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Abstract

Background and Objective: In binary classification problems with a rare class of

interest, there is relatively little information available for the rare class to build

a model. On the other hand, the number of useful variables to develop a model

for classification can be high-dimensional. For example, in drug discovery, there

are usually a very few bioactive compounds in a large chemical library, whereas

thousands of potentially useful explanatory variables characterize a compound’s

chemical structure. The sparsity of information for the rare class of interest

makes it difficult for the standard classification models to exploit the richness of

the useful explanatory variables. Thus, the objective of this paper is to develop

an R package which clusters the variables into diverse subsets to be aggregated

into a powerful ensemble for the detection of a rare class object.

Methods: The ensemble of phalanxes (EPX) builds a classifier by exploiting

the richness of feature variables using several diverse subsets of variables, called

phalanxes, to detect the rare class and outperforms the predictive ranking per-

formance of many competitive state-of-the-art classification methods.

Results: We present an R package EPX which implements the algorithm to form

the ensemble of phalanxes as well as its associated functions. We further show

how the ensemble of phalanxes can be constructed using parallel computing to
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lower the computational burden given high-dimensional data.

Conclusions: The R package EPX shows a flexible way of clustering feature

variable space into smaller and diverse subsets of variable to develop an ensemble

of phalanxes which better predicts a rare class object in a highly unbalanced two

class classification problem. The ensemble EPX will be useful to detect the rare

drug-like active biomolecules for development in drug discovery and homologous

proteins using similarity scores of amino acid sequences in protein homology.

The package EPX is freely available to download from CRAN (https://CRAN.

R-project.org/package=EPX).

Keywords: R package, EPX, Ensemble learning, Machine learning, Drug

discovery, Protein homology

1. Introduction

The ensemble of phalanxes (EPX) classifier is the result of the algorithm

proposed by Tomal et al. (2015, 2016, 2019) and motivated by the applications

in drug discovery and protein homology where the goal is statistical detection

of a rare class of objects (e.g., drug-like active biomolecules or homologous

proteins) in a two-class classification problem. The algorithm clusters the ex-

planatory variables (e.g., variables representing three dimensional structure of a

chemical compound in drug discovery or similarity scores of aligned amino acid

sequences in protein homology) into disjoint subsets called phalanxes such that

the phalanxes work well in the constituent models when aggregated together.

By “working well,” we mean by some measure of how highly the observations

belonging to the desired rare class are ranked via their estimated probabilities.

Variables in different phalanxes and hence models can contribute to the overall

ensemble without working against each other by way of deselection. Altogether

with the relatively low-dimensionality of each phalanx, it follows that datasets

with high-dimension can be exploited in the face of limited response informa-

tion. For more details of the methods and applications in drug discovery and

protein homology problems, please see Tomal et al. (2015, 2016, 2019).
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The EPX classifier’s better performance against the already competitive

random forest (RF; Breiman, 2001) in the areas of QSAR studies (Tomal et al.,

2015, 2016), protein homology (Tomal et al., 2019), and potential for application

in other problems with little information in the response variable relative to

the number of explanatory variables thus motivated the implementation of the

phalanx-formation algorithm in R (R Core Team, 2020) package EPX. The EPX

package is available from the Comprehensive R Archive Network (CRAN) at:

https://CRAN.R-project.org/package=EPX.

The rest of article is organised as follows. Section 2 presents the methods by

briefly introducing the performance assessment metrics and the phalanx forma-

tion algorithm. Section 3 describes the results from the EPX package starting

with the epx function, which trains an EPX classifier. The remainder of the sec-

tion describes an example from drug discovery and the main aspects of the other

functions in the package. Throughout, we follow this drug discovery example

and show how the package can be used for via summary, prediction, cross-

validation and parallel computing. Section 4 discusses on further capabilities

of the package in terms of ways to customise aspects of the algorithm via ad-

ditional base classifiers and performance measures. Finally, section 5 concludes

the article.

