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Accuracy Computes the Accuracy measure.
Description

Computes the ratio of number of correct predictions to the total number of input samples.

Details

Accuracy = (NumberCorrect Predictions) /(Total Numbero f Predictions)

Super class

D2MCS: :MeasureFunction -> Accuracy
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Methods
Public methods:

e Accuracy$new()
e Accuracy$compute()
e Accuracy$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
Accuracy$new(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix used as basis to compute the performance.

Method compute(): The function computes the Accuracy achieved by the M.L. model.

Usage:
Accuracy$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as

basis to compute the Accuracy measure.
Details: This function is automatically invoke by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Accuracy$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix.

BinaryPlot Plotting feature clusters following bi-class problem.

Description

The BinaryPlot implements a basic plot for bi-class problem.

Super class

D2MCS: :GenericPlot -> BinaryPlot
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Methods

Public methods:

e BinaryPlot$new()
e BinaryPlot$plot()
* BinaryPlot$clone()

Method new(): Empty function used to initialize the object arguments in runtime.

Usage:
BinaryPlot$new()

Method plot(): Plots feature-clustering data from a bi-class problem.

Usage:
BinaryPlot$plot(summary)

Arguments:
summary A data.frame comprising the elements to be plotted.

Method clone(): The objects of this class are cloneable with this method.

Usage:
BinaryPlot$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

GenericPlot

ChiSquareHeuristic Feature-clustering based on ChiSquare method.

Description

Performs feature-clustering based on ChiSquare method.

Super class

D2MCS: :GenericHeuristic -> ChiSquareHeuristic
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Methods
Public methods:
e ChiSquareHeuristic$new()
e ChiSquareHeuristic$heuristic()
e ChiSquareHeuristic$clone()
Method new(): Empty function used to initialize the object arguments in runtime.
Usage:
ChiSquareHeuristic$new()
Method heuristic(): Functions responsible of performing the ChiSquare feature-clustering
operation.
Usage:
ChiSquareHeuristic$heuristic(coll, col2, column.names = NULL)
Arguments:
coll A numeric vector or matrix required to perform the clustering operation.
col2 A numeric vector or matrix to perform the clustering operation.
column.names An optional character vector with the names of both columns.
Returns: A numeric vector of length 1 or NA if an error occurs.
Method clone(): The objects of this class are cloneable with this method.
Usage:
ChiSquareHeuristic$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
See Also

Dataset, chisq. test

ClassificationOutput D2MCS Classification Output.

Description

Allows computing the classification performance values achieved by D2MCS. The class is auto-
matically created when D2MCS classification method is invoked.
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Methods

Public methods:
e ClassificationOutput$new()
e ClassificationOutput$getMetrics()
e ClassificationOutput$getPositiveClass()
e ClassificationOutput$getModelInfo()
e ClassificationOutput$getPerformances()
e ClassificationOutput$savePerformances()
* ClassificationOutput$plotPerformances()
e ClassificationOutput$getPredictions()
e ClassificationOutput$savePredictions()
e ClassificationOutput$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
ClassificationOutput$new(voting.schemes, models)

Arguments:
voting.schemes A list containing the voting schemes used (inherited from VotingStrategy.
models A list containing the used Model during classification stage.

Method getMetrics(): The function returns the measures used during training stage.

Usage:
ClassificationOutput$getMetrics()

Returns: A character vector or NULL if training was not performed.
Method getPositiveClass(): The function gets the name of the positive class used for train-
ing/classification.

Usage:
ClassificationOutput$getPositiveClass()

Returns: A character vector of size 1.
Method getModelInfo(): The function compiled all the information concerning to the M.L.
models used during training/classification.

Usage:
ClassificationOutput$getModelInfo(metrics = NULL)

Arguments:

metrics A character vector defining the metrics used during training/classification.

Returns: A list with the information of each M.L. model.

Method getPerformances(): The function is used to compute the performance of D2MCS.
Usage:
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ClassificationOutput$getPerformances(
test.set,
measures,
voting.names = NULL,
metric.names = NULL,
cutoff.values = NULL

)

Arguments:

test.set A Subset object used to compute the performance.

measures A character vector with the measures to be used to compute performance value (in-
herited from MeasureFunction).

voting.names A character vector with the name of the voting schemes to analyze the perfor-
mance. If not defined, all the voting schemes used during classification stage will be taken
into account.

metric.names A character containing the measures used during training stage. If not defined,
all training metrics used during classification will be taken into account.

cutoff.values A character vector defining the minimum probability used to perform a a posi-
tive classification. If is not defined, all cutoffs used during classification stage will be taken
into account.

dir.path A character vector with location where the plot will be saved.

Returns: A list of performance values.

Method savePerformances(): The function is used to save the computed predictions into a
CSV file.
Usage:
ClassificationOutput$savePerformances(
dir.path,
test.set,
measures,
voting.names = NULL,
metric.names = NULL,
cutoff.values = NULL

)

Arguments:

dir.path A character vector with location where the plot will be saved.

test.set A Subset object used to compute the performance.

measures A character vector with the measures to be used to compute performance value (in-
herited from MeasureFunction).

voting.names A character vector with the name of the voting schemes to analyze the perfor-
mance. If not defined, all the voting schemes used during classification stage will be taken
into account.

metric.names A character containing the measures used during training stage. If not defined,
all training metrics used during classification will be taken into account.

cutoff.values A character vector defining the minimum probability used to perform a a posi-
tive classification. If is not defined, all cutoffs used during classification stage will be taken
into account.
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Method plotPerformances(): The function allows to graphically visualize the computed per-

formance.
Usage:
ClassificationOutput$plotPerformances(
dir.path,
test.set,
measures,
voting.names = NULL,
metric.names = NULL,
cutoff.values = NULL
)

Arguments:
dir.path A character vector with location where the plot will be saved.
test.set A Subset object used to compute the performance.

measures A character vector with the measures to be used to compute performance value (in-

herited from MeasureFunction).

voting.names A character vector with the name of the voting schemes to analyze the perfor-
mance. If not defined, all the voting schemes used during classification stage will be taken

into account.

metric.names A character containing the measures used during training stage. If not defined,

all training metrics used during classification will be taken into account.

cutoff.values A character vector defining the minimum probability used to perform a posi-
tive classification. If is not defined, all cutoffs used during classification stage will be taken

into account.

Method getPredictions(): The function is used to obtain the computed predictions.
Usage:
ClassificationOutput$getPredictions(
voting.names = NULL,
metric.names = NULL,
cutoff.values = NULL,
type = NULL,
target = NULL,
filter = FALSE
)

Arguments:

voting.names A character vector with the name of the voting schemes to analyze the perfor-
mance. If not defined, all the voting schemes used during classification stage will be taken

into account.

metric.names A character containing the measures used during training stage. If not defined,

all training metrics used during classification will be taken into account.

cutoff.values A character vector defining the minimum probability used to perform a a posi-
tive classification. If is not defined, all cutoffs used during classification stage will be taken

into account.

type A character to define which type of predictions should be returned. If not defined all type
of probabilities will be returned. Conversely if "prob" or "raw" is defined then computed

"probabilistic’ or class’ values are returned.
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target A character defining the value of the positive class.

filter A logical value used to specify if only predictions matching the target value should be
returned or not. If TRUE the function returns only the predictions matching the target value.
Conversely if FALSE (by default) the function returns all the predictions.

