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align_loadings Reorder MCMC Samples of Factor Loadings

Description

This function reorders MCMC samples of factor loadings to address the label switching problem in
Bayesian factor analysis. It implements a parallelized version of the code and algorithm proposed
by Papastamoulis and Ntzoufras (2022)

Usage

align_loadings(
emc = NULL,
lambda = NULL,
n_cores = 1,
verbose = TRUE,
rotate_fun = NULL

)

Arguments

emc an ’emc’ object of type infnt_factor.

lambda Needs to be supplied if emc is not supplied. Array of factor loadings with di-
mensions p (variables) x q (factors) x n (MCMC iterations)

n_cores Number of cores for parallel processing

verbose Logical; whether to print progress information

rotate_fun A function that returns an orthogonally rotated factor loadings matrix. If NULL
uses varimax

Value

A list containing:

lambda_reordered

Array of reordered loadings
lambda_reordered_mcmc

Array of reordered loadings as MCMC object
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lambda_hat Matrix of mean loadings after reordering

v_vectors Matrix of permutation vectors

c_vectors Matrix of sign-switching vectors

References

Papastamoulis, P., & Ntzoufras, I. (2022). On the identifiability of Bayesian factor analytic models.
Statistical Computing, 32(2), 1-29. doi: 10.1007/s11222-022-10084-4

Examples

# This function works natively with emc objects, but also factor arrays:
# Simulate a small example with 5 variables, 2 factors, and 10 MCMC iterations
set.seed(123)
p <- 5 # Number of variables
q <- 2 # Number of factors
n <- 10 # Number of MCMC iterations

# Create random factor loadings with label switching
lambda <- array(0, dim = c(p, q, n))
for (i in 1:n) {

# Generate base loadings
base_loadings <- matrix(rnorm(p*q, 0, 0.5), p, q)
base_loadings[1:3, 1] <- abs(base_loadings[1:3, 1]) + 0.5 # Strong loadings on factor 1
base_loadings[4:5, 2] <- abs(base_loadings[4:5, 2]) + 0.5 # Strong loadings on factor 2

# Randomly switch labels and signs
if (runif(1) > 0.5) {
# Switch factor order
base_loadings <- base_loadings[, c(2, 1)]

}
if (runif(1) > 0.5) {

# Switch sign of factor 1
base_loadings[, 1] <- -base_loadings[, 1]

}
if (runif(1) > 0.5) {

# Switch sign of factor 2
base_loadings[, 2] <- -base_loadings[, 2]

}

lambda[,,i] <- base_loadings
}

# Align the loadings
result <- align_loadings(lambda = lambda, verbose = TRUE, n_cores = 1)

# Examine the aligned loadings
print(result)
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auto_thin.emc Automatically Thin an emc Object

Description

Uses the effective sample size of selection to determine how much to optimally thin an emc object

Usage

## S3 method for class 'emc'
auto_thin(emc, stage = "sample", selection = c("alpha", "mu"), ...)

auto_thin(emc, stage = "sample", selection = c("alpha", "mu"), ...)

Arguments

emc an emc object.
stage A character string. Indicates from which sampling stage(s) to take the samples

from (i.e. preburn, burn, adapt, sample)
selection Which parameter types (i.e. ’alpha’ or ’mu’ to consider when determining the

effective sample size)
... additional optional arguments

chain_n MCMC Chain Iterations

Description

Returns a matrix with the number of samples per chain for each stage that is present in the emc
object (i.e., preburn, burn, adapt, sample). The number of rows of the matrix reflects the number
of chains and the number of columns the number of sampling stages.

Usage

chain_n(emc)

Arguments

emc A list, the output of fit().

Value

A matrix

Examples

chain_n(samples_LNR)
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check.emc Convergence Checks for an emc Object

Description

Runs a series of convergence checks, prints statistics to the console, and makes traceplots of the
worst converged parameter per selection.

Usage

## S3 method for class 'emc'
check(
emc,
selection = c("mu", "sigma2", "alpha"),
digits = 3,
plot_worst = TRUE,
...

)

check(emc, ...)

Arguments

emc An emc object

selection A Character vector. Indicates which parameter types to check (e.g., alpha, mu,
sigma2, correlation).

digits Integer. How many digits to round the ESS and Rhat to in the plots

plot_worst Boolean. If TRUE also plots the chain plots for the worst parameter

... Optional arguments that can be passed to get_pars or plot.default (see par())

Details

Note that the Rhat is calculated by doubling the number of chains by first splitting chains into first
and second half, so it also a test of stationarity.

Efficiency of sampling is indicated by the effective sample size (ESS) (from the coda R package).
Full range of possible samples manipulations described in get_pars.

Value

a list with the statistics for the worst converged parameter per selection

Examples

check(samples_LNR)
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compare Information Criteria and Marginal Likelihoods

Description

Returns the BPIC/DIC or marginal deviance (-2*marginal likelihood) for a list of samples objects.

Usage

compare(
sList,
stage = "sample",
filter = NULL,
use_best_fit = TRUE,
BayesFactor = TRUE,
cores_for_props = 4,
cores_per_prop = 1,
print_summary = TRUE,
digits = 0,
digits_p = 3,
...

)

Arguments

sList List of samples objects
stage A string. Specifies which stage the samples are to be taken from "preburn",

"burn", "adapt", or "sample"
filter An integer or vector. If it’s an integer, iterations up until the value set by filter

will be excluded. If a vector is supplied, only the iterations in the vector will be
considered.

use_best_fit Boolean, defaults to TRUE, uses the minimal or mean likelihood (whichever is
better) in the calculation, otherwise always uses the mean likelihood.

BayesFactor Boolean, defaults to TRUE. Include marginal likelihoods as estimated using WARP-
III bridge sampling. Usually takes a minute per model added to calculate

cores_for_props

Integer, how many cores to use for the Bayes factor calculation, here 4 is the
default for the 4 different proposal densities to evaluate, only 1, 2 and 4 are
sensible.

cores_per_prop Integer, how many cores to use for the Bayes factor calculation if you have more
than 4 cores available. Cores used will be cores_for_props * cores_per_prop.
Best to prioritize cores_for_props being 4 or 2

print_summary Boolean (default TRUE), print table of results
digits Integer, significant digits in printed table for information criteria
digits_p Integer, significant digits in printed table for model weights
... Additional, optional arguments
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Value

Matrix of effective number of parameters, mean deviance, deviance of mean, DIC, BPIC, Marginal
Deviance (if BayesFactor=TRUE) and associated weights.

Examples

compare(list(samples_LNR), cores_for_props = 1)
# Typically we would define a list of two (or more) different models:
# # Here the full model is an emc object with the hypothesized effect
# # The null model is an emc object without the hypothesized effect
# design_full <- design(data = forstmann,model=DDM,
# formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
# constants=c(s=log(1)))
# # Now without a ~ E
# design_null <- design(data = forstmann,model=DDM,
# formula =list(v~0+S,a~1, t0~1, s~1, Z~1, sv~1, SZ~1),
# constants=c(s=log(1)))
#
# full_model <- make_emc(forstmann, design_full)
# full_model <- fit(full_model)
#
# null_model <- make_emc(forstmann, design_null)
# null_model <- fit(null_model)
# sList <- list(full_model, null_model)
# # By default emc uses 4 cores to parallelize marginal likelihood estimation across proposals
# # So cores_per_prop = 3 results in 12 cores used.
# compare(sList, cores_per_prop = 3)

compare_subject Information Criteria For Each Participant

Description

Returns the BPIC/DIC based model weights for each participant in a list of samples objects

Usage

compare_subject(
sList,
stage = "sample",
filter = 0,
use_best_fit = TRUE,
print_summary = TRUE,
digits = 3

)
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Arguments

sList List of samples objects

stage A string. Specifies which stage the samples are to be taken from "preburn",
"burn", "adapt", or "sample"

filter An integer or vector. If it’s an integer, iterations up until the value set by filter
will be excluded. If a vector is supplied, only the iterations in the vector will be
considered.

use_best_fit Boolean, defaults to TRUE, use minimal likelihood or mean likelihood (whichever
is better) in the calculation, otherwise always uses the mean likelihood.

print_summary Boolean (defaults to TRUE) print table of results

digits Integer, significant digits in printed table

Value

List of matrices for each subject of effective number of parameters, mean deviance, deviance of
mean, DIC, BPIC and associated weights.

Examples

# For a broader illustration see `compare`.
# Here we just take two times the same model, but normally one would compare
# different models
compare_subject(list(m0 = samples_LNR, m1 = samples_LNR))

contr.anova Anova Style Contrast Matrix

Description

Similar to contr.helmert, but then scaled to estimate differences between conditions. Use in
design().

Usage

contr.anova(n)

Arguments

n An integer. The number of items for which to create the contrast

Value

A contrast matrix.
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Examples

{
design_DDMaE <- design(data = forstmann,model=DDM, contrasts = list(E = contr.anova),
formula =list(v~S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
}

contr.bayes Contrast Enforcing Equal Prior Variance on each Level

Description

Typical contrasts impose different levels of marginal prior variance for the different levels. This
contrast can be used to ensure that each level has equal marginal priors (Rouder, Morey, Speckman,
& Province; 2012).

Usage

contr.bayes(n)

Arguments

n An integer. The number of items for which to create the contrast

Value

A contrast matrix.

Examples

{
design_DDMaE <- design(data = forstmann,model=DDM, contrasts = list(E = contr.bayes),
formula =list(v~S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
}

contr.decreasing Contrast Enforcing Decreasing Estimates

Description

Each level will be estimated as a reduction from the previous level

Usage

contr.decreasing(n)
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Arguments

n an integer. The number of items for which to create the contrast.

Value

a contrast matrix.

Examples

{
design_DDMaE <- design(data = forstmann,model=DDM, contrasts = list(E = contr.decreasing),
formula =list(v~S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
}

contr.increasing Contrast Enforcing Increasing Estimates

Description

Each level will be estimated additively from the previous level

Usage

contr.increasing(n)

Arguments

n an integer. The number of items for which to create the contrast.

Value

a contrast matrix.

Examples

{
design_DDMaE <- design(data = forstmann,model=DDM, contrasts = list(E = contr.increasing),
formula =list(v~S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))
}
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convolve_design_matrix

Convolve Events with HRF to Construct Design Matrices

Description

This function convolves events with the HRF to construct design matrices for fMRI analysis.

Usage

convolve_design_matrix(
timeseries,
events,
factors = NULL,
contrasts = NULL,
covariates = NULL,
add_constant = TRUE,
hrf_model = "glover",
cell_coding = NULL,
scale = TRUE,
high_pass = TRUE,
high_pass_model = "cosine",
cut_off = 1e-12

)

Arguments

timeseries A data frame containing fMRI time series data with columns ’subjects’, ’run’,
’time’, and at least one ROI column

events A data frame containing event information with required columns subjects,
run, onset, duration, event_type, and modulation

factors A named list mapping factor names to event types
contrasts A named list of contrast matrices for each factor
covariates A character vector of event types to include as covariates
add_constant A boolean specifying whether a 1 should be included to the design matrix post

convolution
hrf_model A character string specifying the HRF model to use (’glover’, ’spm’, ’glover +

derivative’, or ’spm + derivative’)
cell_coding A character vector of factor names to use cell coding for
scale A boolean indicating whether to scale the design matrix.
high_pass Logical indicating whether to apply high-pass filtering. Alternatively, specifying

’add’ adds the regressors to the design matrix
high_pass_model

Character indicating which type of high-pass filtering to apply (’cosine’, ’poly’)
cut_off A numeric value specifying the cutoff for the high-pass filter
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Value

A list containing the design matrices

Examples

# Generate a simple example timeseries
ts <- data.frame(

subjects = rep(1, 100),
run = rep(1, 100),
time = seq(0, 99),
ROI1 = rnorm(100)

)

# Generate example events
events <- data.frame(

subjects = rep(1, 4),
run = rep(1, 4),
onset = c(10, 30, 50, 70),
duration = rep(0.5, 4),
event_type = c("hard", "easy", "hard", "easy"),
modulation = c(1, 1, 1, 1)

)

# Build design matrices
design_matrices <- convolve_design_matrix(

timeseries = ts,
events = events,
factors = list(difficulty = c("hard", "easy")),
contrasts = list(difficulty = matrix(c(-1, 1)))

)

credible.emc Posterior Credible Interval Tests

Description

Modeled after t.test, returns the credible interval of the parameter or test and what proportion of
the posterior distribution (or the difference in posterior distributions in case of a two sample test)
overlaps with mu. For a one sample test provide x and for two sample also provide y. Note that for
comparisons within one model, we recommend using hypothesis() if the priors were well chosen.

Usage

## S3 method for class 'emc'
credible(
x,
x_name = NULL,
x_fun = NULL,
x_fun_name = "fun",
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selection = "mu",
y = NULL,
y_name = NULL,
y_fun = NULL,
y_fun_name = "fun",
x_subject = NULL,
y_subject = NULL,
mu = 0,
alternative = c("less", "greater")[1],
probs = c(0.025, 0.5, 0.975),
digits = 2,
p_digits = 3,
print_table = TRUE,
...

)

credible(x, ...)

Arguments

x An emc object

x_name A character string. Name of the parameter to be tested for x

x_fun Function applied to the MCMC chains to create variable to be tested.

x_fun_name Name to give to quantity calculated by x_fun

selection A character string designating parameter type (e.g. alpha or covariance)

y A second emc object

y_name A character string. Name of the parameter to be tested for y

y_fun Function applied to the MCMC chains to create variable to be tested.

y_fun_name Name to give to quantity calculated by y_fun

x_subject Integer or name selecting a subject

y_subject Integer or name selecting a subject

mu Numeric. NULL value for single sample test if y is not supplied (default 0)

alternative less or greater determining direction of test probability

probs Vector defining quantiles to return.

digits Integer, significant digits for estimates in printed results

p_digits Integer, significant digits for probability in printed results

print_table Boolean (defaults to TRUE) for printing results table

... Additional optional arguments that can be passed to get_pars

Value

Invisible results table with no rounding.