2. Methods

2.1. Performance measures

Consider a binary classification problem where the relevant class is extremely

rare and π̂(x) estimates the probability of relevance π(x) given the vector of fea-

tures x. In this highly unbalanced classification problem, building π̂ to minimise

the misclassification rate is not useful because this may often results in a triv-

ial classifier that classifies all objects as irrelevant. Instead, the average hit

rate (AHR) is considered as a better criterion for evaluating the performance of

classifiers for unbalanced classification problems (Chapter 3; Wang, 2005).
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The average hit rate summarises a classifier’s hit curve, which plots the

number of relevant objects against the number of total objects selected, where

object selection is based on their ranking according to π̂. Given n objects ranked

in descending order according to their estimated probabilities of relevance π̂, let

this ordered list of objects have the true response values y(1), y(2), ..., y(n), where

y(i) =





1, if the ith object is relevant

0, if the ith object is irrelevant,

and M =
∑n
i=1 y(i) is the total number of relevant objects. The AHR is hence

defined as

AHR =
1

M

n∑

i=1


y(i)

i∑

j=1

y(j)

i


. (1)

Note that AHR has a definition equivalent to that of average precision (APR)

and a classifier is judged as performing well when it ranks (i.e., detects) the truly

relevant objects more highly. Furthermore, when the π̂ values for all n objects

are not unique, we have objects with the same ranking. In such cases, we

assume that the objects with tied ranks are in random order, thus allowing the

calculation of the expected AHR in closed form (Chapter 3; Wang, 2005). The

AHR is bounded between 0 and 1 where larger values indicate better predictive

ranking.

While there are other performance measures to summarize a hit curve (fur-

ther details in section 4), there are several advantageous properties of AHR

detailed in (Chapter 3.4; Wang, 2005). Thus, AHR is the default performance

measure in the EPX package.

2.2. Phalanx-formation algorithm

The main idea of the phlanx formation algorithm (Tomal et al., 2015, 2016)

is that it groups the explanatory variables into disjoint subsets called phalanxes

such that the variables in each phalanx work better in terms of some perfor-
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mance measure together in a single model than in separate models, while also

accounting for the performance of the ensemble of the models. The steps of

phalanx-formation algorithm and subsequent construction of the ensemble of

phalanxes is summarised in Figure 1.
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Figure 1: Algorithm for phalanx-formation and subsequent construction of the ensemble of
the phalanxes. D variables are partitioned into d initial phalanxes, filtered to s phalanxes,
merged into m phalanxes, and then filtered again to p final phalanxes used for the final
ensemble (D ≥ d ≥ s ≥ m ≥ p).

Suppose we have a training data set with n observations (e.g., compounds

in a chemical library) and D explanatory variables (e.g., variables representing

three-dimensional structures of chemical compounds). The four steps of the

phalanx-formation algorithm are as follows:

1. Initial phalanxes. The D explanatory variables are partitioned into d

initial phalanxes where 1 < d ≤ D.
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2. Filtered phalanxes. The d initial phalanxes are filtered to s ≤ d filtered

phalanxes. Various comparisons are done between each phalanx and the

reference distribution of some assessment criterion a, such as AHR, under

random ranking. For the computation of the reference distribution see

Section 4 of Tomal et al. (2015). In summary,

• aα: The α quantile of the reference distribution of the assessment

criterion a. Default is α = 0.95.

• π̂i: The estimated probabilities of relevance from the classifier built

only with the variables in phalanx i.

• ai = a (π̂i): The performance measure of phalanx i found by passing

π̂i through the assessment criterion a.

• π̂ij : The estimated probabilities of relevance from the classifier built

with all the variables in phalanx i as well as those in phalanx j (i 6= j).

• aij = a (π̂ij): The performance measure of a phalanx that includes

all the variables in phalanxes i and j (i 6= j).

• aij = a
(
π̂i+π̂j

2

)
: The performance measure of an ensemble of two

models built with phalanxes i and j, respectively.

That is, phalanx i survives if it passes at least one of the following three

tests.

• Phalanx i performs well alone:

ai ≥ aα. (2)

• Phalanx i improves the performance of another phalanx j when the

two are used to build a single model:

a0.5 + (aij − aj) ≥ aα. (3)

• Phalanx i improves the performance of another phalanx j when the
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two are in an ensemble of two models:

a0.5 +
(
aij − aj

)
≥ aα. (4)

The surviving s phalanxes are renamed accordingly from 1 to s.

3. Merged phalanxes. The s filtered phalanxes are merged hierarchically

as follows: each iteration merges the pair of phalanxes i and j that min-

imises mij = aij/aij . When mij < 1, this means that phalanxes i and j

perform better in a single model than as an ensemble. Thus, each merge

reduces the number of phalanxes by one until mij ≥ 1 for all phalanxes i,

j. We are left with m ≤ s phalanxes.