Returns: A PredictionOutput object.

Method savePredictions(): The function saves the predictions into a CSV file.
Usage:
ClassificationOutput$savePredictions(
dir.path,
voting.names = NULL,
metric.names = NULL,
cutoff.values = NULL,
type = NULL,
target = NULL,
filter = FALSE

)

Arguments:

dir.path A character vector with location defining the location of the CSV file.

voting.names A character vector with the name of the voting schemes to analyze the perfor-
mance. If not defined, all the voting schemes used during classification stage will be taken
into account.

metric.names A character containing the measures used during training stage. If not defined,
all training metrics used during classification will be taken into account.

cutoff.values A character vector defining the minimum probability used to perform a posi-
tive classification. If is not defined, all cutoffs used during classification stage will be taken
into account.

type A character to define which type of predictions should be returned. If not defined all type
of probabilities will be returned. Conversely if "prob" or "raw" is defined then computed
"probabilistic’ or ’class’ values are returned.

target A character defining the value of the positive class.
filter A logical value used to specify if only predictions matching the target value should be
returned or not. If TRUE the function returns only the predictions matching the target value.
Conversely if FALSE (by default) the function returns all the predictions.
Method clone(): The objects of this class are cloneable with this method.

Usage:
ClassificationOutput$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also
D2MCS
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ClassMajorityVoting Implementation of Majority Voting voting.

Description

Implementation of the parliamentary 'majority voting’ procedure. The majority class value is de-
fined as final class. All class values have the same importance.

Super class

D2MCS: :SimpleVoting -> ClassMajorityVoting

Methods

Public methods:
* ClassMajorityVoting$new()
* ClassMajorityVoting$getMajorityClass()
e ClassMajorityVoting$getClassTie()
e ClassMajorityVoting$execute()
e ClassMajorityVoting$clone()

Method new(): Method for initializing the object arguments during runtime.
Usage:
ClassMajorityVoting$new(cutoff = 0.5, class.tie = NULL, majority.class = NULL)

Arguments:

cutoff A character vector defining the minimum probability used to perform a positive classi-
fication. If is not defined, 0.5 will be used as default value.

class.tie A character used to define the target class value used when a tie is found. If NULL
positive class value will be assigned.

majority.class A character defining the value of the majority class. If NULL will be used
same value as training stage.
Method getMajorityClass(): The function returns the value of the majority class.

Usage:
ClassMajorityVoting$getMajorityClass()

Returns: A character vector of length 1 with the name of the majority class.

Method getClassTie(): The function gets the class value assigned to solve ties.

Usage:
ClassMajorityVoting$getClassTie()

Returns: A character vector of length 1.

Method execute(): The function implements the majority voting procedure.
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Usage:

ClassMajorityVoting$execute(predictions, verbose = FALSE)

Arguments:

predictions A ClusterPredictions object containing all the predictions achieved for each
cluster.

verbose A logical value to specify if more verbosity is needed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ClassMajorityVoting$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

D2MCS, ClassMajorityVoting, ClassWeightedVoting, ProbAverageVoting, ProbAverageWeightedVoting,
ProbBasedMethodology

ClassWeightedVoting Implementation Weighted Voting scheme.

Description

A new implementation of ClassMajorityVoting where each class value has different values (weights).

Super class

D2MCS: :SimpleVoting -> ClassWeightedVoting

Methods

Public methods:
e ClassWeightedVoting$new()
e ClassWeightedVoting$getWeights()
* ClassWeightedVoting$setWeights()
e ClassWeightedVoting$execute()
e ClassWeightedVoting$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
ClassWeightedVoting$new(cutoff = 0.5, weights = NULL)

Arguments:
cutoff A character vector defining the minimum probability used to perform a positive classi-
fication. If is not defined, 0.5 will be used as default value.
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weights A numeric vector with the weights of each cluster. If NULL performance achieved
during training will be used as default.

Method getWeights(): The function returns the weights used to perform the voting scheme.

Usage:
ClassWeightedVoting$getWeights()

Returns: A numeric vector.

Method setWeights(): The function allows changing the value of the weights.
Usage:
ClassWeightedVoting$setWeights(weights)

Arguments:

weights A numeric vector containing the new weights.

Method execute(): The function implements the cluster-weighted majority voting procedure.
Usage:
ClassWeightedVoting$execute(predictions, verbose = FALSE)

Arguments:

predictions A ClusterPredictions object containing all the predictions achieved for each
cluster.

verbose A logical value to specify if more verbosity is needed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ClassWeightedVoting$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

D2MCS, ClassMajorityVoting, ClassWeightedVoting, ProbAverageVoting, ProbAverageWeightedVoting,
ProbBasedMethodology

ClusterPredictions Manages the predictions achieved on a cluster.

Description

Stores the predictions achieved by the best M.L. of each cluster.
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Methods
Public methods:

e ClusterPredictions$new()

e ClusterPredictions$add()

* ClusterPredictions$get()

* ClusterPredictions$getAll()

* ClusterPredictions$size()

* ClusterPredictions$getPositiveClass()
* ClusterPredictions$getClassValues()

e ClusterPredictions$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
ClusterPredictions$new(class.values, positive.class)

Arguments:
class.values A character vector containing the values of the target class.
positive.class A character with the value of the positive class.

Method add(): The function is used to add the prediction achieved by a specific M.L. model.

Usage:
ClusterPredictions$add(prediction)

Arguments:

prediction A Prediction object containing the computed predictions.

Method get(): The function returns the predictions placed at specific position.

Usage:
ClusterPredictions$get(position)

Arguments:

position A numeric value indicating the position of the predictions to be obtained.

Returns: A Prediction object.

Method getAll(): The function returns all the predictions.

Usage:
ClusterPredictions$getAll()

Returns: A list containing all computed predictions.

Method size(): The function returns the number of computed predictions.

Usage:
ClusterPredictions$size()

Returns: A numeric value.

Method getPositiveClass(): The function gets the value of the positive class.
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Usage:
ClusterPredictions$getPositiveClass()

Returns: A character vector of size 1.

Method getClassValues(): The function returns all the values of the target class.

Usage:
ClusterPredictions$getClassValues()

Returns: A character vector containing all target values.
Method clone(): The objects of this class are cloneable with this method.

Usage:
ClusterPredictions$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
D2MCS, ClassificationOutput, Prediction

CombinedMetrics Abstract class to compute the class prediction based on combination
between metrics.

Description

Abstract class used as a template to define new customized strategies to combine the class predic-
tions made by different metrics.