16 credint.emc.prior

Examples

{
# Run a credible interval test (Bayesian ''t-test'')
credible(samples_LNR, x_name = "m")
# We can also compare between two sets of emc objects

# # Now without a ~ E
# design_null <- design(data = forstmann,model=DDM,
# formula =list(v~0+S,a~1, t0~1, s~1, Z~1, sv~1, SZ~1),
# constants=c(s=log(1)))
#
# null_model <- make_emc(forstmann, design_null)
# null_model <- fit(null_model)
# credible(x = null_model, x_name = "a", y = full_model, y_name = "a")
#
# # Or provide custom functions:
# credible(x = full_model, x_fun = function(d) d["a_Eaccuracy"] - d["a_Eneutral"])
}

credint.emc.prior Posterior Quantiles

Description

Returns the quantiles of the selected parameter type. Full range of possible samples manipulations
described in get_pars.

Usage

## S3 method for class 'emc.prior'
credint(
x,
selection = "mu",
probs = c(0.025, 0.5, 0.975),
digits = 3,
N = 1000,
covariates = NULL,
...

)

## S3 method for class 'emc'
credint(x, selection = "mu", probs = c(0.025, 0.5, 0.975), digits = 3, ...)

credint(x, ...)
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Arguments

x An emc or emc.prior object

selection A Character vector. Indicates which parameter types to check (e.g., alpha, mu,
sigma2, correlation).

probs A vector. Indicates which quantiles to return from the posterior.

digits Integer. How many digits to round the output to

N An integer. Number of samples to use for the quantile calculation (only for
prior.emc objects)

covariates A list of covariates to use for the quantile calculation (only for prior.emc objects)

... Optional additional arguments that can be passed to get_pars

Value

A list of posterior quantiles for each parameter group in the selected parameter type.

Examples

credint(samples_LNR)

cut_factors Cut Factors Based on Credible Loadings

Description

This function removes factors that do not have more than one credible loading based on the specified
confidence interval.

Usage

cut_factors(emc, CI = 95)

Arguments

emc An ’emc’ object containing factor analysis results

CI Numeric. Confidence interval percentage (default is 95)

Value

An ’emc’ object with factors that don’t meet the credibility criterion removed
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DDM The Diffusion Decision Model

Description

Model file to estimate the Diffusion Decision Model (DDM) in EMC2.

Usage

DDM()

Details

Model files are almost exclusively used in design().
Default values are used for all parameters that are not explicitly listed in the formula argument of
design().They can also be accessed with DDM()$p_types.

Parameter Transform Natural scale Default Mapping Interpretation
v - [-Inf, Inf] 1 Mean evidence-accumulation rate (drift rate)
a log [0, Inf] log(1) Boundary separation
t0 log [0, Inf] log(0) Non-decision time
s log [0, Inf] log(1) Within-trial standard deviation of drift rate
Z probit [0, 1] qnorm(0.5) z = Z x a Relative start point (bias)
SZ probit [0, 1] qnorm(0) sz = 2 x SZ x min(a x Z, a x (1-Z)) Relative between-trial variation in start point
sv log [0, Inf] log(0) Between-trial standard deviation of drift rate
st0 log [0, Inf] log(0) Between-trial variation (range) in non-decision time

a, t0, sv, st0, s are sampled on the log scale because these parameters are strictly positive, Z, SZ
and DP are sampled on the probit scale because they should be strictly between 0 and 1.
Z is estimated as the ratio of bias to one boundary where 0.5 means no bias. DP comprises the
difference in non-decision time for each response option.
Conventionally, s is fixed to 1 to satisfy scaling constraints.
See Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-
choice decision tasks. Neural computation, 20(4), 873-922. doi:10.1162/neco.2008.12-06-420.

Value

A model list with all the necessary functions for EMC2 to sample

Examples

design_DDMaE <- design(data = forstmann,model=DDM,
formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# For all parameters that are not defined in the formula, default values are assumed
# (see Table above).
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DDMGNG The GNG (go/nogo) Diffusion Decision Model

Description

In the GNG paradigm one of the two possible choices results in a response being withheld (a non-
response), which is indicated in the data by an NA for the rt, with the corresponding level of the R
(response) factor still being specified. For example, suppose the go response is coded as "yes" and
nogo is coded as "no", then for a non-response (R,rt) = ("no",NA) and for a response e.g., (R,rt) =
("yes",1.36). The GNG paradigm must also have a response

Usage

DDMGNG()

Details

The model used is described in the following paper, with the addition of modeling the TIMEOUT
(which is considered but not used in this paper).

Gomez, P., Ratcliff, R., & Perea, M. (2007). A Model of the Go/No-Go Task. Journal of Experi-
mental Psychology: General, 136(3), 389–413. https://doi.org/10.1037/0096-3445.136.3.389

The likelihood of non-responses requires and evaluation of the DDM cdf, specifically 1 - p(hitting
the yes boundary before TIMEOUT).

To use these models three functions must be supplied in the design’s function argument with the
names TIMEOUT, Rnogo and Rgo. For example, assuming a 2.5 second timeout, and R factor with
levels c("no","yes") and "no" mapping to a non-response.

TIMEOUT=function(d)rep(2.5,nrow(d)) Rnogo=function(d)factor(rep("no",nrow(d)),levels=c("no","yes"))
Rgo=function(d)factor(rep("yes",nrow(d)),levels=c("no","yes")))

See the help for DDM for further details. At present this model is not fully implemented in C, so is
a little slower to use than the DDM, but not greatly.

Value

A model list with all the necessary functions to sample

window (i.e., a length of time, TIMEOUT period, after which withholding is

assumed).

Examples

dGNG <- design(Rlevels = c("left","right"),
factors=list(subjects=1,S=c("left","right")),
functions=list(
TIMEOUT=function(d)rep(2.5,nrow(d)),
# no go response level
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Rnogo=function(d)factor(rep("left",nrow(d)),levels=c("left","right")),
# go response level
Rgo=function(d)factor(rep("right",nrow(d)),levels=c("left","right"))),
formula=list(v~S,a~1, Z~1, t0~1),
model=DDMGNG)

p_vector <- sampled_pars(dGNG)

design Specify a Design and Model

Description

This function combines information regarding the data, type of model, and the model specification.

Usage

design(
formula = NULL,
factors = NULL,
Rlevels = NULL,
model,
data = NULL,
contrasts = NULL,
matchfun = NULL,
constants = NULL,
covariates = NULL,
functions = NULL,
report_p_vector = TRUE,
custom_p_vector = NULL,
transform = NULL,
bound = NULL,
...

)

Arguments

formula A list. Contains the design formulae in the format list(y ~ x, a ~ z).
factors A named list containing all the factor variables that span the design cells and

that should be taken into account by the model. The name subjects must be
used to indicate the participant factor variable, also in the data.
Example: list(subjects=levels(dat$subjects), condition=levels(dat$condition))

Rlevels A character vector. Contains the response factor levels. Example: c("right",
"left")

model A function, specifies the model type. Choose from the drift diffusion model
(DDM(), DDMt0natural()), the log-normal race model (LNR()), the linear bal-
listic model (LBA()), the racing diffusion model (RDM(), RDMt0natural()), or
define your own model functions.



design 21

data A data frame. data can be used to automatically detect factors, Rlevels and
covariates in a dataset. The variable R needs to be a factor variable indicating
the response variable. Any numeric column except trials and rt are treated as
covariates, and all remaining factor variables are internally used in factors.

contrasts Optional. A named list specifying a design matrix. Example for supplying a cus-
tomized design matrix: list(lM = matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"diff"))))

matchfun A function. Only needed for race models. Specifies whether a response was
correct or not. Example: function(d)d$S==d$lR where lR refers to the latent
response factor.

constants A named vector that sets constants. Any parameter in sampled_pars can be set
constant.

covariates Names of numeric covariates.

functions List of functions to create new factors based on those in the factors argument.
These new factors can then be used in formula.

report_p_vector

Boolean. If TRUE (default), it returns the vector of parameters to be estimated.
custom_p_vector

A character vector. If specified, a custom likelihood function can be supplied.

transform A list with custom transformations to be applied to the parameters of the model,
if the conventional transformations aren’t desired. See DDM() for an example of
such transformations

bound A list with custom bounds to be applied to the parameters of the model, if the
conventional bound aren’t desired. see DDM() for an example of such bounds.
Bounds are used to set limits to the likelihood landscape that cannot reasonable
be achieved with transform

... Additional, optional arguments

Value

A design list.

Examples

# load example dataset
dat <- forstmann

# create a function that takes the latent response (lR) factor (d) and returns a logical
# defining the correct response for each stimulus. Here the match is simply
# such that the S factor equals the latent response factor
matchfun <- function(d)d$S==d$lR

# When working with lM and lR, it can be useful to design an
# "average and difference" contrast matrix. For binary responses, it has a
# simple canonical form
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"diff"))

# Create a design for a linear ballistic accumulator model (LBA) that allows
# thresholds to be a function of E and lR. The final result is a 9 parameter model.
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design_LBABE <- design(data = dat,model=LBA,matchfun=matchfun,
formula=list(v~lM,sv~lM,B~E+lR,A~1,t0~1),
contrasts=list(v=list(lM=ADmat)),
constants=c(sv=log(1)))

design_fmri Create fMRI Design for EMC2 Sampling

Description

This function takes the output from convolve_design_matrix and transforms it into a design suitable
for sampling with EMC2. It properly configures parameter types, bounds, and transformations for
the specified model.

Usage

design_fmri(design_matrix, model = MRI_AR1, ...)

Arguments

design_matrix A list of design matrices, the output from convolve_design_matrix

model A function that returns a model specification, options are MRI or MRI_AR1

... Additional arguments passed to the model

Value

An object of class ’emc.design’ suitable for EMC2 sampling

Examples

# Generate a simple example timeseries
ts <- data.frame(
subjects = rep(1, 100),
run = rep(1, 100),
time = cumsum(rep(1.38, 100)),
ROI1 = rnorm(100)

)

# Generate example events
events <- data.frame(
subjects = rep(1, 4),
run = rep(1, 4),
onset = c(10, 30, 50, 70),
duration = rep(0.5, 4),
event_type = c("A", "B", "A", "B"),
modulation = c(1, 1, 1, 1)

)

# Create convolved design matrix
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design_matrix <- convolve_design_matrix(
timeseries = ts,
events = events,
factors = list(condition = c("A", "B")),
hrf_model = "glover"

)

# Create fMRI design for EMC2
fmri_design <- design_fmri(design_matrix, model = MRI_AR1)

ess_summary.emc Effective Sample Size

Description

Returns the effective sample size (ESS) of the selected parameter type. Full range of possible
samples manipulations described in get_pars.

Usage

## S3 method for class 'emc'
ess_summary(
emc,
selection = "mu",
stat = "min",
stat_only = FALSE,
digits = 1,
...

)

ess_summary(emc, ...)

Arguments

emc An emc object

selection A Character vector. Indicates which parameter types to check (e.g., alpha, mu,
sigma2, correlation).

stat A string. Should correspond to a function that can be applied to a vector, which
will be performed on the vector/rows or columns of the matrix of the parameters

stat_only Boolean. If TRUE will only return the result of the applied stat function, other-
wise returns both the stat result and the result of the function on all parameters.

digits Integer. How many digits to round the output to

... Optional additional arguments that can be passed to get_pars

Value

A matrix or vector of ESS values for the selected parameter type.
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Examples

ess_summary(samples_LNR, selection = "alpha")

factor_diagram Factor diagram plot #Makes a factor diagram plot. Heavily based on
the fa.diagram function of the psych package.

Description

Factor diagram plot #Makes a factor diagram plot. Heavily based on the fa.diagram function of the
psych package.

Usage

factor_diagram(
emc = NULL,
stage = "sample",
loadings = NULL,
standardize = TRUE,
simple = FALSE,
only_cred = TRUE,
cut = 0,
nice_names = NULL,
factor_names = NULL,
sort = TRUE,
adj = 1,
main = NULL,
cex = NULL

)

Arguments

emc An emc object
stage Character. The stage from which to take the samples
loadings An array of loadings. Can be alternatively supplied if emc is not supplied
standardize Boolean. Whether to standardize the loadings
simple Boolean. Whether the factor diagram should be simplified for visual clarity.
only_cred Boolean. Whether to only plot the credible loadings
cut Numeric. Mean loadings beneath this number will be excluded.
nice_names Character vector. Alternative names to give the parameters
factor_names Character vector. Names to give the different factors
sort Boolean. Whether to sort the paramaters before plotting for visual clarity.
adj Integer. Adjust to adjust loading values positions in the diagram if illegible.
main Character vector. Title of the plot
cex Integer. Font size
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fit.emc Model Estimation in EMC2

Description

General purpose function to estimate models specified in EMC2.

Usage

## S3 method for class 'emc'
fit(
emc,
stage = NULL,
iter = 1000,
stop_criteria = NULL,
search_width = 1,
step_size = 100,
verbose = TRUE,
fileName = NULL,
particle_factor = 50,
cores_per_chain = 1,
cores_for_chains = length(emc),
max_tries = 20,
thin = FALSE,
...

)

fit(emc, ...)

Arguments

emc An emc object created with make_emc, or a path to where the emc object is
stored.

stage A string. Indicates which stage to start the run from, either preburn, burn,
adapt or sample. If unspecified, it will run the subsequent stage (if there is
one).

iter An integer. Indicates how many iterations to run in the sampling stage.

stop_criteria A list. Defines the stopping criteria and for which types of parameters these
should hold. See the details and examples section.

search_width A double. Tunes target acceptance probability of the MCMC process. This fine-
tunes the width of the search space to obtain the desired acceptance probability.
1 is the default width, increases lead to broader search.

step_size An integer. After each step, the stopping requirements as specified by stop_criteria
are checked and proposal distributions are updated. Defaults to 100.

verbose Logical. Whether to print messages between each step with the current status
regarding the stop_criteria.
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fileName A string. If specified, will auto-save emc object at this location on every itera-
tion.

particle_factor

An integer. particle_factor multiplied by the square root of the number of
sampled parameters determines the number of particles used.

cores_per_chain

An integer. How many cores to use per chain. Parallelizes across participant
calculations. Only available on Linux or Mac OS. For Windows, only paral-
lelization across chains (cores_for_chains) is available.

cores_for_chains

An integer. How many cores to use across chains. Defaults to the number
of chains. The total number of cores used is equal to cores_per_chain *
cores_for_chains.

max_tries An integer. How many times should it try to meet the finish conditions as spec-
ified by stop_criteria? Defaults to 20. max_tries is ignored if the required
number of iterations has not been reached yet.

thin A boolean. If TRUE will automatically thin the MCMC samples, closely matched
to the ESS. Can also be set to a double, in which case 1/thin of the chain will be
removed (does not have to be an integer).