4. Final phalanxes. The m phalanxes are filtered in a way that a phalanx

survives if it performs well alone as in condition (2), or if it performs well

in an ensemble with at least one other phalanx as in condition (4). Note

that condition (3) is automatically satisfied due to the merging done in

the previous step.

After obtaining the final p phalanxes, we construct the ensemble of phalanxes

by building a classifier for each of the phalanxes. Each classifier then produces

an n-length vector of estimated probabilities of relevance, resulting in p such

vectors: π̂1, π̂2, ..., π̂p. The final vector of probabilities for the n objects are the

result of averaging the p vectors of probabilities.

3. Results

3.1. The EPX package

Training an EPX model is done by the epx function, where x and y are the

explanatory variables contained in a data frame and the binary response variable

vector (1 is the rare or relevant class) respectively. The main parameters of the

epx are as follows:

• phalanxes.initial: designates the phalanx membership of each explana-

tory variable as a numeric vector. Defaults to one variable per phalanx.
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• classifier: indicates what models we fit for each phalanx for the model

as a string. Defaults to random forest.

• classifier.args: allows for some modification of the arguments for the

choice of classifier, such as the number of trees allowed per random forest.

Leaving an empty list means that the classifier will use its default settings.

• performance: indicates the choice of performance measure. Defaults to

AHR.

• computing: indicates whether to compute in parallel and requires the user

to register a parallel backend. Defaults to sequential computing, which

registers a sequential backend.

Other parameters in epx are detailed in the documentation and allow for

the tuning of the performance measure if appropriate, as well as some options

regarding the filtering steps. These additional parameters all have defaults so

we focus on the main arguments for the full example in this section.

3.2. An example from drug discovery

We demonstrate the EPX package via an example of QSAR modelling from

drug discovery, where the activity of a chemical compound is related to the

compound’s molecular structure. In this case an active compound is the desired

relevant, the rare class, and the compound’s molecular structure are charac-

terised by various descriptors. One such descriptor set of explanatory variables

are Burden numbers (BN) (Burden, 1989). The BN descriptor set is one of

multiple descriptor sets used in Tomal et al. (2015, 2016) and all its explana-

tory variables are continuous. Typically the data used to train an EPX model

are of a size where parallel computing should be done to complete the phalanx-

formation algorithm in a timely manner. This is because the computational

complexity of phalanx formation is O(d2), where d is the number of initial pha-

lanxes. For demonstration, we work with a training dataset of approximately

20% compounds randomly selected from the BN sample, which has 4946 com-

pounds. In our training sample (BNsample) of size 1000, only 10 are active
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compounds (y = 1) and the rest 990 are inactive compounds (y = 0). In our

test sample (BNhold) of size 3946, only 38 are active compounds and the rest

3908 are inactive compounds. The R codes in lines 1 − 3 below show how to

build an ensemble of phalanxes using the epx function.

1 set.seed(761)

2 model <- epx(x = BNsample[,-25], y = BNsample[,25], classifier.args =

3 list(ntree = 150))

The developed ensemble of phalanxes is saved in model object. Note that since

we use the default random forest as our base classifier, we set a seed for re-

producibility. To reduce the computational burden on model development, we

lowered the number of trees from the default 500 to 150. While the algorithm

is running we get the following indication of progress in the console:

4 Performance measure: AHR

5 Performance measure additional arguments: none

6 Base classifier: random forest

7 Base classifier arguments specified in phalanx-formation:

8 $ntree

9 [1] 150

10 Phalanx formation is in progress, please wait

11 Reference distribution quantiles:

12 a0.95 = 0.0322050977060676

13 a0.50 = 0.0125942193317316

14 Number of deleted phalanxes after first filtering: 9 out of 24

15 Number of deleted phalanxes after final filtering: 0 out of 4

Lines 4− 9 summarise the performance metric and classifier settings used in

the algorithm. Line 10 tells the user that the phalanx formation is in progress.

Lines 11−13 display the values of aα (α = 0.95 by default) and a0.5 respectively

as described in section 2.2. Finally, lines 14− 15 display the results of the two

filtering steps as each stage is completed (the second and fourth step in Figure 1).
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After about a minute, epx outputs an S3 object of class “epx”. We display the

structure of the fitted model using str(model) as following.