Methods

Public methods:
e CombinedMetrics$new()
* CombinedMetrics$getRequiredMetrics()
* CombinedMetrics$getFinalPrediction()
* CombinedMetrics$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
CombinedMetrics$new(required.metrics)

Arguments:

required.metrics A character vector of length greater than 2 with the name of the required

metrics.
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Method getRequiredMetrics(): The function returns the required metrics that will participate
in the combined metric process.

Usage:

CombinedMetrics$getRequiredMetrics()

Returns: A character vector of length greater than 2 with the name of the required metrics.
Method getFinalPrediction(): Function used to implement the strategy to obtain the final
prediction based on different metrics.

Usage:

CombinedMetrics$getFinalPrediction(

raw.pred,
prob.pred,
positive.class,
negative.class

)

Arguments:

raw.pred A character list of length greater than 2 with the class value of the predictions made

by the metrics.

prob.pred A numeric list of length greater than 2 with the probability of the predictions made

by the metrics.

positive.class A character with the value of the positive class.

negative.class A character with the value of the negative class.

Returns: A logical value indicating if the instance is predicted as positive class or not.
Method clone(): The objects of this class are cloneable with this method.

Usage:
CombinedMetrics$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
See Also
CombinedVoting
CombinedVoting Implementation of Combined Voting.
Description

Calculates the final prediction by performing the result of the predictions of different metrics ob-
tained through a SimpleVoting class.

Super class

D2MCS: :VotingStrategy -> CombinedVoting
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Methods

Public methods:

e CombinedVoting$new()

* CombinedVoting$getCombinedMetrics()
* CombinedVoting$getMethodology ()

e CombinedVoting$getFinalPred()

* CombinedVoting$execute()

e CombinedVoting$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
CombinedVoting$new(voting.schemes, combined.metrics, methodology, metrics)

Arguments:
voting.schemes A list of elements inherited from SimpleVoting.

combined.metrics An object defining the metrics used to combine the voting schemes. The
object must inherit from CombinedMetrics class.

methodology An object specifying the methodology used to execute the combined voting. Ob-
ject inherited from Methodology object

metrics A character vector with the name of the metrics used to perform the combined voting
operations. Metrics should be previously defined during training stage.

Method getCombinedMetrics(): The function returns the metrics used to combine the metrics
results.

Usage:

CombinedVoting$getCombinedMetrics()

Returns: An object inherited from CombinedMetrics class.

Method getMethodology(): The function gets the methodology used to execute the combined
votings.

Usage:

CombinedVoting$getMethodology ()

Returns: An object inherited from Methodology class.

Method getFinalPred(): The function returns the predictions obtained after executing the
combined-voting methodology.

Usage:

CombinedVoting$getFinalPred(type = NULL, target = NULL, filter = NULL)

Arguments:

type A character to define which type of predictions should be returned. If not defined all type
of probabilities will be returned. Conversely if "prob" or "raw" is defined then computed
"probabilistic’ or ’class’ values are returned.

target A character defining the value of the positive class.
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filter A logical value used to specify if only predictions matching the target value should be
returned or not. If TRUE the function returns only the predictions matching the target value.
Conversely if FALSE (by default) the function returns all the predictions.

Returns: A data.frame with the computed predictions.

Method execute(): The function implements the combined voting scheme.
Usage:
CombinedVoting$execute(predictions, verbose = FALSE)
Arguments:

predictions A ClusterPredictions object containing the predictions computed for each
cluster.
verbose A logical value to specify if more verbosity is needed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
CombinedVoting$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

D2MCS, ClassMajorityVoting, ClassWeightedVoting, ProbAverageVoting, ProbAverageWeightedVoting,
ProbBasedMethodology, SimpleVoting

ConfMatrix Confusion matrix wrapper.

Description

Creates a R6 confusion matrix from the confusionMatrix caret package.

Methods

Public methods:

e ConfMatrix$new()

e ConfMatrix$getConfusionMatrix()
* ConfMatrix$getTP()

e ConfMatrix$getTN()

* ConfMatrix$getFN()

e ConfMatrix$getFP()

e ConfMatrix$clone()

Method new(): Method to create a confusion matrix object from a caret confusionMatrix

Usage:
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ConfMatrix$new(confMatrix)

Arguments:
confMatrix A caret confusionMatrix argument.

Method getConfusionMatrix(): The function obtains the confusionMatrix following the
same structured as defined in the caret package

Usage:
ConfMatrix$getConfusionMatrix()

Returns: A confusionMatrix object.
Method getTP(): The function is used to compute the number of True Positive values achieved

Usage:
ConfMatrix$getTP()

Returns: A numeric vector of size 1.

Method getTN(): The function computes the True Negative values.

Usage:
ConfMatrix$getTN()
Returns: A numeric vector of size 1.

Method getFN(): The function returns the number of Type II errors (False Negative).

Usage:
ConfMatrix$getFN()

Returns: A numeric vector of size 1.

Method getFP(): The function returns the number of Type I errors (False Negative).

Usage:
ConfMatrix$getFP()
Returns: A numeric vector of size 1.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ConfMatrix$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
D2MCS, MeasureFunction, ClassificationOutput
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D2MCS Data Driven Multiple Classifier System.

Description

The class is responsible of managing the whole process. Concretely builds the M.L. models (op-
timizes models hyperparameters), selects the best M.L. model for each cluster and executes the
classification stage.

Methods

Public methods:

* D2MCS$new()

e D2MCS$train()

e D2MCS$classify()

* D2MCS$getAvailableModels()
* D2MCS$clone()

Method new(): The function is used to initialize all parameters needed to build a Multiple
Classifier System.

Usage:

D2MCS$new(
dir.path,
num.cores = NULL,
socket.type = "PSOCK",
outfile = NULL,
serialize = FALSE

)

Arguments:

dir.path A character defining location were the trained models should be saved.

num.cores An optional numeric value specifying the number of CPU cores used for training
the models (only if parallelization is allowed). If not defined (num.cores - 2) cores will be
used.

socket.type A character value defining the type of socket used to communicate the workers.
The default type, "PSOCK", calls makePSOCKcluster. Type "FORK" calls makeForkCluster.
For more information see makeCluster

"

outfile Where to direct the stdout and stderr connection output from the workers. "" indicates
no redirection (which may only be useful for workers on the local machine). Defaults to
’/dev/null’

serialize A logical value. If TRUE (default) serialization will use XDR: where large
amounts of data are to be transferred and all the nodes are little-endian, communication
may be substantially faster if this is set to false.

