Package ‘Ease’

January 20, 2025

Type Package

Title Simulating Explicit Population Genetics Models

Version 0.1.2

Author Ehouarn Le Faou <ehouarnlefaou@orange.fr> [aut, cre]
Maintainer Ehouarn Le Faou <ehouarnlefaou@orange.fr>

Description Implementation in a simple and efficient way of fully customisable population genet-
ics simulations,
considering multiple loci that have epistatic interactions. Specifically suited to the modelling of
multilocus nucleocytoplasmic systems (with both diploid and haploid loci), it is neverthe-
less possible
to simulate purely diploid (or purely haploid) genetic models.
Examples of models that can be simulated with Ease are numerous, for example models of ge-
netic
incompatibilities as presented by Marie-
Orleach et al. (2022) <doi:10.1101/2022.07.25.501356>.
Many others are conceivable, although few are actually explored, Ease having been developed
in particular to provide a solution so that these kinds of models can be simulated simply.

License MIT + file LICENSE

Encoding UTF-8

Imports methods, Repp (>= 1.0.7), ReppProgress (>= 0.1), stats
LinkingTo Rcpp, ReppProgress

RoxygenNote 7.2.1

Collate RcppExports.R ToolFunctions.R ModelFunctions.R GenomeClass.R
MutationMatrixClass.R SelectionClass.R PopulationClass.R
MetapopulationClass.R UserFunctions.R

Suggests rmarkdown, knitr, testthat (>= 3.0.0)
VignetteBuilder knitr
Config/testthat/edition 3
NeedsCompilation yes

Repository CRAN

Date/Publication 2022-11-07 14:40:08 UTC

https://doi.org/10.1101/2022.07.25.501356

2 Contents

Contents
alleleFreqMatGeneration L 3
areThereHomoz e 4
o7 1 4
check.genome 5
check.metapopulation 6
check.mutationMatriX e 6
check.population 7
check.selection e e e 7
extractAlleleComb 8
Genome-class e e e e 8
GENOLYPING « . . v v v v e e e e e e e e e e e e 9
getCustomOutput L e e e 10
getRecords L L e e 11
getResults e 11
haploCrossMatrix 12
haplotyping e 13
IDgenomeGenerationl e 13
IDgenotypeGenerationo e e e e 14
IDhaplotypeGeneration L e 15
initialize,Genome-method 15
initialize,Metapopulation-method Lo 16
initialize,MutationMatrix-method 17
initialize,Population-method L L L 17
initialize,Selection-method L 18
is.correct.transition.matrix oL L L e e 19
isdefaultmatrixo 20
is.probability.matrix e e e 20
isAffected e e 21
isHaploSelectFormula o 21
Listing e e 22
mMEioSiSMALIIX e e e e e e e e e e e 22
Metapopulation-class L 23
METAPOP_SIMULATION o s e e e e e 24
MULALION o ot o e 26
MutationMatrix-class L. e 27
mutMatFriendly 28
mutMatRates e e 28
outFunct L. e e 29
Population-class 30
print,Genome-method 31
print,Metapopulation-method L . 31
print, MutationMatrix-method 32
print,Population-method Lo 32
print,Selection-method L 33
recombinationMatrixX e e e e e 33

rowResultGen 34

alleleFreqMatGeneration 3

Index

selectFormIntoVect 35
selectInputTreatment L 35
Selection-Class e e e e 36
selection.form.treatment 37
SEtGENOME i e e e e e e e e e 37
setMetapopulation 38
setMutationMatrix e e e e e e e 40
setPopulation 41
setSelectNeutral e e e 43
setSelectOnGametes i e e e e e e e 45
setSelectOnGametesProd 46
setSelectOnInds e e 47
show,Genome-method 48
show,Metapopulation-method Lo 48
show,MutationMatrix-method 49
show,Population-method 49
show,Selection-method 50
simulate,Metapopulation-method 0oL oL 50
whichHomoz e 52

53

alleleFregMatGeneration

Generation of the matrix for calculating allelic frequencies

Description

Generates a matrix that allows to go from genotypic frequencies to allelic frequencies.

Usage

alleleFregMatGeneration(genomeObj)

Arguments

genomeObj a Genome object

Details

An allele frequency matrix is a matrix with rows equal to the number of genotypes and columns
equal to the number of alleles. By multiplying a row matrix of genotype frequencies we obtain a
row matrix of associated allele frequencies.

Value

A matrix for calculating allelic frequencies from genotypes frequencies.

4 catn
Author(s)

Ehouarn Le Faou

areThereHomoz Are there any allelic combinations including homozygosity

Description

Test if there are homozygotes in the specified allelic combinations of a selection formula
Usage

areThereHomoz (formula)
Arguments

formula a selection formula
Value

logical indicating if there are homozygotes
Author(s)

Ehouarn Le Faou

catn Concatenate, print and line break

Description

Object output in the same way as the function cat but adding a line break at the end.
Usage

catn(..., file = "", sep = " ", fill = FALSE, labels = NULL, append = FALSE)
Arguments

e see cat.

file see cat.

sep see cat.

fill see cat.

labels see cat.

append see cat.

check.genome

Details

See cat.

Value

None (invisible NULL).

Author(s)

Ehouarn Le Faou

check. genome The validity check for the Genome class

Description

The validity check for the Genome class

Usage

check.genome(object)

Arguments

object a Genome object

Value

A logical corresponding to whether the object is a correct Genome object.

Author(s)

Ehouarn Le Faou

6 check.mutationMatrix

check.metapopulation The validity check for the Metapopulation class

Description

The validity check for the Metapopulation class

Usage

check.metapopulation(object)

Arguments

object aMetapopulation object

Value

a boolean corresponding to whether the object is a correct Metapopulation object.

Author(s)

Ehouarn Le Faou

check.mutationMatrix The validity check associated with the MutationMatrix class

Description

The validity check associated with the MutationMatrix class

Usage

check.mutationMatrix(object)

Arguments

object an object of class MutationMatrix

Value

A logical corresponding to whether x is a correct MutationMatrix object.

Author(s)

Ehouarn Le Faou

check.population

check.population The validity check for the Population class

Description

The validity check for the Population class

Usage

check.population(object)

Arguments

object a Population object

Value

a boolean corresponding to whether the object is a correct Population object.

Author(s)

Ehouarn Le Faou

check.selection The validity check for the Selection class

Description

The validity check for the Selection class

Usage

check.selection(object)

Arguments

object Selection object

Value

A logical corresponding to whether the object is a correct Selection object.

Author(s)

Ehouarn Le Faou

8 Genome-class

extractAlleleComb Extract the allele combination

Description
Conversion of an allelic combination defined in a selection formula into the vector listing the alleles
present (alleles that must be in the homozygous state appear 2 times, 1 time for heterozygous).
Usage

extractAlleleComb(xVect)

Arguments

xVect allelic combination extracted from a selection formula.

