
Introduction to D3mirt Analysis

D3MIRT Modeling

The D3mirt analysis is based on descriptive multidimensional item response theory (DMIRT; Reckase, 2009,
1985; Reckase & McKinley, 1991) and can be used to analyze dichotomous and polytomous items to measure
latent traits (denoted θ) in a three-dimensional ability space. The method is foremost visual and illustrates
item characteristics with the help of vector geometry.

In DMIRT analysis, it is assumed that items in a multidimensional ability space can measure single or
multiple latent traits (Reckase, 2009, 1985). This assumption is realized in the compensatory model, i.e., a
type of measurement model that uses linear combinations of θ-values for ability assessment (Reckase, 2009).
DMIRT builds on the results from the former model and seeks to maximize item discrimination in the latent
space by relaxing the assumption of unidimensionality. The method is descriptive because the results describe
both the strength of discrimination of the items and the extent to which the items are unidimensional, i.e.,
that the items discriminate on one dimension only, or are within-multidimensional, i.e., that the maximum
item discrimination is reached when the item measures more than one dimension.

Regarding vector orientation, the angle of the vector arrows indicates what traits, located along the axes
in the model, an item measures (Reckase, 2009, 1985; Reckase & McKinley, 1991). For instance, in a two-
dimensional space, an item is unidimensional if its item vector arrow is at 0ř with respect to one of the axes
in the model and 90ř with respect to the other. Such an item describes a single trait only. In contrast, an
item is perfectly within-multidimensional if its item vector arrow is oriented at 45ř in relation to the axes in
the model. Such an item describes both traits in the model equally well. The same criteria are extended to
the n-dimensional case.

The DMIRT approach uses two types of item models, dependent on item type. If dichotomous items are used,
the analysis is based on the multidimensional two-parameter logistic model (M2PL) (McKinley & Reckase,
1983; Reckase, 1985). If polytomous items are used, the analysis is extended to the multidimensional two-
parameter graded response model (MGRM; Muraki & Carlson, 1995). In both cases, the estimation process
consists of Ąrst Ątting a compensatory multidimensional two-parameter model from which loadings (a) and
difficulty parameters (d) are extracted. In the case of D3mirt, this implies that a compensatory three-
dimensional M2PL or MGRM is Ątted. In the next step, the algorithm tries to Ąnd the angle and distance
from the origin of the model indicating the location of the highest possible discrimination value, also referred
to as the inĆection point, for each item. The location, in turn, shows what latent trait, or traits, the item
can be said to measure and on what level of difficulty. The output is visualized as vector arrows representing
the domain of the item response functions located in a multidimensional space pointing in the direction of
the maximum slope.

The most central estimates, brieĆy explained below, in DMIRT analysis are the multidimensional discrim-
ination (MDISC) parameter (Reckase & McKinley, 1991), the multidimensional difficulty (MDIFF ) pa-
rameter (Reckase, 1985), and the directional discrimination (DDISC) parameters (Reckase & McKinley,
1991). The equations for the just-mentioned statistics will be brieĆy presented below. However, for reasons
of simplicity, and without loss of generality, the presentation will be limited to the two-dimensional case and
the M2PL.

In DMIRT, it is assumed that axes l are orthogonal. This introduces the constraint that
∑m

l=1
cos2αjl = 1,

i.e., that squared cosines equal 1 so that cos2 αim = 1−
∑m−1

k=1
cos2 αik, for item i, person j, and k orthogonal

axes.

1



The MDISC for item i represents the highest level of discrimination the item i can achieve located in a
multidimensional latent trait space, with m number of dimensions and aik item slope parameters (Reckase,
2009, Reckase & McKinley, 1991).

MDISC :=

√

√

√

√

m
∑

k=1

a2

ik

Similarly to unidimensional discrimination, the MDISC parameter, also denoted as Ai, indicates the steep-
ness of the slope of the item response function at the point of inĆection. The slope is, similarly to the
unidimensional case, calculated multiplied with the constant 1

4
, which is omitted in the equation above.

The item orientation towards the steepest slope is set by taking the inverse cosine function of the ratio
between the ail, i.e., the slope value of item i on the coordinate axis l, and the MDISC (Reckase, 2009,
1985).

ωil = arccos



ail
√

∑m

k=1
a2

ik



The resulting angle ωil is an item characteristic that describes an itemŠs angular orientation in the multidi-
mensional latent trait space.

The multidimensional version of the difficulty parameter, denoted Bi, is the DMIRT counterpart to the
b-parameter in the unidimensional models. The MDIFF is deĄned as the negative intercept di over the
MDISC (Reckase, 2009, 1985).

MDIFF :=
−di

√

∑m

k=1
a2

ik

The MDIFF is interpreted similarly as the difficulty parameter in the unidimensional model. That is,
higher values indicate that higher levels of ability for a probability of a correct response of more than 0.5
are necessary. Moreover, the MDIFF , just as in the unidimensional model, also indicates the distance from
the origin of the model to the point of inĆection. However, in DMIRT analysis, the MDIFF becomes a
multidimensional location parameter that shows the distance following the itemŠs speciĄc angle orientation.

For Likert items that hold multiple item response functions, the MDIFF will be turned into an index
indicating the distance from the origin to the point of inĆection for all response functions derived from an
item. This, in turn, implies that the MDIFF will become a difficulty range for polytomous items in the
model.

Lastly, the MDISC is visualized in DMIRT analysis by scaling the length of the vector arrows. In brief, the
bottom location coordinates of the vector arrows, given by the MDIFF and direction vector, are multiplied
with the MDISC so that items with higher MDISC have longer vector arrows (Reckase, 2009). Accordingly,
shorter vector arrows indicate lower discrimination (which suggests model violations in relation to the item
model).

Note that because the MDISC represents an itemŠs maximum level of discrimination in the model oriented
in a particular direction, the MDISC can not be used to compare item discrimination locally. For the latter
to be possible, the orientation of the items must be constrained to follow a speciĄed direction in the model.
This can be achieved with the DDISC, deĄned as follows (Reckase & McKinley, 1991):

DDISC :=

m
∑

k=1

aikcosαik

2



The DDISC describes the level of discrimination for one or more items in the model at the angle set by the
direction of choice. Note that it is always true that DDISC ≤ MDISC.

In the D3mirt package, the DDISC is used to create construct vectors. Constructs, in this context, refer
to the assumption that a subset of items or a particular orientation in the model space can measure a
higher-order latent variable. This is implemented in D3mirt as optional vectors whose orientation is either
calculated as the average direction of a subset of items (from all items down to a single item) or indicated
by spherical coordinates. A construct vector will, therefore, point in the direction of the maximum slope of
what we might think of as an imaginary item response function indicated by the items or coordinates chosen
by the user based on exploratory or theoretical reasons.

If constructs are used, the output will include the DDISC parameters, showing how well all the items
discriminate under the assumption that they measure in the direction indicated by the constructs in the
analysis. Thus, while the MDISC represents the maximum level of discrimination for the items in the
model, the DDISC represents local discrimination that can be compared across all items. Constructs are
visually represented with vector arrows scaled to an arbitrary length in the output.

Limitations

The DMIRT method is currently limited to using the two-parameter compensatory models with either the
2PL or the GRM as the item model. Regarding D3mirt, the number of dimensions in the analysis is limited
to three. However, in praxis, the number of dimensions need not necessarily be exactly three but up to
three. This is because only two items in the set are required in order to identify the model (see the section
on model identiĄcation below for more on the statistical requirements). It is sometimes possible to study
data containing more than three dimensions if the fourth dimension and up can be nested in the former
three.

Overview

The package includes the following main functions.

• modid(): D3mirt Model IdentiĄcation
• D3mirt(): 3D DMIRT Model Estimation
• plot(): Graphical Output for D3mirt()

In what follows, the D3mirt procedure and some of its functions and options will be described using the built-
in data set Şanes0809offwavesŤ. The data set (N = 1046, Mage = 51.33, SD = 14.56, 57% Female) is a subset
from the American National Election Survey (ANES) from the 2008-2009 Panel Study Off Wave Ques-
tionnaires, December 2009 (DeBell, et al, 2010; https://electionstudies.org/data-center/2008-2009-panel-
study/). All items measure moral preferences and are positively scored of Likert type, ranging from 1 =
Strongly Disagree to 6 = Strongly Agree. Demographic variables include age and gender (male/female).

The sections below are sorted under the following headings.

1. Model IdentiĄcation

• 1.1. The modid() Function

Ű 1.1.1. Item Selection
Ű 1.1.2. The Model IdentiĄcation Procedure
Ű 1.1.3. Trouble Shooting

• 1.2. Criteria For Model IdentiĄcation

3

https://electionstudies.org/data-center/2008-2009-panel-study/
https://electionstudies.org/data-center/2008-2009-panel-study/


• 1.3. Limitations

2. D3mirt Model Estimation

• 2.1. The D3mirt() Function

Ű 2.1.1. Calling the Compensatory Model
Ű 2.1.2. Calling the Orthogonal Model
Ű 2.1.3. Constructs by Items
Ű 2.1.4. Constructs by Spherical Angles

3. Plotting

• 3.1. The plot() Function

Ű 3.1.1. Plotting Constructs
Ű 3.1.2 items

Ű 3.1.3. diff.level

Ű 3.1.4. scale

• 3.2. ProĄle Analysis

Ű 3.2.1 Plotting All Respondents
Ű 3.2.2 Plotting the Orthogonal Model
Ű 3.2.3 Plotting Subgroups of Respondents
Ű 3.2.3 Plotting ConĄdence Intervals

4. Exporting the RGL device
5. Getting Help, Feedback, and Questions
6. References
7. Appendix A: Compensatory Model Syntax

1. Model IdentiĄcation

1.1 The modid() Function

For the D3mirt analysis, two items with the following properties must be chosen to identify the compensatory
model (Reckase, 2009). The Ąrst item should not load on the second and third axes (y and z), while the
second item should not load on the third axis (z). If this can be empirically achieved, creating the orthogonal
structure necessary for the analysis will be possible. The modid() function can help with this step in the
process by suggesting what items to use. The function does this based on an algorithmic approach that uses
factor and item loading strength to order the model.

1.1.1. Item Selection

If the model is unknown, the factor structure must be explored with exploratory factor analysis (EFA).
However, because D3mirt analysis is based on the M2PL and the MGRM, it is recommended to use multi-
dimensional item response theory EFA methods, such as the EFA option in mirt() (Chalmers, 2012), from
the package with the same name, with itemtype = 'graded' or '2PL', so that the EFA is performed with
the proper item model. The mirt() function is integrated into the modid() function so that the user only
needs to provide a data frame containing empirical data in the functionŠs Ąrst argument. However, it is also
possible to use the modid() function without performing the EFA internally by setting efa = FALSE if, for
instance, a factor loading data frame is already available.

