
Using EvolutionaryGames (pdf Version)

Jochen Staudacher, Daniel Gebele
(Hochschule Kempten)

Contact: jochen.staudacher@hs-kempten.de

2022-08-29

Abstract

This document gives a few use cases for the EvolutionaryGames package. EvolutionaryGames pro-
vides basic concepts of evolutionary game theory, like e.g. finding evolutionary stable strategies and
computing and drawing evolutionarily stable sets as well as phase diagrams for various evolutionary
dynamics for single-population games with two, three and four different phenotypes.

Keywords: Evolutionary game theory, evolutionary stable strategies, evolutionarily stable sets,
evolutionary game dynamics.

Motivation

The field of evolutionary game theory is concerned with interactions among large populations of strategically
interacting agents. These agents may adapt their behaviour according to current payoff opportunities.
Evolutionary game theory originates from biology (J. M. Smith and Price 1973), but nowadays has become
an established tool in other disciplines, in particular in economics (see e.g. (Sandholm 2010)) and computer
science (see e.g. (Suri 2007)).

The purpose of our package EvolutionaryGames is to enhance the R ecosystem by tools to plot and present
evolutionary game dynamics in a both informative and attractive way. One similar tool in the public domain
is William Sandholm’s package dynamo (Franchetti and Sandholm 2013) written in Mathematica. Dynamo
(Franchetti and Sandholm 2013) frequently served as an inspiration for our implementation. Still, even
though dynamo (Franchetti and Sandholm 2013) itself is free, Mathematica is proprietary software and it
is nowhere near as widely used as R. Also, the package structures in R and the widespread availability of
packages via CRAN make it much easier for the user to employ parts of our package EvolutionaryGames in
his or her own software.

The following very brief presentation of concepts in evolutionary game theory and how EvolutionaryGames
addresses them mainly follows the two books by Weibull (Weibull 1997) and Sandholm (Sandholm 2010).
Furthermore, our vignette provides detailed references to the respective original articles. Our point is to show
how various concepts from evolutionary game theory can be computed via the package EvolutionaryGames
and where to find the conceptual, technical and mathematical details. In other words, we would like to
stress that this little document is by no means intended to serve as an introduction to the fascinating field
of evolutionary game theory itself. Again, for the latter the reader is referred to the the two books by
Weibull (Weibull 1997) and Sandholm (Sandholm 2010). For an in-depth mathematical discussion we also
recommend the book by Hofbauer and Sigmund (Hofbauer and Sigmund 1998).

The package EvolutionaryGames focusses on single-population games with two, three or four phenotypes.
(The first author hopes to address multi-population games in a separate package based on EvolutionaryGames
in the future.) For single-population games we regard EvolutionaryGames as a powerful and attractive
alternative to William Sandholm’s Mathematica package dynamo (Franchetti and Sandholm 2013).

1

mailto:jochen.staudacher@hs-kempten.de

Computing Evolutionary Stable Strategies (ESS)

The concept of evolutionary stable strategies (ESS) was first proposed by Maynard Smith and Price in (J.
M. Smith and Price 1973). An incumbent strategy x is said to be evolutionary stable if

• it is either a unique best reply to itself or

• in case there exists an alternative best reply y to x, then x is a better reply to this mutant strategy y
than y is to itself.

If x is a strict Nash equilibrium, then x must also be an ESS.
Using our package EvolutionaryGames one can compute ESS for both 2 x 2 and 3 x 3 symmetric matrix
games. The function ESS.R receives three input arguments:

• A : A matrix specifying the symmetric game
• strategies: A vector of strings of length 2 or 3 specifying the names of all strategies
• floats: A logical value that handles number representation. If floats is set to TRUE (default), a

floating-point number will be used for the output, otherwise the output will be specified as fractions.

Let us first take a look at a classical Hawk-Dove game.

library(EvolutionaryGames)
ESS(matrix(c(-1, 4, 0, 2), 2, byrow=TRUE), c("Hawk", "Dove"))

Hawk Dove
[1,] 0.6666667 0.3333333

ESS(matrix(c(-1, 4, 0, 2), 2, byrow=TRUE), c("Hawk", "Dove"), FALSE)

Hawk Dove
[1,] 2/3 1/3

It is well known that there are games which do not possess an ESS. A classical example is the game Rock-
Scissors-Paper. In such a case our function ESS.R will return NULL.

library(EvolutionaryGames)
(A <- matrix(c(1, 2, 0, 0, 1, 2, 2, 0, 1), 3, byrow=T))

[,1] [,2] [,3]
[1,] 1 2 0
[2,] 0 1 2
[3,] 2 0 1

ESS(A, c("Rock", "Scissors", "Paper"))