Value

the list of alleles that must be present in the genotype to match the input allelic combination

Author(s)

Ehouarn Le Faou

Genome-class Genome class

Description

The Genome class allows to define all the characteristics of the genome which will be used as a
basis for the construction of transition matrices from one generation to another in simulations of the
model.

Details

A genome includes the list of all possible haplotypes and genotypes resulting from the combination
of the alleles defined in input. As the Ease package was originally built for population genetics
simulations including both diploid and haploid loci, it is necessary that both types of loci are defined.
Despite this, the user can define only diploid or only haploid loci if they wish. If no diploid locus
is defined, one is automatically generated with only one allele, thus not influencing the simulation.
The same applies if no haploid locus is defined.

Each locus is described by a vector of factors which are the names of the possible alleles at that
locus. All diploid (resp. haploid) loci thus defined are grouped in a list, called 1istDipLoci (resp.
listHapLoci). Therefore, a Genome class object has two lists of loci defined in this way, one for
diploid loci, one for haploid loci. The alleles and loci (diploid and haploid) must all have different
names so that no ambiguity can persist.

genotyping 9

If several are defined, the order of the diploid loci in the list is not trivial. The rates of two-to-
one combinations between them must indeed be defined by the vector recRate. For example,
if three diploid loci are defined, recRate must be of length 2, the first of its values defining the
recombination rate between the first and second loci, the second of its values the recombination rate
between the second and third loci. For example, if we want to define two groups of two loci that
are linked to each other but are on two different chromosomes, we can define a recRate =c(0.1,
0.5, 0.1). The first two loci are thus relatively linked (recombination rate of 0.1), as are the last
two loci. On the other hand, the recombination rate of 0.5 between the second and third loci ensures
that the two groups are independent.

Slots

listHapLoci a list of haploid loci
listDipLoci a list of diploid loci

recRate a two-by-two recombination rate vector
nbHL the number of haploid loci

nbDL the number of diploid loci

listlLoci the list of all loci

haplotypesHL haplotypes of haploid loci only
haplotypesDL haplotypes of diploid loci only
haplotypes haplotypes of all loci

alleles the vector of all the alleles
nbAlleles the number of alleles

nbHaplo the number of haplotypes
IDhaplotypes IDs of haplotypes

genotypes the list of genotypes

nbGeno the number of genotypes
IDgenotypes IDs of genotypes

IDgenome ID of the genome

Author(s)

Ehouarn Le Faou

genotyping Genotyping

Description

Generation of genotypes associated with a Genome object.

10 getCustomOutput

Usage

genotyping(genomeQbj)

Arguments

genomeObj a Genome object.

Details

The output genotypes are described as a list of three matrices. A genotype consists of two diploid
haplotypes (first two matrices) and one haploid haplotype (third matrix), which are read at the same
row number on all three matrices.

Value

A list of matrices describing genotypes in rows.

Author(s)

Ehouarn Le Faou

getCustomOutput Getting the custom output

Description

Getting the custom output

Usage

getCustomOutput (metapop)

Arguments

metapop a Metapopulation objects

Value

The list generated through the custom result function, if at least it was specified during the simula-
tion of the Metapopulation.

Author(s)

Ehouarn Le Faou

getRecords 11

getRecords Getting the simulation results

Description

Getting the simulation results

Usage

getRecords(metapop)
Arguments

metapop a Metapopulation objects
Value

A list where each item is associated with a simulation. Each of these elements consists of a list of
data.frames, one per population. These data.frames consist of the same columns as the results (see
getResults documentation), except that they do not include the stop conditions.

Author(s)

Ehouarn Le Faou

getResults Getting the simulation results

Description

Getting the simulation results

Usage

getResults(metapop)
Arguments

metapop a Metapopulation objects
Value

A data.frame where each line corresponds to a simulation. The results include : - the last generation
reached (the threshold or the generation that first verified at least one of the stopping conditions) -
the final population size - the genotype frequencies - allelic frequencies - the reason(s) for the stop
(either the threshold was reached, i.e. unstopped or the stop condition(s) that was (were) reached,
in the form of boolean values - Average fitness (individual, gamete production and gametic)

12 haploCrossMatrix

Author(s)

Ehouarn Le Faou

haploCrossMatrix Haplotype crossing matrix generation

Description

Generation of the haplotype crossing matrix associated to a Genome object.

Usage

haploCrossMatrix(genomeObj)

Arguments

genomeObj a Genome object

Details

A crossover matrix is a square matrix of size equal to the number of haplotypes. It describes for
each combination of two gametic haplotypes the genotype index resulting from their syngamy. In
the general case it is not a symmetrical matrix (it is if a single haploid locus with a single allele is
defined), because the transmission of haploid loci is only maternal, therefore non-symmetrical as
is the transmission of diploid loci. It is therefore necessary to enter the haplotype frequencies of
male gametes in the columns and the haplotype frequencies of female gametes in the rows during
the calculations (this is done in the simulations).

Value

An haplotype crossing matrix.

Author(s)

Ehouarn Le Faou

haplotyping 13

haplotyping Haplotyping

Description

Generation of haplotypes associated with a Genome object.

Usage
haplotyping(genomeObj)

Arguments

genomeObj a Genome object

Details

The generated haplotypes are output as a list of three enumeration in the form of matrices of alleles
(each row corresponding to an haplotype, each column to a locus). The first enumeration corre-
sponds to haplotypes considering only haploid loci, the second only diploid loci and the third all
loci (with two matrices, 1 for haploid loci, 1 for diploid loci).

Value

A list of matrices describing haplotypes in rows.

Author(s)

Ehouarn Le Faou

IDgenomeGeneration Genome identifier

Description
Generation of the input genome ID, i.e. the concatenation in string form of the names of the loci
and alleles constituting this genome.

Usage

IDgenomeGeneration(listlLoci, alleles)

Arguments

listlLoci the list of all loci

alleles the vector of all the alleles

14 IDgenotypeGeneration

Value

The genome ID as a character string.

Author(s)

Ehouarn Le Faou

IDgenotypeGeneration Genotype identifier

Description

Generation of the input genotype ID, i.e. the concatenation in string form of the names of the
alleles constituting these haplotypes (the two from the diploid genome and the one from the haploid
genome).

Usage

IDgenotypeGeneration(dll, dl2, hl = NULL)

Arguments
dl11 the first diploid haplotype as a character (or factors) vector.
dl2 the second diploid haplotype as a character (or factors) vector.
hl the haploid haplotype as a character (or factors) vector.

Value

The genotype ID as a character string.

Author(s)

Ehouarn Le Faou

IDhaplotypeGeneration 15

IDhaplotypeGeneration Haplotype identifier

Description
Generation of the input haplotype ID, i.e. the concatenation in string form of the names of the
alleles constituting this haplotype.

Usage

IDhaplotypeGeneration(dl, hl)

Arguments
dl the diploid haplotype as a character (or factors) vector.
hl the haploid haplotype as a character (or factors) vector.
Value

The haplotype ID as a character string.