4



Note that the EFA is only used to Ąnd model identiĄcation items that meet the necessary DMIRT model
speciĄcation requirements. The EFA model itself is discarded after this step in the procedure, and the user
can, therefore, try different types of rotation methods and compare model identiĄcation results. Because the
EFA in the mirt() function takes a long time to perform, the item loadings from the EFA for this example
were stored in the package Ąle Şefa.RdataŤ and are loaded in the following code chunk below.

To start, load the data set from the ANES 2008-2009 Panel Study and remove columns for age and gender.

# Load Package

library(D3mirt)

# Load data

data("anes0809offwaves")

x <- anes0809offwaves

x <- x[, 3:22] # Remove columns for age and gender

If the default mode efa = TRUE is not changed, the function performs an EFA with three factors as the
default before performing the model identiĄcation. If factor loadings are already available, it is possible
to assign them to a data frame and use them in the call to modid() by setting efa to FALSE. This allows
modid() to skip the efa and the model identiĄcation will be instant.

# Optional: Load the modid data for this example directly from the package file

load(system.file("extdata/id.Rdata", package = "D3mirt"))

# Call to modid()

id <- modid(x)

summary(id)

#>

#> modid: 20 items and 3 factors

#>

#> Model identification items:

#> Item 1 W7Q3

#> Item 2 W7Q20

#>

#> Item.1 ABS

#> W7Q3 0.8547 0.0174

#> W7Q5 0.8199 0.0648

#> W7Q1 0.7589 0.0772

#> W7Q10 0.7239 0.0854

#>

#> Item.2 ABS

#> W7Q20 0.7723 0.0465

#> W7Q19 0.6436 0.0526

#> W7Q18 0.6777 0.0782

#>

#> SS Loadings

#> F2 5.3505

#> F1 2.1127

#> F3 1.6744

#>

#> F2 F1 F3

#> W7Q1 0.7589 0.0407 -0.0365

#> W7Q2 0.8901 -0.0263 -0.0838

5



#> W7Q3 0.8547 -0.0096 -0.0078

#> W7Q4 0.6628 0.0272 0.1053

#> W7Q5 0.8199 -0.0390 -0.0258

#> W7Q6 0.6654 0.0525 0.1054

#> W7Q7 0.5604 -0.0148 0.2087

#> W7Q8 0.5731 0.0390 0.1966

#> W7Q9 0.6151 0.0697 0.0918

#> W7Q10 0.7239 0.0371 -0.0483

#> W7Q11 0.2085 0.0959 0.5488

#> W7Q12 0.0755 -0.0853 0.5559

#> W7Q13 -0.0176 -0.0153 0.7654

#> W7Q14 -0.0407 0.1439 0.5629

#> W7Q15 0.1087 0.4556 -0.1111

#> W7Q16 0.1759 0.2100 0.1152

#> W7Q17 0.2160 0.5816 0.0261

#> W7Q18 -0.0560 0.6777 -0.0782

#> W7Q19 0.0589 0.6436 0.0526

#> W7Q20 -0.0735 0.7723 0.0465

The output consists of an S3 object of class modid containing data frames with model identiĄcation items,
order of factor strength (based on sum of squares), and item factor loadings. Using the summary() function,
we Ąrst get a printed message telling us the number of items and the number of factors used in the analysis
together with the suggested model identiĄcation items. The items that are suggested by modid() to identify
the model in this example are the items W7Q3, for the x-axis, and W7Q20, for the y-axis. Next, we Ąnd
data frames that hold all the model identiĄcation items (Item.1...Item.n) selected by modid() together
with the itemsŠ absolute sum score (ABS), one frame for the sum of squares for factors sorted in descending
order, and one frame for item factor loadings.

The absolute sum scores for the model identiĄcation items indicate statistical Ąt to the structural assumptions
of the DMIRT model. They are sorted with the lowest absolute sum score highest up. Accordingly, the top
items are the items that best meet the necessary statistical requirements for model identiĄcation. Note that
the order of the factors follows the model identiĄcation items so that item 1 comes from the strongest factor,
item 2 from the second strongest, and so on.

1.1.2. The Model IdentiĄcation Procedure

If improper items are chosen, the model will be hard to interpret or even unempirical if the data is forced
to Ąt the model. The modid() function was, therefore, developed to hinder these problems and to maximize
the interpretive meaning by using an algorithmic approach that can be user-adjusted. In brief, in the default
automatic mode, modid() starts by Ąrst calculating the sum of squares loadings for the number of factors F

in the data and then rearranging the columns in x in decreasing order, following the level of strength of the
sum of squares loadings. Next, the function creates a list containing the factor loadings on the Ąrst factor,
f1, and absolute sum scores of the factor loadings on the remaining factors, i.e., F − f1, row-wise. The list
is rearranged in decreasing order row-wise from factor loading strength on f1.

Next, items are selected by scaling f1 loadings and then extracting the items with the highest loadings on
f1, up to a standard deviation of 0.5 (the default setting) as the lower bound criteria counting from the top.
That is, rows with raw factor scores and absolute sum scores are extracted until the lower bound for factor
loadings on f1 is reached. This allows the function to extract more rows in the case empirical factor loadings
are very similar in strength while also excluding weak loading items. As a last step, the function Ąlters the
list based on the absolute sum score by using the upper bound as the selection criteria, i.e., items with an
absolute sum score higher than the upper bound are removed. The results are recorded in nested lists before
the function starts over with the next factor, f2, and so on.

6



Note that the absolute sum score is always assessed based on the number of factors less than the total number
of factors, following the order of iteration. That is, iteration 1 uses factor loadings from all factors F − f1,
iteration 2 F − (f1,2), iteration 3 F − (f1,2,3), and so on, when calculating the absolute sum scores.

The model identiĄcation procedure orders the entire model so that the strongest loading item, from the
strongest factor, always aligns perfectly with the x-axis and that the other items follow thereon. The model
identiĄcation process is described in more detail below.

1.1.3. Trouble Shooting

Sometimes, however, the model is hard to identify. If this happens, try the following in the suggested order.
For more on the function arguments see the section below regarding the model identiĄcation procedure.

1. Change the rotation method in the EFA, e.g., change from oblimin to varimax.
2. Adjust the lower bound in modid().
3. Override factor order with fac.order.
4. Adjust the upper bound in modid().

The latter (point 4) should, however, only be used as a last resort. This is because the upper bound
sets the upper limit for item inclusion. Adjusting this limit too high compromises the necessary statistical
requirements. The lower limit (point 2), however, only increases the size of the item pool used for the item
selection. It is, therefore, recommended to adjust the lower limit up and down to see if the output differs,
and from that make the Ąnal decision.

# Assigns loadings from a to data frame x

x <- id$loadings

# Call to modid with increased lower and higher bound

# Set efa to false when using factor loadings as data frame

a <- modid(x, efa = FALSE, lower = 1, upper = 1)

summary(a)

#>

#> modid: 20 items and 3 factors

#>

#> Model identification items:

#> Item 1 W7Q3

#> Item 2 W7Q17

#>

#> Item.1 ABS

#> W7Q3 0.8547 0.0174

#> W7Q5 0.8199 0.0648

#> W7Q1 0.7589 0.0772

#> W7Q10 0.7239 0.0854

#> W7Q2 0.8901 0.1101

#> W7Q4 0.6628 0.1325

#> W7Q6 0.6654 0.1579

#> W7Q9 0.6151 0.1615

#> W7Q7 0.5604 0.2234

#> W7Q8 0.5731 0.2356

#>

#> Item.2 ABS

#> W7Q17 0.5816 0.0261

#> W7Q20 0.7723 0.0465

7



#> W7Q19 0.6436 0.0526

#> W7Q18 0.6777 0.0782

#>

#> SS Loadings

#> F2 5.3505

#> F1 2.1127

#> F3 1.6744

#>

#> F2 F1 F3

#> W7Q1 0.7589 0.0407 -0.0365

#> W7Q2 0.8901 -0.0263 -0.0838

#> W7Q3 0.8547 -0.0096 -0.0078

#> W7Q4 0.6628 0.0272 0.1053

#> W7Q5 0.8199 -0.0390 -0.0258

#> W7Q6 0.6654 0.0525 0.1054

#> W7Q7 0.5604 -0.0148 0.2087

#> W7Q8 0.5731 0.0390 0.1966

#> W7Q9 0.6151 0.0697 0.0918

#> W7Q10 0.7239 0.0371 -0.0483

#> W7Q11 0.2085 0.0959 0.5488

#> W7Q12 0.0755 -0.0853 0.5559

#> W7Q13 -0.0176 -0.0153 0.7654

#> W7Q14 -0.0407 0.1439 0.5629

#> W7Q15 0.1087 0.4556 -0.1111

#> W7Q16 0.1759 0.2100 0.1152

#> W7Q17 0.2160 0.5816 0.0261

#> W7Q18 -0.0560 0.6777 -0.0782

#> W7Q19 0.0589 0.6436 0.0526

#> W7Q20 -0.0735 0.7723 0.0465

In this case, we Ąnd that the second item ŞW7Q17Ť is new. Observing the statistical estimates, we can
also see that this outcome is related to the increased lower bound, allowing weaker loading items to be
included in the selection process. Both the previous item (ŞW7Q20Ť) and the new item (ŞW7Q17Ť) have
an acceptable absolute sum score, however. We can also note that the increased upper bound allows more
items to be included in the selection process. This is most notable in the Ąrst data frame for Item.1. In
this case, however, this had no effect on the Ąnal selection.

Another option (point 3) is to override the factor order with the fac.order argument. More speciĄcally,
modid() orders factor by squared factor loadings so that the strongest factor is used Ąrst, the second strongest
factor is used second, and so on. Sometimes, however, there is only a very small difference between the
squared factor loadings that, in turn, can cause problems, often only observable at later stages. In such
situations, it can be helpful to rearrange the factor order manually to see if the model solution improves.

Since the squared factor loadings for factors 2 and 3 in this example are somewhat similar, it could be useful
to compare the Ąnal results after manually overriding the factor order. The latter is, however, outside of the
scope of this vignette.