... Additional optional arguments

Details

stop_criteria is either a list of lists with names of the stages, or a single list in which case its
assumed to be for the sample stage (see examples). The potential stop criteria to be set are:

selection (character vector): For which parameters the stop_criteria should hold

mean_gd (numeric): The mean Gelman-Rubin diagnostic across all parameters in the selection

max_gd (numeric): The max Gelman-Rubin diagnostic across all parameters in the selection

min_unique (integer): The minimum number of unique samples in the MCMC chains across all
parameters in the selection

min_es (integer): The minimum number of effective samples across all parameters in the selection

omit_mpsrf (Boolean): Whether to include the multivariate point-scale reduction factor in the
Gelman-Rubin diagnostic. Default is FALSE.

iter (integer): The number of MCMC samples to collect.

The estimation is performed using particle-metropolis within-Gibbs sampling. For sampling details
see:

Gunawan, D., Hawkins, G. E., Tran, M.-N., Kohn, R., & Brown, S. (2020). New estimation ap-
proaches for the hierarchical linear ballistic accumulator model. Journal of Mathematical Psychol-
ogy ,96, 102368. doi.org/10.1016/j.jmp.2020.102368

Stevenson, N., Donzallaz, M. C., Innes, R. J., Forstmann, B., Matzke, D., & Heathcote, A. (2024).
EMC2: An R Package for cognitive models of choice. doi.org/10.31234/osf.io/2e4dq

Value

An emc object



forstmann 27

Examples

# Define a design first
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"d"))
# We also define a match function for lM
matchfun=function(d)d$S==d$lR

# Drop most subjects for speed
dat <- forstmann[forstmann$subjects %in% unique(forstmann$subjects)[1:2],]
dat$subjects <- droplevels(dat$subjects)

design_LNR <- design(data = dat,model=LNR,matchfun=matchfun,
formula=list(m~lM,s~1,t0~1),
contrasts=list(m=list(lM=ADmat)))

# Before fit can be called, we first need to make an emc object
LNR_s <- make_emc(dat, design_LNR, rt_resolution = 0.05, n_chains = 2)
# Run fit, here illustrating how to use stop_criteria (also for speed purposes)
LNR_s <- fit(LNR_s, cores_for_chains = 1, stop_criteria = list(

preburn = list(iter = 10), burn = list(mean_gd = 2.5), adapt = list(min_unique = 20),
sample = list(iter = 25, max_gd = 2)), verbose = FALSE, particle_factor = 30, step_size = 25)

forstmann Forstmann et al.’s Data

Description

A dataset containing the speed or accuracy manipulation for a Random Dot Motion experiment.

Usage

forstmann

Format

A data frame with 15818 rows and 5 variables:

E Factor with 3 levels for Speed, Accuracy and Neutral
R Factor with 2 levels for Left and Right responses
S Factor with 2 levels for Left and Right trials
rt reaction time for each trial as a double
subjects integer ID for each subject

Details

Details on the dataset can be found in the following paper:

Striatum and pre-SMA facilitate decision-making under time pressure
Birte U. Forstmann, Gilles Dutilh, Scott Brown, Jane Neumann, D. Yves von Cramon, K. Richard
Ridderinkhof, Eric-Jan Wagenmakers.

Proceedings of the National Academy of Sciences Nov 2008, 105 (45) 17538-17542; DOI: 10.1073/pnas.0805903105
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Source

https://www.pnas.org/doi/10.1073/pnas.0805903105

gd_summary.emc Gelman-Rubin Statistic

Description

Returns the Gelman-Rubin diagnostics (otherwise known as the R-hat) of the selected parameter
type; i.e. the ratio of between to within MCMC chain variance.

Usage

## S3 method for class 'emc'
gd_summary(
emc,
selection = "mu",
omit_mpsrf = TRUE,
stat = "max",
stat_only = FALSE,
digits = 3,
...

)

gd_summary(emc, ...)

Arguments

emc An emc object

selection A Character vector. Indicates which parameter types to check (e.g., alpha, mu,
sigma2, correlation).

omit_mpsrf Boolean. If TRUE also returns the multivariate point scale reduction factor (see
?coda::gelman.diag).

stat A string. Should correspond to a function that can be applied to a vector, which
will be performed on the vector/rows or columns of the matrix of the parameters

stat_only Boolean. If TRUE will only return the result of the applied stat function, other-
wise returns both the stat result and the result of the function on all parameters.

digits Integer. How many digits to round the output to

... Optional additional arguments that can be passed to get_pars

Details

See: Gelman, A and Rubin, DB (1992) Inference from iterative simulation using multiple se-
quences, Statistical Science, 7, 457-511.

Full range of possible samples manipulations described in get_pars.

https://www.pnas.org/doi/10.1073/pnas.0805903105
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Value

A matrix or vector of R-hat values for the selected parameter type.

Examples

gd_summary(samples_LNR, selection = "correlation", stat = "mean", flatten = TRUE)

get_BayesFactor Bayes Factors

Description

returns the Bayes Factor for two models

Usage

get_BayesFactor(MLL1, MLL2)

Arguments

MLL1 Numeric. Marginal likelihood of model 1. Obtained with run_bridge_sampling()

MLL2 Numeric. Marginal likelihood of model 2. Obtained with run_bridge_sampling()

Value

The BayesFactor for model 1 over model 2

Examples

# Normally one would compare two different models
# Here we use two times the same model:
M1 <- M0 <- run_bridge_sampling(samples_LNR, both_splits = FALSE, cores_for_props = 1)
get_BayesFactor(M1, M0)
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get_data.emc Get Data

Description

Extracts data from an emc object

Usage

## S3 method for class 'emc'
get_data(emc)

get_data(emc)

Arguments

emc an emc object

Details

emc adds columns and rows to a dataframe in order to facilitate efficient likelihood calculations.
This function will return the data as provided originally.

Value

A dataframe of the original data

Examples

get_data(samples_LNR)

get_design.emc.prior Get Design

Description

Extracts design from an emc object

Usage

## S3 method for class 'emc.prior'
get_design(x)

## S3 method for class 'emc'
get_design(x)

get_design(x)
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Arguments

x an emc or emc.prior object

Value

A design with class emc.design

Examples

get_design(samples_LNR)

get_pars Filter/Manipulate Parameters from emc Object

Description

Underlying function used in most plotting and object handling functions in EMC2. Can for example
be used to filter/thin a parameter type (i.e, group-level means mu) and convert to an mcmc.list.

Usage

get_pars(
emc,
selection = "mu",
stage = get_last_stage(emc),
thin = 1,
filter = 0,
map = FALSE,
add_recalculated = FALSE,
length.out = NULL,
by_subject = FALSE,
return_mcmc = TRUE,
merge_chains = FALSE,
subject = NULL,
flatten = FALSE,
remove_dup = FALSE,
remove_constants = TRUE,
use_par = NULL,
type = NULL,
true_pars = NULL,
chain = NULL,
covariates = NULL

)
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Arguments

emc an emc object.

selection A Character string. Indicates which parameter type to select (e.g., alpha, mu,
sigma2, correlation).

stage A character string. Indicates from which sampling stage(s) to take the samples
from (i.e. preburn, burn, adapt, sample)

thin An integer. By how much to thin the chains

filter Integer or numeric vector. If an integer is supplied, iterations up until that integer
are removed. If a vector is supplied, the iterations within the range are kept.

map Boolean. If TRUE parameters will be mapped back to the cells of the experi-
mental design using the design matrices. Otherwise the sampled parameters are
returned. Only works for selection = mu or selection = alpha.

add_recalculated

Boolean. If TRUE will also add recalculated parameters, such as b in the LBA (b
= B + A; see ?LBA), or z in the DDM z = Z*A (see ?DDM) only works when map
= TRUE

length.out Integer. Alternatively to thinning, you can also select a desired length of the
MCMC chains, which will be thinned appropriately.

by_subject Boolean. If TRUE for selections that include subject parameters (e.g. alpha),
plot/stats are organized by subject, otherwise by parameter.

return_mcmc Boolean. If TRUE returns an mcmc.list object, otherwise a matrix/array with the
parameter type.

merge_chains Boolean. If TRUE returns parameter type merged across chains.

subject Integer (vector) or character (vector). If an integer will select the ’x’th subject(s),
if a character it should match subject names in the data which will be selected.

flatten Boolean. If FALSE for 3-dimensional samples (e.g., correlations: n-pars x n-pars
x iterations). organizes by the dimension containing parameter names, other-
wise collapses names across the first and second dimension. Does not apply for
selection = "alpha"

remove_dup Boolean. If TRUE removes duplicate values from the samples. Automatically set
to TRUE if flatten = TRUE

remove_constants

Boolean. If TRUE removes constant values from the samples (e.g. 0s in the
covariance matrix).

use_par Character (vector). If specified, only these parameters are returned. Should
match the parameter names (i.e. these are collapsed when flatten = TRUE and
use_par should also be collapsed names).

type Character indicating the group-level model selected. Only necessary if sampler
isn’t specified.

true_pars Set of true_parameters can be specified to apply flatten or use_par on a set of
true parameters

chain Integer. Which of the chain(s) to return

covariates Only needed with plot for priors and covariates in the design
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Value

An mcmc.list object of the selected parameter types with the specified manipulations

Examples

# E.g. get the group-level mean parameters mapped back to the design
get_pars(samples_LNR, stage = "sample", map = TRUE, selection = "mu")

# Or return the flattened correlation, with 10 iterations per chain
get_pars(samples_LNR, stage = "sample", selection = "correlation", flatten = TRUE, length.out = 10)

get_prior.emc Get Prior

Description

Extracts prior from an emc object

Usage

## S3 method for class 'emc'
get_prior(emc)

get_prior(emc)

Arguments

emc an emc object

Value

A prior with class emc.prior

Examples

get_prior(samples_LNR)
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get_trend_pnames Get parameter types from trend object

Description

Get parameter types from trend object

Usage

get_trend_pnames(trend)

Arguments

trend A trend object created by make_trend()

Value

A character vector of parameter names used in the trend

Examples

trend <- make_trend(par_names = "v", cov_names = "trial", kernels = "exp_incr")
get_trend_pnames(trend)

group_design Create Group-Level Design Matrices

Description

Creates design matrices for group-level parameters based on subject-level design and formulas.
This function is used for hierarchical modeling to specify how subject-level parameters vary across
groups or conditions.

Usage

group_design(formula, data, subject_design, contrasts = NULL)

Arguments

formula A list of formulas specifying the relationship between subject-level parameters
and group-level predictors. Each formula should have a subject-level parameter
on the left-hand side and group-level predictors on the right-hand side.

data The same data as used in the subject-level design. Must include a ’subjects’
column.

subject_design An emc.design object containing the subject-level design.
contrasts Optional list of contrast matrices to be used for categorical predictors.
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Details

Here it is important to consider the interpretation of the group-level mean. This allows one to add
covariates/group-level factors to the model. However, mu, the group-level mean, is still included
for all parameters. Mu represents the intercept in the design matrix, this intercept is always added
to the group-level model. Therefore, to keep the interpretation of mu as the group-level mean, it
is important to ensure that the design matrix has a mean of zero. If not, this function will throw a
warning. For some unbalanced designs, this is unavoidable and the warning can be ignored.

Value

A list of design matrices, one for each parameter specified in the formula. The intercept is automat-
ically included as the group-level mean and is omitted from the design matrices.

Examples

# Create subject-level design
subj_design <- design(data = forstmann, model = DDM,

formula = list(v ~ S, a ~ E, t0 ~ 1),
contrasts = list(S = contr.helmert))

# Add some age covariate and roughly demeans
# Demeaning is important to ensure that the interpretation of the group-level intercept
# is the mean of the group (i.e., 'mu' still represents the group-level mean)
forstmann$age <- as.numeric(forstmann$subjects) -mean(as.numeric(forstmann$subjects))
# Create fake group column
forstmann$group <- ifelse(forstmann$subjects %in%

unique(forstmann$subjects)[seq(1, 19, 2)], "A", "B")

# Create group-level design matrices
group_des <- group_design(

formula = list(v_S1 ~ age + group, a ~ age),
data = forstmann,
subject_design = subj_design,
contrasts = list(group = contr.bayes)

)
# Then you can make the emc object with
emc <- make_emc(forstmann, subj_design, compress = FALSE, group_design = group_des)

high_pass_filter Apply High-Pass Filtering to fMRI Data

Description

This function applies high-pass filtering to fMRI data to remove low-frequency noise and drift. It
supports two filtering methods: cosine basis functions and polynomial regressors.

Usage

high_pass_filter(X, high_pass_model = "cosine", frame_times = NULL, ...)
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Arguments

X A data frame or matrix containing the data to be filtered. If it contains columns
’subjects’ and ’run’, the function will apply filtering separately for each subject-
run combination.

high_pass_model

A character string specifying the high-pass filtering method. Options are ’co-
sine’ (default) or ’poly’ for polynomial regressors.

frame_times A numeric vector of time points for each frame. If NULL, the function will
attempt to extract this from a ’time’ column in X.

... Additional arguments passed to the function.

Value

A data frame or matrix with the same structure as X, but with high-frequency components removed
from the data columns.

Examples

# Create a simple example data frame with drift
set.seed(123)
n_frames <- 100
time <- seq(0, 99)

# Create a signal with low-frequency drift
drift <- 0.1 * time
signal <- sin(2 * pi * 0.1 * time) + drift
noise <- rnorm(n_frames, 0, 0.5)
data <- signal + noise

# Create a data frame
df <- data.frame(

time = time,
signal = data

)

# Apply high-pass filtering using cosine basis functions
filtered_df <- high_pass_filter(df, high_pass_model = "cosine")

hypothesis.emc Within-Model Hypothesis Testing

Description

Approximates the Bayes factor for parameter effects using the savage-dickey ratio.
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Usage

## S3 method for class 'emc'
hypothesis(
emc,
parameter = NULL,
H0 = 0,
fun = NULL,
selection = "mu",
do_plot = TRUE,
use_prior_lim = TRUE,
N = 10000,
prior_args = list(),
...

