinal", "Event"), digits = 4, ...)
## S3 method for class 'mvjmcs'
summary(object, process = c("Longitudinal", "Event"), digits = 4, ...)
```

Arguments

object	an object inheriting from class mvjmcs.
process	for which model (i.e., longitudinal model or survival model) to extract the esti- mated coefficients.
digits	the number of significant digits to use when printing. Default is 4.
	further arguments passed to or from other methods.

Value

A table to summarize the model results. A table to summarize the model results.

See Also

jmcs mvjmcs

summary.AUCjmcs Print AUCjmcs

Description

Print AUCjmcs

Usage

S3 method for class 'AUCjmcs'
summary(object, digits = 4, ...)

object	object of class 'AUCjmcs'.
digits	number of digits of decimal to be printed.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs, survfitjmcs

summary.MAEQjmcs Print MAEQjmcs

Description

Print MAEQjmcs

Usage

S3 method for class 'MAEQjmcs'
summary(object, digits = 3, ...)

Arguments

object	object of class 'MAEQjmcs'.
digits	number of decimal points to be rounded.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs, survfitjmcs

summary.PEjmcs Print PEjmcs

Description

Print PEjmcs

Usage

S3 method for class 'PEjmcs'
summary(object, error = c("MAE", "Brier"), ...)

Arguments

object	object of class 'PEjmcs'.
error	a character string that specifies the loss function.
	Further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs, survfitjmcs

survfitjmcs

Prediction in Joint Models

Description

This function computes the conditional probability of surviving later times than the last observed time for which a longitudinal measurement was available.

survfitjmcs

Usage

```
survfitjmcs(
  object,
  seed = 100,
  ynewdata = NULL,
  cnewdata = NULL,
  u = NULL,
  Last.time = NULL,
  LOCF = FALSE,
  LOCFcovariate = NULL,
  clongdata = NULL,
  method = c("Laplace", "GH"),
  quadpoint = NULL,
  ...
)
```

Arguments

object	an object inheriting from class jmcs.
seed	a random seed number to proceed Monte Carlo simulation. Default is 100.
ynewdata	a data frame that contains the longitudinal and covariate information for the subjects for which prediction of survival probabilities is required.
cnewdata	a data frame that contains the survival and covariate information for the subjects for which prediction of survival probabilities is required.
u	a numeric vector of times for which prediction survival probabilities are to be computed.
Last.time	a numeric vector or character string. This specifies the known time at which each of the subjects in cnewdata was known to be alive. If NULL, then this is automatically taken as the survival time of each subject. If a numeric vector, then it is assumed to be greater than or equals to the last available longitudinal time point for each subject. If a character string, then it should be a variable in cnewdata.
obs.time	a character string of specifying a longitudinal time variable in ynewdata.
LOCF	a logical value to indicate whether the last-observation-carried-forward approach applies to prediction. If TRUE, then LOCFcovariate and clongdata must be specified to indicate which time-dependent survival covariates are included for dynamic prediction. Default is FALSE.
LOCFcovariate	a vector of string with time-dependent survival covariates if LOCF = TRUE. De- fault is NULL.
clongdata	a long format data frame where time-dependent survival covariates are incorpo- rated. Default is NULL.
method	a character string specifying the type of probability approximation; if Laplace, then a first order estimator is computed. If GH, then the standard Gauss-Hermite quadrature is used instead.

quadpoint	number of quadrature points used for estimating conditional probabilities when
	method = "GH". Default is NULL. If method = "GH", then use the same amount
	of quadrature points obtained from object.
	further arguments passed to or from other methods.

Value

a list of matrices with conditional probabilities for subjects.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs

vcov	Variance-covariance matrix of the estimated parameters for joint mod-
	els

Description

Extract variance-covariance matrix for joint models.

Usage

S3 method for class 'jmcs'
vcov(object, ...)

Arguments

object	an object inheriting from class jmcs.
	further arguments passed to or from other methods.

Value

a matrix of variance covariance of all parameter estimates.

Author(s)

Shanpeng Li <lishanpeng0913@ucla.edu>

See Also

jmcs

ydata

Description

The ydata data frame has 3067 rows and 6 columns.

Usage

data(ydata)

Format

This data frame contains the following columns:

ID patient identifier.

response response variable.

time visit time.

x1 treatment indicator. 0 denotes the placebo group and 1 the treatment group.

gender gender indicator.

race race indicator.

Index

* datasets cdata, 5 mvcdata, 13 mvydata, 16 ydata, 29 anova, 2 AUCjmcs, 3cdata, 5 fitted, 5 fitted.jmcs, 10 fixef, 6, 10 jmcs, 3, 5, 7, 12, 18, 20-22, 24-26, 28 MAEQjmcs, 11 mvcdata, 13 mvjmcs, 13, 20, 24 mvydata, 16 PEjmcs, 17 plot.jmcs, *10*, 18 print, 19 print.survfitjmcs, 20 ranef, *10*, 20 residuals, 21 residuals.jmcs,10 simmvJMdata, 22summary, 24 summary.AUCjmcs, 24summary.MAEQjmcs, 25 summary.PEjmcs, 26 survfitjmcs, 5, 10, 12, 18, 20, 25, 26, 26 vcov, 28 vcov.jmcs, 10

ydata, <mark>29</mark>