16 > str(model)

17 List of 8

18 $ PHALANXES :List of 4

19 ..$ phalanxes.initial : num [1:24] 1 2 3 4 5 6 7 8 9 10 ...

20 ..$ phalanxes.filtered: num [1:24] 1 2 3 0 4 5 6 7 8 0 ...

21 ..$ phalanxes.merged : num [1:24] 1 1 1 0 1 1 2 1 1 0 ...

22 ..$ phalanxes.final : num [1:24] 1 1 1 0 1 1 2 1 1 0 ...

23 $ PHALANXES.FINAL.PERFORMANCE: num [1:4] 0.0845 0.1022 0.0646 0.101

24 $ PHALANXES.FINAL.FITS : num [1:1000, 1:4] 0 0 0 0 0 0 0 0 0 0 ...

25 ..- attr(*, "dimnames")=List of 2

26 .. ..$ : NULL

27 .. ..$ : NULL

28 $ ENSEMBLED.FITS : num [1:1000] 0 0 0 0 0 ...

29 > # 4 more items omitted

An “epx” object is a list starting with information regarding the phalanx

membership of all the explanatory variables in all four steps of the phalanx-

formation algorithm (lines 19−22). Every distinct positive integer is the “name”

of a phalanx and so being assigned to 0 indicates that the variable does not

belong to any phalanx at all. To see the variables belonging to each of the four

steps of the phalanx-formation algorithm, use the following statement.

30 > model$PHALANXES

31 $phalanxes.initial

32 [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

33 $phalanxes.filtered

34 [1] 1 2 3 0 4 5 6 7 8 0 9 0 10 0 11 0 12 0 13 0 14 0 15 0

35 $phalanxes.merged

36 [1] 1 1 1 0 1 1 2 1 1 0 1 0 1 0 3 0 2 0 1 0 2 0 4 0

37 $phalanxes.final

38 [1] 1 1 1 0 1 1 2 1 1 0 1 0 1 0 3 0 2 0 1 0 2 0 4 0

In our example, we begin with the default initial phalanxes where each vari-
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able is in its own phalanx (line 32). After the filtering, explanatory variables

4, 10, 12, 14, 16, 18, 20, 22, 24 did not survive and are hence assigned 0 values

for the filtered phalanxes (line 34). Note that those variables that did survive

filtering are renumbered such that the maximum value in each vector is equal

to the total number of phalanxes. After merging (line 36), the 15 phalanxes

have been reduced to four merged phalanxes, and finally in the last step of the

algorithm (line 38), phalanxes 1, 2, 3, 4 survive final filtering, leaving a four final

phalanxes. Other items in an “epx” object include

• PHALANXES.FINAL.PERFORMANCE (line 23): the performance of each of the

final phalanxes according to the chosen performance measure.

• PHALANXES.FINAL.FITS (lines 24−27): the n×p (p is the number of final

phalanxes) matrix of estimated probabilities of relevance where the ith

column is the estimated probabilities from phalanx i, which matches the

matrix shown in Figure 1. Here, we have n = 1000 and p = 4.

• ENSEMBLED.FITS (line 28): an n-length vector of final estimated probabili-

ties, obtained by averaging across the columns of PHALANXES.FINAL.FITS.

This result is also shown in Figure 1 as rightmost column vector of the

average of π̂i’s.

The four omitted items in an “epx” object consist of the data used to train

the model, as well as information regarding base classifier and performance

measure choices, which are required for other functions in the package described

in the following sections.

3.3. Summary of results and plotting

Having fitted an EPX model, passing the resulting “epx” class object to the

summary function provides an easily legible summary of the results of phalanx-

formation along with the performance of each final phalanx (lines 39−59). The

first section (lines 40 − 42) shows the number of variables used in the data,

variables survived, and phalanxes produced. The second section (lines 44− 59)
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shows each of the survived phalanxes, the constituent variables within each

phalanx, and individual performances of the phalanxes.