)

hypothesis(emc, ...)

Arguments

emc An emc object

parameter A string. A parameter which you want to compare to H0. Will not be used if a
FUN is specified.

H0 An integer. The H0 value which you want to compare to

fun A function. Specifies an operation to be performed on the sampled or mapped
parameters.

selection A Character string. Indicates which parameter type to use (e.g., alpha, mu,
sigma2, correlation).

do_plot Boolean. If FALSE will omit the prior-posterior plot and only return the savage-
dickey ratio.

use_prior_lim Boolean. If TRUE will use xlimits based on prior density, otherwise based on
posterior density.

N Integer. How many prior samples to draw

prior_args A list. Optional additional arguments to be passed to plot.default for the plotting
of the prior density (see par())

... Optional arguments that can be passed to get_pars, density, or plot.default
(see par())

Details

Note this is different to the computation of the marginal deviance in compare since it only considers
the group level effect and not the whole model (i.e. subject-level parameters). For details see:
Wagenmakers, Lodewyckx, Kuriyal, & Grasman (2010).

Value

The Bayes factor for the hypothesis against H0.
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Examples

# Here the emc object has an effect parameter (e.g. m),
# that maps onto a certain hypothesis.
# The hypothesis here is that m is different from zero.
# We can test whether there's a group-level effect on m:
hypothesis(samples_LNR, parameter = "m")
# Alternatively we can also test whether two parameters differ from each other
mdiff <- function(p)diff(p[c("m","m_lMd")])
hypothesis(samples_LNR,fun=mdiff)

init_chains Initialize Chains

Description

Adds a set of start points to each chain. These start points are sampled from a user-defined multi-
variate normal across subjects.

Usage

init_chains(
emc,
start_mu = NULL,
start_var = NULL,
particles = 1000,
cores_per_chain = 1,
cores_for_chains = length(emc)

)

Arguments

emc An emc object made by make_emc()

start_mu A vector. Mean of multivariate normal used in proposal distribution

start_var A matrix. Variance covariance matrix of multivariate normal used in proposal
distribution. Smaller values will lead to less deviation around the mean.

particles An integer. Number of starting values
cores_per_chain

An integer. How many cores to use per chain. Parallelizes across participant
calculations.

cores_for_chains

An integer. How many cores to use to parallelize across chains. Default is the
number of chains.

Value

An emc object
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Examples

# Make a design and an emc object
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1),
constants=c(s=log(1)))

DDMaE <- make_emc(forstmann, design_DDMaE)
# set up our mean starting points (same used across subjects).
mu <- c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),

t0=log(.2))
# Small variances to simulate start points from a tight range
var <- diag(0.05, length(mu))
# Initialize chains, 4 cores per chain, and parallelizing across our 3 chains as well
# so 4*3 cores used.
DDMaE <- init_chains(DDMaE, start_mu = mu, start_var = var,

cores_per_chain = 1, cores_for_chains = 1, particles = 10)
# Afterwards we can just use fit
# DDMaE <- fit(DDMaE, cores_per_chain = 4)

LBA The Linear Ballistic Accumulator model

Description

Model file to estimate the Linear Ballistic Accumulator (LBA) in EMC2.

Usage

LBA()

Details

Model files are almost exclusively used in design().

Default values are used for all parameters that are not explicitly listed in the formula argument of
design().They can also be accessed with LBA()$p_types.

Parameter Transform Natural scale Default Mapping Interpretation
v - [-Inf, Inf] 1 Mean evidence-accumulation rate
A log [0, Inf] log(0) Between-trial variation (range) in start point
B log [0, Inf] log(1) b = B+A Distance from A to b (response threshold)
t0 log [0, Inf] log(0) Non-decision time
sv log [0, Inf] log(1) Between-trial variation in evidence-accumulation rate

All parameters are estimated on the log scale, except for the drift rate which is estimated on the real
line.
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Conventionally, sv is fixed to 1 to satisfy scaling constraints.

The b = B + A parameterization ensures that the response threshold is always higher than the be-
tween trial variation in start point of the drift rate.

Because the LBA is a race model, it has one accumulator per response option. EMC2 automatically
constructs a factor representing the accumulators lR (i.e., the latent response) with level names
taken from the R column in the data.

The lR factor is mainly used to allow for response bias, analogous to Z in the DDM. For ex-
ample, in the LBA, response thresholds are determined by the B parameters, so B~lR allows for
different thresholds for the accumulator corresponding to left and right stimuli (e.g., a bias to
respond left occurs if the left threshold is less than the right threshold). For race models, the
design() argument matchfun can be provided, a function that takes the lR factor (defined in the
augmented data (d) in the following function) and returns a logical defining the correct response.
In the example below, the match is simply such that the S factor equals the latent response factor:
matchfun=function(d)d$S==d$lR. Then matchfun is used to automatically create a latent match
(lM) factor with levels FALSE (i.e., the stimulus does not match the accumulator) and TRUE (i.e.,
the stimulus does match the accumulator). This is added internally and can also be used in model
formula, typically for parameters related to the rate of accumulation.

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of choice response time: Lin-
ear ballistic accumulation. Cognitive Psychology, 57(3), 153-178. https://doi.org/10.1016/j.cogpsych.2007.12.002

Value

A model list with all the necessary functions for EMC2 to sample

Examples

# When working with lM it is useful to design an "average and difference"
# contrast matrix, which for binary responses has a simple canonical from:
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"d"))
# We also define a match function for lM
matchfun=function(d)d$S==d$lR
# We now construct our design, with v ~ lM and the contrast for lM the ADmat.
design_LBABE <- design(data = forstmann,model=LBA,matchfun=matchfun,

formula=list(v~lM,sv~lM,B~E+lR,A~1,t0~1),
contrasts=list(v=list(lM=ADmat)),constants=c(sv=log(1)))

# For all parameters that are not defined in the formula, default values are assumed
# (see Table above).

LNR The Log-Normal Race Model

Description

Model file to estimate the Log-Normal Race Model (LNR) in EMC2.

Usage

LNR()
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Details

Model files are almost exclusively used in design().

Default values are used for all parameters that are not explicitly listed in the formula argument of
design().They can also be accessed with LNR()$p_types.

Parameter Transform Natural scale Default Mapping Interpretation
m - [-Inf, Inf] 1 Scale parameter
s log [0, Inf] log(1) Shape parameter
t0 log [0, Inf] log(0) Non-decision time

Because the LNR is a race model, it has one accumulator per response option. EMC2 automatically
constructs a factor representing the accumulators lR (i.e., the latent response) with level names
taken from the R column in the data.

In design(), matchfun can be used to automatically create a latent match (lM) factor with levels
FALSE (i.e., the stimulus does not match the accumulator) and TRUE (i.e., the stimulus does match
the accumulator). This is added internally and can also be used in the model formula, typically for
parameters related to the rate of accumulation (see the example below).

Rouder, J. N., Province, J. M., Morey, R. D., Gomez, P., & Heathcote, A. (2015). The lognormal
race: A cognitive-process model of choice and latency with desirable psychometric properties.
Psychometrika, 80, 491-513. https://doi.org/10.1007/s11336-013-9396-3

Value

A model list with all the necessary functions for EMC2 to sample

Examples

# When working with lM it is useful to design an "average and difference"
# contrast matrix, which for binary responses has a simple canonical from:
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"d"))
# We also define a match function for lM
matchfun=function(d)d$S==d$lR
# We now construct our design, with v ~ lM and the contrast for lM the ADmat.
design_LNRmE <- design(data = forstmann,model=LNR,matchfun=matchfun,

formula=list(m~lM + E,s~1,t0~1),
contrasts=list(m=list(lM=ADmat)))

# For all parameters that are not defined in the formula, default values are assumed
# (see Table above).

make_data Simulate Data
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Description

Simulates data based on a model design and a parameter vector (p_vector) by one of two methods:

1. Creating a fully crossed and balanced design specified by the design, with number of trials per
cell specified by the n_trials argument

2. Using the design of a data frame supplied, which allows creation of unbalanced and other
irregular designs, and replacing previous data with simulated data

Usage

make_data(
parameters,
design = NULL,
n_trials = NULL,
data = NULL,
expand = 1,
staircase = NULL,
functions = NULL,
...

)

Arguments

parameters parameter vector used to simulate data. Can also be a matrix with one row per
subject (with corresponding row names) or an emc object with sampled param-
eters (in which case posterior medians of alpha are used to simulate data)

design Design list created by design()

n_trials Integer. If data is not supplied, number of trials to create per design cell

data Data frame. If supplied, the factors are taken from the data. Determines the
number of trials per level of the design factors and can thus allow for unbalanced
designs

expand Integer. Replicates the data (if supplied) expand times to increase number of
trials per cell.

staircase Default NULL, used with stop-signal paradigm simulation to specify a staircase
algorithm. If non-null and a list then passed through as is, if not it is assigned the
default list structure: list(p=.25,SSD0=.25,stairstep=.05,stairmin=0,stairmax=Inf)

functions List of functions you want to apply to the data generation.

... Additional optional arguments

Details

To create data for multiple subjects see ?make_random_effects().

Value

A data frame with simulated data
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Examples

# First create a design
design_DDMaE <- design(factors = list(S = c("left", "right"),

E = c("SPD", "ACC"),
subjects = 1:30),

Rlevels = c("left", "right"), model = DDM,
formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then create a p_vector:
parameters <- c(v_Sleft=-2,v_Sright=2,a=log(1),a_EACC=log(2), t0=log(.2),

Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))

# Now we can simulate data
data <- make_data(parameters, design_DDMaE, n_trials = 30)

# We can also simulate data based on a specific dataset
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

parameters <- c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),
t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))

data <- make_data(parameters, design_DDMaE, data = forstmann)

make_emc Make an emc Object

Description

Creates an emc object by combining the data, prior, and model specification into a emc object that
is needed in fit().

Usage

make_emc(
data,
design,
model = NULL,
type = "standard",
n_chains = 3,
compress = TRUE,
rt_resolution = 0.02,
prior_list = NULL,
group_design = NULL,
par_groups = NULL,
...

)
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Arguments

data A data frame, or a list of data frames. Needs to have the variable subjects as
participant identifier.

design A list with a pre-specified design, the output of design().

model A model list. If none is supplied, the model specified in design() is used.

type A string indicating whether to run a standard group-level, blocked, diagonal,
factor, or single (i.e., non-hierarchical) model.

n_chains An integer. Specifies the number of mcmc chains to be run (has to be more than
1 to compute rhat).

compress A Boolean, if TRUE (i.e., the default), the data is compressed to speed up likeli-
hood calculations.

rt_resolution A double. Used for compression, response times will be binned based on this
resolution.

prior_list A named list containing the prior. Default prior created if NULL. For the default
priors, see ?get_prior_{type}.

group_design A design for group-level mappings, made using group_design().

par_groups A vector. Indicates which parameters are allowed to correlate. Could either
be a list of character vectors of covariance blocks. Or a numeric vector, e.g.,
c(1,1,1,2,2) means the covariances of the first three and of the last two pa-
rameters are estimated as two separate blocks.

... Additional, optional arguments.

Value

An uninitialized emc object

Examples

dat <- forstmann

# function that takes the lR factor (named diff in the following function) and
# returns a logical defining the correct response for each stimulus. In this
# case the match is simply such that the S factor equals the latent response factor.
matchfun <- function(d)d$S==d$lR

# design an "average and difference" contrast matrix
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"diff"))

# specify design
design_LBABE <- design(data = dat,model=LBA,matchfun=matchfun,
formula=list(v~lM,sv~lM,B~E+lR,A~1,t0~1),
contrasts=list(v=list(lM=ADmat)),constants=c(sv=log(1)))

# specify priors
pmean <- c(v=1,v_lMdiff=1,sv_lMTRUE=log(.5), B=log(.5),B_Eneutral=log(1.5),

B_Eaccuracy=log(2),B_lRright=0, A=log(0.25),t0=log(.2))
psd <- c(v=1,v_lMdiff=0.5,sv_lMTRUE=.5,
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B=0.3,B_Eneutral=0.3,B_Eaccuracy=0.3,B_lRright=0.3,A=0.4,t0=.5)
prior_LBABE <- prior(design_LBABE, type = 'standard',pmean=pmean,psd=psd)

# create emc object
LBABE <- make_emc(dat,design_LBABE,type="standard", prior=prior_LBABE)

make_random_effects Generate Subject-Level Parameters

Description

Simulates subject-level parameters in the format required by make_data().

Usage

make_random_effects(
design,
group_means,
n_subj = NULL,
variance_proportion = 0.2,
covariances = NULL

)

Arguments

design A design list. The design as specified by design()

group_means A numeric vector. The group level means for each parameter, in the same order
as sampled_pars(design)

n_subj An integer. The number of subjects to generate parameters for. If NULL will be
inferred from design

variance_proportion

A double. Optional. If covariances are not specified, the variances will be
created by multiplying the means by this number. The covariances will be 0.

covariances A covariance matrix. Optional. Specify the intended covariance matrix.

Value

A matrix of subject-level parameters.

Examples

# First create a design
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then create a group-level means vector:
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group_means =c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),
t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))

# Now we can create subject-level parameters
subj_pars <- make_random_effects(design_DDMaE, group_means, n_subj = 19)

# We can also define a covariance matrix to simulate from
subj_pars <- make_random_effects(design_DDMaE, group_means, n_subj = 19,

covariances = diag(.1, length(group_means)))

# The subject level parameters can be used to generate data
make_data(subj_pars, design_DDMaE, n_trials = 10)

make_trend Create a trend specification for model parameters

Description

Create a trend specification for model parameters

Usage

make_trend(
par_names,
cov_names,
kernels,
bases = NULL,
shared = NULL,
trend_pnames = NULL,
premap = TRUE,
pretransform = FALSE

)

Arguments

par_names Character vector specifying which parameters to apply trend to

cov_names Character vector specifying which covariates to use for each trend

kernels Character vector specifying which kernel function to use for each trend

bases Optional character vector specifying which base function to use for each trend

shared Named list with entries the parameter names to be shared and the names the new
names of the shared parameter.

trend_pnames Optional character vector specifying custom parameter names

premap Logical indicating if trend should be applied before or after parameter mapping

pretransform If !premap, logical indicating if trend should be applied before or after parameter
transformation
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Value

A list containing the trend specifications for each parameter

Examples

# Put trend on B and v parameters
trend <- make_trend(

par_names = c("B", "v"),
cov_names = "strial",
kernels = c("exp_incr", "poly3"),
premap = TRUE,
shared = list(shrd = list("B.B0", "v.d1"))

)
get_trend_pnames(trend)

mapped_pars Parameter Mapping Back to the Design Factors

Description

Maps parameters of the cognitive model back to the experimental design. If p_vector is left unspec-
ified will print a textual description of the mapping. Otherwise the p_vector can be created using
sampled_pars(). The returned matrix shows whether/how parameters differ across the experimen-
tal factors.