Method train(): The function is responsible of performing the M.L. model training stage.
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Usage:
D2MCS$train(
train.set,
train.function,
num.clusters = NULL,
model.recipe = DefaultModelFit$new(),
ex.classifiers = c(),
ig.classifiers = c(),
metrics = NULL,
saveAllModels = FALSE

)

Arguments:
train.set A Trainset object used as training input for the M.L. models
train.function A TrainFunction defining the training configuration options.

num.clusters An numeric value used to define the number of clusters from the Trainset that
should be utilized during the training stage. If not defined all clusters will we taken into
account for training.

model.recipe An unprepared recipe object inherited from GenericModelFit class.

ex.classifiers A character vector containing the name of the M.L. models used in training
stage. See getModelInfo and https://topepo.github.io/caret/available-models.
html for more information about all the available models.

ig.classifiers A character vector containing the name of the M.L. that should be ignored
when performing the training stage. See getModelInfo and https://topepo.github.
io/caret/available-models.html for more information about all the available models.

metrics A character vector containing the metrics used to perform the M.L. model hyperpa-
rameter optimization during the training stage. See SummaryFunction, UseProbability
and NoProbability for more information.

saveAllModels A logical parameter. A TRUE saves all trained models while A FALSE saves
only the M.L. model achieving the best performance on each cluster.

Returns: A TrainOutput object containing all the information computed during the training
stage.

Method classify(): The function is responsible for executing the classification stage.
Usage:
D2MCS$classify(train.output, subset, voting.types, positive.class = NULL)
Arguments:
train.output The TrainOutput object computed in the train stage.
subset A Subset containing the data to be classified.
voting.types A list containing SingleVoting or CombinedVoting objects.
positive.class An optional character parameter used to define the positive class value.

Returns: A ClassificationOutput with all the values computed during classification stage.

Method getAvailableModels(): The function obtains all the available M.L. models.
Usage:


https://topepo.github.io/caret/available-models.html
https://topepo.github.io/caret/available-models.html
https://topepo.github.io/caret/available-models.html
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D2MCS$getAvailableModels()

Returns: A data.frame containing the information of the available M.L. models.

Method clone(): The objects of this class are cloneable with this method.
Usage:
D2MCS$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.

See Also

Dataset, Subset, Trainset

Examples

# Specify the random number generation
set.seed(1234)

## Create Dataset Handler object.
loader <- DatasetlLoader$new()

## Load 'hcc-data-complete-balanced.csv' dataset file.
data <- loader$load(filepath = system.file(file.path("examples”,
"hcc-data-complete-balanced.csv"),
package = "D2MCS"),
header = TRUE, normalize.names = TRUE)

## Get column names
data$getColumnNames ()

## Split data into 4 partitions keeping balance ratio of 'Class' column.
datas$createPartitions(num.folds = 4, class.balance = "Class")

## Create a subset comprising the first 2 partitions for clustering purposes.
cluster.subset <- data$createSubset(num.folds = c(1, 2), class.index = "Class”,
positive.class = "1")

## Create a subset comprising second and third partitions for trainning purposes.
train.subset <- data$createSubset(num.folds = c(2, 3), class.index = "Class"”,
positive.class = "1")

## Create a subset comprising last partitions for testing purposes.
test.subset <- data$createSubset(num.folds = 4, class.index = "Class”,
positive.class = "1")

## Distribute the features into clusters using MCC heuristic.
distribution <- SimpleStrategy$new(subset = cluster.subset,

heuristic = MCCHeuristic$new())
distribution$execute()

## Get the best achieved distribution
distribution$getBestClusterDistribution()
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## Create a train set from the computed clustering distribution
train.set <- distribution$createTrain(subset = train.subset)

## Not run:

## Initialization of D2MCS configuration parameters.

## - Defining training operation.

#it + 10-fold cross-validation

#i# + Use only 1 CPU core.

#it + Seed was set to ensure straightforward reproductivity of experiments.
trFunction <- TwoClass$new(method = "cv", number = 10, savePredictions = "final”,

classProbs = TRUE, allowParallel = TRUE,
verboselter = FALSE, seed = 1234)

#' ## - Specify the models to be trained
ex.classifiers <- c("ranger"”, "lda", "lda2")

## Initialize D2MCS
#' d2mcs <- D2MCS$new(dir.path = tempdir(),
num.cores = 1)

## Execute training stage for using 'MCC' and 'PPV' measures to optimize model hyperparameters.
trained.models <- d2mcs$train(train.set = train.set,

train.function = trFunction,

ex.classifiers = ex.classifiers,

metrics = c("MCC", "PPV"))

## Execute classification stage using two different voting schemes
predictions <- d2mcs$classify(train.output = trained.models,
subset = test.subset,
voting.types = c(
SingleVoting$new(voting.schemes = c(ClassMajorityVoting$new(),
ClassWeightedVoting$new()),
metrics = c("MCC", "PPV"))))

## Compute the performance of each voting scheme using PPV and MMC measures.
predictions$getPerformances(test.subset, measures = list(MCC$new(), PPV$new()))

## Execute classification stage using multiple voting schemes (simple and combined)
predictions <- d2mcs$classify(train.output = trained.models,
subset = test.subset,
voting.types = c(
SingleVoting$new(voting.schemes = c(ClassMajorityVoting$new(),
ClassWeightedVoting$new()),
metrics = c("MCC", "PPV")),
CombinedVoting$new(voting.schemes = ClassMajorityVoting$new(),
combined.metrics = MinimizeFP$new(),
methodology = ProbBasedMethodology$new(),
metrics = c("MCC", "PPV"))))

## Compute the performance of each voting scheme using PPV and MMC measures.
predictions$getPerformances(test.subset, measures = list(MCC$new(), PPV$new()))
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## End(Not run)

Dataset Simple Dataset handler.

Description

Creates a valid simple dataset object.

Methods

Public methods:

* Dataset$new()

* Dataset$getColumnNames()

* Dataset$getDataset()

* Dataset$getNcol()

* Dataset$getNrow()

e Dataset$getRemovedColumns()
* Dataset$cleanData()

e Dataset$removeColumns()

* Dataset$createPartitions()
* Dataset$createSubset()

* Dataset$createTrain()

Method new(): Method for initializing the object arguments during runtime.
Usage:
Dataset$new(
filepath,
header = TRUE,
sep = ",",
skip = 0,
normalize.names = FALSE,
string.as.factor = FALSE,
ignore.columns = NULL

)

Arguments:

filepath The name of the file which the data are to be read from. Each row of the table appears
as one line of the file. If it does not contain an _absolute_ path, the file name is _relative_
to the current working directory, "getwd()’.

header A logical value indicating whether the file contains the names of the variables as its first
line. If missing, the value is determined from the file format: *header’ is set to "TRUE’ if
and only if the first row contains one fewer field than the number of columns.
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sep The field separator character. Values on each line of the file are separated by this character.
skip Defines the number of header lines should be skipped.

normalize.names A logical value indicating whether the columns names should be automati-
cally renamed to ensure R compatibility.

string.as.factor A logical value indicating if character columns should be converted to fac-
tors (default = FALSE).

ignore.columns Specify the columns from the input file that should be ignored.

Method getColumnNames(): Get the name of the columns comprising the dataset.
Usage:
Dataset$getColumnNames()

Returns: A character vector with the name of each column.

Method getDataset(): Gets the full dataset.
Usage:
Dataset$getDataset()

Returns: A data.frame with all the loaded information.