# Override factor order by reversing columns in the original data frame

b <- modid(x, efa = FALSE, fac.order = c(3, 2, 1))

summary(b)

#>

#> modid: 20 items and 3 factors

#>

#> Model identification items:

8



#> Item 1 W7Q13

#> Item 2 W7Q18

#>

#> Item.1 ABS

#> W7Q13 0.7654 0.0329

#>

#> Item.2 ABS

#> W7Q18 0.6777 0.0560

#> W7Q19 0.6436 0.0589

#> W7Q20 0.7723 0.0735

#>

#> SS Loadings

#> F3 1.6744

#> F1 2.1127

#> F2 5.3505

#>

#> F3 F1 F2

#> W7Q1 -0.0365 0.0407 0.7589

#> W7Q2 -0.0838 -0.0263 0.8901

#> W7Q3 -0.0078 -0.0096 0.8547

#> W7Q4 0.1053 0.0272 0.6628

#> W7Q5 -0.0258 -0.0390 0.8199

#> W7Q6 0.1054 0.0525 0.6654

#> W7Q7 0.2087 -0.0148 0.5604

#> W7Q8 0.1966 0.0390 0.5731

#> W7Q9 0.0918 0.0697 0.6151

#> W7Q10 -0.0483 0.0371 0.7239

#> W7Q11 0.5488 0.0959 0.2085

#> W7Q12 0.5559 -0.0853 0.0755

#> W7Q13 0.7654 -0.0153 -0.0176

#> W7Q14 0.5629 0.1439 -0.0407

#> W7Q15 -0.1111 0.4556 0.1087

#> W7Q16 0.1152 0.2100 0.1759

#> W7Q17 0.0261 0.5816 0.2160

#> W7Q18 -0.0782 0.6777 -0.0560

#> W7Q19 0.0526 0.6436 0.0589

#> W7Q20 0.0465 0.7723 -0.0735

In this case, we Ąnd that item W7Q3, which was previously suggested for the x-axis, is now suggested for
the y-axis. For the x-axis, we Ąnd a new item, W7Q13.

1.2. Criteria For Model IdentiĄcation

Model identiĄcation items should preferably (a) have an absolute sum score of ≤ .10 and (b) have the highest
factor loading scores on the factor of interest. Of these two criteria, (a) should be given the strongest weight
in the selection decision. If these conditions cannot be met, the user is advised to proceed with caution since
the loading scores, therefore, imply that an adequate orthogonal structure may not be empirically attainable.
If problems in the model identiĄcation process occur, please follow the advice given above.

9



1.3. Limitations

The modid() function is not limited to three-dimensional analysis and can be used on any number of
dimensions. Although based on suggestions on model identiĄcation given by Reckase (2009) for this type of
analysis, the function offers some expansions that introduce more precision. The latter foremost consists of
incorporating the sum of squares and factor loadings in the item selection process (unless the user has not
speciĄed otherwise). Experience tells us that this is a good practice that often leads to better results compared
to other known options. However, it is important to recognize that the model identiĄcation procedure only
gives suggestions to the model speciĄcation, and there could be situations where the researcher should
consider other methods. Note that two items can be found to identify the model do not imply successful
outcomes when using this methodology (i.e., that the model is good). But it does suggest that the method
can be used and the results can be interpreted in a meaningful way.

2. D3mirt model estimation

2.1. The D3mirt() Function

The D3mirt() function uses two built-in base models Ątted with the mirt function from the mirt pack-
age (Chalmers, 2012). The Ąrst model is the default model, i.e., the three-dimensional compensatory
model, and the latter is the orthogonal model, i.e., a restricted model in which the assumption of within-
multidimensionality is removed. Note that in D3mirt version 2.0.0 and upwards, the choice of model only
depends on what type of vector is imputed in the modid argument by the user when calling D3mirt.

The user also has the option of manually specifying the model Ątted with the mirt() (Chalmers, 2012)
function and then using the resulting S4 object of class ŚSingleGroupClassŠ when calling D3mirt. This allows
the user to design a unique model for D3mirt. To see an example of the model syntax and mirt code
regarding the default model, see Appendix A.

The D3mirt() function returns an S3 object of class D3mirt with lists of a and d, MDISC, and MDIFF

parameters, direction cosines, and spherical coordinates. Regarding the latter, spherical coordinates are
represented by θ and ϕ. The θ coordinate is the positive or negative angle in degrees, starting from the
x-axis, of the vector projections from the vector arrows in the xz-plane up to ±180ř. Note that the θ angle is
oriented following the positive pole of the x and z axis so that the angle increases clockwise in the graphical
output. The ϕ coordinate is the positive angle in degrees from the y-axis and the vectors. Note that the
ρ coordinate from the spherical coordinate system is in DMIRT represented by the MDIFF , and so is
reported separately.

If constructs are used, the function also returns construct direction cosines, spherical coordinates for the
construct vector arrows, and DDISC parameters (one index per construct).

2.1.1. Calling the Compensatory Model

To use the compensatory model, the user only needs to specify the model identiĄcation items from modid()

in the modid argument when calling D3mirt as follows. In the example above, modid() selected items W7Q3
as item 1 and W7Q20 as item 2. Accordingly, to Ąt the compensatory model, simply impute a character
vector containing the items in the modid argument.

Note that because Ątting the compensatory model in the mirt() function takes a long time, the item
parameters for this example are contained in a data frame available in the package Ąle Şmod1.RdataŤ. To
save time studying these examples, the package Ąle can be loaded and used in the function call. For the
interested user, a binary version (i.e., dichotonous items) of the same model is available in the package Ąle
Şmodbi.RdataŤ.

10



# Optional: Load mod1 directly from the package file

load(system.file("extdata/mod1.Rdata", package = "D3mirt"))

# Optional: Load mod1 as binary data

load(system.file("extdata/modbi.Rdata", package = "D3mirt"))

# Call D3mirt() with the model identification items

mod1 <- D3mirt(x, modid = c("W7Q3", "W7Q20"))

The D3mirt() function prints a short report containing the number of items used and the levels of difficulty
of the items when the estimation is done. If construct vectors are used, the function will also print the
number of construct vectors and the names of the items included in each construct (see examples below).
The summary() function is used to investigate the resulting DMIRT estimates.

# Show summary of results

summary(mod1)