Author(s)

Ehouarn Le Faou

initialize,Genome-method
Initialize method for the Genome class

Description

Initialize method for the Genome class

Usage

S4 method for signature 'Genome'
initialize(.Object, listHapLoci, listDipLoci, recRate)

Arguments

.Object a Genome object
listHapLoci a list of haploid loci
listDipLoci a list of diploid loci

recRate a two-by-two recombination rate vector

16 initialize, Metapopulation-method

Value

A Genome object

Author(s)

Ehouarn Le Faou

initialize,Metapopulation-method
Initialize method for the Metapopulation class

Description

Initialize method for the Metapopulation class

Usage

S4 method for signature 'Metapopulation'
initialize(.Object, populations, migMat)

Arguments
.Object a Metapopulation object
populations list of Population object(s)
migMat migration matrix

Value

a Metapopulation object

Author(s)

Ehouarn Le Faou

initialize, MutationMatrix-method 17

initialize,MutationMatrix-method
Initialize method for the MutationMatrix class

Description

Initialize method for the MutationMatrix class

Usage

S4 method for signature 'MutationMatrix'
initialize(.Object, genomeObj, mutHaplLoci, mutDipLoci)

Arguments
.Object aMutationMatrix object
genomeObj a Genome object
mutHapLoci a list of haploid locus by locus allelic mulation matrices.
mutDiplLoci a list of diploid locus by locus allelic mulation matrices.
Value

A MutationMatrix object

Author(s)

Ehouarn Le Faou

initialize,Population-method
Initialize method for the Population class

Description

Initialize method for the Population class

Usage

S4 method for signature 'Population'’
initialize(

.Object,

name,

size,

dioecy,

selfRate,

18 initialize,Selection-method

demography,
growthRate,
initGenoFreq,
genomeObj,
initPopSize,
selectionObj,
mutMatrixObj
)
Arguments
.Object a Population object
name the name of the population.
size the size of the population.
dioecy logical indicating whether the population is dioecious or not (hermaphrodite).
selfRate the selfing rate of the population
demography logical indicating whether the population has stochastic demography (this does
not include migration), i.e. non-constant size and potentially population growth
or decay, depending on the situation it is in.
growthRate growth rate of the population.

initGenoFreq A row matrix of the size of the genotype number describing the initial allele
frequencies common to all simulations

genomeObj a Genome object

initPopSize initial population size, knowing that if the demography is extinct, the initial
population size will automatically be set equal to the population size.

selectionObj a Selection object

mutMatrixObj aMutationMatrix object

Value

a Population object

Author(s)

Ehouarn Le Faou

initialize,Selection-method
Initialize method for the Selection class

Description

Initialize method for the Selection class

is.correct.transition.matrix

Usage

S4 method for signature 'Selection'
initialize(.Object, genomeObj)

Arguments
.Object a Selection object
genomeObj a Genome object
Value

A Selection object

Author(s)

Ehouarn Le Faou

19

is.correct.transition.matrix

Test if a matrix is a correct transition matrix

Description

Test if a matrix is a correct transition matrix

Usage

is.correct.transition.matrix(x, type, name)

type type of the matrice (mutation matrix ? recombination matrix ?)

Arguments

X a matrix.

name the name of the matrix.
Value

A logical corresponding to whether x is a correct transition matrix, i.e. a square matrix with dimen-

sions greater than 0 and whose rows sum to 1.

Author(s)

Ehouarn Le Faou

20 is.probability. matrix

is.default.matrix Test if a matrix is a default matrix

Description

Test if a matrix is a default matrix

Usage

is.default.matrix(x)

Arguments

X a matrix.

Value

A logical corresponding to whether x is a default matrix (matrix of dimension 0x0).

Author(s)

Ehouarn Le Faou

is.probability.matrix Test if a matrix is of probability

Description

Test if a matrix is of probability

Usage

is.probability.matrix(x)

Arguments

X a matrix.

Value

A logical corresponding to whether x is a probability matrix (sum of rows equal to 1).

Author(s)

Ehouarn Le Faou

isAffected 21

isAffected Is this haplo/geno-type affected ?

Description
Determination for a given genotype or haplotype whether it contains the allelic combination under
selection

Usage

isAffected(refDNAtype, selDNAtype)

Arguments
refDNAtype the reference allelic combination (that of a genotype or a haplotype
selDNAtype the selected allelic combination

Value

a logic indicating whether the reference genotype or haplotype is affected by the allelic combination
under selection

Author(s)

Ehouarn Le Faou

isHaploSelectFormula Are there any allelic combinations including homozygosity

Description

Test if there are homozygotes in the specified allelic combinations of a list of selection formulas

Usage

isHaploSelectFormula(selectFormula)

Arguments

selectFormula a list of selection formula

Value

logical indicating if there are homozygotes

22 meiosisMatrix

listing Listing for display

Description

Listing from the elements of a vector by producing a string, with comma separation between each
element and the word "and" between the last two elements.

Usage

listing(vect)

Arguments

vect a vector of any class.

Value

A listing of the elements of the input vector as a string.

Author(s)

Ehouarn Le Faou

meiosisMatrix Meiosis matrix generation

Description

Generation of the meiosis matrix associated to a Genome object.

Usage

meiosisMatrix(genomeObj)

Arguments

genomeObj a Genome object

Details

A meiosis matrix is a matrix where the number of rows is equal to the number of genotypes and
the number of columns to the number of haplotypes. It is a matrix that allows to pass from parental
genotypes to gametic haplotypes by meiosis. It is a probability matrix in that the sum of the values
in each row is equal to 1. For a given genotype, the row associated with it describes the probabilistic
proportions that lead by meiosis to the production of the other genotypes (and of itself if there are
no mutations).

Metapopulation-class 23

Value

A meiosis matrix (probability matrix that associates to each genotype in a row the probability of
producing each of the possible haplotypes).

Author(s)

Ehouarn Le Faou

Metapopulation-class Metapopulation

Description

The class Metapopulation is used to centralise the information relating to the populations that we
want to simulate, as well as to define the migration conditions between them if there are several.
This class is thus defined by a list of objects Population and a migration matrix.

Slots

populations list of objects Population

nbPop number of populations

names names of the populations

migMat migration matrix between population (if there is more than one)
sizes sizes of the populations

dioecies sexual systems of the populations (they must all be the same)
selfRates selfing rates of the populations

demographies demography parameter of the populations

growthRates growth rates of the populations

initPopSizes initial population sizes of the populations
initGenoFregs initial genotypic frequencies of the populations
genome a Genome object

genomeIDs ID of the Genome object

mutMat aMutationMatrix object

selection a Selection object

recMat recombination matrix

meiosisMat a meiosis matrix

haploCrossMat an haplotype crossing matrix

haploCrossMatNamed an haplotype crossing matrix with names of genotypes instead of their in-
dices

gametogenesisMat a gametogenesis matrix

24

METAPOP_SIMULATION

alleleFregMat a matrix for calculating allelic frequencies

rawOutputSimul raw output of the simulation function, its refinement is done directly afterwards

in the simulate method

the user.

results data.frame.
records list.

customOutput list.