Method getNcol(): Obtains the number of columns present in the dataset.
Usage:
Dataset$getNcol()
Returns: An integer of length 1 or NULL

Method getNrow(): Obtains the number of rows present in the dataset.
Usage:
Dataset$getNrow()
Returns: An integer of length 1 or NULL

Method getRemovedColumns(): Get the columns removed or ignored.
Usage:
Dataset$getRemovedColumns ()

Returns: A list containing the name of the removed columns.

Method cleanData(): Removes data.frame columns matching some criterion.
Usage:
Dataset$cleanData(remove.funcs = NULL, remove.na = TRUE, remove.const = FALSE)
Arguments:
remove.funcs A vector of functions use to define which columns must be removed.
remove.na A logical value indicating whether NA values should be removed.
remove.const A logical value used to indicate if constant values should be removed.

Method removeColumns(): Applies cleanData function over an specific set of columns.

Usage:
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Dataset$removeColumns(
columns,
remove.funcs = NULL,
remove.na = FALSE,
remove.const = FALSE

)

Arguments:

columns Set of columns (numeric or character) where removal operation should be applied.
remove. funcs A vector of functions use to define which columns must be removed.
remove.na A logical value indicating whether NA values should be removed.
remove.const A logical value used to indicate if constant values should be removed.

Method createPartitions(): Creates a k-folds partition from the initial dataset.

Usage:

Dataset$createPartitions(
num.folds = NULL,
percent.folds = NULL,
class.balance = NULL

)

Arguments:

num.folds A numeric for the number of folds (partitions)

percent.folds A numeric vector with the percentage of instances containing each fold.
class.balance A logical value indicating if class balance should be kept.

Method createSubset(): Creates a Subset for testing or classification purposes. A target class
should be provided for testing purposes.
Usage:
Dataset$createSubset(
num.folds = NULL,
opts = list(remove.na = TRUE, remove.const = FALSE),
class.index = NULL,
positive.class = NULL
)
Arguments:
num.folds A numeric defining the number of folds that should we used to build the Subset.

opts A list with optional parameters. Valid arguments are remove.na (removes columns with
NA values) and remove. const (ignore columns with constant values).

class.index A numeric value identifying the column representing the target class
positive.class Defines the positive class value.

Returns: A Subset object.
Method createTrain(): Creates a set for training purposes. A class should be defined to
guarantee full-compatibility with supervised models.

Usage:
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Dataset$createTrain(
class.index,
positive.class,
num.folds = NULL,
opts = list(remove.na = TRUE, remove.const = FALSE)

)

Arguments:

class.index A numeric value identifying the column representing the target class

positive.class Defines the positive class value.

num.folds A numeric defining the number of folds that should we used to build the Subset.

opts A list with optional parameters. Valid arguments are remove.na (removes columns with
NA values) and remove. const (ignore columns with constant values).

Returns: A Trainset object.

See Also

HDDataset

DatasetlLoader Dataset creation.

Description

Wrapper class able to automatically create a Dataset, HDDataset according to the input data.

Methods
Public methods:

* DatasetlLoader$new()
* DatasetlLoader$load()

Method new(): Empty function used to initialize the object arguments in runtime.
Usage:
DatasetLoader$new()

Method load(): Stores the input source into a Dataset or HDDataset type object.

Usage:

DatasetlLoader$load(
filepath,
header = TRUE,
sep = ",",
skip.lines = 0,
normalize.names = FALSE,
string.as.factor = FALSE,
ignore.columns = NULL
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Arguments:

filepath The name of the file which the data are to be read from. Each row of the table appears
as one line of the file. If it does not contain an _absolute_ path, the file name is _relative_
to the current working directory, *getwd()’.

header A logical value indicating whether the file contains the names of the variables as its first
line. If missing, the value is determined from the file format: *header’ is set to "TRUE’ if
and only if the first row contains one fewer field than the number of columns.

sep The field separator character. Values on each line of the file are separated by this character.
skip.lines Defines the number of header lines should be skipped.

normalize.names A logical value indicating whether the columns names should be automati-
cally renamed to ensure R compatibility.

string.as.factor A logical value indicating if character columns should be converted to fac-
tors (default = FALSE).

ignore.columns Specify the columns from the input file that should be ignored.

Returns: A Dataset or HDDataset object.

See Also

Dataset, HDDataset

Examples

## Not run:
# Create Dataset Handler object.
loader <- DatasetlLoader$new()

# Load input file.
data <- loader$load(filepath = system.file(file.path("examples”,
"hcc-data-complete-balanced.csv"),
package = "D2MCS"),
header = T, normalize.names = T)

## End(Not run)

DefaultModelFit Default model fitting implementation.

Description

Creates a default recipe and formula objects used in model training stage.

Super class

D2MCS: :GenericModelFit -> DefaultModelFit
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Methods

Public methods:

e DefaultModelFit$new()

* DefaultModelFit$createFormula()
* DefaultModelFit$createRecipe()
¢ DefaultModelFit$clone()

Method new(): Method for initializing the object arguments during runtime.
Usage:
DefaultModelFit$new()
Method createFormula(): The function is responsible of creating a formula for M.L. model.

Usage:
DefaultModelFit$createFormula(instances, class.name, simplify = FALSE)

Arguments:

instances A data.frame containing the instances used to create the recipe.

class.name A character vector representing the name of the target class.

simplify A logical argument defining whether the formula should be generated as simple as
possible.

Returns: A formula object.
Method createRecipe(): The function is responsible of creating a recipe with five operations
over the data: step_zv, step_nzv, step_corr, step_center, step_scale

Usage:
DefaultModelFit$createRecipe(instances, class.name)

Arguments:
instances A data.frame containing the instances used to create the recipe.
class.name A character vector representing the name of the target class.

Details: This function is automatically invoked by D2MCS during model training stage.

Returns: An object of class recipe.

Method clone(): The objects of this class are cloneable with this method.

Usage:
DefaultModelFit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

GenericModelFit, train
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DependencyBasedStrategy
Clustering strategy based on dependency between features.

Description

Features are distributed according to their independence values. This strategy is divided into two
steps. The first phase focuses on forming groups with those features most dependent on each other.
This step also identifies those that are independent from all the others in the group. The second step
is to try out different numbers of clusters until you find the one you think is best. These clusters
are formed by inserting in all the independent characteristics identified previously and trying to
distribute the features of the groups formed in the previous step in separate clusters. In this way, it
seeks to ensure that the features are as independent as possible from those found in the same cluster.

Details

The strategy is suitable only for binary and real features. Other features are automatically grouped
into a specific cluster named as ’unclustered’. This class requires the StrategyConfiguration
type object implements the following methods:

- getBinaryCutoff(): The function is used to define the interval to consider the dependency
between binary features.

- getRealCutoff(): The function allows defining the cutoff to consider the dependency between
real features.

- tiebreak(feature, clus.candidates, fea.dep.dist.clus, corpus,heuristic, class, class.name):
The function solves the ties between two (or more) features.

- qualityOfCluster(clusters, metrics): The function determines the quality of a cluster

- isImprovingClustering(clusters.deltha): The function indicates if clustering is getting bet-
ter as the number of them increases.