NULL

2

Computing and drawing evolutionarily stable sets

The concept of evolutionarily stable sets was first discussed by B. Thomas in (Thomas 1985). A very readable
introduction can also be found in the book by Weibull (Weibull 1997), section 2.4.1.
An evolutionarily stable set is a nonempty closed set of symmetric Nash equilibrium strategies X such that
each strategy x ∈ X earns at least the same payoff against any nearby alternative best reply y as y earns
against itself with equal payoffs limited to the case y ∈ X. Note that any evolutionary stable strategy
(ESS) constitutes an evolutionarily stable set and that the union of evolutionarily stable sets is again an
evolutionarily stable set. See the book by Weibull (Weibull 1997), section 2.4.1, for further details.
Evolutionarily stable sets are not easy to compute and to plot. The package EvolutionaryGames computes
evolutionarily stable sets of a game with two players and three strategies in the case that the game has an
evolutionary stable strategy (ESS). If the two player three strategy game has no ESS, then the code returns
a message stating that our algorithm cannot calculate evolutionarily stable sets for models that do not have
a proper ESS. The authors are very well aware that there are games having evolutionarily stable sets but no
proper ESS. Still, as our package is not devoted to finding all symmetric Nash equilibria of a game and as
there currently is no package for this task on CRAN, we decided only to handle the case of games with two
players and three strategies possessing at least one proper ESS. Within our algorithm, we need a proper ESS
as a starting point for our computations. The authors feel that the possibility of computing and drawing
evolutionarily stable sets in such cases is precious for teaching (and research) purposes. However, note that
computing and drawing evolutionarily stable sets is time consuming and is clearly the most elaborate task
currently performed by the package EvolutionaryGames. Finally, here is an example of an evolutionarily
stable set together with a plot including sample trajectories (– the example itself is taken from the book
(Broom and Rychtár 2013), p. 52):

library(EvolutionaryGames)
A <- matrix(c(-2, 5, 10/9, 0, 5/2, 10/9, -10/9, 35/9, 10/9), 3, byrow=TRUE)
strategies <- c("Hawk", "Dove", "Mixed ESS")
ESS(A, strategies)

Hawk Dove Mixed ESS
[1,] 0 0 1

ESset(A, strategies)

[,1] [,2] [,3]
[1,] 0.0000000 0.0000000 1
[2,] 0.5555556 0.4444444 0

3

Hawk

Dove Mixed ESS

The various evolutionary dynamics available in EvolutionaryGames

The basic game-theoretic model of biological natural selection is the replicator dynamic (Taylor and Jonker
1978). Still, various alternative dynamics have been proposed and investigated for different applications. Our
package currently focusses on continuous dynamics only. The following itemization states which evolutionary
dynamics are currently available in our package EvolutionaryGames:

• Replicator.R : The standard replicator dynamic (Taylor and Jonker 1978)
• BNN.R : The Brown-von Neumann-Nash dynamic (Brown and Neumann 1950)
• BR.R : The Best Reponse dynamic by Gilboa and Matsui (Gilboa and Matsui 1991)
• ILogit.R : The imitative Logit dynamic by Weibull (Weibull 1997). It requires the parameter eta.
• Logit.R : The Logit dynamic by Fudenberg and Levine (Fudenberg and Levine 1998). It requires the

parameter eta.
• MSReplicator.R : The Maynard-Smith dynamic (J. M. Smith 1982)
• Smith.R : The Smith dynamic (M. J. Smith 1984)

Drawing phase diagrams for two, three and four strategies

Two Strategies

Drawing phase diagrams for single-population games with two, three or four phenotypes with different
dynamics is the main feature of the package EvolutionaryGames. We start with a rather simple Hawk-Dove
game we studied before when analyzing for its ESS. Using phaseDiagram2S.R we obtain a phase diagram
for the population share of hawks invading a population of doves under the replicator dynamics.

4

library(EvolutionaryGames)
A <- matrix(c(-1, 4, 0, 2), 2, byrow=TRUE)
phaseDiagram2S(A, Replicator, strategies = c("Hawk", "Dove"))

0.0

0.1

0.2

0.00 0.25 0.50 0.75 1.00
population share of strategy Hawk

dx
/d

t

For similar phase diagrams, see e.g. the book by Peters (Peters 2015).

Three Strategies

In the phase diagrams for the three strategies the user may specify the following parameters for phaseDia-
gram3S.R:

• A: A Numeric matrix of size 3 x 3 representing the number of strategies of a symmetric matrix game.

• dynamic: A function representing an evolutionary dynamic.

• params: A numeric vector with additional parameters for the evolutionary dynamic, like e.g. in the
cases of the Logit or ILogit dynamics.

• trajectories: A numeric matrix of size m x 3. Each row represents the initial values for the
trajectory to be examined.