Usage

mapped_pars(
x,
p_vector = NULL,
model = NULL,
digits = 3,
remove_subjects = TRUE,
covariates = NULL,
...

)

## S3 method for class 'emc.design'
mapped_pars(
x,
p_vector = NULL,
model = NULL,
digits = 3,
remove_subjects = TRUE,
covariates = NULL,
...
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)

## S3 method for class 'emc.prior'
mapped_pars(
x,
p_vector = NULL,
model = NULL,
digits = 3,
remove_subjects = TRUE,
covariates = NULL,
...

)

## S3 method for class 'emc'
mapped_pars(
x,
p_vector = NULL,
model = NULL,
digits = 3,
remove_subjects = TRUE,
covariates = NULL,
...

)

Arguments

x an emc, emc.prior or emc.design object

p_vector Optional. Specify parameter vector to get numeric mappings. Must be in the
form of sampled_pars(design)

model Optional model type (if not already specified in design)

digits Integer. Will round the output parameter values to this many decimals
remove_subjects

Boolean. Whether to include subjects as a factor in the design

covariates Covariates specified in the design can be included here.

... optional arguments

Value

Matrix with a column for each factor in the design and for each model parameter type (p_type).

Examples

# First define a design:
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

mapped_pars(design_DDMaE)
# Then create a p_vector:
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p_vector=c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),
t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))

# This will map the parameters of the p_vector back to the design
mapped_pars(design_DDMaE, p_vector)

merge_chains Merge Samples

Description

Merges samples from all chains as one unlisted object.

Usage

merge_chains(emc)

Arguments

emc An emc object, commonly the output of fit()

Details

Note that all sampling stages are included in the merged output, including iterations from the
preburn, burn, and adapt stages. merge_chains(emc)$samples$stage shows the correspond-
ing sampling stages.

Value

An unlisted emc object with all chains merged

model_averaging Model Averaging

Description

Computes model weights and a Bayes factor by comparing two groups of models based on their
Information Criterion (IC) values. The function works with either numeric vectors or data frames
containing multiple IC measures (e.g., MD, BPIC, DIC).

Usage

model_averaging(IC_for, IC_against)
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Arguments

IC_for A numeric vector or the output of compare

IC_against A numeric vector or the output of compare

Details

When provided with numeric vectors, it computes the weights for the two groups by first converting
the IC values into relative weights and then normalizing them. When provided with a data frame,
it assumes that the data frame is the output of a call to compare and applies averaging to each IC
metric

Value

A data.frame with the following columns:

wFor The aggregated weight of the models in favor.

wAgainst The aggregated weight of the models against.

Factor The Bayes factor (ratio of wFor to wAgainst).

If IC_for is a data frame, a matrix with rows corresponding to each IC measure is returned.

Examples

# First set up some example models (normally these would be alternative models)
samples_LNR2 <- subset(samples_LNR, length.out = 45)
samples_LNR3 <- subset(samples_LNR, length.out = 40)
samples_LNR4 <- subset(samples_LNR, length.out = 35)

# Run compare on them, BayesFactor = F is set for speed.
ICs <- compare(list(S1 = samples_LNR, S2 = samples_LNR2,

S3 = samples_LNR3, S4 = samples_LNR4), BayesFactor = FALSE)

# Model averaging can either be done with a vector of ICs:
model_averaging(ICs$BPIC[1:2], ICs$BPIC[2:4])

# Or the output of compare:
model_averaging(ICs[1:2,], ICs[3:4,])

MRI GLM model for fMRI data

Description

Creates a model specification for fMRI data using a normal distribution. This model assumes that
the observed BOLD signal follows a normal distribution with a mean determined by the design
matrix and betas, and a standard deviation parameter for noise.



MRI_AR1 51

Usage

MRI()

Details

The model uses a normal distribution to model fMRI BOLD signals. Beta parameters represent the
effect sizes for different conditions, and the sd parameter represents the standard deviation of the
noise.

The log-likelihood function centers the predicted values by subtracting the mean, which helps with
model identifiability.

Value

A list containing model specification

Examples

# Create a normal MRI model specification
model_spec <- MRI()

# Access model parameters
model_spec$p_types

MRI_AR1 Create an AR(1) GLM model for fMRI data

Description

This function creates a model specification for MRI data with an AR(1) error structure. The model
includes beta parameters for the design matrix, a rho parameter for the autocorrelation, and a stan-
dard deviation parameter for the noise.

Usage

MRI_AR1()

Details

The AR(1) model accounts for temporal autocorrelation in the data, where each timepoint is corre-
lated with the previous timepoint according to the rho parameter.

Value

A list containing the model specifications
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Examples

# Create an AR(1) GLM model for fMRI data
model_spec <- MRI_AR1()

# Access model parameters
model_spec$p_types

pairs_posterior Plot Within-Chain Correlations

Description

Plots within-chain parameter correlations (upper triangle) and corresponding scatterplots (lower
triangle) to visualize parameter sloppiness.

Usage

pairs_posterior(
emc,
selection = "alpha",
scale_subjects = TRUE,
do_plot = TRUE,
N = 500,
...

)

Arguments

emc An emc object

selection A Character string. Indicates which parameter type to plot (alpha, mu, variance,
covariance, correlation).

scale_subjects Boolean. To standardize each participant with selection = "alpha", by sub-
tracting the mean and divding by the standard deviation. This ensures the plot
has every participant on the same scale.

do_plot Boolean. Whether to plot the pairs plot, if FALSE, only the correlations are
returned.

N Integer for maximum number of iterations used (defaults to 500). If number of
samples in stage or selection exceeds N, a random subset will be taken of size N

... Optional arguments that can be passed to get_pars

Details

If selection = alpha the parameter chains are concatenated across participants, (after standardiz-
ing if scale_subjects = TRUE) and then correlated.
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Value

Invisibly returns a matrix with the correlations between the parameters.

Examples

# Plot the sloppiness for the individual-level subjects
pairs_posterior(samples_LNR, selection = "alpha")

# We can also choose group-level parameters and subsets of the parameter space
pairs_posterior(samples_LNR, use_par = c("m", "t0"), selection = "sigma2")

parameters.emc.prior Return Data Frame of Parameters

Description

Return Data Frame of Parameters

Usage

## S3 method for class 'emc.prior'
parameters(x, selection = "mu", N = 1000, covariates = NULL, ...)

## S3 method for class 'emc'
parameters(x, selection = "mu", N = NULL, resample = FALSE, ...)

parameters(x, ...)

Arguments

x An emc or emc.prior object

selection String designating parameter type (e.g. mu, sigma2, correlation, alpha)

N Integer. How many samples to take from the posterior/prior. If NULL will return
the full posterior

covariates For priors, possible covariates in the design

... Optional arguments that can be passed to get_pars

resample Boolean. If TRUE will sample N samples from the posterior with replacement

Value

A data frame with one row for each sample (with a subjects column if selection = "alpha" and using
draws from the posterior)
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Examples

# For prior inference:
# First set up a prior
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then set up a prior using make_prior
p_vector=c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),

t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
psd <- c(v_Sleft=1,v_Sright=1,a=.3,a_Eneutral=.3,a_Eaccuracy=.3,

t0=.4,Z=1,sv=.4,SZ=1)
# Here we left the variance prior at default
prior_DDMaE <- prior(design_DDMaE,mu_mean=p_vector,mu_sd=psd)
# Get our prior samples
parameters(prior_DDMaE, N = 100)
# For posterior inference:
# Get 100 samples of the group-level mean (the default)
parameters(samples_LNR, N = 100)
# or from the individual-level parameters and mapped
parameters(samples_LNR, selection = "alpha", map = TRUE)

plot.emc Plot Function for emc Objects

Description

Makes trace plots for model parameters.

Usage

## S3 method for class 'emc'
plot(
x,
stage = "sample",
selection = c("mu", "sigma2", "alpha"),
layout = NA,
...

)

Arguments

x An object of class emc
stage A character string indicating the sampling stage to be summarized. Can be

preburn, burn, adapt, or sample.
selection A character vector indicating the parameter group(s). Defaults to mu, sigma2,

and alpha.
layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will

automatically generate an appropriate layout.
... Optional arguments that can be passed to get_pars or plot.default (see par())
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Details

If an emc object that has not been run with fit yet is supplied prior plots will be returned.

Value

A trace/acf plot of the selected MCMC chains

Examples

plot(samples_LNR)
# Or trace autocorrelation for the second subject:
plot(samples_LNR, subject = 2, selection = "alpha")

# Can also plot the trace of for example the group-level correlation:
plot(samples_LNR, selection = "correlation", col = c("green", "purple", "orange"), lwd = 2)

plot.emc.design Plot method for emc.design objects

Description

Makes design illustration by plotting simulated data based on the design

Usage

## S3 method for class 'emc.design'
plot(
x,
p_vector,
data = NULL,
factors = NULL,
plot_factor = NULL,
n_data_sim = 10,
functions = NULL,
...

)

Arguments

x An object of class emc.design containing the design to plot

p_vector A named vector of parameter values to use for data generation

data Optional data frame to overlay on the design plot. If NULL, data will be simu-
lated.

factors Character vector. Factors to use for varying parameters in the plot

plot_factor Optional character. Make separate plots for each level of this factor
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n_data_sim Integer. If data is NULL, number of simulated datasets to generate for the plot.
Default is 10.

functions Optional named list of functions that create additional columns in the data

... Additional arguments passed to make_design_plot

Value

No return value, called for side effect of plotting

plot.emc.prior Plot a prior

Description

Takes a prior object and plots the selected implied prior

Usage

## S3 method for class 'emc.prior'
plot(
x,
selection = "mu",
do_plot = TRUE,
covariates = NULL,
layout = NA,
N = 50000,
...

)

Arguments

x An emc_prior element

selection A Character string. Indicates which parameter type to use (e.g., alpha, mu,
sigma2, correlation).

do_plot Boolean. If FALSE will only return prior samples and omit plotting.

covariates dataframe/functions as specified by the design

layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will
automatically generate an appropriate layout.

N Integer. How many prior samples to draw

... Optional arguments that can be passed to get_pars, histogram, plot.default (see
par()), or arguments required for the types of models e.g. n_factors for type =
"factor"

Value

An invisible mcmc.list object with prior samples of the selected type
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Examples

# First define a design for the model
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then set up a prior using make_prior
p_vector=c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),

t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
psd <- c(v_Sleft=1,v_Sright=1,a=.3,a_Eneutral=.3,a_Eaccuracy=.3,

t0=.4,Z=1,sv=.4,SZ=1)
# Here we left the variance prior at default
prior_DDMaE <- prior(design_DDMaE,mu_mean=p_vector,mu_sd=psd)
# Now we can plot all sorts of (implied) priors
plot(prior_DDMaE, selection = "mu", N = 1e3)
plot(prior_DDMaE, selection = "mu", mapped = FALSE, N=1e3)
# We can also plot the implied prior on the participant level effects.
plot(prior_DDMaE, selection = "alpha", col = "green", N = 1e3)

plot_cdf Plot Defective Cumulative Distribution Functions

Description

Plots panels of cumulative distribution functions (CDFs) for each level of the specified defective
factor in the data. The CDFs are defective; each factor level’s CDF scales only up to that level’s
proportion. Summed across levels, the maximum is 1. Optionally, posterior and/or prior predictive
CDFs can be overlaid.

Usage

plot_cdf(
input,
post_predict = NULL,
prior_predict = NULL,
subject = NULL,
quants = c(0.025, 0.975),
functions = NULL,
factors = NULL,
defective_factor = "R",
n_cores = 1,
n_post = 50,
layout = NA,
to_plot = c("data", "posterior", "prior")[1:2],
use_lim = c("data", "posterior", "prior")[1:2],
legendpos = c("top", "topright"),
posterior_args = list(),
prior_args = list(),
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...
)

Arguments

input Either an emc object or a data frame, or a list of such objects.

post_predict Optional posterior predictive data (matching columns) or list thereof.

prior_predict Optional prior predictive data (matching columns) or list thereof.

subject Subset the data to a single subject (by index or name).

quants Numeric vector of credible interval bounds (e.g. c(0.025, 0.975)).

functions A function (or list of functions) that create new columns in the datasets or pre-
dictives

factors Character vector of factor names to aggregate over; defaults to plotting full data
set ungrouped by factors if NULL.

defective_factor

Name of the factor used for the defective CDF (default "R").

n_cores Number of CPU cores to use if generating predictives from an emc object.

n_post Number of posterior draws to simulate if needed for predictives.

layout Numeric vector used in par(mfrow=...); use NA for auto-layout.

to_plot Character vector: any of "data", "posterior", "prior".

use_lim Character vector controlling which source(s) define xlim.

legendpos Character vector controlling the positions of the legends

posterior_args Optional list of graphical parameters for posterior lines/ribbons.

prior_args Optional list of graphical parameters for prior lines/ribbons.

... Other graphical parameters for the real data lines.

Value

Returns NULL invisibly.

Examples

# Plot defective CDF for data only
# plot_cdf(forstmann, to_plot = "data")
#
# Plot with posterior predictions
# plot_cdf(samples_LNR, to_plot = c("data","posterior"), n_post=10)
#
# Or a list of multiple emc objects ...
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plot_density Plot Defective Densities

Description

Plots panels that contain a set of densities for each level of the specified defective factor in the data.
These densities are defective; their areas are relative to the respective proportions of the defective
factor levels. Across all levels, the area sums to 1. Optionally, posterior/prior predictive densities
can be overlaid.