An example of implementation with the description of each parameter is the DependencyBasedStrategyConfiguration
class.

Super class

D2MCS: :GenericClusteringStrategy -> DependencyBasedStrategy

Methods

Public methods:

* DependencyBasedStrategy$new()

* DependencyBasedStrategy$execute()

* DependencyBasedStrategy$getDistribution()
¢ DependencyBasedStrategy$createTrain()

* DependencyBasedStrategy$plot()

* DependencyBasedStrategy$saveCSV()
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* DependencyBasedStrategy$clone()

Method new(): Method for initializing the object parameters during runtime.

Usage:
DependencyBasedStrategy$new(
subset,
heuristic,
configuration = DependencyBasedStrategyConfiguration$new()

)

Arguments:

subset The Subset used to apply the feature-clustering strategy.

heuristic The heuristic used to compute the relevance of each feature. Must inherit from
GenericHeuristic abstract class.

configuration optional parameter to customize configuration parameters for the strategy. Must
inherited from StrategyConfiguration abstract class.

Method execute(): Function responsible of performing the dependency-based feature cluster-
ing strategy over the defined Subset.

Usage:

DependencyBasedStrategy$execute(verbose = TRUE)

Arguments:

verbose A logical value to specify if more verbosity is needed.

Method getDistribution(): Function used to obtain a specific cluster distribution.

Usage:
DependencyBasedStrategy$getDistribution(
num.clusters = NULL,
num.groups = NULL,
include.unclustered = FALSE
)
Arguments:
num.clusters A numeric value to select the number of clusters (define the distribution).
num.groups A single or numeric vector value to identify a specific group that forms the clus-
tering distribution.
include.unclustered A logical value to determine if unclustered features should be included.

Returns: A list with the features comprising an specific clustering distribution.

Method createTrain(): The function is used to create a Trainset object from a specific
clustering distribution.
Usage:
DependencyBasedStrategy$createTrain(
subset,
num.clusters = NULL,
num.groups = NULL,
include.unclustered = FALSE
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Arguments:
subset The Subset object used as a basis to create the train set (see Trainset class).
num.clusters A numeric value to select the number of clusters (define the distribution).

num.groups A single or numeric vector value to identify a specific group that forms the clus-
tering distribution.

include.unclustered A logical value to determine if unclustered features should be included.

Details: If num.clusters and num. groups are not defined, best clustering distribution is used
to create the train set.

Method plot(): The function is responsible for creating a plot to visualize the clustering distri-
bution.

Usage:

DependencyBasedStrategy$plot(dir.path = NULL, file.name = NULL)

Arguments:

dir.path An optional argument to define the name of the directory where the exported plot
will be saved. If not defined, the file path will be automatically assigned to the current
working directory, *getwd()’.

file.name A character to define the name of the PDF file where the plot is exported.

Method saveCSV(): The function is used to save the clustering distribution to a CSV file.

Usage:
DependencyBasedStrategy$saveCSV(
dir.path = NULL,
name = NULL,
num.clusters = NULL
)
Arguments:
dir.path The name of the directory to save the CSV file.
name Defines the name of the CSV file.
num.clusters An optional parameter to select the number of clusters to be saved. If not de-

fined, all cluster distributions will be saved.
Method clone(): The objects of this class are cloneable with this method.

Usage:
DependencyBasedStrategy$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

GenericClusteringStrategy, StrategyConfiguration, DependencyBasedStrategyConfiguration
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DependencyBasedStrategyConfiguration

Custom Strategy Configuration handler for the DependencyBased-
Strategy strategy.

Description

Define the default configuration parameters for the DependencyBasedStrategy strategy.

Super class

D2MCS: :StrategyConfiguration -> DependencyBasedStrategyConfiguration

Methods

Public methods:

DependencyBasedStrategyConfiguration$new()
DependencyBasedStrategyConfiguration$minNumClusters()
DependencyBasedStrategyConfiguration$maxNumClusters()
DependencyBasedStrategyConfiguration$getBinaryCutoff ()
DependencyBasedStrategyConfiguration$getRealCutoff ()
DependencyBasedStrategyConfiguration$setBinaryCutoff()
DependencyBasedStrategyConfiguration$setRealCutoff ()
DependencyBasedStrategyConfiguration$tiebreak()
DependencyBasedStrategyConfiguration$qualityOfCluster()
DependencyBasedStrategyConfiguration$isImprovingClustering()
DependencyBasedStrategyConfiguration$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:

DependencyBasedStrategyConfiguration$new(

)

binaryCutoff = 0.6,
realCutoff = 0.6,
tiebreakMethod = "1fdc",
metric = "dep.tar”

Arguments:

binaryCutoff The numeric value of binary cutoff.

realCutoff The numeric value of real cutoff.

tiebreakMethod The character value of tie-break method. The two tiebreak methods available

are "lfdc" (less dependence cluster with the features) and "ltdc" (less dependence cluster
with the target). These methods are used to add the features in the candidate feature clusters.
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metric The character value of the metric to apply the mean to obtain the quality of a cluster.
The two metrics available are "dep.tar" (Dependence of cluster features on the target) and
"dep.fea" (Dependence between cluster features).

Method minNumClusters(): Function used to return the minimum number of clusters distribu-
tions used. By default the minimum is set in 2.

Usage:
DependencyBasedStrategyConfiguration$minNumClusters(...)

Arguments:

. Further arguments passed down to minNumClusters function.
Returns: A numeric vector of length 1.
Method maxNumClusters(): The function is responsible of returning the maximum number of
cluster distributions used. By default the maximum number is set in 50.

Usage:
DependencyBasedStrategyConfiguration$maxNumClusters(...)

Arguments:
. Further arguments passed down to maxNumClusters function.

Returns: A numeric vector of length 1.
Method getBinaryCutoff(): Gets the cutoff to consider the dependency between binary fea-
tures.

Usage:
DependencyBasedStrategyConfiguration$getBinaryCutoff()

Returns: The numeric value of binary cutoff.

Method getRealCutoff(): Gets the cutoff to consider the dependency between real features.

Usage:
DependencyBasedStrategyConfiguration$getRealCutoff ()

Returns: The numeric value of real cutoff.
Method setBinaryCutoff(): Sets the cutoff to consider the dependency between binary fea-
tures.

Usage:
DependencyBasedStrategyConfiguration$setBinaryCutoff (cutoff)

Arguments:

cutoff The new numeric value of binary cutoff.

Method setRealCutoff(): Sets the cutoff to consider the dependency between real features.

Usage:
DependencyBasedStrategyConfiguration$setRealCutoff(cutoff)

Arguments:

cutoff The new numeric value of real cutoff.
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Method tiebreak(): The function solves the ties between two (or more) features.
Usage:
DependencyBasedStrategyConfiguration$tiebreak(
feature,
clus.candidates,
fea.dep.dist.clus,
corpus,
heuristic,
class,
class.name

)

Arguments:

feature A character containing the name of the feature

clus.candidates A single or numeric vector value to identify the candidate groups to insert
the feature.

fea.dep.dist.clus A list containing the groups chosen for the features.

corpus A data.frame containing the features of the initial data.

heuristic The heuristic used to compute the relevance of each feature. Must inherit from
GenericHeuristic abstract class.

class A character vector containing all the values of the target class.

class.name A character value representing the name of the target class.