#>

#> D3mirt: 20 items and 5 levels of difficulty

#>

#> Compensatory model

#> Model identification items: W7Q3, W7Q20

#>

#> a1 a2 a3 d1 d2 d3 d4 d5

#> W7Q1 2.0297 0.1645 -0.1227 8.0868 7.0641 5.9876 3.2016 -0.4834

#> W7Q2 2.6215 -0.0025 -0.2576 9.2884 6.6186 4.5103 1.6650 -2.4437

#> W7Q3 2.7932 0.0000 0.0000 10.4884 7.5922 5.6797 2.7181 -1.1790

#> W7Q4 1.9043 0.1877 0.1502 7.3749 6.0464 4.9812 2.4830 -1.1144

#> W7Q5 2.2427 -0.0285 -0.0836 8.4293 6.6722 4.9055 1.8256 -1.8316

#> W7Q6 2.0020 0.2392 0.1578 8.0687 6.3578 4.9521 2.3301 -1.0187

#> W7Q7 1.6284 0.1036 0.3600 6.0180 4.8976 3.6909 1.6326 -1.3483

#> W7Q8 1.7773 0.2254 0.3536 6.9174 5.1824 3.7663 1.4845 -1.8331

#> W7Q9 1.7197 0.2495 0.1286 7.5588 4.9756 3.3649 0.9344 -2.2093

#> W7Q10 1.7697 0.1274 -0.1404 8.3641 5.7399 4.2865 1.9648 -0.6641

#> W7Q11 1.4237 0.4680 1.0449 6.2204 4.6938 3.5443 1.1923 -1.8579

#> W7Q12 0.7601 0.0413 0.9370 4.1361 2.8772 2.3420 1.1791 -0.4240

#> W7Q13 1.1265 0.2914 1.6908 5.8838 4.3950 3.4385 1.8931 -0.6004

#> W7Q14 0.7444 0.4832 0.9787 5.3893 3.9334 3.0259 0.8144 -1.5869

#> W7Q15 0.4551 0.7871 -0.1607 4.3208 3.0545 2.3970 0.9187 -0.9705

#> W7Q16 0.6236 0.4141 0.1798 3.7249 2.0305 1.1658 -0.0612 -1.8084

#> W7Q17 1.1891 1.3414 0.0561 6.9016 5.8026 4.9348 2.7917 -0.0040

#> W7Q18 0.4106 1.3543 -0.1372 3.7838 2.0986 1.4183 0.1829 -1.9855

#> W7Q19 0.8578 1.4100 0.2278 4.4979 2.6484 1.6731 0.3741 -1.9966

#> W7Q20 0.7355 1.9066 0.0000 4.6376 2.3632 1.2791 -0.3430 -2.9188

#>

#> MDISC MDIFF1 MDIFF2 MDIFF3 MDIFF4 MDIFF5

#> W7Q1 2.0401 -3.9640 -3.4627 -2.9350 -1.5693 0.2370

#> W7Q2 2.6341 -3.5262 -2.5127 -1.7123 -0.6321 0.9277

#> W7Q3 2.7932 -3.7550 -2.7181 -2.0334 -0.9731 0.4221

#> W7Q4 1.9194 -3.8423 -3.1502 -2.5952 -1.2936 0.5806

#> W7Q5 2.2444 -3.7557 -2.9728 -2.1857 -0.8134 0.8160

#> W7Q6 2.0224 -3.9897 -3.1437 -2.4486 -1.1521 0.5037

#> W7Q7 1.6710 -3.6015 -2.9310 -2.2088 -0.9771 0.8069

#> W7Q8 1.8261 -3.7881 -2.8380 -2.0625 -0.8130 1.0038

11



#> W7Q9 1.7425 -4.3380 -2.8555 -1.9311 -0.5362 1.2679

#> W7Q10 1.7798 -4.6995 -3.2251 -2.4084 -1.1040 0.3731

#> W7Q11 1.8269 -3.4048 -2.5692 -1.9400 -0.6526 1.0170

#> W7Q12 1.2073 -3.4260 -2.3832 -1.9399 -0.9766 0.3512

#> W7Q13 2.0525 -2.8667 -2.1413 -1.6753 -0.9223 0.2925

#> W7Q14 1.3211 -4.0792 -2.9772 -2.2903 -0.6164 1.2011

#> W7Q15 0.9232 -4.6800 -3.3085 -2.5963 -0.9951 1.0512

#> W7Q16 0.7699 -4.8384 -2.6375 -1.5143 0.0795 2.3490

#> W7Q17 1.7935 -3.8482 -3.2354 -2.7515 -1.5566 0.0022

#> W7Q18 1.4218 -2.6613 -1.4761 -0.9976 -0.1286 1.3965

#> W7Q19 1.6661 -2.6997 -1.5896 -1.0042 -0.2245 1.1984

#> W7Q20 2.0436 -2.2694 -1.1564 -0.6259 0.1678 1.4283

#>

#> D.Cos X D.Cos Y D.Cos Z Theta Phi

#> W7Q1 0.9949 0.0806 -0.0601 -3.4590 85.3756

#> W7Q2 0.9952 -0.0010 -0.0978 -5.6133 90.0554

#> W7Q3 1.0000 0.0000 0.0000 0.0000 90.0000

#> W7Q4 0.9921 0.0978 0.0783 4.5098 84.3885

#> W7Q5 0.9992 -0.0127 -0.0372 -2.1341 90.7284

#> W7Q6 0.9899 0.1183 0.0780 4.5068 83.2064

#> W7Q7 0.9745 0.0620 0.2154 12.4657 86.4441

#> W7Q8 0.9733 0.1235 0.1936 11.2521 82.9082

#> W7Q9 0.9869 0.1432 0.0738 4.2769 81.7671

#> W7Q10 0.9943 0.0716 -0.0789 -4.5357 85.8965

#> W7Q11 0.7793 0.2561 0.5719 36.2765 75.1588

#> W7Q12 0.6296 0.0342 0.7761 50.9493 88.0399

#> W7Q13 0.5488 0.1420 0.8238 56.3262 81.8384

#> W7Q14 0.5634 0.3657 0.7408 52.7448 68.5472

#> W7Q15 0.4929 0.8525 -0.1740 -19.4451 31.5154

#> W7Q16 0.8101 0.5378 0.2335 16.0800 57.4627

#> W7Q17 0.6630 0.7479 0.0313 2.7031 41.5881

#> W7Q18 0.2888 0.9525 -0.0965 -18.4742 17.7264

#> W7Q19 0.5148 0.8463 0.1367 14.8712 32.1870

#> W7Q20 0.3599 0.9330 0.0000 0.0000 21.0939

The summary function displays the factor loadings and the difficulty parameters from the compensatory
model. Examples of how DMIRT estimates can be used when reporting results are given below in the item
and dimensionality analysis.

2.1.2. Calling the Orthogonal Model

A new addition in version 2.0.0 of D3mirt is the option of Ątting an orthogonal constrained version of the
compensatory model. This model allows the user to restrict items in the model space to only load on one of
the model axes. The orthogonal model is foremost useful for studying the items under the assumption that
the items are unidimensional and that the unidimensions are uncorrelated. In this context orthogonal refers
to the geographical interpretation of the graphical output in which all three unidimensions are perpendicular
in the model space.

To tell D3mirt to use the orthogonal model, create a nested list of items specifying which items load to which
the three dimensions. In the example below, items 1 to 10 will be constrained to the x-axis, items 15 to 19
to the y-axis, and items 11 to 14 to the z-axis.

On a side note, using an orthogonal model in D3mirt often requires removing poorly Ątting items. This is
because constraining items already struggling to Ąt the model will most likely increase the misĄt. This will

12



most likely lead to a very large MDIFF range, distorting the graphical output. In the example below, item
W7Q16 was removed before Ątting the model.

# Optional: Load mod2 directly from the package file

load(system.file("extdata/mod2.Rdata", package = "D3mirt"))

y <- data.frame(x[,-16])# Remove misfitting item W7Q16

# Call D3mirt() and using the orthogonal model

mod2 <- D3mirt(y, modid = list(c(1:10), # x-axis

c(15:19), # y-axis

c(11:14))) # z-axis

summary(mod2)

#>

#> D3mirt: 19 items and 5 levels of difficulty

#>

#> Orthogonal model

#> Item vector 1: W7Q1, W7Q2, W7Q3, W7Q4, W7Q5, W7Q6, W7Q7, W7Q8, W7Q9, W7Q10

#> Item vector 2: W7Q15, W7Q17, W7Q18, W7Q19, W7Q20

#> Item vector 3: W7Q11, W7Q12, W7Q13, W7Q14

#>

#> a1 a2 a3 d1 d2 d3 d4 d5

#> W7Q1 2.0183 0.0000 0.0000 8.0211 7.0101 5.9451 3.1762 -0.4884

#> W7Q2 2.5545 0.0000 0.0000 9.0536 6.4408 4.3879 1.6178 -2.3976

#> W7Q3 2.7483 0.0000 0.0000 10.3241 7.4782 5.6007 2.6793 -1.1828

#> W7Q4 1.9121 0.0000 0.0000 7.3485 6.0230 4.9697 2.4782 -1.1279

#> W7Q5 2.1971 0.0000 0.0000 8.2981 6.5636 4.8289 1.7951 -1.8163

#> W7Q6 2.0070 0.0000 0.0000 8.0685 6.3532 4.9445 2.3214 -1.0367

#> W7Q7 1.5979 0.0000 0.0000 5.9310 4.8301 3.6411 1.5984 -1.3322

#> W7Q8 1.7491 0.0000 0.0000 6.8381 5.1224 3.7094 1.4480 -1.8096

#> W7Q9 1.7410 0.0000 0.0000 7.5706 4.9930 3.3754 0.9282 -2.2171

#> W7Q10 1.7488 0.0000 0.0000 8.3054 5.6856 4.2405 1.9417 -0.6614

#> W7Q11 0.0000 0.0000 1.5285 5.9525 4.4684 3.3585 1.1019 -1.7346

#> W7Q12 0.0000 0.0000 1.1511 4.1002 2.8570 2.3265 1.1659 -0.4295

#> W7Q13 0.0000 0.0000 1.8866 5.7126 4.2787 3.3450 1.8306 -0.5882

#> W7Q14 0.0000 0.0000 1.3482 5.4784 4.0172 3.1011 0.8363 -1.6128

#> W7Q15 0.0000 0.8870 0.0000 4.3049 3.0375 2.3797 0.9084 -0.9651

#> W7Q17 0.0000 1.5464 0.0000 6.6917 5.6269 4.7725 2.6404 -0.0421

#> W7Q18 0.0000 1.3316 0.0000 3.6937 2.0504 1.3881 0.1841 -1.9387

#> W7Q19 0.0000 1.6471 0.0000 4.5704 2.6646 1.6572 0.3352 -2.0165

#> W7Q20 0.0000 1.9471 0.0000 4.5578 2.3173 1.2468 -0.3427 -2.8570

#>

#> MDISC MDIFF1 MDIFF2 MDIFF3 MDIFF4 MDIFF5

#> W7Q1 2.0183 -3.9742 -3.4733 -2.9456 -1.5737 0.2420

#> W7Q2 2.5545 -3.5442 -2.5214 -1.7178 -0.6333 0.9386

#> W7Q3 2.7483 -3.7565 -2.7210 -2.0379 -0.9749 0.4304

#> W7Q4 1.9121 -3.8432 -3.1500 -2.5992 -1.2961 0.5899

#> W7Q5 2.1971 -3.7768 -2.9873 -2.1978 -0.8170 0.8267

#> W7Q6 2.0070 -4.0202 -3.1655 -2.4636 -1.1566 0.5165

#> W7Q7 1.5979 -3.7118 -3.0228 -2.2787 -1.0003 0.8337

#> W7Q8 1.7491 -3.9096 -2.9287 -2.1208 -0.8279 1.0346

#> W7Q9 1.7410 -4.3485 -2.8680 -1.9388 -0.5332 1.2735

#> W7Q10 1.7488 -4.7492 -3.2511 -2.4248 -1.1103 0.3782

#> W7Q11 1.5285 -3.8944 -2.9234 -2.1973 -0.7209 1.1348

13



#> W7Q12 1.1511 -3.5620 -2.4820 -2.0211 -1.0129 0.3731

#> W7Q13 1.8866 -3.0279 -2.2679 -1.7730 -0.9703 0.3118

#> W7Q14 1.3482 -4.0635 -2.9796 -2.3001 -0.6203 1.1962

#> W7Q15 0.8870 -4.8531 -3.4243 -2.6827 -1.0241 1.0880

#> W7Q17 1.5464 -4.3273 -3.6387 -3.0862 -1.7074 0.0272

#> W7Q18 1.3316 -2.7738 -1.5398 -1.0424 -0.1383 1.4559

#> W7Q19 1.6471 -2.7749 -1.6178 -1.0062 -0.2035 1.2243

#> W7Q20 1.9471 -2.3408 -1.1902 -0.6403 0.1760 1.4673

#>

#> D.Cos X D.Cos Y D.Cos Z Theta Phi

#> W7Q1 1 0 0 0 90

#> W7Q2 1 0 0 0 90

#> W7Q3 1 0 0 0 90

#> W7Q4 1 0 0 0 90

#> W7Q5 1 0 0 0 90

#> W7Q6 1 0 0 0 90

#> W7Q7 1 0 0 0 90

#> W7Q8 1 0 0 0 90

#> W7Q9 1 0 0 0 90

#> W7Q10 1 0 0 0 90

#> W7Q11 0 0 1 90 90

#> W7Q12 0 0 1 90 90

#> W7Q13 0 0 1 90 90

#> W7Q14 0 0 1 90 90

#> W7Q15 0 1 0 NaN 0

#> W7Q17 0 1 0 NaN 0

#> W7Q18 0 1 0 NaN 0

#> W7Q19 0 1 0 NaN 0

#> W7Q20 0 1 0 NaN 0

As can be seen, all items only load on one of the three dimensions, all direction cosines are, therefore, 1 or 0,
and the spherical coordinates are either 0◦ or 90◦. Note that converting to spherical coordinates in the case
the item is oriented strictly along the y-axis implies dividing with cos(0) in the arctan function. Because
this operation is undeĄned, it is reported as NaN in the output above.

2.1.3. Constructs by Items

Constructs can be included in the analysis in two ways: by creating one or more nested lists indicating what
items belong to what construct or by using nested lists with spherical angles indicating the constructs.

Regarding the Ąrst option, nested lists can be created containing all items in the set down to a single item.
From this, the D3mirt() function Ąnds the average direction of the subset of items contained in each nested
list by adding and normalizing the direction cosines for the items and scaling the construct direction vector
to an arbitrary length. Naturally, if only one item is used to indicate a construct, the construct will be
parallel with the direction of that particular item. The length of the construct vector arrows can be adjusted
by the user.

This type of construct can contribute to the analysis by visualizing the average direction for a subset set
of items and by showing how all items discriminate locally in the direction of the construct vector with the
help of the DDISC index.