• contour: A logical value that handles contour diagram presentation. By default FALSE, a nicely
coloured contour plot will only be shown if the user sets contour = TRUE.

• vectorField: A logical value that handles vector field presentation. By default FALSE, a vector field
will only be shown if the user sets vectorField = TRUE.

• strategies: A vector of strings of length 3 specifying the names of all strategies. By default
strategies = c("1","2","3").

5

In the following we show three plots of the game Rock-Scissors-Paper under the Replicator dynamics with
the same initial state:

library(EvolutionaryGames)
A <- matrix(c(1, 2, 0, 0, 1, 2, 2, 0, 1), 3, byrow=T)
state <- matrix(c(0.7, 0.2, 0.1), 1, 3, byrow=TRUE)
RSP <- c("Rock", "Scissors", "Paper")
phaseDiagram3S(A, Replicator, NULL, state, FALSE, FALSE, strategies = RSP)

Rock

Scissors Paper

library(EvolutionaryGames)
A <- matrix(c(1, 2, 0, 0, 1, 2, 2, 0, 1), 3, byrow=T)
state <- matrix(c(0.7, 0.2, 0.1), 1, 3, byrow=TRUE)
RSP <- c("Rock", "Scissors", "Paper")
phaseDiagram3S(A, Replicator, NULL, state, TRUE, FALSE, strategies = RSP)

6

Rock

Scissors Paper

0.00

0.25

0.50

0.75

Velocity

library(EvolutionaryGames)
A <- matrix(c(1, 2, 0, 0, 1, 2, 2, 0, 1), 3, byrow=T)
state <- matrix(c(0.7, 0.2, 0.1), 1, 3, byrow=TRUE)
phaseDiagram3S(A, Replicator, NULL, state, TRUE, TRUE, strategies = RSP)

Rock

Scissors Paper

0.00

0.25

0.50

0.75

Velocity

7

Four strategies

Finally, there is also the function phaseDiagram4S.R for the case of a symmetric matrix game with four
strategies. Its parameters are rather similar to those of phaseDiagram3S.R except for the facts that
trajectory is a numeric vector of size 4 (rather than a matrix) and that there is no possibility to enable
contour plots or to plot vector fields. Instead, there is an additional logical value noRGL handling diagram
rotation. By default TRUE, the diagram will only be constructed using rgl and thus become rotatable if the
user specifies noRGL = FALSE. Finally, we present an example using the Smith dynamic.

library(EvolutionaryGames)
A <- matrix(c(5, -9, 6, 8, 20, 1, 2, -18, -14, 0, 2, 20, 13, 0, 4, -13), 4, 4, byrow=TRUE)
state <- c(0.6, 0.15, 0.1, 0.15)
phaseDiagram4S(A, Smith, NULL, state, noRGL=TRUE)

1

2

3 4

How to use our package and write your own dynamics

EvolutionaryGames offers you to create your own dynamics. In particular, it is easy to write your own
continuous dynamics. First of all, a dynamic is nothing other than a function that is passed as a parameter
to the corresponding function for creating phase diagrams. The following code fragment shows you the
minimum necessary structure of an arbitrary dynamic:

MyDynamic <- function (time, state, parameters) {

#...

return(list (dX))
}

8

Any dynamic requires the parameters time, state and parameters. While the parameter time is used
internally by deSolve to solve the initial value problem, the other two parameters state and parameters
are used to specify the desired dynamic and are available as numeric vectors. In this context, state stands
for the desired initial state under which the model is to be simulated and parameters contains further
parameters, such as the symmetric matrix specifying the game and, depending on the dynamic, noise levels
or similar parameters.

As can be seen in the example, the return value of a specified dynamic has to be a numerical list. Each
component represents the corresponding rate of change of a phenotype under the respective dynamic.

We now show how to implement a very well known dynamic, the replicator dynamics. Our function definition
is as follows:

Replicator <- function (time, state, parameters) {

#...

return(list (dX))
}

The above game and an initial value is passed as a parameter to a function for the generation of phase
diagrams and made retrievable within the dynamic. A small limitation, however, is that our matrix needs
to be converted into a vector due to certain constraints in our internal usage of the package deSolve. We
recommend that you first transfer this vector back into a matrix and maintain the original game. This can
be done as follows:

Replicator <- function (time, state, parameters) {
a <- parameters
states <- sqrt(length(a))
A <- matrix(a, states, byrow = TRUE)
A <- t(A) # original symmetric game

return(list (dX))
}

We now come to the actual part of the implementation. We first calculate the rate of change of each
phenotype depending on the other phenotypes. Immediately afterwards, we calculate the average fitness of
each phenotype and then set up the actual replicator dynamics:

Replicator <- function(time, state, parameters) {
a <- parameters
states <- sqrt(length(a))
A <- matrix(a, states, byrow = TRUE)
A <- t(A)

dX <- c()

for(i in 1:states) {
dX[i] <- sum(state * A[i,])

}

avgFitness <- sum(dX * state)

for(i in 1:states) {

9

dX[i] <- state[i] * (dX[i] - avgFitness)
}

return(list(dX))
}

Our dynamics is now applicable within the predefined functions for generating phase diagrams.

