Package 'EMSaov'

January 20, 2025

Type Package

Title The Analysis of Variance with EMS

Version 2.3

Date 2018-05-09

Author Eun-Kyung Lee, Hye-Min Choe

Maintainer Eun-Kyung Lee <lee.eunk@gmail.com>

Description Provides the analysis of variance table including the ex-

pected mean squares (EMS) for various types of experimental design. When some variables are random effects or we use special experimental design such as nested design, repeatedmeasures design, or split-plot design, it is not easy to find the appropriate test, especially denominator for F-statistic which depends on EMS.

License GPL (>= 2)

Imports shiny, graphics

RoxygenNote 6.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2018-05-09 03:54:09 UTC

Contents

2
2
3
4
4
5
5
7

Index

ApproxF

Description

Calculate ANOVA with approximate F value

Usage

```
ApproxF(SS.table,approx.name)
```

Arguments

SS.table	result from EMSanova
approx.name	rowname in SS.table to calculate approximate F value for the test.

Examples

baseball

Nested factorial design of Measurement of velocity

Description

There was on a measurement of velocity of a baseball throw in meters per second. Three groups of subjects were involved, two being subjected to special experimental training and the third acting as a control with no special training. Each group has 7 subjects and each subject was given a pretest and posttest.

Usage

data("baseball")

EMSanova

Format

A data frame with 42 observations on the following 4 variables.

velocity a numeric vector test a factor with levels Pre Post Group a factor with levels I II III Subject a numeric vector

References

Example 11.4 in Fundamental Concepts in the Design of Experiments (3rd ed.) - Charles R. Hicks

Examples

```
data(baseball)
## maybe str(baseball) ; plot(baseball) ...
```

EMSanova

Calculate ANOVA table with EMS

Description

Calculate ANOVA table with EMS for various experimental design - factorial design, nested design, mixed effect model, etc.

Usage

EMSanova(formula,data,type=NULL,nested=NULL, level=NULL,approximate=FALSE)

Arguments

formula	model formula
data	data frame for ANOVA
type	the list of fixed/random for each factor. "F" for the fixed effect, "R" for the random effect
nested	the list of nested effect
level	list of model level
approximate	calculate approximated F for "TRUE"

Examples

EMSaovApp

Description

Shiny App for the analysis of variance in various experimental designs

Usage

```
EMSaovApp(nested.N=2)
```

Arguments

nested.N number of factors of possible crossed design which can nest a factor

Examples

#EMSaovApp()

film

Dry-film thickness

Description

Two days in a given month were randomly selected in which to run an experiment. three operators were selected at random from a large pool of available operators. The experiment consisted of measuring the dry-film thickness of varnish in mils for three different gate settings: 2, 4, and 6.

Usage

data("film")

Format

A data frame with 36 observations on the following 4 variables.

thickness a numeric vector

Gate a numeric vector

Operator a factor with levels A B C

Day a numeric vector

References

Fundamental Concepts in the Design of Experiments (3rd ed.) - Charles R. Hicks

PooledANOVA

Examples

```
data(film)
## maybe str(film) ; plot(film) ...
```

PooledANOVA

Pooling nonsignificant interactions to Residuals

Description

Pooling nonsignificant interactions to Residuals

Usage

PooledANOVA(SS.table,del.ID)

Arguments

SS.table	result from EMSanova
del.ID	id's to combine sum of squares. Use rownames of SS.table

Examples

rubber

Split-split plot design of Curerate index

Description

A study of the cure rate index on some samples of rubber. Three laboratories, three temperatures and three types of mix were involved. Once a temperature was set, all three mixes were subjected to that temperature and then another temperature was set and again all three mixes were involved, finally the third temperature was set.

Usage

data("rubber")

rubber

Format

A data frame with 108 observations on the following 5 variables.

cure a numeric vector Rep a factor with levels I II III IV

Lap a numeric vector

Temp a numeric vector

 $\operatorname{Mix}\,$ a factor with levels A B C

References

Fundamental Concepts in the Design of Experiments (3rd ed.) - Charles R. Hicks

Examples

```
data(rubber)
## maybe str(rubber) ; plot(rubber) ...
```

6

Index

* datasets baseball, 2 film, 4 rubber, 5 ApproxF, 2 baseball, 2 EMSanova, 3 EMSaovApp, 4 film, 4 PooledANOVA, 5 rubber, 5