Method qualityOfCluster(): The function determines the quality of a cluster.

Usage:
DependencyBasedStrategyConfiguration$qualityOfCluster(clusters, metrics)

Arguments:
clusters A list with the feature distribution of each cluster.

metrics A numeric list with the metrics associated to the cluster (dependency between all
features and dependency between the features and the class).

Returns: A numeric vector of length 1.
Method isImprovingClustering(): The function indicates if clustering is getting better as the
number of them increases.

Usage:
DependencyBasedStrategyConfiguration$isImprovingClustering(clusters.deltha)

Arguments:
clusters.deltha A numeric vector value with the quality values of the built clusters.

Returns: A numeric vector of length 1.

Method clone(): The objects of this class are cloneable with this method.
Usage:
DependencyBasedStrategyConfiguration$clone(deep = FALSE)
Arguments:

deep Whether to make a deep clone.
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See Also

StrategyConfiguration, DependencyBasedStrategy

FisherTestHeuristic Feature-clustering based on Fisher’s Exact Test.

Description

Performs feature-clustering based on Fisher’s exact test for testing the null of independence of rows
and columns in a contingency table with fixed marginals.

Super class

D2MCS: :GenericHeuristic -> FisherTestHeuristic

Methods

Public methods:
e FisherTestHeuristic$new()
e FisherTestHeuristic$heuristic()
e FisherTestHeuristic$clone()

Method new(): Empty function used to initialize the object arguments in runtime.

Usage:

FisherTestHeuristic$new()
Method heuristic(): Performs the Fisher’s exact test for testing the null of independence
between two columns (coll and col2).

Usage:
FisherTestHeuristic$heuristic(coll, col2, column.names = NULL)

Arguments:

coll A numeric vector or matrix required to perform the clustering operation.
col2 A numeric vector or matrix to perform the clustering operation.
column.names An optional character vector with the names of both columns.

Returns: A numeric vector of length 1 or NA if an error occurs.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FisherTestHeuristic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Dataset, fisher.test
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FN Computes the False Negative errors.

Description

Computes the ratio of number of Type II errors achieved by the final M.L. model.

Super class

D2MCS: :MeasureFunction -> FN

Methods

Public methods:

* FN$new()
* FN$compute()
¢ FN$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
FN$new(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used to
compute the FN measure.
Method compute(): The function computes the FN achieved by the M.L. model.

Usage:
FN$compute (performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the FN measure

Details: This function is automatically invoked by the ClassificationOutput framework.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
FN$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix
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Computes the False Positive value.

Description

This is the number of individuals with a negative condition for which the test result is positive. The
value entered here must be non-negative.

Super class

D2MCS: :MeasureFunction -> FP

Methods

Public methods:

e FP$new()
* FP$compute()
* FP$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
FP$new(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter used as basis to define the type of
compute the FP measure.

Method compute(): The function computes the FP achieved by the M.L. model.

Usage:
FP$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the FP measure.

Details: This function is automatically invoked by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.
Usage:
FP$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix
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GainRatioHeuristic Feature-clustering based on GainRatio methodology.

Description

Performs the feature-clustering using entropy-based filters.

Super class

D2MCS: :GenericHeuristic -> GainRatioHeuristic

Methods
Public methods:

e GainRatioHeuristic$new()
e GainRatioHeuristic$heuristic()
e GainRatioHeuristic$clone()

Method new(): Empty function used to initialize the object arguments in runtime.

Usage:

GainRatioHeuristic$new()
Method heuristic(): The algorithms find weights of discrete attributes basing on their corre-
lation with continuous class attribute.

Usage:
GainRatioHeuristic$heuristic(coll, col2, column.names = NULL)

Arguments:

coll A numeric vector or matrix required to perform the clustering operation.
col2 A numeric vector or matrix to perform the clustering operation.
column.names An optional character vector with the names of both columns.

Returns: A numeric vector of length 1 or NA if an error occurs.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GainRatioHeuristic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Dataset, gain.ratio
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GenericClusteringStrategy

Abstract Feature Clustering Strategy class.

Description

Abstract class used as a template to ensure the proper definition of new customized clustering strate-

gies.

Details

The GenericClusteringStrategy is an archetype class so it cannot be instantiated.

Methods

Public methods:

GenericClusteringStrategy$new()
GenericClusteringStrategy$getDescription()
GenericClusteringStrategy$getHeuristic()
GenericClusteringStrategy$getConfiguration()
GenericClusteringStrategy$getBestClusterDistribution()
GenericClusteringStrategy$getUnclustered()
GenericClusteringStrategy$execute()
GenericClusteringStrategy$getDistribution()
GenericClusteringStrategy$createTrain()
GenericClusteringStrategy$plot()
GenericClusteringStrategy$saveCSV()
GenericClusteringStrategy$clone()

Method new(): A function responsible for creating a GenericClusteringStrategy object.

Usage:
GenericClusteringStrategy$new(subset, heuristic, description, configuration)

Arguments:

subset A Subset object to perform the clustering strategy.

heuristic The heuristic to be applied. Must inherit from GenericHeuristic class.

description A character vector describing the strategy operation.

configuration Optional customized configuration parameters for the strategy. Must inherited

from StrategyConfiguration abstract class.

Method getDescription(): The function is used to obtain the description of the strategy.

Usage:
GenericClusteringStrategy$getDescription()

Returns: A character vector of NULL if not defined.
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Method getHeuristic(): The function returns the heuristic applied for the clustering strategy.
Usage:
GenericClusteringStrategy$getHeuristic()

Returns: An object inherited from GenericClusteringStrategy class.

Method getConfiguration(): The function returns the configuration parameters used to per-
form the clustering strategy.

Usage:

GenericClusteringStrategy$getConfiguration()

Returns: An object inherited from StrategyConfiguration class.

Method getBestClusterDistribution(): The function obtains the best clustering distribu-
tion.

Usage:

GenericClusteringStrategy$getBestClusterDistribution()

Returns: A list of clusters. Each list element represents a feature group.

Method getUnclustered(): The function is used to return the features that cannot be clustered
due to incompatibilities with the used heuristic.

Usage:

GenericClusteringStrategy$getUnclustered()

Returns: A character vector containing the unclassified features.

Method execute(): Abstract function responsible of performing the clustering strategy over
the defined Subset.

Usage:

GenericClusteringStrategy$execute(verbose, ...)

Arguments:
verbose A logical value to specify if more verbosity is needed.
. Further arguments passed down to execute function.