The constructs included below were grouped based on exploratory reasons, i.e., because these items cluster
in the model (observable in the graphical output). To call D3mirt with constructs calculated as the average
direction of a subset of items, use the con.items argument and create nested lists, as the example below

14



illustrates. Note that if a D3mirt object already exists, it is possible to extract factor loadings and the
difficulty parameters from the compensatory model from the D3mirt object and assign them to a new data
frame. This new data frame can then be used to reĄt the object for the purpose of adding constructs,
for instance. Following this procedure, the call to D3mirt will skip Ątting the compensatory model, and
the calculation of parameters will be instant. Note that trait scores will not, however, be included in the
exported S3 object when using this option.

# Optional: Load mod3 directly from the package file

load(system.file("extdata/mod3.Rdata", package = "D3mirt"))

# Call to D3mirt(), including optional nested lists for three constructs

# Item W7Q16 is not included in any construct because of model violations

# The model violations for the W7Q16 item can be seen when plotting the model

con <- list(c(1:10),

c(11:14),

c(15:20))

mod3 <- D3mirt(x, modid = c("W7Q3", "W7Q20"), con.items = con)

summary(mod3)

#>

#> D3mirt: 20 items and 5 levels of difficulty

#>

#> Compensatory model

#> Model identification items: W7Q3, W7Q20

#>

#> Constructs

#> Item vector 1: W7Q1, W7Q2, W7Q3, W7Q4, W7Q5, W7Q6, W7Q7, W7Q8, W7Q9, W7Q10

#> Item vector 2: W7Q11, W7Q12, W7Q13, W7Q14

#> Item vector 3: W7Q15, W7Q16, W7Q17, W7Q18, W7Q19, W7Q20

#>

#>

#> a1 a2 a3 d1 d2 d3 d4 d5

#> W7Q1 2.0297 0.1645 -0.1227 8.0868 7.0641 5.9876 3.2016 -0.4834

#> W7Q2 2.6215 -0.0025 -0.2576 9.2884 6.6186 4.5103 1.6650 -2.4437

#> W7Q3 2.7932 0.0000 0.0000 10.4884 7.5922 5.6797 2.7181 -1.1790

#> W7Q4 1.9043 0.1877 0.1502 7.3749 6.0464 4.9812 2.4830 -1.1144

#> W7Q5 2.2427 -0.0285 -0.0836 8.4293 6.6722 4.9055 1.8256 -1.8316

#> W7Q6 2.0020 0.2392 0.1578 8.0687 6.3578 4.9521 2.3301 -1.0187

#> W7Q7 1.6284 0.1036 0.3600 6.0180 4.8976 3.6909 1.6326 -1.3483

#> W7Q8 1.7773 0.2254 0.3536 6.9174 5.1824 3.7663 1.4845 -1.8331

#> W7Q9 1.7197 0.2495 0.1286 7.5588 4.9756 3.3649 0.9344 -2.2093

#> W7Q10 1.7697 0.1274 -0.1404 8.3641 5.7399 4.2865 1.9648 -0.6641

#> W7Q11 1.4237 0.4680 1.0449 6.2204 4.6938 3.5443 1.1923 -1.8579

#> W7Q12 0.7601 0.0413 0.9370 4.1361 2.8772 2.3420 1.1791 -0.4240

#> W7Q13 1.1265 0.2914 1.6908 5.8838 4.3950 3.4385 1.8931 -0.6004

#> W7Q14 0.7444 0.4832 0.9787 5.3893 3.9334 3.0259 0.8144 -1.5869

#> W7Q15 0.4551 0.7871 -0.1607 4.3208 3.0545 2.3970 0.9187 -0.9705

#> W7Q16 0.6236 0.4141 0.1798 3.7249 2.0305 1.1658 -0.0612 -1.8084

#> W7Q17 1.1891 1.3414 0.0561 6.9016 5.8026 4.9348 2.7917 -0.0040

#> W7Q18 0.4106 1.3543 -0.1372 3.7838 2.0986 1.4183 0.1829 -1.9855

#> W7Q19 0.8578 1.4100 0.2278 4.4979 2.6484 1.6731 0.3741 -1.9966

#> W7Q20 0.7355 1.9066 0.0000 4.6376 2.3632 1.2791 -0.3430 -2.9188

#>

#> MDISC MDIFF1 MDIFF2 MDIFF3 MDIFF4 MDIFF5

15



#> W7Q1 2.0401 -3.9640 -3.4627 -2.9350 -1.5693 0.2370

#> W7Q2 2.6341 -3.5262 -2.5127 -1.7123 -0.6321 0.9277

#> W7Q3 2.7932 -3.7550 -2.7181 -2.0334 -0.9731 0.4221

#> W7Q4 1.9194 -3.8423 -3.1502 -2.5952 -1.2936 0.5806

#> W7Q5 2.2444 -3.7557 -2.9728 -2.1857 -0.8134 0.8160

#> W7Q6 2.0224 -3.9897 -3.1437 -2.4486 -1.1521 0.5037

#> W7Q7 1.6710 -3.6015 -2.9310 -2.2088 -0.9771 0.8069

#> W7Q8 1.8261 -3.7881 -2.8380 -2.0625 -0.8130 1.0038

#> W7Q9 1.7425 -4.3380 -2.8555 -1.9311 -0.5362 1.2679

#> W7Q10 1.7798 -4.6995 -3.2251 -2.4084 -1.1040 0.3731

#> W7Q11 1.8269 -3.4048 -2.5692 -1.9400 -0.6526 1.0170

#> W7Q12 1.2073 -3.4260 -2.3832 -1.9399 -0.9766 0.3512

#> W7Q13 2.0525 -2.8667 -2.1413 -1.6753 -0.9223 0.2925

#> W7Q14 1.3211 -4.0792 -2.9772 -2.2903 -0.6164 1.2011

#> W7Q15 0.9232 -4.6800 -3.3085 -2.5963 -0.9951 1.0512

#> W7Q16 0.7699 -4.8384 -2.6375 -1.5143 0.0795 2.3490

#> W7Q17 1.7935 -3.8482 -3.2354 -2.7515 -1.5566 0.0022

#> W7Q18 1.4218 -2.6613 -1.4761 -0.9976 -0.1286 1.3965

#> W7Q19 1.6661 -2.6997 -1.5896 -1.0042 -0.2245 1.1984

#> W7Q20 2.0436 -2.2694 -1.1564 -0.6259 0.1678 1.4283

#>

#> D.Cos X D.Cos Y D.Cos Z Theta Phi

#> W7Q1 0.9949 0.0806 -0.0601 -3.4590 85.3756

#> W7Q2 0.9952 -0.0010 -0.0978 -5.6133 90.0554

#> W7Q3 1.0000 0.0000 0.0000 0.0000 90.0000

#> W7Q4 0.9921 0.0978 0.0783 4.5098 84.3885

#> W7Q5 0.9992 -0.0127 -0.0372 -2.1341 90.7284

#> W7Q6 0.9899 0.1183 0.0780 4.5068 83.2064

#> W7Q7 0.9745 0.0620 0.2154 12.4657 86.4441

#> W7Q8 0.9733 0.1235 0.1936 11.2521 82.9082

#> W7Q9 0.9869 0.1432 0.0738 4.2769 81.7671

#> W7Q10 0.9943 0.0716 -0.0789 -4.5357 85.8965

#> W7Q11 0.7793 0.2561 0.5719 36.2765 75.1588

#> W7Q12 0.6296 0.0342 0.7761 50.9493 88.0399

#> W7Q13 0.5488 0.1420 0.8238 56.3262 81.8384

#> W7Q14 0.5634 0.3657 0.7408 52.7448 68.5472

#> W7Q15 0.4929 0.8525 -0.1740 -19.4451 31.5154

#> W7Q16 0.8101 0.5378 0.2335 16.0800 57.4627

#> W7Q17 0.6630 0.7479 0.0313 2.7031 41.5881

#> W7Q18 0.2888 0.9525 -0.0965 -18.4742 17.7264

#> W7Q19 0.5148 0.8463 0.1367 14.8712 32.1870

#> W7Q20 0.3599 0.9330 0.0000 0.0000 21.0939

#>

#> C.Cos X C.Cos Y C.Cos Z Theta Phi

#> C1 0.9970 0.0688 0.0368 2.1119 86.0548

#> C2 0.6409 0.2029 0.7404 49.1207 78.2961

#> C3 0.5405 0.8411 0.0226 2.3974 32.7476

#>

#> DDISC1 DDISC2 DDISC3

#> W7Q1 2.0304 1.2433 1.2326

#> W7Q2 2.6038 1.4887 1.4088

#> W7Q3 2.7847 1.7901 1.5096

#> W7Q4 1.9169 1.3697 1.1905

16



#> W7Q5 2.2308 1.3696 1.1862

#> W7Q6 2.0181 1.4484 1.2868

#> W7Q7 1.6438 1.3312 0.9754

#> W7Q8 1.8004 1.4465 1.1582

#> W7Q9 1.7364 1.2479 1.1422

#> W7Q10 1.7679 1.0560 1.0604

#> W7Q11 1.4900 1.7809 1.1867

#> W7Q12 0.7951 1.1892 0.4668

#> W7Q13 1.2053 2.0328 0.8922

#> W7Q14 0.8113 1.2997 0.8308

#> W7Q15 0.5019 0.3324 0.9043

#> W7Q16 0.6568 0.6168 0.6894

#> W7Q17 1.2799 1.0758 1.7722

#> W7Q18 0.4975 0.4363 1.3578

#> W7Q19 0.9605 1.0044 1.6547

#> W7Q20 0.8644 0.8581 2.0011

In contrast to the previous example, the printed message now includes the construct vectors and their
respective items. Moreover, compared to the previous function call to D3mirt(), there are also two extra
data frames: one frame with direction cosines (D.CosX, D.CosY, D.CosZ) and spherical coordinates (θ, ϕ)
for the constructs, and one frame with the DDISC estimates, containing the DDISC1,2,3 parameters for
the items corresponding to the three constructs (1, 2, 3) (assigned with c in the example above).

2.1.4. Constructs by Spherical Angles

Regarding the second option, adding a construct arbitrarily in the model is also possible using spherical
angles. In this case, the user follows the same convention presented above, i.e., θ to indicate the angle in
the xz-plane and ϕ to indicate the angle away from the y-axis. The resulting vector will then be oriented
in the direction of the spherical coordinates and report the DDISC for all items in the set constrained to
this orientation. In the example below, the constructs are oriented 45◦ between each axes in the positive
direction. More speciĄcally, this implies that the Ąrst construct is oriented 45◦ between the x and y-axes,
the second construct 45◦ between the x and z-axes and the third construct 45◦ between the y and z-axes.