39 > summary(model)

40 Phalanx-formation algorithm starts with 24 variable(s)

41 and ends with 15 variable(s) grouped into 4 phalanxes:

42 1 2 3 4

43 ------

44 Phalanx 1 contains 10 variable(s):

45 WBN_GC_L_0.25, WBN_GC_H_0.25, WBN_GC_L_0.50, WBN_GC_L_0.75, WBN_GC_H_0.75,

46 WBN_GC_H_1.00, WBN_EN_L_0.25, WBN_EN_L_0.50, WBN_EN_L_0.75, WBN_LP_L_0.50

47 => AHR is 0.08453896

48 ------

49 Phalanx 2 contains 3 variable(s):

50 WBN_GC_L_1.00, WBN_LP_L_0.25, WBN_LP_L_0.75

51 => AHR is 0.103273

52 ------

53 Phalanx 3 contains 1 variable(s):

54 WBN_EN_L_1.00

55 => AHR is 0.06456355

56 ------

57 Phalanx 4 contains 1 variable(s):

58 WBN_LP_L_1.00

59 => AHR is 0.1009757

Passing the “epx” object to the plot function generates a plot of the corre-

sponding hit curve as shown in Figure 2. The hit curve is a step-function which

increases by one step when one hit is found (plotted on the vertical axis). On

the other hand, the numbers of hits found may remain fixed for a while as the

number of shortlisted compounds grows (plotted on the horizontal axis). The

hit curve shows the ranking performance of the model depending on when we

cut-off the ranked list starting from the highest rank. A hit curve is superior

to another hit curve if all its points lie above those of the other. Note that

AHR is a numerical criterion (the larger the AHR, the better the ranking) that

summarises a hit curve and in Figure 2, we see that the hit curve reflects the
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Figure 2: The hit curve is generated by calling plot(model).

performance of the model fit by epx. We also provide a hit.curve function that

generates a hit curve in a given vector of predicted probabilities of relevance and

its corresponding true response vector.

3.4. Prediction

Passing an “epx” object to the predict function without providing data

for the newdata argument simply returns the ENSEMBLED.FITS element of the

object as demonstrated in lines 60− 67.

60 > preds0 <- predict(model)

61 Base classifier: random forest

62 Base classifier arguments specified in phalanx-formation:

63 $ntree

64 [1] 150

65 Base classifier arguments specified in prediction: none

66 > all.equal(preds0, model$ENSEMBLED.FITS)

67 [1] TRUE
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When we provide some additional arguments for the classifier, predict will

refit the classifiers for each phalanx as desired using the training data, thus re-

sulting in different predictions than the original “epx” object’s ENSEMBLED.FITS

as shown in lines 68− 78.

68 > set.seed(761)

69 > preds <- predict(model, classifier.args = list(ntree = 500))

70 Base classifier: random forest

71 Base classifier arguments specified in phalanx-formation:

72 $ntree

73 [1] 150

74 Base classifier arguments specified in prediction:

75 $ntree

76 [1] 500

77 > all.equal(preds, model$ENSEMBLED.FITS)

78 [1] "Mean relative difference: 1.121363"

We can also provide new data using the usual predict function framework

and predict will output a vector of estimated probabilities for the new data

using the trained EPX model. Here we use the BN test data BNhold that were

not included in BNsample training data. Note that as usual we can use the same

base classifier arguments as those used in phalanx formation (lines 79− 80) or

we may wish to make some changes as shown in lines 82− 84.

79 set.seed(761)

80 predshold0 <- predict(model, newdata = BNhold[,-25])

81

82 set.seed(761)

83 predshold <- predict(model, newdata = BNhold[,-25],

84 classifier.args = list(ntree = 500))

3.5. Cross-validation

The cv.epx function performs a balanced k−fold cross-validation given an

“epx” class object. Cross-validation is a way of assessing the performance of
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the ensemble of phalanxes, and we use balanced cross-validation because we

expect the data to have a rare class in each fold. The setup is as follows: the

data with n observations is randomly divided into k approximately equal-sized

groups (folds), where each of the k folds will have approximately 1/k of the

relevant observations. We train an EPX model based on the given “epx” class

object using k−1 of the folds, leaving one fold out to serve as the test set. This

is repeated until all folds have served as a test set, at which point we will have

final estimated probabilities of relevance for all n observations.

The cv.epx function by default performs a 10−fold balanced cross-validation

(k = 10) with observations randomly divided into folds. As with the predict

function, cv.epx must take an “epx” object. Following is an example.