Usage

plot_density(
input,
post_predict = NULL,
prior_predict = NULL,
subject = NULL,
quants = c(0.025, 0.975),
functions = NULL,
factors = NULL,
defective_factor = "R",
n_cores = 1,
n_post = 50,
layout = NA,
to_plot = c("data", "posterior", "prior")[1:2],
use_lim = c("data", "posterior", "prior")[1:2],
legendpos = c("topright", "top"),
posterior_args = list(),
prior_args = list(),
...

)

Arguments

input Either an emc object or a data frame, or a list of such objects.

post_predict Optional posterior predictive data (matching columns) or list thereof.

prior_predict Optional prior predictive data (matching columns) or list thereof.

subject Subset the data to a single subject (by index or name).

quants Numeric vector of credible interval bounds (e.g. c(0.025, 0.975)).

functions A function (or list of functions) that create new columns in the datasets or pre-
dictives

factors Character vector of factor names to aggregate over; defaults to plotting full data
set ungrouped by factors if NULL.

defective_factor

Name of the factor used for the defective CDF (default "R").
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n_cores Number of CPU cores to use if generating predictives from an emc object.

n_post Number of posterior draws to simulate if needed for predictives.

layout Numeric vector used in par(mfrow=...); use NA for auto-layout.

to_plot Character vector: any of "data", "posterior", "prior".

use_lim Character vector controlling which source(s) define xlim.

legendpos Character vector controlling the positions of the legends

posterior_args Optional list of graphical parameters for posterior lines/ribbons.

prior_args Optional list of graphical parameters for prior lines/ribbons.

... Other graphical parameters for the real data lines.

Examples

# Plot defective densities for each subject and the factor combination in the design:
plot_density(forstmann)
# or for one subject:
plot_density(forstmann, subject = 1)
# Now collapsing across subjects and using a different defective factor:
plot_density(forstmann, factors = "S", defective_factor = "E")
# Or plot posterior predictives
plot_density(samples_LNR, n_post = 10)

plot_design.emc.design

Plot Design

Description

Makes design illustration by plotting simulated data based on the design

Usage

## S3 method for class 'emc.design'
plot_design(
x,
data = NULL,
factors = NULL,
plot_factor = NULL,
n_data_sim = 10,
p_vector = NULL,
functions = NULL,
...

)

## S3 method for class 'emc.prior'
plot_design(
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x,
data = NULL,
factors = NULL,
plot_factor = NULL,
n_data_sim = 10,
p_vector = NULL,
functions = NULL,
...

)

plot_design(
x,
data = NULL,
factors = NULL,
plot_factor = NULL,
n_data_sim = 10,
p_vector = NULL,
functions = NULL,
...

)

## S3 method for class 'emc'
plot_design(
x,
data = NULL,
factors = NULL,
plot_factor = NULL,
n_data_sim = 10,
p_vector = NULL,
functions = NULL,
...

)

Arguments

x An emc or emc.prior object containing the design to plot

data Optional data to overlay on the design plot

factors Factors to use for varying parameters

plot_factor Optional. Make separate plots for each level of this factor

n_data_sim If data is provided, number of simulated datasets to generate for the plot. Default
is 10.

p_vector Only needed when x is an emc.design object, which parameters to use for data
generation.

functions A named list of functions that create additional columns in the data.

... Additional arguments to pass to make_design_plot
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Value

No return value. Just plots the design

plot_design_fmri Plot fMRI Design Matrix

Description

This function creates a visualization of an fMRI design matrix, showing the temporal evolution of
regressors over time. It can handle various input formats and provides options to customize the
visualization.

Usage

plot_design_fmri(
design_matrix,
TRs = 100,
events = NULL,
remove_nuisance = TRUE,
subject = 1,
legend_pos = "bottomleft",
...

)

Arguments

design_matrix A design matrix for fMRI analysis. Can be a data frame, matrix, list of matrices,
or an object of class ’emc.design’.

TRs The number of time points (TRs) to plot. Default is 100.

events A character vector specifying which regressors to plot. If NULL, all non-nuisance
regressors will be plotted.

remove_nuisance

Logical indicating whether to remove nuisance regressors (drift terms, polyno-
mial terms, derivatives) from the plot. Default is TRUE.

subject The subject number to plot. Only applies for list of design matrices. Default is
1.

legend_pos Position of the legend. Default is "bottomleft".

... Additional graphical parameters passed to matplot and legend.

Value

A plot showing the design matrix regressors over time.
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Examples

# Example time series
ts <- data.frame(

subjects = rep(1, 100),
run = rep(1, 100),
time = seq(0, 99),
ROI = rnorm(100)

)
# Create a simple events data frame
events <- data.frame(

subjects = rep(1, 10),
run = rep(1, 10),
onset = seq(0, 90, by = 10),
condition = rep(c("A", "B"), 5),
rt = runif(10, 0.5, 1.5),
accuracy = sample(0:1, 10, replace = TRUE)

)
# Reshape with custom duration for each event_type
reshaped <- reshape_events(events,

event_types = c("condition", "accuracy", "rt"),
duration = list(condition = 0.5,

accuracy = 0.2,
rt = function(x) x$rt))

design_matrices <- convolve_design_matrix(
timeseries = ts,
events = reshaped,
covariates = c('accuracy', 'rt'),
factors = list(cond = c("condition_A", "condition_B")),
contrasts = list(cond = matrix(c(-1, 1))))

# Plot the design matrix
plot_design_fmri(design_matrices)

plot_fmri Plot fMRI peri-stimulus time courses

Description

This function plots average BOLD response around specified events for a single ROI by using
FIR based event estimation, all event_types in events are taken into account in the FIR. Posterior
predictives can be overlaid via the post_predict argument.

Usage

plot_fmri(
timeseries,
post_predict = NULL,
events,
event_type,
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high_pass = TRUE,
high_pass_model = "cosine",
posterior_args = list(),
legend_pos = "topleft",
layout = NA,
n_cores = 1,
...

)

Arguments

timeseries A data frame with columns ’subjects’, ’run’, ’time’, and one ROI measurement
column.

post_predict Optional posterior predictive samples data frame (not shown in examples).

events A data frame with columns ’subjects’, ’run’, ’onset’, ’duration’, ’event_type’,
and ’modulation’.

event_type Character string specifying which event_type in events to plot.

high_pass Logical indicating whether to apply high-pass filtering. Alternatively, specifying
’add’ adds the regressors to the design matrix in the FIR. The choice here should
be the same as the choice for convolve_design_matrix

high_pass_model

Character indicating which type of high-pass filtering to apply (’cosine’, ’poly’)

posterior_args Named list of graphical parameters for posterior predictive lines.

legend_pos Position of the legend. Default: "topleft".

layout Panel layout matrix for multiple modulation groups. NULL leaves current lay-
out

n_cores Number of cores to calculate FIR across subjects with.

... Additional graphical parameters passed to plotting functions (e.g., col, lwd, lty).

Value

NULL. Produces plots as a side-effect.

Examples

ts <- data.frame(
subjects = rep(1, 100),
run = rep(1, 100),
time = seq(0, 99),
ROI = rnorm(100)

)
events <- data.frame(

subjects = rep(1, 5),
run = rep(1, 5),
onset = c(10, 30, 50, 70, 90),
event_type = rep("A", 5),
modulation = rep(1, 5),
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duration = rep(0.5, 5)
)
plot_fmri(ts, events = events, event_type = "A")

plot_pars Plots Density for Parameters

Description

Plots the posterior and prior density for selected parameters of a model. Full range of samples
manipulations described in get_pars.

Usage

plot_pars(
emc,
layout = NA,
selection = "mu",
show_chains = FALSE,
plot_prior = TRUE,
N = 10000,
use_prior_lim = !all_subjects,
lpos = "topright",
true_pars = NULL,
all_subjects = FALSE,
prior_args = list(),
true_args = list(),
...

)

Arguments

emc An emc object

layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will
automatically generate an appropriate layout.

selection A Character string. Indicates which parameter type to use (e.g., alpha, mu,
sigma2, correlation).

show_chains Boolean (defaults to FALSE) plots a separate density for each chain.

plot_prior Boolean. If TRUE will overlay prior density in the plot (default in red)

N Integer. How many prior samples to draw

use_prior_lim Boolean. If TRUE will use xlimits based on prior density, otherwise based on
posterior density.

lpos Character. Where to plot the contraction statistic.
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true_pars A vector or emc object. Can be used to visualize recovery. If a vector will
plot a vertical line for each parameter at the appropriate place. If an emc object
will plot the densities of the object as well, assumed to be the data-generating
posteriors.

all_subjects Boolean. Will plot the densities of all (selected) subjects overlaid with the
group-level distribution

prior_args A list. Optional additional arguments to be passed to plot.default for the plotting
of the prior density (see par())

true_args A list. Optional additional arguments to be passed to plot.default for the plotting
of the true parameters (see par())

... Optional arguments that can be passed to get_pars, density, or plot.default
(see par())

Value

An invisible return of the contraction statistics for the selected parameter type

Examples

# Full range of possibilities described in get_pars
plot_pars(samples_LNR)
# Or plot all subjects
plot_pars(samples_LNR, all_subjects = TRUE, col = 'purple')
# Or plot recovery
true_emc <- samples_LNR # This would normally be the data-generating samples
plot_pars(samples_LNR, true_pars = true_emc, true_args = list(col = 'blue'), adjust = 2)

plot_relations Plot Group-Level Relations

Description

An adjusted version of the corrplot package function corrplot() tailored to EMC2 and the plotting
of estimated correlations.

Usage

plot_relations(
emc = NULL,
stage = "sample",
plot_cred = FALSE,
plot_means = TRUE,
only_cred = TRUE,
nice_names = NULL,
selection = "correlation",
use_par = NULL,
...

)
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Arguments

emc An EMC2 object, commonly the output of run_emc().

stage Character. The stage from which to take the samples, defaults to the sampling
stage sample.

plot_cred Boolean. Whether to plot the 95 percent credible intervals or not

plot_means Boolean. Whether to plot the means or not

only_cred Boolean. Whether to only plot credible values

nice_names Character string. Alternative names to give the parameters

selection Character. Whether to plot correlations or loadings

use_par Character. Which parameters to include. If null, includes all.

... Optional additional arguments

Value

No return value, creates a plot of group-level relations

Examples

# For a given set of hierarchical model samples we can make a
# correlation matrix plot.
plot_relations(samples_LNR, only_cred = TRUE, plot_cred = TRUE)
# We can also only plot the correlations where the credible interval does not include zero
plot_relations(samples_LNR, plot_means = TRUE, only_cred = TRUE)

plot_sbc_ecdf Plot the ECDF Difference in SBC Ranks

Description

Plots the difference in observed cumulative rank statistics and the expected cumulative distribution
of a uniform distribution. The blue shaded areas indicate the 95% credible interval.

Usage

plot_sbc_ecdf(ranks, layout = NA)

Arguments

ranks A list of named dataframes of the rank statistic

layout Optional. A numeric vector specifying the layout using par(mfrow = layout)

Value

No returns
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plot_sbc_hist Plot the Histogram of the Observed Rank Statistics of SBC

Description

Note that this plot is dependent on the number of bins, and a more general visualization is to use
plot_sbc_ecdf

Usage

plot_sbc_hist(ranks, bins = 10, layout = NA)

Arguments

ranks A list of named dataframes of the rank statistic

bins An integer specifying the number of bins to use when plotting the histogram

layout Optional. A numeric vector specifying the layout using par(mfrow = layout)

Value

No returns

plot_stat Plot Statistics on Data

Description

Plots panels that contain a set of densities for each level of the specified factor The densities
represent the predicted data across the posterior, the vertical lines represent the real data.

Usage

plot_stat(
input,
post_predict = NULL,
prior_predict = NULL,
stat_fun,
stat_name = NULL,
subject = NULL,
factors = NULL,
n_cores = 1,
n_post = 50,
quants = c(0.025, 0.5, 0.975),
functions = NULL,
layout = NA,
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to_plot = c("data", "posterior", "prior")[1:2],
use_lim = c("data", "posterior", "prior")[1:2],
legendpos = c("topleft", "top"),
posterior_args = list(),
prior_args = list(),
...

)

Arguments

input Either an emc object or a data frame, or a list of such objects.

post_predict Optional posterior predictive data (matching columns) or list thereof.

prior_predict Optional prior predictive data (matching columns) or list thereof.

stat_fun A function that can be applied to the data and returns a single value or a vector
of values.

stat_name The name of the calculated quantity

subject Subset the data to a single subject (by index or name).

factors Character vector of factor names to aggregate over; defaults to plotting full data
set ungrouped by factors if NULL.

n_cores Number of CPU cores to use if generating predictives from an emc object.

n_post Number of posterior draws to simulate if needed for predictives.

quants Numeric vector of credible interval bounds (e.g. c(0.025, 0.975)).

functions A function (or list of functions) that create new columns in the datasets or pre-
dictives

layout Numeric vector used in par(mfrow=...); use NA for auto-layout.

to_plot Character vector: any of "data", "posterior", "prior".

use_lim Character vector controlling which source(s) define xlim.

legendpos Character vector controlling the positions of the legends

posterior_args Optional list of graphical parameters for posterior lines/ribbons.

prior_args Optional list of graphical parameters for prior lines/ribbons.

... Other graphical parameters for the real data lines.

Value

an invisible data frame with the stat applied to the real data, posterior predictives and/or prior
predictives

Examples

# For example plot the observed and predicted response accuracy
# Can also apply more sophisticated statistics
drt <- function(data) diff(tapply(data$rt,data[,c("E")],mean))
plot_stat(samples_LNR, stat_fun = drt, n_post = 10, stat_name = "RT diff Speed - A/N")
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predict.emc.prior Generate Posterior/Prior Predictives

Description

Simulate n_post data sets using the posterior/prior parameter estimates

Usage

## S3 method for class 'emc.prior'
predict(object, data = NULL, n_post = 50, n_cores = 1, n_trials = NULL, ...)

## S3 method for class 'emc'
predict(
object,
hyper = FALSE,
n_post = 50,
n_cores = 1,
stat = c("random", "mean", "median")[1],
...