Author(s)

Ehouarn Le Faou

stopCondition list of stop conditions for the simulation (if required)

IDstopCondition names of stop conditions. They are given an arbitrary name if none is given by

METAPOP_SIMULATION

Simulation of a metapopulation

Description

Usage

METAPOP_SIMULATION(

nbPop,

ids,

migMat,

nsim,
verbose,
recording,
recordGenGap,
drift,
nbHaplo,
nbGeno,
idGeno,
nbAlleles,
idAlleles,
nbLoci,
initGenoFreq,
meiosisMat,
gametogenesisMat,
popSize,
threshold,
dioecy,
selfRate,

Simulation of a metapopulation

METAPOP_SIMULATION

stopCondition,
IDstopCondition,
haploCrossMat,
alleleFregMat,
gamFit,
indFit,
gamProdFit,
demography,
growthRate,
initPopSize,
nameOutFunct
)
Arguments
nbPop number of populations in the metapopulation
ids population IDs
migMat migration matrix
nsim number of simulations
verbose
not (useful in case of many simulations)
recording
genotypic frequencies along the simulations
recordGenGap
last generation will be included in the record
drift
deterministic simulations are performed or not)
nbHaplo number of haplotypes
nbGeno number of genotypes
idGeno genotypes ID
nbAlleles number of alleles for each loci
idAlleles alleles ID
nbLoci number of loci
initGenoFreq
meiosisMat meiosis matrix
gametogenesisMat
gametogenesis matrix
popSize list population sizes
threshold threshold for simulations
dioecy
selfRate

25

boolean determining if the progress of the simulations should be displayed or

a boolean indicating whether to record all mutations, i.e. to record allelic and

the number of generations between two records during simulation, if the record
parameter is TRUE. Whatever the value of this parameter, both the first and the

a boolean indicating whether genetic drift should be considered (i.e. whether

list of initial genotype frequencies in the populations

whether the population(s) is dioecious or not (hermaphrodism)

list of the selfing rate in populations (only for hermaphroditic population)

26 mutation

stopCondition list of stop conditions
IDstopCondition
vector of stop condition ID

haploCrossMat haplotypes crossing matrix

alleleFregMat matrix for calculating allelic frequencies

gamFit fitness of gametes

indFit fitness of individuals
gamProdFit fitness for gamete production
demography list of population demographies
growthRate list of population growth rates
initPopSize list of initial population

nameOutFunct name of the custom output function

Author(s)

Ehouarn Le Faou

mutation Definition of a mutation

Description

Utility function to easily generate a mutation matrix (see setMutationMatrix).

Usage

mutation(from, to, rate)

Arguments

from name of the original allele

to name of the mutant allele

rate rate at which the mutation occurs
Details

Mutation occurs from one allele to another at a specific rate. Please take care to define alleles as
traits, that these alleles are present in the genome you are using and that the alleles are associated
with the same locus.

Value

A standardised list of input parameters that will be used by the function setMutationMatrix to gen-
erate the mutation matrix.

MutationMatrix-class 27

Examples

Example with two loci, each with two alleles #i##

Definition of the genome

DL <- list(dl = c("A", "a"))

HL <- list(hl = c("B", "b"))

genomeObj <- setGenome(listHapLoci = HL, listDipLoci = DL)

The mutation function allows each transition from one allele to
another to be defined individually, to produce the mutation matrix
as follows:
mutMatrixObj <- setMutationMatrix(genomeObj,
mutations = list(
mutation(from = "A", to = "a", rate = 0.1),
mutation(from = "B”, to = "b", rate = 0.1)
)
)

MutationMatrix-class Mutation matrix

Description

A mutation matrix is used to simulate mutations that affect loci. An object of the class MutationMatrix
does not only contain a (haplotypic) mutation matrix. It also contains the attributes necessary for
the construction and easy-to-read display of this matrix.

Details

The mutation matrix itself is a square matrix of size equal to the number of haplotypes. It is a
probability matrix in that the sum of the values in each row is equal to 1. For a given haplotype, the
row associated with it describes the probabilistic proportions that lead by mutation of this haplotype
to the production of the other haplotypes (and of itself if there are no mutations).

Slots

mutHapLoci a list of haploid locus by locus allelic mulation matrices.
mutDipLoci a list of diploid locus by locus allelic mulation matrices.
mutLoci a list concatenating mutHapLoci and mutDipLoci

nbA1DL a vector of the number(s) of alleles at each haploid locus
nbAlHL a vector of the number(s) of alleles at each diploid locus
mutationMatrix the haplotypic mutation matrix

nbHaplo the number of haplotypes

nbDL the number of diploid loci

nbHL the number of haploid loci

haplotypes the enumeration of haplotypes

IDgenome ID of the associated genome

28 mutMatRates

Author(s)

Ehouarn Le Faou

mutMatFriendly Individual mutation definition to allelic mutation matrices

Description
Translation of the list of individually defined mutations into allelic mutation matrices which are
then used to generate the genotypic mutation matrix.

Usage

mutMatFriendly(genomeObj, mutations)

Arguments

genomeObj a Genome object

mutations list of mutations defined individually with the function mutation
Value

A list of the two list of allelic mutation matrices, for haploid and diploid loci respectively.

Author(s)

Ehouarn Le Faou

mutMatRates Mutation matrix from rates

Description
Generation of a mutation matrix from the allele enumeration vector of a loci and the forward and
backward mutation rates.

Usage

mutMatRates(alleles, forwardMut, backwardMut)

Arguments
alleles allele enumeration vector of a locus
forwardMut forward mutation rate

backwardMut backward mutation rate

outFunct

Details

29

See MutationMatrix for more details on mutation matrices.

Value

An allelic mutation matrix (probability matrix which associates to each allele in a row the probabil-
ity of mutating or not to the other alleles of the locus in question).

Author(s)

Ehouarn Le Faou

outFunct

Custom output function

Description

Allow to produce a custom output for a simulation.

Usage

outFunct (pop)

Arguments

pop

Details

list of some characteristics of the population : - customOutput : list of all previ-
ous savings - gen : generation - freqGeno : list of genotypic frequency matrices
(matrix 1 x # genotypes). The list is constructed as follows: if the population
is hermaphroditic it has only one element "ind", if the population is dioecious it
has three elements, "female", "male" and "ind" which correspond respectively
to the genotypic frequencies of the females, the males and the average of the
two (assuming a sex ratio of 50:50). - freqHaplo : list of genotypic frequency
matrices (matrix 1 x # haplotypes). The list is constructed in the same way as
for genotypic frequencies (see above). - freqAlleles : list of allelic frequency
matrices (matrix 1 x # alleles). The list is constructed in the same way as for
genotypic frequencies (see above).

This function is called each generation in each population of a simulation and systematically returns
a list with the first element being a logic that indicates whether something should be saved. If so,
the second element of this list will be saved.

By default the save nothing function, but it can be changed by the user as an argument in the
simulate method of the Metapopulation class.