85 > set.seed(761)

86 > cv150 <- cv.epx(model)

87 Base classifier: random forest

88 Base classifier arguments specified in phalanx-formation:

89 $ntree

90 [1] 150

91 Base classifier arguments specified in balanced 10-fold cross-validation: none

The text in the console will indicate both the number of folds and any

arguments made regarding the base classifier for cross-validation (line 89). This

is similar to the behaviour of predict in that we still fit the same base classifier

as that used during phalanx-formation, but we may change its arguments via

the classifier.args argument as following.

92 > set.seed(761)

93 > cv500 <- cv.epx(model, classifier.args = list(ntree = 500))

94 Base classifier: random forest

95 Base classifier arguments specified in phalanx-formation:

96 $ntree

97 [1] 150

98 Base classifier arguments specified in balanced 10-fold cross-validation:
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99 $ntree

100 [1] 500

The output of cv.epx by default is an (n+1)×(p+1) matrix, where n is the

number of observations and p is the number of phalanxes. The ith column of the

matrix is the predicted probabilities of relevance from the ith phalanx except

for the last (p+ 1)th column, which has the predicted probabilities of relevance

from the ensemble of phalanxes. The (n+ 1)th row of the matrix is the overall

performance of the corresponding column, determined by the performance mea-

sure specified by the “epx” object (line 108). The following statement will show

the tail probabilities and the overall performance measures for the phalanxes as

well as for the ensemble.

101 > tail(cv500)

102 1 2 3 4 ensemble

103 0.45000000 0.0760000 0.66800000 0.00400000 0.2995000

104 0.00000000 0.0000000 0.00000000 0.00000000 0.0000000

105 0.00000000 0.0000000 0.00000000 0.00000000 0.0000000

106 0.07200000 0.0000000 0.00000000 0.00000000 0.0180000

107 0.00000000 0.0000000 0.00000000 0.00000000 0.0000000

108 performance 0.07805713 0.1039471 0.05997207 0.09088224 0.1457195

Some additional arguments of cv.epx are briefly summarised below:

• folds: allows the use of custom folds by taking an n-length vector of

positive integer values from 1 to k, such that the ith value in the vector

indicates to which fold the ith observation should be assigned.

• folds.out: provides an n-length vector recording the fold membership

for each observation; default is FALSE. Setting as TRUE reports the output

of cv.epx into a list of two elements. The first being the (n + 1) ×
(p + 1) matrix attained from cv.epx by default, and the second is the

n−length vector with integer values from 1 to k indicating to which fold

each observation was shuffled for cross-validation.
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3.6. Example with parallel computing

As the computational complexity of phalanx formation is high (for example,

O(d2), where d is the number of initial phalanxes), we may need to run the epx

function in parallel. The EPX package uses the foreach package (Revolution

Analytics and Weston, 2020) to parallelise the loops where ai, aij , and aij are

calculated (i, j are phalanxes) using different nodes. In our package EPX, we

use doParallel (Wallig et al., 2020) to register a parallel backend for the %dopar%

function from foreach. The the general setup for parallel computing is as follows

with uses mentioned in the comments.

109 clusters <- parallel::detectCores() # detect the cores available

110 cl <- parallel::makeCluster(clusters) # make clusters

111 doParallel::registerDoParallel(cl) # register for parallel computing

112

113 ########################################################################

114 ############ Functions that use parallel computing run here ############

115 ########################################################################

116

117 parallel::stopCluster(cl) # close clusters

In the following example, we use the full BN dataset (4946 observations, 24

variables) and register 8 clusters to train the EPX model:

118 cl <- parallel::makeCluster(8)

119 doParallel::registerDoParallel(cl)

120

121 set.seed(761)

122 BN <- rbind(BNsample, BNhold)

123 model <- epx(x = BN[,-25], y = BN[,25], classifier.args = list(ntree = 150),

124 computing = "parallel")

125

126 parallel::stopCluster(cl)

We indicate to epx that we wish to compute in parallel via the computing
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argument in line 122−124. Without specifying this argument, epx will override

the clusters registered and compute sequentially.

4. Discussion of further capabilities

4.1. Additional base classifiers

Besides the default classifier random forest fitted via randomForest (Liaw

and Wiener, 2002), the other base classifiers allowed in the classifier argu-

ment include logistic regression and neural networks. Logistic regression is fitted

using the glm function from the stats package (R Core Team, 2020) (line 127).

No additional arguments for logistic regression are needed. A single-hidden-

layer neural network can also be specified as the base classifier and is fitted

using the nnet function from the nnet package (Venables and Ripley, 2002).