)

Arguments

object An emc or emc.prior object from which to generate predictives
data A data frame needed to exactly match the original design
n_post Integer. Number of generated datasets
n_cores Integer. Number of cores across which there should be parallellized
n_trials An integer. If data isn’t provided (although preferred), can generate data based

on n_trials per cell of design
... Optional additional arguments passed to get_pars or make_data
hyper Boolean. Defaults to FALSE. If TRUE, simulates from the group-level (hyper)

parameters instead of the subject-level parameters.
stat Character. Can be mean, median or random (i.e., the default). Will take either

random samples from the chain(s) or use the mean or median of the parameter
estimates.

Value

A list of simulated data sets of length n_post

Examples

# based on an emc object ran by fit() we can generate posterior predictives
predict(samples_LNR, n_cores = 1, n_post = 10)



prior 71

prior Specify Priors for the Chosen Model

Description

These values are entered manually by default but can be recycled from another prior (given in the
update argument).

Usage

prior(
design,
type = NULL,
group_design = NULL,
update = NULL,
do_ask = NULL,
fill_default = TRUE,
...

)

Arguments

design Design list for which a prior is constructed, typically the output of design()

type Character. What type of group-level model you plan on using i.e. diagonal

group_design An emc.group_design object created with group_design()

update Prior list from which to copy values

do_ask Character. For which parameter types or hyperparameters to ask for prior speci-
fication, i.e. Sigma, mu or loadings for factor models, but theta_mu_mean or A
also works.

fill_default Boolean, If TRUE will fill all non-specified parameters, and parameters outside
of do_ask, to default values

... Either values to prefill, i.e. theta_mu_mean = c(1:6), or additional arguments
such as n_factors = 2

Details

Where a value is not supplied, the user is prompted to enter numeric values (or functions that
evaluate to numbers).

To get the prior help use prior_help(type). With type e.g. ’diagonal’.

Value

A prior list object
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Examples

# First define a design for the model
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then set up a prior using prior
p_vector=c(v_Sleft=-2,v_Sright=2,a=log(1),a_Eneutral=log(1.5),a_Eaccuracy=log(2),

t0=log(.2),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
psd <- c(v_Sleft=1,v_Sright=1,a=.3,a_Eneutral=.3,a_Eaccuracy=.3,

t0=.4,Z=1,sv=.4,SZ=1)
# Here we left the variance prior at default
prior_DDMaE <- prior(design_DDMaE,mu_mean=p_vector,mu_sd=psd)
# Also add a group-level variance prior:
pscale <- c(v_Sleft=.6,v_Sright=.6,a=.3,a_Eneutral=.3,a_Eaccuracy=.3,

t0=.2,Z=.5,sv=.4,SZ=.3)
df <- .4
prior_DDMaE <- prior(design_DDMaE,mu_mean=p_vector,mu_sd=psd, A = pscale, df = df)
# If we specify a new design
design_DDMat0E <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~E, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# We can easily update the prior
prior_DDMat0E <- prior(design_DDMat0E, update = prior_DDMaE)

prior_help Prior Specification Information

Description

Prints information associated with the prior for certain ’type’

Usage

prior_help(type)

Arguments

type A character string indicating which ’type’ of model to run (e.g. ’standard’ or
’single’)

Value

Invisible return with a list of all the information that is also printed

Examples

prior_help('diagonal')
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profile_plot Likelihood Profile Plots

Description

Creates likelihood profile plots from a design and the experimental data by varying one model
parameter while holding all others constant.

Usage

profile_plot(
data,
design,
p_vector,
range = 0.5,
layout = NA,
p_min = NULL,
p_max = NULL,
use_par = NULL,
n_point = 100,
n_cores = 1,
round = 3,
true_args = list(),
...

)

Arguments

data A dataframe. Experimental data used, needed for the design mapping

design A design list. Created using design.

p_vector Named vector of parameter values (typically created with sampled_pars(design))

range Numeric. The max and min will be p_vector + range/2 and p_vector - range/2,
unless specified in p_min or p_max.

layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will
automatically generate an appropriate layout.

p_min Named vector. If specified will instead use these values for minimum range of
the selected parameters.

p_max Named vector. If specified will instead use these values for maximum range of
the selected parameters.

use_par Character vector. If specified will only plot the profiles for the specified param-
eters.

n_point Integer. Number of evenly spaced points at which to calculate likelihood

n_cores Number of likelihood points evenly spaced between the minimum and maximum
likelihood range.
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round Integer. To how many digits will the output be rounded.

true_args A list. Optional additional arguments that can be passed to plot.default for the
plotting of the true vertical line.

... Optional additional arguments that can be passed to plot.default.

Value

Vector with highest likelihood point, input and mismatch between true and highest point

Examples

# First create a design
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then create a p_vector:
p_vector=c(v_Sleft=-2,v_Sright=2,a=log(.95),a_Eneutral=log(1.5),a_Eaccuracy=log(2),

t0=log(.25),Z=qnorm(.5),sv=log(.5),SZ=qnorm(.5))
# Make a profile plot for some parameters. Specifying a custom range for t0.
profile_plot(p_vector = p_vector, p_min = c(t0 = -1.35),

p_max = c(t0 = -1.45), use_par = c("a", "t0", "SZ"),
data = forstmann, design = design_DDMaE, n_point = 10)

RDM The Racing Diffusion Model

Description

Model file to estimate the Racing Diffusion Model (RDM), also known as the Racing Wald Model.

Usage

RDM()

Details

Model files are almost exclusively used in design().

Default values are used for all parameters that are not explicitly listed in the formula argument of
design().They can also be accessed with RDM()$p_types.

Parameter Transform Natural scale Default Mapping Interpretation
v log [0, Inf] log(1) Evidence-accumulation rate (drift rate)
A log [0, Inf] log(0) Between-trial variation (range) in start point
B log [0, Inf] log(1) b = B + A Distance from A to b (response threshold)
t0 log [0, Inf] log(0) Non-decision time
s log [0, Inf] log(1) Within-trial standard deviation of drift rate
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All parameters are estimated on the log scale.

The parameterization b = B + A ensures that the response threshold is always higher than the be-
tween trial variation in start point.

Conventionally, s is fixed to 1 to satisfy scaling constraints.

Because the RDM is a race model, it has one accumulator per response option. EMC2 automatically
constructs a factor representing the accumulators lR (i.e., the latent response) with level names taken
from the R column in the data.

The lR factor is mainly used to allow for response bias, analogous to Z in the DDM. For example,
in the RDM, response thresholds are determined by the B parameters, so B~lR allows for different
thresholds for the accumulator corresponding to "left" and "right" stimuli, for example, (e.g., a bias
to respond left occurs if the left threshold is less than the right threshold).

For race models in general, the argument matchfun can be provided in design(). One needs to sup-
ply a function that takes the lR factor (defined in the augmented data (d) in the following function)
and returns a logical defining the correct response. In the example below, this is simply whether the
S factor equals the latent response factor: matchfun=function(d)d$S==d$lR. Using matchfun a
latent match factor (lM) with levels FALSE (i.e., the stimulus does not match the accumulator) and
TRUE (i.e., the stimulus does match the accumulator). This is added internally and can also be used
in model formula, typically for parameters related to the rate of accumulation.

Tillman, G., Van Zandt, T., & Logan, G. D. (2020). Sequential sampling models without random
between-trial variability: The racing diffusion model of speeded decision making. Psychonomic
Bulletin & Review, 27(5), 911-936. https://doi.org/10.3758/s13423-020-01719-6

Value

A list defining the cognitive model

Examples

# When working with lM it is useful to design an "average and difference"
# contrast matrix, which for binary responses has a simple canonical from:
ADmat <- matrix(c(-1/2,1/2),ncol=1,dimnames=list(NULL,"d"))
# We also define a match function for lM
matchfun=function(d)d$S==d$lR
# We now construct our design, with v ~ lM and the contrast for lM the ADmat.
design_RDMBE <- design(data = forstmann,model=RDM,matchfun=matchfun,

formula=list(v~lM,s~lM,B~E+lR,A~1,t0~1),
contrasts=list(v=list(lM=ADmat)),constants=c(s=log(1)))

# For all parameters that are not defined in the formula, default values are assumed
# (see Table above).
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recovery.emc Recovery Plots

Description

Plots recovery of data generating parameters/samples. Full range of samples manipulations de-
scribed in get_pars

Usage

## S3 method for class 'emc'
recovery(
emc,
true_pars,
selection = "mu",
layout = NA,
do_CI = TRUE,
correlation = "pearson",
stat = "rmse",
digits = 3,
CI = 0.95,
ci_plot_args = list(),
...

)

recovery(emc, ...)

Arguments

emc An emc object
true_pars A vector of data-generating parameters or an emc object with data-generating

samples
selection A Character vector. Indicates which parameter types to plot (e.g., alpha, mu,

sigma2, correlation).
layout A vector indicating which layout to use as in par(mfrow = layout). If NA, will

automatically generate an appropriate layout.
do_CI Boolean. If TRUE will also include bars representing the credible intervals
correlation Character. Which correlation to include in the plot. Options are either pearson

or spearman
stat Character. Which statistic to include in the plot. Options are either rmse or

coverage

digits Integer. How many digits to round the statistic and correlation in the plot to
CI Numeric. The size of the credible intervals. Default is .95 (95%).
ci_plot_args A list. Optional additional arguments to be passed to plot.default for the plotting

of the credible intervals (see par())
... Optional arguments that can be passed to get_pars or plot.default (see par())
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Value

Invisible list with RMSE, coverage, and Pearson and Spearman correlations.

Examples

# Make up some values that resemble posterior samples
# Normally this would be true values that were used to simulate the data
# Make up some values that resemble posterior samples
# Normally this would be true values that were used to simulate the data
pmat <- matrix(rnorm(12, mean = c(-1, -.6, -.4, -1.5), sd = .01), ncol = 4, byrow = TRUE)
# Conventionally this would be created before one makes data with true values
recovery(samples_LNR, pmat, correlation = "pearson", stat = "rmse", selection = "alpha")
# Similarly we can plot recovery of other parameters with a set of true samples
true_samples <- samples_LNR # Normally this would be data-generating samples
recovery(samples_LNR, true_samples, correlation = "pearson", stat = "rmse",

selection = "correlation", cex = 1.5,
ci_plot_args = list(lty = 3, length = .2, lwd = 2, col = "brown"))

reshape_events Reshape events data for fMRI analysis

Description

This function reshapes event data into a format suitable for fMRI analysis by converting specified
event_types into separate event types with appropriate modulation values.

Usage

reshape_events(events, event_types, duration = 0.001, modulation = NULL)

Arguments

events A data frame containing event information with required columns ’subjects’,
’run’, and ’onset’

event_types A character vector of column names in the events data frame to be treated as
event_types

duration Either a single numeric value (applied to all event_types), a list with named
elements corresponding to event_types, or a function that takes the events data
frame and returns durations

modulation Either a list with named elements corresponding to event_types, or a function
that takes the events data frame and returns durations

Value

A data frame with columns ’subjects’, ’onset’, ’run’, ’modulation’, ’duration’, and ’event_type’
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Examples

# Create a simple events data frame
events <- data.frame(

subjects = rep(1, 10),
run = rep(1, 10),
onset = seq(0, 90, by = 10),
condition = rep(c("A", "B"), 5),
rt = runif(10, 0.5, 1.5),
accuracy = sample(0:1, 10, replace = TRUE)

)

# Reshape with default duration
reshaped1 <- reshape_events(events, event_types = c("condition", "accuracy"))

# Reshape with custom duration for each event_type
reshaped2 <- reshape_events(events,

event_types = c("condition", "accuracy", "rt"),
duration = list(condition = 0.5,

accuracy = 0.2,
rt = function(x) x$rt))

run_bridge_sampling Estimating Marginal Likelihoods Using WARP-III Bridge Sampling

Description

Uses bridge sampling that matches a proposal distribution to the first three moments of the posterior
distribution to get an accurate estimate of the marginal likelihood. The marginal likelihood can be
used for computing Bayes factors and posterior model probabilities.

Usage

run_bridge_sampling(
emc,
stage = "sample",
filter = NULL,
repetitions = 1,
cores_for_props = 4,
cores_per_prop = 1,
both_splits = TRUE,
...

)

Arguments

emc An emc object with a set of converged samples

stage A character indicating which stage to use, defaults to sample
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filter An integer or vector. If integer, it will exclude up until that integer. If vector it
will include everything in that range.

repetitions An integer. How many times to repeat the bridge sampling scheme. Can help
get an estimate of stability of the estimate.

cores_for_props

Integer. Warp-III evaluates the posterior over 4 different proposal densities. If
you have the CPU, 4 cores will do this in parallel, 2 is also already helpful.

cores_per_prop Integer. Per density we can also parallelize across subjects. Eventual cores will
be cores_for_props * cores_per_prop. For efficiency users should prioritize
cores_for_props being 4.

both_splits Boolean. Bridge sampling uses a proposal density and a target density. We can
estimate the stability of our samples and therefore MLL estimate, by running 2
bridge sampling iterations The first one uses the first half of the samples as the
proposal and the second half as the target, the second run uses the opposite. If
this is is set to FALSE, it will only run bridge sampling once and it will instead do
an odd-even iterations split to get a more reasonable estimate for just one run.

... Additional, optional more in-depth hyperparameters

Details

If not enough posterior samples were collected using fit(), bridge sampling can be unstable. It is
recommended to run run_bridge_sampling() several times with the repetitions argument and
to examine how stable the results are.

It can be difficult to converge bridge sampling for exceptionally large models, because of a large
number of subjects (> 100) and/or cognitive model parameters.