Author(s)

Ehouarn Le Faou

30 Population-class

Population-class Population

Description

The Population class allows for the collection of the parameters necessary to characterise a bio-
logical population. It is an essentially useful class in that no method associated with the population
class can simulate its dynamics. To do this, it is necessary to use the Metapopulation class, which
takes as input a list of populations (from one). The Population class is also used to check that each
of these parameters is compatible with each other.

Details

Thus to build an object of class Ease, it is necessary to have defined an object Genome, as well as
an object MutationMatrix and an object Selection (even if it is neutral, see setSelectNeutral).

Slots

name the name of the population.

size the size of the population.

dioecy logical indicating whether the population is dioecious or not (hermaphrodite).
selfRate the selfing rate of the population

demography logical indicating whether the population has stochastic demography (this does not in-
clude migration), i.e. non-constant size and potentially population growth or decay, depending
on the situation it is in.

growthRate growth rate of the population.

initGenoFreq A row matrix of the size of the genotype number describing the initial allele fre-
quencies common to all simulations

genome a Genome object

initPopSize initial population size, knowing that if the demography is extinct, the initial popula-
tion size will automatically be set equal to the population size.

selection a Selection object

mutMat aMutationMatrix object

Author(s)

Ehouarn Le Faou

print,Genome-method

31

print,Genome-method Print method for the Genome class

Description

Print method for the Genome class

Usage
S4 method for signature 'Genome'
print(x, ...)
Arguments
X a Genome object
Ignored.
Value

No return value, only a display.

Author(s)

Ehouarn Le Faou

print,Metapopulation-method
Print method for the Metapopulation class

Description

Print method for the Metapopulation class

Usage
S4 method for signature 'Metapopulation'
print(x, ...)
Arguments
X a Metapopulation object
Ignored.
Author(s)

Ehouarn Le Faou

32 print,Population-method

print,MutationMatrix-method
Print method for the MutationMatrix class

Description

Print method for the MutationMatrix class

Usage
S4 method for signature 'MutationMatrix'
print(x, ...)
Arguments
X aMutationMatrix object
there are no more parameters.
Value

No return value, only a display.

Author(s)

Ehouarn Le Faou

print,Population-method
Print method for the Population class

Description

Print method for the Population class

Usage
S4 method for signature 'Population’
print(x, ...)

Arguments
X a Population object

the other parameter is frame, which is a logic indicating whether the frame
surrounding the display of the population characteristics should be displayed or
not.

print,Selection-method

Author(s)

Ehouarn Le Faou

33

print,Selection-method
Print method for the Selection class

Description

Print method for the Selection class

Usage
S4 method for signature 'Selection'
print(x, ...)
Arguments
X a Selection object
there are no more parameters.
Value

No return value, only a display.

Author(s)

Ehouarn Le Faou

recombinationMatrix Recombination matrix generation

Description

Generation of the recombination matrix associated to a Genome object.

Usage

recombinationMatrix(genomeObj)

Arguments

genomeObj a Genome object

34 rowResultGen

Details

A recombination matrix is a square matrix of size equal to the number of genotypes. It is a prob-
ability matrix in that the sum of the values in each row is equal to 1. For a given genotype, the
row associated with it describes the probabilistic proportions that lead by recombination between
diploid loci to the production of the other genotypes (and of itself if there are no mutations).

Value

A recombination matrix (probability matrix which associates to each genotype in a row the proba-
bility of recombining or not and of becoming another genotype or remaining the same).

Author(s)

Ehouarn Le Faou

rowResultGen Processing a result (or record) list

Description

Processing a result (or record) list

Usage

rowResultGen(x)

Arguments

X list of result or record

Value
Merges the column names of the matrices making up the list with the names of the matrices, then
merges the matrices together.

Author(s)

Ehouarn Le Faou

selectFormlInto Vect 35

selectFormIntoVect Conversion of selection formulas

Description
Conversion of a list of selection formulas into a genotypic (or haplotypic) fitness vector associated
with a Genome object.

Usage

selectFormIntoVect(selectFormula, genomeObj, haplo = FALSE)

Arguments

selectFormula alist of selection formulas
genomeObj a Genome object

haplo logical indicating whether the selection should apply to haplotypes (in the case
of gametic selection for example)

Value

a vector of fitness values

Author(s)

Ehouarn Le Faou

selectInputTreatment Treatment of selection formulas

Description
Determines whether an entry for the selection is a list of selection formulas or just a vector. If it is
a list of formulas, turns them into a vector. If it is a vector, does nothing.

Usage
selectInputTreatment(selectInput, genomeObj, haplo = FALSE)

Arguments
selectInput a selection input
genomeObj a Genome object
haplo logical indicating whether the selection should apply to haplotypes (in the case

of gametic selection for example)

36 Selection-class

Value

a vector of fitness values

Author(s)

Ehouarn Le Faou

Selection-class Selection class

Description

Class used to generate objects that manage the selection in the simulations.

Details

An object of type Selection is an object which describes the set of fitnesses which will be taken
into account in the simulations. The selection according to these fitnesses can be applied at three
levels: at the level of the individual, at the level of the production of gametes and at the level of
the gametes themselves. Selection is therefore genotypic in the first two cases (each genotype is
associated with a fitness value) and haplotypic in the third (each haplotype is associated with a
fitness value).

Slots

genome a Genome object

IDhaplotypes IDs of haplotypes

IDgenotypes IDs of genotypes

IDgenome ID of the associated genome

nbHaplo the number of haplotypes

nbGeno the number of genotypes

gamFit the list of gametes’ fitness

indFit the list of individuals’ fitness

gamProdFit the list of gamete production fitness

sOnInds a logical indicating whether a selection on individuals has been configured by the user
sOnGams a logical indicating whether a selection on gametes has been configured by the user

sOnGamsProd a logical indicating whether a selection on gamete production has been configured
by the user

Author(s)

Ehouarn Le Faou

selection.form.treatment 37

selection.form.treatment
Treatment of a selection formula

Description

Conversion of the factors of a selection formula into the list of corresponding allelic combinations

Usage

selection.form.treatment(factors, genomeObj = NULL, checking = FALSE)

Arguments
factors formula factors (right-hand members)
genomeObj a Genome object for the test (see checking parameter)
checking logical indicating whether a test verifying the compatibility of input factors with
the genome
Value

A list of vectors enumerating the allelic combinations that correspond to the factors

Author(s)

Ehouarn Le Faou

setGenome Setting the genome

Description
Generation of a genome class object from the list of haploid loci and diploid loci. Each loci is
defined by a factor vector that enumerates its alleles.

Usage

setGenome(listHapLoci = list(), listDipLoci = list(), recRate = numeric())

Arguments

listHapLoci a list of haploid loci
listDipLoci a list of diploid loci

recRate a two-by-two recombination rate vector

38 setMetapopulation

Details

A genome includes the list of all possible haplotypes and genotypes resulting from the combination
of the alleles defined in input. As the Ease package was originally built for population genetics
simulations including both diploid and haploid loci, it is necessary that both types of loci are defined.
Despite this, the user can define only diploid or only haploid loci if they wish. If no diploid locus
is defined, one is automatically generated with only one allele, thus not influencing the simulation.
The same applies if no haploid locus is defined.