# Optional: Load mod3 directly from the package file

load(system.file("extdata/mod4.Rdata", package = "D3mirt"))

# Call to D3mirt(), including optional nested lists with spherical angles

# Item W7Q16 is not included in any construct because of model violations

con <- list(c(0, 45), # theta = 0°, phi = 45°

c(45, 90), # theta = 45°, phi = 90°

c(90, 45)) # theta = 90°, phi = 45°

mod4 <- D3mirt(x, modid = c("W7Q3", "W7Q20"), con.sphe = con)

summary(mod4)

#>

#> D3mirt: 20 items and 5 levels of difficulty

#>

#> Compensatory model

#> Model identification items: W7Q3, W7Q20

#>

#> Constructs

#> Spherical coordinate vector 1: 0, 45

17



#> Spherical coordinate vector 2: 45, 90

#> Spherical coordinate vector 3: 90, 45

#>

#> a1 a2 a3 d1 d2 d3 d4 d5

#> W7Q1 2.0297 0.1645 -0.1227 8.0868 7.0641 5.9876 3.2016 -0.4834

#> W7Q2 2.6215 -0.0025 -0.2576 9.2884 6.6186 4.5103 1.6650 -2.4437

#> W7Q3 2.7932 0.0000 0.0000 10.4884 7.5922 5.6797 2.7181 -1.1790

#> W7Q4 1.9043 0.1877 0.1502 7.3749 6.0464 4.9812 2.4830 -1.1144

#> W7Q5 2.2427 -0.0285 -0.0836 8.4293 6.6722 4.9055 1.8256 -1.8316

#> W7Q6 2.0020 0.2392 0.1578 8.0687 6.3578 4.9521 2.3301 -1.0187

#> W7Q7 1.6284 0.1036 0.3600 6.0180 4.8976 3.6909 1.6326 -1.3483

#> W7Q8 1.7773 0.2254 0.3536 6.9174 5.1824 3.7663 1.4845 -1.8331

#> W7Q9 1.7197 0.2495 0.1286 7.5588 4.9756 3.3649 0.9344 -2.2093

#> W7Q10 1.7697 0.1274 -0.1404 8.3641 5.7399 4.2865 1.9648 -0.6641

#> W7Q11 1.4237 0.4680 1.0449 6.2204 4.6938 3.5443 1.1923 -1.8579

#> W7Q12 0.7601 0.0413 0.9370 4.1361 2.8772 2.3420 1.1791 -0.4240

#> W7Q13 1.1265 0.2914 1.6908 5.8838 4.3950 3.4385 1.8931 -0.6004

#> W7Q14 0.7444 0.4832 0.9787 5.3893 3.9334 3.0259 0.8144 -1.5869

#> W7Q15 0.4551 0.7871 -0.1607 4.3208 3.0545 2.3970 0.9187 -0.9705

#> W7Q16 0.6236 0.4141 0.1798 3.7249 2.0305 1.1658 -0.0612 -1.8084

#> W7Q17 1.1891 1.3414 0.0561 6.9016 5.8026 4.9348 2.7917 -0.0040

#> W7Q18 0.4106 1.3543 -0.1372 3.7838 2.0986 1.4183 0.1829 -1.9855

#> W7Q19 0.8578 1.4100 0.2278 4.4979 2.6484 1.6731 0.3741 -1.9966

#> W7Q20 0.7355 1.9066 0.0000 4.6376 2.3632 1.2791 -0.3430 -2.9188

#>

#> MDISC MDIFF1 MDIFF2 MDIFF3 MDIFF4 MDIFF5

#> W7Q1 2.0401 -3.9640 -3.4627 -2.9350 -1.5693 0.2370

#> W7Q2 2.6341 -3.5262 -2.5127 -1.7123 -0.6321 0.9277

#> W7Q3 2.7932 -3.7550 -2.7181 -2.0334 -0.9731 0.4221

#> W7Q4 1.9194 -3.8423 -3.1502 -2.5952 -1.2936 0.5806

#> W7Q5 2.2444 -3.7557 -2.9728 -2.1857 -0.8134 0.8160

#> W7Q6 2.0224 -3.9897 -3.1437 -2.4486 -1.1521 0.5037

#> W7Q7 1.6710 -3.6015 -2.9310 -2.2088 -0.9771 0.8069

#> W7Q8 1.8261 -3.7881 -2.8380 -2.0625 -0.8130 1.0038

#> W7Q9 1.7425 -4.3380 -2.8555 -1.9311 -0.5362 1.2679

#> W7Q10 1.7798 -4.6995 -3.2251 -2.4084 -1.1040 0.3731

#> W7Q11 1.8269 -3.4048 -2.5692 -1.9400 -0.6526 1.0170

#> W7Q12 1.2073 -3.4260 -2.3832 -1.9399 -0.9766 0.3512

#> W7Q13 2.0525 -2.8667 -2.1413 -1.6753 -0.9223 0.2925

#> W7Q14 1.3211 -4.0792 -2.9772 -2.2903 -0.6164 1.2011

#> W7Q15 0.9232 -4.6800 -3.3085 -2.5963 -0.9951 1.0512

#> W7Q16 0.7699 -4.8384 -2.6375 -1.5143 0.0795 2.3490

#> W7Q17 1.7935 -3.8482 -3.2354 -2.7515 -1.5566 0.0022

#> W7Q18 1.4218 -2.6613 -1.4761 -0.9976 -0.1286 1.3965

#> W7Q19 1.6661 -2.6997 -1.5896 -1.0042 -0.2245 1.1984

#> W7Q20 2.0436 -2.2694 -1.1564 -0.6259 0.1678 1.4283

#>

#> D.Cos X D.Cos Y D.Cos Z Theta Phi

#> W7Q1 0.9949 0.0806 -0.0601 -3.4590 85.3756

#> W7Q2 0.9952 -0.0010 -0.0978 -5.6133 90.0554

#> W7Q3 1.0000 0.0000 0.0000 0.0000 90.0000

#> W7Q4 0.9921 0.0978 0.0783 4.5098 84.3885

#> W7Q5 0.9992 -0.0127 -0.0372 -2.1341 90.7284

18



#> W7Q6 0.9899 0.1183 0.0780 4.5068 83.2064

#> W7Q7 0.9745 0.0620 0.2154 12.4657 86.4441

#> W7Q8 0.9733 0.1235 0.1936 11.2521 82.9082

#> W7Q9 0.9869 0.1432 0.0738 4.2769 81.7671

#> W7Q10 0.9943 0.0716 -0.0789 -4.5357 85.8965

#> W7Q11 0.7793 0.2561 0.5719 36.2765 75.1588

#> W7Q12 0.6296 0.0342 0.7761 50.9493 88.0399

#> W7Q13 0.5488 0.1420 0.8238 56.3262 81.8384

#> W7Q14 0.5634 0.3657 0.7408 52.7448 68.5472

#> W7Q15 0.4929 0.8525 -0.1740 -19.4451 31.5154

#> W7Q16 0.8101 0.5378 0.2335 16.0800 57.4627

#> W7Q17 0.6630 0.7479 0.0313 2.7031 41.5881

#> W7Q18 0.2888 0.9525 -0.0965 -18.4742 17.7264

#> W7Q19 0.5148 0.8463 0.1367 14.8712 32.1870

#> W7Q20 0.3599 0.9330 0.0000 0.0000 21.0939

#>

#> C.Cos X C.Cos Y C.Cos Z Theta Phi

#> C1 0.7071 0.7071 0.0000 0 45

#> C2 0.7071 0.0000 0.7071 45 90

#> C3 0.0000 0.7071 0.7071 90 45

#>

#> DDISC1 DDISC2 DDISC3

#> W7Q1 1.5515 1.3485 0.0296

#> W7Q2 1.8519 1.6715 -0.1840

#> W7Q3 1.9751 1.9751 0.0000

#> W7Q4 1.4792 1.4527 0.2389

#> W7Q5 1.5656 1.5267 -0.0793

#> W7Q6 1.5848 1.5272 0.2807

#> W7Q7 1.2248 1.4060 0.3278

#> W7Q8 1.4161 1.5067 0.4094

#> W7Q9 1.3925 1.3070 0.2674

#> W7Q10 1.3414 1.1521 -0.0092

#> W7Q11 1.3376 1.7456 1.0698

#> W7Q12 0.5667 1.2001 0.6918

#> W7Q13 1.0026 1.9921 1.4016

#> W7Q14 0.8680 1.2184 1.0337

#> W7Q15 0.8783 0.2082 0.4429

#> W7Q16 0.7338 0.5681 0.4199

#> W7Q17 1.7894 0.8805 0.9882

#> W7Q18 1.2479 0.1933 0.8606

#> W7Q19 1.6036 0.7676 1.1581

#> W7Q20 1.8682 0.5201 1.3482

For instance, this type of construct can contribute to the analysis by showing how the items discrimi-
nate according to the DDISC index in between the axes in model where no item is located. Thus, the
example with the 45◦ construct vectors above can, therefore, be used to study the items assuming within-
multidimensionality.

19



3. Plotting

3.1 The plot() Function

The plot() method for class D3mirt objects is built on functions from the rgl package (Adler & Murdoch,
2023) for visualization with OpenGL. The output consists of a three-dimensional interactive RGL device,
displaying vector arrows with the latent dimensions running along the orthogonal axes centered at zero. If
polytomous items are used, each item will have multiple arrows, representing the multiple item step response
functions, running along the same direction in the model.

When plotting the D3mirt model with plot(), it is possible to visually observe statistical violations in the
graphical output returned. For instance, shorter vector arrows indicate weaker discrimination and, therefore,
also higher amounts of model violations. As another example, if an item struggles or even fails to describe
any of the latent variables in the model, it can often lead to an extreme stretch of the MDIFF range.
This is comparable to trace lines turning horizontal in a unidimensional item response theory model. Some
examples of model violations and within-dimensionality will be given in the illustration below.

Graphing in default mode by calling plot() will return an RGL device that will appear in an external window
as a three-dimensional interactive object that can be rotated manually by the user. In this illustration,
however, all RGL devices are plotted as still shots.

# Plot RGL device

# Graphical output can be seen in Figure 1

plot(mod1, scale = TRUE)

An example of how the output can be described could be the following.

As seen in Figure 1, the pattern in the data indicates the presence of foremost two principal
latent constructs indicated by the items, one aligned with the x-axis and one approaching the
y-axis. We might also suspect the presence of a third construct located close to the xy-plane,
between the x and z axes. Studying the content of the items, the labels Compassion, Fairness,
and Conformity were introduced.