For neural network, we allow the number of units in the hidden layer to be set

via classifier.args as demonstrated in lines 129−130. Other useful classifiers

along with their arguments will be implemented in EPX in future versions.

127 model.log <- epx(x = BNsample[,-25], y = BNsample[,25], classifier = "logistic")

128

129 model.nn <- epx(x = BNsample[,-25], y = BNsample[,25], classifier = "neural",

130 classifier.args = list(size = 2))

4.2. Additional performance measures

Apart from the default performance measure AHR, the three other measures

that can be used are: initial enhancement (IE), TOP1, and rank last (RKL). All

four metrics are available in EPX as separate functions named AHR, IE, TOP1,

and RKL, respectively. Each function requires a vector of predicted probabilities

of relevance for the argument phat, and a binary vector indicating the true

response for all observations for the argument y. These metrics can be used to

build the ensemble of phalanxes by providing argument performance = "IE"

(for example) to epx function as defined in lines 2− 3.
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The metric Initial Enhancement (IE) is defined in Tomal et al. (2015, 2016),

and since IE is a rescaling of the precision given a cutoff, it leads to similar

conclusion (the larger the IE, the better the predictive ranking performance)

as AHR. Though IE is often reported in QSAR studies, unlike AHR which is

bounded by 1, IE is unbounded from above. Note that IE is the only perfor-

mance metric in EPX where the user may specify an additional argument via

performance.args in the functions epx, predict, and cv.epx. Specifically, the

user may set their desired shortlist cutoff for IE.

TOP1 is a performance measure that produces a value of either 1 or 0.

After sorting the observations by their predicted probabilities of relevance in

decreasing order so the first ranked observation has the highest probability of

relevance, if the first ranked observation is truly relevant, TOP1 has a value of

1. Otherwise TOP1 is 0. If there are ties for the first rank, all the corresponding

observations must be relevant for TOP1 to score 1.

After ranking the observations as done for TOP1, RKL in contrast is the

rank of the last relevant observation. Hence, RKL can take on integer values

from 1 to n, where n is the total number of observations. If there are ties, the

last object in the tied group determines RKL. That is, if all n objects are tied

at the first rank but only one object is truly relevant, RKL will have a value of

n. The smaller values of RKL indicates better predictive ranking.

Using the predictions attained in the Prediction section on the samples of

the BN descriptor set withheld from BNsample (used to train the model), we

calculate the four performance measures as follows:

131 > AHR(y = BNhold$y, phat = predshold)

132 [1] 0.2347868

133 > IE(y = BNhold$y, phat = predshold, cutoff = 50)

134 [1] 16.61474

135 > TOP1(y = BNhold$y, phat = predshold)

136 [1] 1

137 > RKL(y = BNhold$y, phat = predshold)

138 [1] 3946
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The calculated IE of 16.62 (lines 133 − 134) tells us that the model is per-

forming 16.62 times better than a random ranking among the top ranked 50

compounds. The TOP1 of 1 (lines 135 − 136) tells that the first compound

ranked by the model is an active compound. The RKL of 3946 (lines 137−138)

tells us that the last active compound is ranked at position 3946.

5. Conclusion

Tomal et al. (2015, 2016) demonstrated how using an ensemble of phalanxes

results in better predictive ranking of drug-like active biomolecules for develop-

ment in drug discovery. Tomal et al. (2019) also demonstrated how the algo-

rithm of phalanx formation can be used to split the feature variables of simi-

larity scores of amino acid sequences to predict homologous protein in protein

homology. That is, the ensemble of phalanxes attains better ranking using dis-

tinct statistical models trained on disjoint subsets of variables than the popular

random forest, regularized random forest, balanced random forest and logistic

regression model.

The EPX package demonstrates an implementation of the phalanx-formation

algorithm and its related functions. Currently, EPX is prepared for similar use-

cases as those shown in Tomal et al. (2015, 2016, 2019) when the aim is binary

classification of a rare class of objects and performance is judged via ranking.

This demonstration of EPX package will be useful for research in biomedicine.

Future work will include the addition of other base classifiers (whenever found

useful) and more notably, an adaptation for analogous regression and balanced

classification problems. The package EPX will be updated on a continuous basis

as more features are made available via research findings and publications.
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