Each locus is described by a vector of factors which are the names of the possible alleles at that
locus. All diploid (resp. haploid) loci thus defined are grouped in a list, called 1istDipLoci (resp.
listHapLoci). Therefore, a Genome class object has two lists of loci defined in this way, one for
diploid loci, one for haploid loci. The alleles and loci (diploid and haploid) must all have different
names so that no ambiguity can persist.

If several are defined, the order of the diploid loci in the list is not trivial. The rates of two-to-
one combinations between them must indeed be defined by the vector recRate. For example,
if three diploid loci are defined, recRate must be of length 2, the first of its values defining the
recombination rate between the first and second loci, the second of its values the recombination rate
between the second and third loci. For example, if we want to define two groups of two loci that
are linked to each other but are on two different chromosomes, we can define a recRate =c(0.1,
0.5, 0.1). The first two loci are thus relatively linked (recombination rate of 0.1), as are the last
two loci. On the other hand, the recombination rate of 0.5 between the second and third loci ensures
that the two groups are independent.

Value

a Genome object

Author(s)

Ehouarn Le Faou

Examples

DL <- list(dl = c("A", "a"))
HL <- list(hl = c("B", "b"))
genomeObj <- setGenome(listHapLoci = HL, listDipLoci = DL)

setMetapopulation Setting a metapopulation

Description

A metapopulation is a set of population(s) (from 1) that are simulated with potential migration
between them. Only genotypes can migrate, i.e. adult individuals.

setMetapopulation 39

Usage

setMetapopulation(populations, migMat = matrix(1))

Arguments
populations a list of Population objects
migMat a migration matrix

Details

The construction of a Metapopulation object requires only two arguments (one optional). The first
is a population(s) list, defined from the population class. The second is a migration matrix, which
connects the populations together. This matrix is a probability matrix (square with the sum of the
rows equal to 1, whose size is equal to the number of populations) where each value corresponds to
the proportion of individuals (genotypes) that disperse from their source population (row) to their
target population (column).

Value

a Metapopulation object

Author(s)

Ehouarn Le Faou

Examples

Definition of a population in its simplest form:
DL <- list(dl = c("A", "a"))
HL <- list(hl = c("B", "b"))
mutations <- list(
mutation(from = "A", to = "a", rate = le-3),
mutation(from = "B", to = "b", rate = 1e-3)
)
genomeObj <- setGenome(listHapLoci = HL, listDipLoci = DL)
pop <- setPopulation(
name = "A",
size = 1000,
dioecy = TRUE,
genomeObj = genomeObj,
selectionObj = setSelectNeutral(genomeObj),
mutMatrixObj = setMutationMatrix(genomeObj, mutations = mutations)
)
metapop <- setMetapopulation(populations = list(pop))
metapop <- simulate(metapop, nsim = 10, seed = 123)
Other examples available in the documentation of the package

40 setMutationMatrix

setMutationMatrix Setting the mutation matrix

Description

Generation of the mutation matrix associated with the genome given as input. A mutation matrix is
used to simulate mutations that affect loci. An object of the class MutationMatrix does not only
contain a (genotypic) mutation matrix. It also contains the attributes necessary for the construction
and easy-to-read display of this matrix. The mutation matrix itself is a square matrix of size equal
to the number of genotypes. It is a probability matrix in that the sum of the values in each row is
equal to 1. For a given genotype, the row associated with it describes the probabilistic proportions
that lead by mutation of this genotype to the production of the other genotypes (and of itself if there
are no mutations).

Usage
setMutationMatrix(genomeObj, ...)
Arguments
genomeObj a Genome object
see details.
Details

There are three ways to define the mutation matrix associated with a Genome class object.

1) By giving two lists of allelic mutation matrices mutHapLoci and mutDipLoci, for haploid and
diploid loci respectively. Each of these lists contains as many matrices as there are loci. These
matrices are transition matrices (squares, with the sum of the rows equal to 1) of size equal to the
number of alleles at the locus concerned.

2) By giving a forward and a backward allelic mutation rate (forwardMut and backwardMut re-
spectively). The generated mutation matrices will thus be defined with the same rates for all loci.
A forward mutation rate means that the transition from one allele to another is done in the order in
which they were defined when the Genome class object was created, and in the other direction for
the backward rate.

3) By giving a list of mutations generated through the mutation function.

Value

aMutationMatrix object

Author(s)

Ehouarn Le Faou

setPopulation 41

Examples

Example with two loci, each with two alleles #i#

Definition of the genome

DL <- list(dl = c("A", "a"))

HL <- list(hl = c("B", "b"))

genomeObj <- setGenome(listHapLoci = HL, listDipLoci = DL)

Three ways to define the same mutation matrix associated with the
genome defined above:

1) Mutation matrix from matrices
mutHaplLoci <- list(matrix(c(@.99, 0.01, .01, 0.99), 2))
mutDipLoci <- list(matrix(c(@.99, 0.01, 0.01, 0.99), 2))
One can then define the MutationMatrix class object:
setMutationMatrix(genomeObj,

mutHapLoci = mutHaploci,

mutDipLoci = mutDipLoci

)

2) Mutation matrix from mutation rates
mutMatrixObj <- setMutationMatrix(genomeObj, forwardMut = 0.1)
or by adding a backward mutation rate:
mutMatrixObj <- setMutationMatrix(genomeObj,
forwardMut = 1e-3,
backwardMut = 1e-4

3) Mutation matrix from single mutation definition
mutMatrixObj <- setMutationMatrix(genomeObj,
mutations = list(

mutation(from = "A", to = "a", rate = 0.1),
mutation(from = "B”, to = "b", rate = 0.1)
)
)
setPopulation Setting a population
Description

Generation of a population by providing all the necessary ingredients for its definition, including a
genome, a mutation matrix and a selection regime.

Usage

setPopulation(
name,

42

setPopulation

size,

dioecy,

genomeObj,
mutMatrixObj,
selectionObj,
selfRate = 0,
demography = F,
growthRate = 0,
initPopSize = NULL,
initGenoFreq = NULL

Arguments

name the name of the population

size the population size

dioecy logical indicating whether the simulated population is dioecious or hermaphroditic
genomeObj a Genome object

mutMatrixObj aMutationMatrix object

selectionObj a Selection object

selfRate the selfing rate

demography a logic indicating whether the population should have a demography (stochas-
ticity in the number of individuals present in the population + logistic growth
with carrying capacity equal to the size parameter)

growthRate a Genome object

initPopSize the initial size of the population. It is necessarily equal to size if the population
has no demography.

initGenoFreq a vector of the size of the genotype number describing the initial allele frequen-
cies common to all simulations

Details

A population is defined strictly by a name, a size, a sexual system (dioecy or hermaphodite), and
the three objects defined previously: genome, mutation matrix and selection. In addition to that, it
is possible to define - a selfing rate (by default equal to 0) - a vector of initial genotypic frequencies
- a demography

Two demographic regimes are possible: no demography, i.e. a fixed population size, or demography,
i.e. a population where the size fluctuates stochastically. The boolean argument ‘demography* is
used to define whether there should be stochasticity. For a fixed population size, it is therefore
sufficient to define that ‘demography = FALSE* (default) and to set the desired population size with
the ‘popSize‘ parameter.