We can also study the orthogonal model by calling plot() and changing the Ąrst argument accordingly. This
type of model is, however, less interesting for the purpose of studying item vectors because these simply form
a cross pattern in the model space. The model can, however, be interesting plot when studying respondent
trait scorers, which will be illustrated below. In the function call, all axes are also named following the
content of the items using the x.lab, y.lab, and z.lab arguments.

# Plot RGL device

# Graphical output can be seen in Figure 2

plot(mod2, x.lab = "Compassion", y.lab = "Conformity", z.lab = "Fairness")

It can be observed that the discrimination scores are lower for all items in the orthogonal model compared
to the compensatory model. It is also notable that the size of the reduction is related to how much the
item orientation changes when the items are constrained to be parallel with the axes. Accordingly, the
discrimination scores for the Compassion items are less affected on average compared to the Fairness items
and many of the Conformity items.

3.1.1. Plotting Constructs

To get a better understanding of the interrelation of the data, constructs can be added to asses the average
angle when grouping items. As mentioned above, in this example, the items have been grouped in constructs

20



Figure 1: Compensatory Model 1 illustrating multidimensional item charachteristics rotated 15◦ clockwise.

21



Figure 2: The Orthogonal, Model 2, with item vectors strictly paralell with the model axes, rotated 15◦

clockwise.

22



in an exploratory fashion, i.e., based on their observed location in the model. Note that item W7Q16 was
not included in any of the constructs because of a high amount of model violation tendencies and notable
within-multidimensionality.

To plot constructs alongside item vectors, change to constructs = TRUE. The constructs can be named with
strings as input to the construct.lab argument. In this example, construct labels were chosen based on
item content.

# Plot RGL device with constructs visible and named

# Graphical output can be seen in Figure 3

plot(mod3, constructs = TRUE, construct.lab = c("Compassion", "Fairness", "Conformity"))

Figure 3: Model 3 rotated 15◦ showing constructs (solid black arrows) based on item subsets.

23



An example of how the output can be described is as follows.

The angles of the constructs inform us that Compassion (θ = 2.092◦, ϕ = 86.061◦) and Con-
formity (θ = −2.514◦,ϕ = 28.193◦) have some within-multidimensional tendencies (Figure 3).
Still they are both more or less orthogonal to the z-axis. Next, we Ąnd Fairness (θ = 49.101◦,
ϕ = 78.313◦) with clear within-multidimensional tendencies with respect to the x-axis. Thus, the
output indicates that Compassion and Conformity could be independent constructs but Fairness
seems not to be.

We can also study the construct indicated by spherical angles by calling plot() and changing the Ąrst
argument to use the appropriate D3mirt object. Because these constructs are not empirical, however, the
name argument is changed to use the more generic labels ŞCon 1Ť, ŞCon 2Ť, and ŞCon 3Ť.

# Plot RGL device with constructs visible

# Graphical output can be seen in Figure 4

plot(mod4, constructs = TRUE, construct.lab = c("Con 1", "Con 2", "Con 3"))

Studying the DDISC scores for the constructs in the summary output above, it can be conĄrmed that Con
1 forms a within-multidimensional scale with the highest discrimination scores in items from Compassion
and Conformity, Con 2 describes a within-multidimensional scale with the highest discrimination scores in
items from Compassion and Fairness. Con 3, on the other hand, does not seem to result in a scale since the
discrimination scores are low and even approaching zero on many items.

3.1.2. items

A subset of items can be plotted for a more thorough investigation using the items argument. In the example
below, all constructs are plotted together with the items used for the conformity construct. In the function
call, the numerical indicators in the items argument follow the item order in the original data frame (see
?anes0809offwaves).

# A selection of Conformity items from the model plotted with constructs

# Graphical output can be seen in Figure 5

plot(mod3, constructs = TRUE, items = c(15, 17, 18, 19, 20),

construct.lab = c("Compassion", "Fairness", "Conformity"))

The plot() function also allows plotting a single item by entering a number indicating what item should be
displayed. As was mentioned above, the W7Q16 was not included in any of the constructs because the item
showed signs of measurement problems. For example, the short vector arrows indicate high amounts of model
violations and the location of the item in the model also indicates that the item is within-multidimensional
and that it does not seem to belong to any construct explicitly. Typing 16 in the items argument allows for
a closer look.

# Item W7Q16 has location 16 in the data set (gender and age excluded)

# The item is plotted together with constructs to aid the visual interpretation

# Graphical output can be seen in Figure 6

plot(mod3, constructs = TRUE, items = 16,

construct.lab = c("Compassion", "Fairness", "Conformity"))

An example of how the output can be described is as follows.

24



Figure 4: Model 4 rotated 15◦ showing constructs (solid black arrows) based on spherical coordinates.

25



Figure 5: Model 3 rotated 15◦ showing items 15 to 20 and the three item subset constructs.

26



Figure 6: Model 3 rotated 15◦ showing items 15 and the three item subset constructs.

27



Figure 6 shows that item W7Q16 is located at θ = 16.085◦, ϕ = 57.476◦, indicating that the item
is within-multidimensional with respect to the x and y-axis; but much less so with respect to
the z-axis. In addition, the directional discrimination further underscores that the item does not
seem to measure any particular construct (DDISC1 = .657, DDISC2 = .617, DDISC3 = .656).
The global discrimination (MDISC = .770, MDIFFrange = [−4.838, 2.349]) is also the lowest
of all discrimination scores in the model. This, combined, implies that the item in question
does not seem to Ąt the three-dimensional DMIRT used in this analysis and should, therefore,
be removed or adapted. On a side note, we can also note that item W7Q15, MDISC = .923,
MDIFFrange = [−4.680, 1.051]) has the second lowest global discrimination score. However,
this item does seem to belong to the Conformity construct, observable when comparing an-
gle orientation (θ = −19.432◦, ϕ = 31.515◦) and directional discrimination (DDISC1 = .502,
DDISC2 = .332, DDISC3 = .912).

3.1.3. diff.level

The user has the option of plotting one level of difficulty at a time with the diff.level argument studying
the entire scale, a subset of items, or one item at a time. Note that difficulty refers to the number of item
response functions in the items, i.e., the total number of response options minus one. In this case, 6 response
options were used, which means that the model has 5 levels of difficulty.

# Plot RGL device on item difficulty level 5

# Graphical output can be seen in Figure 7

plot(mod3, diff.level = 5)

3.1.4. scale

The D3mirt() function returns item vector coordinates estimated with and without the MDISC as a scalar
for the arrow length. When the MDISC is not used for the arrow length, all item vector arrows are scaled
to one unit length. This allows the user to graph the item vector arrows with plot() set to a uniform length.
This can help reduce visual clutter in the graphical output. To view the item vector arrows without the
MDISC, set scale = TRUE.

# Plot RGL device with items in uniform length and constructs visible and named

# Graphical output can be seen in Figure 8

plot(mod3, scale = TRUE, constructs = TRUE,

construct.lab = c("Compassion", "Fairness", "Conformity"))

3.2. ProĄle Analysis

The plot() function can also display respondents in the three-dimensional model represented as spheres
whose coordinates consist of the respondentŠs trait scores. This allows for plotting all respondent scores but
also for performing a type of proĄle analysis in which respondents are selected and separated conditioned
on single or multiple criteria. The resulting output shows where this subset of respondents is located in the
model and what latent proĄle best describes them. Similarly, respondents sorted into, for instance, color
categories can be simultaneously graphed to expose potential group-level effects.

3.2.1 Plotting All Respondents

To plot respondent scores using the default option, call D3mirt() and set ìnd.scores to TRUE. This will
display respondents visualized as black spheres in the latent space. In the function call below, all items are

28



Figure 7: Model 3 rotated 15◦ clockwise showing all items on difficulty level 5.

29



Figure 8: Model 3 rotated 15◦ displaying scaled items.

30



hidden with hide = TRUE to reduce visual clutter, and constructs is set to FALSE (by default) for the
same reason.

# Plot profiles with item vector arrows hidden

# Graphical output can be seen in Figure 9

plot(mod3, hide = TRUE, ind.scores = TRUE,

x.lab = "Compassion", y.lab="Conformity", z.lab="Fairness")

Figure 9: Model 3 rotated 15◦ showing all respondents trait scores illustrated as black spheres.

Respondents can be separated by creating color categories for the spheres to aid the visual interpretation.
This can be done using the levels argument in plot(). In brief, the levels argument calls as.factor()

to count the number of factor levels in the data. This means that raw data can be used as is, but the number

31



of colors in the color vectors argument (sphere.col) may need to be adapted. In the example below, the
criteria variable for gender only holds two factor levels and, therefore, only two colors in the color vector
are needed. To create an appropriate data frame for levels, the gender variable must Ąrst be assigned to a
data frame.

# Load the data set as a matrix to remove attributes

data("anes0809offwaves")

x <- anes0809offwaves

Call plot() using the respondent gender data located in column two in x, i.e., x[, 2], in the levels argument.
Please note that the criteria variable used in levels must follow the same row order as the frame used when
Ątting the D3mirtobject. That is, rows must refer to the same respondents, otherwise the color matching
will most likely be wrong.

# Plot profiles with item vector arrows hidden

# Score levels: 1 = Blue ("male") and 2 = Red ("female")

# Graphical output can be seen in Figure 10

plot(mod3, hide = TRUE, ind.scores = TRUE,

levels = x[, 2], sphere.col = c("blue", "red"),

x.lab = "Compassion", y.lab="Conformity", z.lab="Fairness")

An example of how the output can be described is as follows:

In Figure 10, a simple gender proĄle can be observed, showing that more women tend to have
higher levels of compassion. When rotating the model 90◦ clockwise, there seems to be no obvious
gender difference related to Conformity or Fairness.

3.2.2 Plotting the Orthogonal Model

If the D3mirt object was Ątted using the orthogonal option, plotting all respondent scores can easily be
done using the ind.scores argument set to TRUE as in the previous example. In the function call below,
all arguments are the same, expcept that the D3mirt object is now the orthogonal version. As can be seen,
plotting respondent trait scores using the orthogonal model slightly reduced the effect on gender seen when
using the compensatory model. Note that this is not a general effect. Instead, the opposite can also be the
case, i.e., that an effect appears because the model is not constrained to contain only strict unidimensions.
It is, therefore, essential that the user justify using the orthogonal model because it is not, in itself, an
empirical reĆection of the data. It can, however, be a reĆection of an idea.