Packages used in EvolutionaryGames

We made use of various packages of the CRAN ecosystem. In particular, it was of paramount importance
not to write any differential equation solvers ourselves, but to make use of an established solver, instead.

deSolve

The R-package deSolve (Soetaert, Petzoldt, and Setzer 2010) has long been established as a powerful solver
for differential equations. In our context, deSolve is used to generate the data needed in order to visualize
the time evolution of a given game under a certain dynamic, i.e. we use it for obtaining the correct input
for the visualization of trajectories in our phase diagrams.

rgl

We use the package rgl (Adler, Murdoch, et al. 2014), i.e. the R interface to OpenGL, for the four strategies
case, because here the phase diagram represents a three-dimensional simplex. Our users have the possibility
to follow the development of a game under a given dynamic for all phenotypes by rotating the three-
dimensional simplex generated by rgl.

geometry

The R package geometry (Habel et al. 2015) helped us with the conversion from barycentric to cartesian
coordinates for drawing trajectories. Solving the initial value problem returns the rates of change of the
model, which have to be converted into cartesian coordinates before they can be drawn into the phase
diagram in order to finally form a trajectory.

Literature
Adler, Daniel, Duncan Murdoch, et al. 2014. Rgl: 3d Visualization Device System (OpenGL). https://

CRAN.R-project.org/package=rgl.
Broom, Mark, and Jan Rychtár. 2013. Game-Theoretical Models in Biology. CRC Press.
Brown, G. W., and J. von Neumann. 1950. “Solutions of Games by Differential Equations.” In Contributions

to the Theory of Games i, edited by Harold William Kuhn and Albert William Tucker, 73–79. Princeton
University Press.

Franchetti, Francisco, and William H. Sandholm. 2013. “An Introduction to Dynamo: Diagrams for Evolu-
tionary Game Dynamics.” Biological Theory 8 (2): 167–78.

Fudenberg, Drew, and David K. Levine. 1998. The Theory of Learning in Games. MIT Press.
Gilboa, Itzhak, and Akihiko Matsui. 1991. “Social Stability and Equilibrium”” 59: 859–67.
Habel, Kai, Raoul Grasman, Robert B. Gramacy, Andreas Stahel, and David C. Sterratt. 2015. Geometry:

Mesh Generation and Surface Tesselation. https://CRAN.R-project.org/package=geometry.
Hofbauer, J., and K. Sigmund. 1998. Evolutionary Games and Population Dynamics. Cambridge University

Press.

10

https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=geometry

Peters, H. 2015. Game Theory: A Multi-Leveled Approach. Springer.
Sandholm, William H. 2010. Population Games and Evolutionary Dynamics. MIT Press.
Smith, John Maynard. 1982. Evolution and the Theory of Games. Cambridge University Press.
Smith, John Maynard, and George R. Price. 1973. “The Logic of Animal Conflict.” Nature 246: 15–18.
Smith, Michael J. 1984. “The Stability of a Dynamic Model of Traffic Assignment–an Application of a

Method of Lyapunov” 18: 245–52.
Soetaert, Karline, Thomas Petzoldt, and R. Woodrow Setzer. 2010. “Solving Differential Equations in r:

Package deSolve.” Journal of Statistical Software 33 (9): 1–25. https://doi.org/10.18637/jss.v033.i09.
Suri, S. 2007. “Computational Evolutionary Game Theory.” In Algorithmic Game Theory, edited by N.

Nisan, T. Roughgarden, and E. Tardos, 717–36. Cambridge University Press.
Taylor, Peter D., and Leo B. Jonker. 1978. “Evolutionary Stable Strategies and Game Dynamics.” Mathe-

matical Biosciences 40 (1-2): 145–56.
Thomas, Bernhard. 1985. “On Evolutionarily Stable Sets.” Journal of Mathematical Biology 22: 105–15.
Weibull, Jörgen W. 1997. Evolutionary Game Theory. MIT Press.

11

https://doi.org/10.18637/jss.v033.i09

	Motivation
	Computing Evolutionary Stable Strategies (ESS)
	Computing and drawing evolutionarily stable sets
	The various evolutionary dynamics available in EvolutionaryGames
	Drawing phase diagrams for two, three and four strategies
	Two Strategies
	Three Strategies
	Four strategies

	How to use our package and write your own dynamics
	Packages used in EvolutionaryGames
	deSolve
	rgl
	geometry

	Literature