For a fluctuating demography, ‘demography‘ must be “TRUE‘ and three other parameters are then
needed: the initial population size (‘initPopSize®), the population growth rate (‘growthRate‘) and
the carrying capacity of the population (the population size, ‘popSize®).

It is also possible to avoid defining a population size altogether, by setting off the genetic drift
(“drift parameter). This will allow the model to be simulated deterministically.

setSelectNeutral

Value

a Population object

Author(s)

Ehouarn Le Faou

Examples

Definition of a population in its simplest form:
DL <- list(dl = c("A", "a"))
HL <- list(hl = c("B", "b"))
mutations <- list(
mutation(from = "A", to = "a", rate = le-3),
mutation(from = "B", to = "b", rate = le-3)
)
genomeObj <- setGenome(listHapLoci = HL, listDipLoci = DL)
pop <- setPopulation(
name = "A",
size = 1000,
dioecy = TRUE,
genomeObj = genomeObj,
selectionObj = setSelectNeutral(genomeObj),
mutMatrixObj = setMutationMatrix(genomeObj, mutations = mutations)

setSelectNeutral Setting the selection

Description

Generation of a neutral class Selection object. It can be used as a basis for adding selection layers
with the setSelectOnInds, setSelectOnGametes or setSelectOnGametesProd functions, or if

the model is neutral.

Usage

setSelectNeutral (genomeObj)

Arguments

genomeObj a Genome object

44 setSelectNeutral

Details

An object of type Selection is an object which describes the set of fitnesses which will be taken
into account in the simulations. The selection according to these fitnesses can be applied at three
levels: at the level of the individual, at the level of the production of gametes and at the level of
the gametes themselves. Selection is therefore genotypic in the first two cases (each genotype is
associated with a fitness value) and haplotypic in the third (each haplotype is associated with a
fitness value).

Value

a Selection object

Author(s)

Ehouarn Le Faou

Examples

Example with two loci, each with two alleles

Definition of the diploid locus

DL <- list(dl = c("A", "a"))

Definition of the haploid locus

HL <- list(hl = c("B", "b"))

Definition of the object of Genome class

genomeObj <- setGenome(listHapLoci = HL, listDipLoci = DL)
genomeObj

Exemple with more diploid loci
Definition of the diploid loci
DL <- list(
dl1 = c("A", "a"),
dl2 = c("B", "b")
dl3 = c("C", "c")
)
Definition of the haploid locus
HL <- list(hl = c("D", "d"))
Definition of the object of Genome class, with in addition the necessary
definition of recombination rates between loci:
genomeObj <- setGenome(
listHapLoci = HL, listDiplLoci = DL,
recRate = c(0.1, 0.5)

)

Here we have a 0.1 recombination rate between dl1 and dl2 and a 0.5
recombination rate between dl2 and dl3. It is as if dl1 and d12 were linked,
for example on the same chromosome, and that dl12 (and dl1 by consequence)
and d13 were independent, for example on different chromosomes.

Er T T N

genomeObj

setSelectOnGametes 45

setSelectOnGametes Setting the selection on gametes

Description

Generation of an object of the Selection class which defines a selection among the individu-
als either by adding this type of selection to an already existing SelectionObj object (parameter
selectionObj) or by creating one.

Usage

setSelectOnGametes(
genomeObj = NULL,
gamFit = c(),
femaleFit = c(),
maleFit = c(),
selectionObj = NULL

)

Arguments
genomeObj a Genome object
gamFit an haplotypic fitness vector for all individuals
femaleFit an haplotypic fitness vector for females only
maleFit an haplotypic fitness vector for males only

selectionObj a Selection object (in the case where the selection on individuals is overlaid
on an existing Selection object)

Value

a Selection object

Author(s)

Ehouarn Le Faou

Examples

DL <- list(dl = c("A", "a"))
HL <- list(hl = c("B", "b"))
genomeObj <- setGenome(listHapLoci = HL, listDipLoci = DL)
selectionObj <- setSelectOnGametes(
genomeObj = genomeObj,
gamFit = c(1, 1, 0.5, 0)
)

46 setSelectOnGametesProd

setSelectOnGametesProd
Setting the selection on gamete production

Description

Generation of an object of the Selection class which defines a selection on the gamete produc-
tion either by adding this type of selection to an already existing SelectionObj object (parameter
selectionObj) or by creating one.

Usage

setSelectOnGametesProd(
genomeObj = NULL,
indProdFit = c(),
femProdFit = c(),
maleProdFit = c(),
selectionObj = NULL

)

Arguments
genomeObj a Genome object
indProdFit a genotypic fitness vector for all individuals
femProdFit a genotypic fitness vector for females only
maleProdFit a genotypic fitness vector for males only

selectionObj a Selection object (in the case where the selection on individuals is overlaid
on an existing Selection object)

Value

a Selection object

Author(s)

Ehouarn Le Faou

Examples

DL <- list(dl = c("A", "a"))
HL <- list(hl = c("B", "b"))
genomeObj <- setGenome(listHapLoci = HL, listDipLoci = DL)
selectionObj <- setSelectOnGametesProd(
genomeObj = genomeObj,
indProdFit = c(1, 1, 1, 1, 0.5, @)
)

setSelectOnInds 47

setSelectOnInds Setting the selection on individuals

Description

Generation of an object of the Selection class which defines a selection among the individu-
als either by adding this type of selection to an already existing SelectionObj object (parameter
selectionObj) or by creating one.

Usage

setSelectOnInds(
genomeObj = NULL,
indFit = c(),
femaleFit = c(),
maleFit = c(),
selectionObj = NULL

)

Arguments
genomeObj a Genome object
indFit a genotypic fitness vector for all individuals (whether or not they are hermaphordite)
femaleFit a genotypic fitness vector for females only (only if the population is dioecious)
maleFit a genotypic fitness vector for males only (only if the population is dioecious)

selectionObj a Selection object (in the case where the selection on individuals is overlaid
on an existing Selection object)

Value

a Selection object

Author(s)

Ehouarn Le Faou

Examples

DL <- list(dl = c("A", "a"))
HL <- list(hl = c("B", "b"))
genomeObj <- setGenome(listHapLoci = HL, listDipLoci = DL)
selectionObj <- setSelectOnInds(
genomeObj = genomeObj,
indFit = c(1, 1, 1, 1, 0.5, @)
)

48

show,Metapopulation-method

show, Genome-method Show method for the Genome class

Description

Show method for the Genome class

Usage
S4 method for signature 'Genome'’
show(object)

Arguments

object a Genome object

Value

No return value, only a display.