# Plot profiles with item vector arrows hidden

# Score levels: 1 = Blue ("male") and 2 = Red ("female")

# Graphical output can be seen in Figure 11

plot(mod2, hide = TRUE, ind.scores = TRUE, levels = x[, 2], sphere.col = c("blue", "red"),

x.lab = "Compassion", y.lab="Conformity", z.lab="Fairness"))

3.2.3 Plotting Subgroups of Respondents

It is also possible to plot a subset of respondents in the model space. To do this, the user must Ąrst create a
data frame with respondent trait scores externally and use the same in the profiles argument in plot().
In the example below, this is done using the rep() function to create subgroups based on factor levels. This
can be useful when a criterion variable, such as an age variable, has a wide data range. More speciĄcally,
a color vector for the sphere.col argument can be created with color names repeated by rep(). When

32



Figure 10: Model 3 rotated 15◦ graphically separating male trait scores (blue) from female trait scores (red).

33



Figure 11: Model 2, the orthogonal model, rotated 15◦ showing respondents male trait scores (blue) and
female trait scores (red).

34



plotting, the plot() function will then pick colors from the sphere.col argument following the factor order
in the levels argument. Because the use of rep() repeats color labels, the Ąrst set of factor levels are
colored with the same color, and the second set of factor levels are colored with some another color. The
result will then show two groups in the latent space separated by two colors. The example below illustrates
this approach for comparing respondents 30 years or younger against 70 years or older. Please note that
when plotting subgroups, i.e., not the entire data frame of respondents, a data frame must be imputed into
the profiles argument in plot().

First, we must count the number of factor levels in the variable. This can be done with the
nlevels(as.factor()). Then, we use the output from the latter to set the appropriate size of the
color vector for sphere.col.

# Create a data frame containing trait scores from the D3mirt object and the age variable W3Xage

# This will result in three columns with trait scores and a fourth with age data

z <- data.frame(cbind(mod3$fscores, x[, 1]))

# Subset data frame z conditioned on age <= 30

z1 <- subset(z, z[, 4] <= 30)

# Subset data frame z conditioned on age >= 70

z2 <- subset(z, z[, 4] >= 70)

# Row bind z1 and z2

z <- rbind(z1,z2)

# Check number of factor levels with nlevels() and as.factor()

nlevels(as.factor(z1[, 4]))

#> [1] 14

nlevels(as.factor(z2[, 4]))

#> [1] 16

# Use rep() to create a color vector to color groups based on the nlevels() output

# z1 has 14 factor levels and z2 has 16 factor levels

# z1 respondents are colored red and z2 are colored blue

colvec <- c(rep("red", 14),

rep("blue", 16))

# Call plot() with profile data on age with item vector arrows hidden

# Use data frame z in the profiles argument and the criteria column

# from z in the levels argument

# Graphical output can be seen in Figure 12

plot(mod3, hide = TRUE, profiles = z, levels = z[, 4], sphere.col = colvec,

x.lab = "Compassion", y.lab="Conformity", z.lab="Fairness")

An example of how the output can be described is as follows.

As can be seen, Figure 12 indicates an age effect in which older individuals have higher levels of
Conformity. Rotating the model to the left also shows that older individuals may have slightly
higher levels of Fairness, even if the effect is less clear. There does not seem to be any difference in
Compassion, however. To sum up, we can say, therefore, that the analysis indicates a possibility
that older individuals may have a moral proĄle consisting of high Conformity and possibly also
high Fairness.

35



Figure 12: Model 3 rotated 15◦ graphically separating respondents 30 years or younger (red) from respondents
70 years and older (blue).

36



3.2.3 Plotting ConĄdence Intervals

It is also possible to plot a conĄdence interval in the shape of an ellipse surrounding the spheres. The younger
individuals (≤ 30) are selected and plotted with a 95% CI In the example below.

# Column bind trait scores with the age variable W3Xage

z <- data.frame(cbind(mod3$fscores, x[, 1]))

# Subset data frame z conditioned on age <= 30

z1 <- subset(z, z[, 4] <= 30)

# Use rep() to create a color vector to color groups based on the nlevels() output

# z1 has 14 factor levels

colvec <- c(rep("red", 14))

To plot the CI, the ci argument is set to TRUE. The color of the spheres was also changed from the default
grey80 to orange in the example below. Note that the CI limit can be adjusted with the ci.level argument.

# Call plot() with profile data on age with item vector arrows hidden

# Graphical output can be seen in Figure 13

plot(mod3, hide = TRUE, profiles = z1, levels = z1[, 4], sphere.col = colvec,

x.lab = "Compassion", y.lab="Conformity", z.lab="Fairness",

ci = TRUE, ci.level = 0.95, ellipse.col = "orange")

An example of how the output can be described is as follows.

In Figure 13, we can see a tendency for a proĄle on age in which younger individuals could be
described as less oriented towards Conformity. We can also observe a tendency for what could
be an interaction effect in which higher levels of Conformity seem to be associated with lower
levels of Fairness.

4. Exporting The RGL Device

Below are some options for exporting the RGL device. In addition, it is also possible to export graphical
devices in R Markdown documents with rgl::hook_webgl() together with graphical options for knitr, as
was done when creating this vignette.

# Export an open RGL device to the console that can be saved as an HTML or image file

plot(mod3, constructs = TRUE)

s <- rgl::scene3d()

rgl::rglwidget(s,

width = 1040,

height = 1040)

# Export a snap shoot of an open RGL device directly to file

plot(mod3, constructs = TRUE)

rgl::rgl.snapshot('RGLdevice.png',

fmt = 'png')

37



Figure 13: Model 3 rotated 15◦ showing respondents 30 years or younger surrounded by a 95 CI.

38



5. Getting Help, Feedback, and Questions

If you encounter a bug, please Ąle an issue with a minimal reproducible example on GitHub (https://github.
com/ForsbergPyschometrics/D3mirt). For questions and suggestions on how to improve the code, please
contact me on GitHub or via email (forsbergpsychometrics@gmail.com).

6. References

Adler, D., & Murdoch, D. (2023). Rgl: 3d Visualization Using OpenGL [Computer software]. https://
dmurdoch.github.io/rgl/index.html

Chalmers, R., P. (2012). mirt: A Multidimensional Item Response Theory Package for the R Environment.
Journal of Statistical Software, 48 (6), 1-29. https://doi.org/10.18637/jss.v048.i06

DeBell, M., Krosnick, J. A., & Lupia, A. (2010). Methodology Report and UserŠs Guide for the 2008-2009

ANES Panel Study. Palo Alto, CA, and Ann Arbor, MI: Stanford University and the University of Michigan.

McKinley, R. L., & Reckase, M. D. (1983). An Extension of the Two-parameter Logistic Model to the

multidimensional latent space, Report ONR83-2. Iowa City, IA, American College Testing Program.

Muraki, E., & Carlson, J. E. (1995). Full-Information Factor Analysis for Polytomous Item Responses.
Applied Psychological Measurement, 19 (1), 73-90. https://doi.org/10.1177/014662169501900109

Reckase, M. D. (2009). Multidimensional Item Response Theory.Springer. https://doi.org/10.1007/978-0-
387-89976-3

Reckase, M. D. (1985). The Difficulty of Test Items That Measure More Than One Ability. Applied Psy-

chological Measurement, 9 (4),401-412. https://doi.org/10.1177/014662168500900409

Reckase, M. D., & McKinley, R. L. (1991). The Discriminating Power of Items That Measure More
Than One Dimension. Applied Psychological Measurement, 15 (4), 361-373. https://doi.org/10.1177/
014662169101500407

7. Appendix A: Compensatory Model Syntax

The model syntax for the compensatory model and mirt code used in D3mirt can be seen below. This is
the same syntax built into D3mirt, version ≥ 2.0.0. In brief, the three-dimensional compensatory model
is speciĄed so that all items load on all three factors in the model, and all factors are constrained to be
orthogonal. Fitting the model is preferably done with the mirt() function from the package mirt (Chalmers,
2012).

Observe that the START and FIXED commands Ąx the slope parameters on the second, a2, and third, a3.
factor for item1 (W7Q3), and the slope on the third, a3, factor for item i2 (W7Q20). The resulting S4 object
from mirt can be used in D3mirt in place of data frame x just in previous versions of the package.

# Load data

data("anes0809offwaves")

x <- anes0809offwaves

x <- x[, 3:22] # Remove columns for age and gender

# Fit a three-dimensional graded response model with orthogonal factors

# Example below uses Likert items from the built-in data set "anes0809offwaves"

# Item W7Q3 and item W7Q20 was selected with `modid()`

# The model specification allows all items in the data set (1-20)

# to load on all three factors (F1-F3)

39

https://github.com/ForsbergPyschometrics/D3mirt
https://github.com/ForsbergPyschometrics/D3mirt
mailto:forsbergpsychometrics@gmail.com
https://dmurdoch.github.io/rgl/index.html
https://dmurdoch.github.io/rgl/index.html
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.1177/014662169501900109
https://doi.org/10.1007/978-0-387-89976-3
https://doi.org/10.1007/978-0-387-89976-3
https://doi.org/10.1177/014662168500900409
https://doi.org/10.1177/014662169101500407
https://doi.org/10.1177/014662169101500407


# The START and FIXED commands are used on the two items to identify the DMIRT model

spec <- ' F1 = 1-20

F2 = 1-20

F3 = 1-20

START=(W7Q3,a2,0)

START=(W7Q3,a3,0)

START=(W7Q20,a3,0)

FIXED=(W7Q3,a2)

FIXED=(W7Q3,a3)

FIXED=(W7Q20,a3) '

mod1 <- mirt::mirt(x,

spec,

itemtype = 'graded',

SE = TRUE,

method = 'QMCEM')

40


	D3MIRT Modeling
	Limitations

	Overview
	1. Model Identification
	1.1 The modid() Function
	1.1.1. Item Selection
	1.1.2. The Model Identification Procedure
	1.1.3. Trouble Shooting

	1.2. Criteria For Model Identification
	1.3. Limitations

	2. D3mirt model estimation
	2.1. The D3mirt() Function
	2.1.1. Calling the Compensatory Model
	2.1.2. Calling the Orthogonal Model
	2.1.3. Constructs by Items
	2.1.4. Constructs by Spherical Angles


	3. Plotting
	3.1 The plot() Function
	3.1.1. Plotting Constructs
	3.1.2. items
	3.1.3. diff.level
	3.1.4. scale

	3.2. Profile Analysis
	3.2.1 Plotting All Respondents
	3.2.2 Plotting the Orthogonal Model
	3.2.3 Plotting Subgroups of Respondents
	3.2.3 Plotting Confidence Intervals


	4. Exporting The RGL Device
	5. Getting Help, Feedback, and Questions
	6. References
	7. Appendix A: Compensatory Model Syntax