For a practical introduction:

Gronau, Q. F., Heathcote, A., & Matzke, D. (2020). Computing Bayes factors for evidence-
accumulation models using Warp-III bridge sampling. Behavior research methods, 52(2), 918-937.
doi.org/10.3758/s13428-019-01290-6

For mathematical background:

Meng, X.-L., & Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple iden-
tity: A theoretical exploration. Statistica Sinica, 6, 831-860. http://www3.stat.sinica.edu.tw/statistica/j6n4/j6n43/j6n43.htm

Meng, X.-L., & Schilling, S. (2002). Warp bridge sampling. Journal of Computational and Graph-
ical Statistics, 11(3), 552-586. doi.org/10.1198/106186002457

Value

A vector of length repetitions which contains the marginal log likelihood estimates per repetition

Examples

# After `fit` has converged on a specific model
# We can take those samples and calculate the marginal log-likelihood for them
MLL <- run_bridge_sampling(samples_LNR, cores_for_props = 1, both_splits = FALSE)
# This will run on 2*4 cores (since 4 is the default for ``cores_for_props``)
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run_emc Fine-Tuned Model Estimation

Description

Although typically users will rely on fit, this function can be used for more fine-tuned specification
of estimation needs. The function will throw an error if a stage is skipped, the stages have to be
run in order ("preburn", "burn", "adapt", "sample"). More details can be found in the fit help files
(?fit).

Usage

run_emc(
emc,
stage,
stop_criteria,
search_width = 1,
step_size = 100,
verbose = FALSE,
verboseProgress = FALSE,
fileName = NULL,
particle_factor = 50,
cores_per_chain = 1,
cores_for_chains = length(emc),
max_tries = 20,
n_blocks = 1,
thin = FALSE,
trim = TRUE

)

Arguments

emc An emc object

stage A string. Indicates which stage is to be run, either preburn, burn, adapt or
sample

stop_criteria A list. Defines the stopping criteria and for which types of parameters these
should hold. See ?fit.

search_width A double. Tunes target acceptance probability of the MCMC process. This fine-
tunes the width of the search space to obtain the desired acceptance probability.
1 is the default width, increases lead to broader search.

step_size An integer. After each step, the stopping requirements as specified by stop_criteria
are checked and proposal distributions are updated. Defaults to 100.

verbose Logical. Whether to print messages between each step with the current status
regarding the stop_criteria.
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verboseProgress

Logical. Whether to print a progress bar within each step or not. Will print one
progress bar for each chain and only if cores_for_chains = 1.

fileName A string. If specified will autosave emc at this location on every iteration.

particle_factor

An integer. particle_factor multiplied by the square root of the number of
sampled parameters determines the number of particles used.

cores_per_chain

An integer. How many cores to use per chain. Parallelizes across participant
calculations. Only available on Linux or Mac OS. For Windows, only paral-
lelization across chains (cores_for_chains) is available.

cores_for_chains

An integer. How many cores to use across chains. Defaults to the number of
chains. the total number of cores used is equal to cores_per_chain * cores_for_chains.

max_tries An integer. How many times should it try to meet the finish conditions as speci-
fied by stop_criteria? Defaults to 20. max_tries is ignored if the required number
of iterations has not been reached yet.

n_blocks An integer. Number of blocks. Will block the parameter chains such that they
are updated in blocks. This can be helpful in extremely tough models with a
large number of parameters.

thin A boolean. If TRUE will automatically thin the MCMC samples, closely matched
to the ESS. Can also be set to a double, in which case 1/thin of the chain will be
removed (does not have to be an integer).

trim A boolean. If TRUE will automatically remove redundant samples (i.e. from
preburn, burn, adapt).

Value

An emc object

Examples

# First define a design
design_in <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1),
constants=c(s=log(1)))

# Then make the emc, we've omitted a prior here for brevity so default priors will be used.
emc <- make_emc(forstmann, design_in)

# Now for example we can specify that we only want to run the "preburn" phase
# for MCMC 10 iterations
emc <- run_emc(emc, stage = "preburn", stop_criteria = list(iter = 10), cores_for_chains = 1)
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run_sbc Simulation-Based Calibration

Description

Runs SBC for an EMC2 model and associated design. Returns normalized rank (between 0 and
1) and prior samples. For hierarchical models the group-level mean and the (implied) group-level
(co-)variance are returned. For non-hierarchical models only the subject-level parameters rank is
returned.

Usage

run_sbc(
design_in,
prior_in,
replicates = 250,
trials = 100,
n_subjects = 30,
plot_data = FALSE,
verbose = TRUE,
fileName = NULL,
...

)

Arguments

design_in An emc design list. The design of the model to be used in SBC

prior_in An emc prior list. The prior for the design to be used in SBC

replicates Integer. The number of samples to draw from the prior

trials Integer. The number of trials of the simulated data (per subject)

n_subjects Integer. Only used for hierarchical models. The number of subjects to be used
in data generation of each replicate

plot_data Boolean. Whether to plot the data simulated (aggregated across subjects)

verbose Verbose. Whether to print progress related messages

fileName Character. Highly recommended, saves temporary results to the fileName

... A list of optional additional arguments that can be passed to fit and make_emc

Value

The ranks and prior samples. For hierarchical models also the prior-generated subject-level param-
eters.



sampled_pars 83

sampled_pars Get Model Parameters from a Design

Description

Makes a vector with zeroes, with names and length corresponding to the model parameters of the
design.

Usage

sampled_pars(
x,
group_design = NULL,
doMap = FALSE,
add_da = FALSE,
all_cells_dm = FALSE,
data = NULL

)

## S3 method for class 'emc.design'
sampled_pars(
x,
group_design = NULL,
doMap = FALSE,
add_da = FALSE,
all_cells_dm = FALSE,
data = NULL

)

## S3 method for class 'emc.group_design'
sampled_pars(
x,
group_design = NULL,
doMap = FALSE,
add_da = FALSE,
all_cells_dm = FALSE,
data = NULL

)

## S3 method for class 'emc.prior'
sampled_pars(
x,
group_design = NULL,
doMap = FALSE,
add_da = FALSE,
all_cells_dm = FALSE,
data = NULL
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)

## S3 method for class 'emc'
sampled_pars(
x,
group_design = NULL,
doMap = FALSE,
add_da = FALSE,
all_cells_dm = FALSE,
data = NULL

)

Arguments

x an emc.design object made with design() or an emc object.

group_design an emc.group_design object made with group_design()

doMap logical. If TRUE will also include an attribute map with the design matrices that
perform the mapping back to the design

add_da Boolean. Whether to include the relevant data columns in the map attribute

all_cells_dm Boolean. Whether to include all levels of a factor in the mapping attribute, even
when one is dropped in the design

data A data frame to be included for accurate covariate mapping in summary.design

Value

Named vector.

Examples

# First define a design
design_DDMaE <- design(data = forstmann,model=DDM,

formula =list(v~0+S,a~E, t0~1, s~1, Z~1, sv~1, SZ~1),
constants=c(s=log(1)))

# Then for this design get which cognitive model parameters are sampled:
sampled_pars(design_DDMaE)

samples_LNR LNR Model of Forstmann Data (First 3 Subjects)

Description

An emc object with a limited number of samples and subjects of the Forstmann dataset. The object
is a nested list of lenght three, each list containing the MCMC samples of the respective chain. The
MCMC samples are stored in the samples element.
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Usage

samples_LNR

Format

An emc object. An emc object is a list with a specific structure and elements, as outlined below.

data A list of dataframes, one for each subject included
par_names A character vector containing the model parameter names
n_pars The number of parameters in the model
n_subjects The number of unique subject ID’s in the data
model A list containing the model functions
nuisance A logical vector indicating which parameters are nuisance parameters
subjects A vector containing the unique subject ID’s
type The type of model e.g., "standard" or "diagonal"
prior A list that holds the prior for theta_mu (the model parameters). Contains the mean (theta_mu_mean),

covariance matrix (theta_mu_var), degrees of freedom (v), and scale (A) and inverse covari-
ance matrix (theta_mu_invar)

samples A list with defined structure containing the samples, see the Samples Element section for
more detail

sampler_nuis A sampler list for nuisance parameters (in this case there are none), similarly struc-
tured to the overall samples list of one of the MCMC chains.

Samples Element

The samples element of a emc object contains the different types of samples estimated by EMC2.
These include the three main types of samples theta_mu, theta_var and alpha as well as a number
of other items which are detailed here.

theta_mu samples used for estimating the model parameters (group level), an array of size (n_pars
x n_samples)

theta_var samples used for estimating the parameter covariance matrix, an array of size (n_pars x
n_pars x n_samples)

alpha samples used for estimating the subject random effects, an array of size (n_pars x n_subjects
x n_samples)

stage A vector containing what PMwG stage each sample was drawn in
subj_ll The winning particles log-likelihood for each subject and sample
a_half Mixing weights used during the Gibbs step when creating a new sample for the covariance

matrix
last_theta_var_inv The inverse of the last samples covariance matrix
idx The index of the last sample drawn

Source

https://www.pnas.org/doi/10.1073/pnas.0805903105

https://www.pnas.org/doi/10.1073/pnas.0805903105
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SDT Gaussian Signal Detection Theory Model for Binary Responses

Description

Discrete binary choice based on continuous Gaussian latent, with no rt (rt must be set to NA in
data).

Usage

SDT()

Details

Model parameters are: mean (unbounded) sd (log scale) and threshold (unbounded).

For identifiability in one condition two parameters must be fixed (conventionally mean=0 and sd =
1). When used with data that records only accuracy (so reponse bias cannot be evaluated) a single
threshold must be assumed and fixed (e.g., threshold = 0).

At present this model is not fully implemented in C, but as its likelihood requires only pnorm
evaluation it is quite fast.

Value

A model list with all the necessary functions to sample

Examples

dprobit <- design(Rlevels = c("left","right"),
factors=list(subjects=1,S=c("left","right")),
formula=list(mean ~ 0+S, sd ~ 1,threshold ~ 1),
matchfun=function(d)d$S==d$lR,
constants=c(sd=log(1),threshold=0),
model=SDT)

p_vector <- sampled_pars(dprobit)

split_timeseries Split fMRI Timeseries Data by ROI Columns

Description

This function splits a timeseries data frame containing multiple ROI columns into a list of data
frames, where each data frame contains the common columns (subjects, run, time) and one ROI
column.
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Usage

split_timeseries(timeseries, columns = NULL)

Arguments

timeseries A data frame containing fMRI timeseries data with required columns ’subjects’,
’run’, and ’time’, plus one or more ROI columns.

columns A character vector specifying which columns to split by. If NULL (default), all
columns except ’subjects’, ’run’, and ’time’ will be used.

Value

A named list of data frames, where each data frame contains the common columns (subjects, run,
time) and one ROI column. The names of the list elements correspond to the ROI column names.

Examples

# Create a simple example timeseries with multiple ROIs
set.seed(123)
n_frames <- 100

# Create a data frame with multiple ROIs
timeseries <- data.frame(

subjects = rep(1, n_frames),
run = rep(1, n_frames),
time = seq(0, n_frames-1),
ROI1 = rnorm(n_frames),
ROI2 = rnorm(n_frames),
ROI3 = rnorm(n_frames)

)

# Split the timeseries by all ROI columns
split_data <- split_timeseries(timeseries)

subset.emc Shorten an emc Object

Description

Shorten an emc Object

Usage

## S3 method for class 'emc'
subset(
x,
stage = "sample",
filter = NULL,
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thin = 1,
keep_stages = FALSE,
length.out = NULL,
...

)

Arguments

x an emc object

stage A character string. Indicates from which sampling stage(s) to take the samples
from (i.e. preburn, burn, adapt, sample)

filter Integer or numeric vector. If an integer is supplied, iterations up until that integer
are removed. If a vector is supplied, the iterations within the range are kept.

thin An integer. By how much to thin the chains

keep_stages Boolean. If TRUE, will not remove samples from unselected stages.

length.out Integer. Alternatively to thinning, you can also select a desired length of the
MCMC chains, which will be thinned appropriately.

... additional optional arguments

Value

A shortened emc object

Examples

subset(samples_LNR, length.out = 10)

summary.emc Summary Statistics for emc Objects

Description

Computes quantiles, Rhat and ESS for selected model parameters.

Usage

## S3 method for class 'emc'
summary(
object,
selection = c("mu", "sigma2", "alpha"),
probs = c(0.025, 0.5, 0.975),
digits = 3,
...

)
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Arguments

object An object of class emc

selection A character string indicating the parameter type Defaults to mu, sigma2, and
alpha. See below for more information.

probs The quantiles to be computed. Defaults to the the 2.5%, 50% and 97.5% quan-
tiles.

digits An integer specifying rounding of output.

... Optional arguments that can be passed to get_pars

Details

Note that if selection = alpha and by_subject = TRUE (default) is used, summary statistics are
computed at the individual level. to the console but summary statistics for all subjects are returned
by the function.

If an emc object that has not been run with fit yet is supplied, summary of the design will be
returned.

Value

A list of summary output.

summary.emc.design Summary method for emc.design objects

Description

Prints a summary of the design object, including sampled parameters and design matrices. For
continuous covariates just prints one row, instead of all covariates.

Usage

## S3 method for class 'emc.design'
summary(object, ...)

Arguments

object An object of class emc.design containing the design to summarize

... Additional arguments (not used)

Value

Invisibly returns the design matrices
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summary.emc.prior Summary method for emc.prior objects

Description

Prints a summary of the prior specification, including descriptions of the prior types and their asso-
ciated hyperparameters.

Usage

## S3 method for class 'emc.prior'
summary(object, ...)

Arguments

object An object of class ’emc.prior’ containing prior specifications

... Additional arguments passed to other methods (not currently used)

Value

Invisibly returns NULL. Called for its side effect of printing the summary.

See Also

prior for creating prior objects

Examples

# Take a prior object
prior <- get_prior(samples_LNR)
summary(prior)

trend_help Get help information for trend kernels and bases

Description

Get help information for trend kernels and bases

Usage

trend_help(kernel = NULL, base = NULL, ...)
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Arguments

kernel Character string specifying the kernel type to get information about

base Character string specifying the base type to get information about

... Additional arguments

Value

Formatted trend information

Examples

# Get information about exponential increasing kernel
trend_help(kernel = "exp_incr")

# Get information about linear base
trend_help(base = "lin")

# Return available kernel and base types
trend_help()

update2version Update EMC Objects to the Current Version

Description

This function updates EMC objects created with older versions of the package to be compatible
with the current version.

Usage

update2version(emc)

Arguments

emc An EMC object to update

Value

An updated EMC object compatible with the current version

Examples

# Update the model to current version
updated_model <- update2version(samples_LNR)
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