Author(s)

Ehouarn Le Faou

show,Metapopulation-method

Show method for the Metapopulation class

Description

Show method for the Metapopulation class

Usage
S4 method for signature 'Metapopulation'
show(object)

Arguments

object a Metapopulation object

Author(s)

Ehouarn Le Faou

show, MutationMatrix-method

show,MutationMatrix-method
Show method for the MutationMatrix class

Description

Show method for the MutationMatrix class

Usage
S4 method for signature 'MutationMatrix'
show(object)

Arguments

object aMutationMatrix object

Value

No return value, only a display.

Author(s)

Ehouarn Le Faou

show, Population-method
Show method for the Population class

Description

Show method for the Population class

Usage
S4 method for signature 'Population'
show(object)

Arguments

object a Population object

Author(s)

Ehouarn Le Faou

50 simulate,Metapopulation-method

show, Selection-method Show method for the Selection class

Description

Show method for the Selection class

Usage
S4 method for signature 'Selection'
show(object)

Arguments

object a Selection object

Value

No return value, only a display.

Author(s)

Ehouarn Le Faou

simulate,Metapopulation-method
Simulate method for the Metapopulation class

Description

Performing simulations of an Metapopulation object. The returned object is the same Metapopula-
tion object completed with the results and records if they have been activated.

Usage

S4 method for signature 'Metapopulation'
simulate(
object,
nsim = 1,
seed = NULL,
threshold = 500,
includefreqGeno = TRUE,
recording = FALSE,
recordGenGap = 1,
drift = TRUE,
includeParams = TRUE,

simulate,Metapopulation-method 51

includeFitness = TRUE,
verbose = FALSE,
stopCondition = list(),

nameOutFunct = "outFunct”
)
Arguments
object a Metapopulation object
nsim the number of simulation to perform
seed the RNG seed to be fixed (allows exact reproduction of results)
threshold maximum duration of a simulation (in generations)
includefreqGeno
a logical indicating whether to include genotype frequencies in the results
recording a logical indicating whether to record all mutations, i.e. to record allelic and

genotypic frequencies along the simulations

recordGenGap the number of generations between two records during simulation, if the record
parameter is TRUE. Whatever the value of this parameter, both the first and the
last generation will be included in the record

drift a logical indicating whether genetic drift should be considered (i.e. whether
deterministic simulations are performed or not)

includeParams a logical indicating whether the parameters should be included in the result
data.frame (can be useful when compiling multiple result tables)

includeFitness a logical indicating whether the mean fitness should be included in the result
data.frame (can be useful when compiling multiple result tables)

verbose logical determining if the progress of the simulations should be displayed or not
(useful in case of many simulations)

stopCondition list of vectors that each describe the allele(s) that must be fixed to define a stop
condition. Each of these vectors will therefore be associated with a stop condi-
tion

nameOutFunct name of the custom output function. This function is called each generation in
each population of a simulation and systematically returns a list with the first
element being a logic that indicates whether something should be saved. If so,
the second element of this list will be saved.If the customOutFunct parameter is
null (default), there will be no custom output.

Value
An Metapopulation object from which we can now extract the results (or the records if recording

= TRUE) with the getResults and getRecords functions.

Author(s)

Ehouarn Le Faou

52 whichHomoz

whichHomoz Which alleles are homozygous in the input?

Description

Determine which alleles are at least once input as homozygous in the formula.

Usage

whichHomoz (formula)
Arguments

formula a selection formula
Value

the enumeration of alleles that appear at least once homozygous

Author(s)

Ehouarn Le Faou

Index

alleleFregMatGeneration, 3 mutation, 26, 28, 40

areThereHomoz, 4 MutationMatrix-class, 27
mutMatFriendly, 28

cat, 4,5 mutMatRates, 28

catn, 4

check.genome, 5 outFunct, 29

check.metapopulation, 6

check.mutationMatrix, 6 Population-class, 30

check . population, 7 print,Genome-method, 31

check.selection, 7 print,Metapopulation-method, 31
print,MutationMatrix-method, 32

extractAlleleComb, 8 print,Population-method, 32

print,Selection-method, 33
Genome-class, 8

genotyping, 9 recombinationMatrix, 33
getCustomOutput, 10 rowResultGen, 34
getRecords, 11
getResults, /1, 11 selectFormIntoVect, 35
selectInputTreatment, 35
haploCrossMatrix, 12 Selection-class, 36
haplotyping, 13 selection.form.treatment, 37
setGenome, 37
IDgenomeGeneration, 13 setMetapopulation, 38
IDgenotypeGeneration, 14 setMutationMatrix, 26, 40
IDhaplotypeGeneration, 15 setPopulation, 41
initialize, Genome-method, 15 setSelectNeutral, 30, 43
initialize,Metapopulation-method, 16 setSelectOnGametes, 45
initialize,MutationMatrix-method, 17 setSelectOnGametesProd, 46
initialize,Population-method, 17 setSelectOnInds, 47
initialize,Selection-method, 18 show, Genome-method, 48
is.correct.transition.matrix, 19 show,Metapopulation-method, 48
is.default.matrix, 20 show,MutationMatrix-method, 49
is.probability.matrix, 20 show, Population-method, 49
isAffected, 21 show, Selection-method, 50
isHaploSelectFormula, 21 simulate,Metapopulation-method, 50
listing, 22 whichHomoz, 52

meiosisMatrix, 22
METAPOP_SIMULATION, 24
Metapopulation-class, 23

53

	alleleFreqMatGeneration
	areThereHomoz
	catn
	check.genome
	check.metapopulation
	check.mutationMatrix
	check.population
	check.selection
	extractAlleleComb
	Genome-class
	genotyping
	getCustomOutput
	getRecords
	getResults
	haploCrossMatrix
	haplotyping
	IDgenomeGeneration
	IDgenotypeGeneration
	IDhaplotypeGeneration
	initialize,Genome-method
	initialize,Metapopulation-method
	initialize,MutationMatrix-method
	initialize,Population-method
	initialize,Selection-method
	is.correct.transition.matrix
	is.default.matrix
	is.probability.matrix
	isAffected
	isHaploSelectFormula
	listing
	meiosisMatrix
	Metapopulation-class
	METAPOP_SIMULATION
	mutation
	MutationMatrix-class
	mutMatFriendly
	mutMatRates
	outFunct
	Population-class
	print,Genome-method
	print,Metapopulation-method
	print,MutationMatrix-method
	print,Population-method
	print,Selection-method
	recombinationMatrix
	rowResultGen
	selectFormIntoVect
	selectInputTreatment
	Selection-class
	selection.form.treatment
	setGenome
	setMetapopulation
	setMutationMatrix
	setPopulation
	setSelectNeutral
	setSelectOnGametes
	setSelectOnGametesProd
	setSelectOnInds
	show,Genome-method
	show,Metapopulation-method
	show,MutationMatrix-method
	show,Population-method
	show,Selection-method
	simulate,Metapopulation-method
	whichHomoz
	Index