Method getDistribution(): Abstract function used to obtain the set of features following an
specific clustering distribution.
Usage:
GenericClusteringStrategy$getDistribution(
num.clusters = NULL,
num.groups = NULL,
include.unclustered = FALSE
)
Arguments:
num.clusters A numeric value to select the number of clusters (define the distribution).

num.groups A single or numeric vector value to identify a specific group that forms the clus-
tering distribution.

include.unclustered A logical value to determine if unclustered features should be included.



42 GenericClusteringStrategy

Returns: A list with the features comprising an specific clustering distribution.

Method createTrain(): Abstract function in charge of creating a Trainset object for training
purposes.
Usage:
GenericClusteringStrategy$createTrain(
subset,
num.cluster = NULL,
num.groups = NULL,
include.unclustered = FALSE
)
Arguments:
subset A Subset object used as a basis to create the Trainset
num.cluster A numeric value to select the number of clusters (define the distribution).
num.groups A single or numeric vector value to identify a specific group that forms the clus-
tering distribution.
include.unclustered A logical value to determine if unclustered features should be included.

Method plot(): Abstract function responsible of creating a plot to visualize the clustering
distribution.
Usage:
GenericClusteringStrategy$plot(dir.path = NULL, file.name = NULL, ...)
Arguments:
dir.path An optional character argument to define the name of the directory where the ex-
ported plot will be saved. If not defined, the file path will be automatically assigned to the
current working directory, *getwd()’.
file.name The name of the PDF file where the plot is exported.
. Further arguments passed down to execute function.

Method saveCSV(): Abstract function to save the clustering distribution to a CSV file.
Usage:
GenericClusteringStrategy$saveCSV(dir.path, name, num.clusters = NULL)

Arguments:

dir.path The name of the directory to save the CSV file.

name Defines the name of the CSV file.

num.clusters An optional parameter to select the number of clusters to be saved. If not de-
fined, all clusters will be saved.

Method clone(): The objects of this class are cloneable with this method.
Usage:
GenericClusteringStrategy$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.

See Also

Subset, GenericHeuristic
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GenericHeuristic Abstract Feature Clustering heuristic object.

Description

Abstract class used as a template to define new customized clustering heuristics.

Details

The GenericHeuristic is an archetype class so it cannot be instantiated.

Methods
Public methods:

* GenericHeuristic$new()
* GenericHeuristic$heuristic()
e GenericHeuristic$clone()
Method new(): Empty function used to initialize the object arguments in runtime.
Usage:
GenericHeuristic$new()
Method heuristic(): Function used to implement the clustering heuristic.

Usage:
GenericHeuristic$heuristic(coll, col2, column.names = NULL, ...)

Arguments:

coll A numeric vector or matrix required to perform the clustering operation.
col2 A numeric vector or matrix to perform the clustering operation.
column.names An optional character vector with the names of both columns

. Further arguments passed down to heuristic function.

Returns: A numeric vector of length 1.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GenericHeuristic$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Dataset
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GenericModelFit Abstract class for defining model fitting method.

Description

Template to create a recipe or formula objects used in model training stage.

Methods

Public methods:
* GenericModelFit$new()
e GenericModelFit$createFormula()
* GenericModelFit$createRecipe()
* GenericModelFit$clone()

Method new(): Method for initializing the object arguments during runtime.
Usage:
GenericModelFit$new()
Method createFormula(): The function is responsible of creating a formula for M.L. model.

Usage:

GenericModelFit$createFormula(instances, class.name, simplify = TRUE)

Arguments:

instances A data.frame containing the instances used to create the recipe.

class.name A character vector representing the name of the target class.

simplify A logical argument defining whether the formula should be generated as simple as
possible.

Returns: A formula object.

Method createRecipe(): The function is responsible of creating a recipe for M.L. model.

Usage:
GenericModelFit$createRecipe(instances, class.name)

Arguments:
instances A data.frame containing the instances used to create the recipe.
class.name A character vector representing the name of the target class.

Returns: A object of class recipe.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GenericModelFit$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

DefaultModelFit, train
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GenericPlot Pseudo-abstract class for creating feature clustering plots.

Description

The GenericPlot implements a basic plot.

Methods

Public methods:

* GenericPlot$new()
* GenericPlot$plot()
¢ GenericPlot$clone()

Method new(): Empty function used to initialize the object arguments in runtime.

Usage:
GenericPlot$new()

Method plot(): Implements a generic plot to visualize basic feature-clustering data.

Usage:
GenericPlot$plot(summary)

Arguments:
summary A data.frame comprising the elements to be plotted.

Method clone(): The objects of this class are cloneable with this method.

Usage:
GenericPlot$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

BinaryPlot
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HDDataset High Dimensional Dataset handler.

Description

Creates a high dimensional dataset object. Only the required instances are loaded in memory to
avoid unnecessary of resources and memory.

Methods

Public methods:

e HDDataset$new()

* HDDataset$getColumnNames()
* HDDataset$getNcol ()

* HDDataset$createSubset()

Method new(): Method for initializing the object arguments during runtime.

Usage:

HDDataset$new(
filepath,
header = TRUE,
sep = ",",
skip = 0,
normalize.names = FALSE,
ignore.columns = NULL

)

Arguments:

filepath The name of the file which the data are to be read from. Each row of the table appears
as one line of the file. If it does not contain an _absolute_ path, the file name is _relative_
to the current working directory, "getwd()’.

header A logical value indicating whether the file contains the names of the variables as its
first line. If missing, the value is determined from the file format: header’ is set to *TRUE’
if and only if the first row contains one fewer field than the number of columns.

sep The field separator character. Values on each line of the file are separated by this character.
skip Defines the number of header lines should be skipped.

normalize.names A logical value indicating whether the columns names should be automati-
cally renamed to ensure R compatibility.

ignore.columns Specify the columns from the input file that should be ignored.

Method getColumnNames(): Gets the name of the columns comprising the dataset

Usage:
HDDataset$getColumnNames ()

Returns: A character vector with the name of each column.
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Method getNcol(): Obtains the number of columns present in the dataset.

Usage:
HDDataset$getNcol ()

Returns: An integer of length 1 or NULL

Method createSubset(): Creates a blinded HDSubset for classification purposes.

Usage:
HDDataset$createSubset(column.id = FALSE, chunk.size = 1e+05)

Arguments:

column.id An integer or character indicating the column (number or name respectively) iden-
tifier. Default NULL value is valid ignores defining a identification column.

chunk.size an integer value indicating the size of chunks taken over each iteration.

Returns: A HDSubset object.

See Also

Dataset, HDSubset, DatasetlLoader

HDSubset High Dimensional Subset handler.

Description

Creates a high dimensional subset from a HDDataset object. Only the required instances are loaded
in memory to avoid unnecessary use of resources and memory.

Details

Use HDDataset to ensure the creation of a valid HDSubset object.

Methods

Public methods:
¢ HDSubset$new()
* HDSubset$getColumnNames()
e HDSubset$getNcol ()
* HDSubset$getID()
e HDSubset$getIterator()
e HDSubset$isBlinded()
* HDSubset$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
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HDSubset$new(
file.path,
feature.names,
feature.id,
start.at = 0,

n o n

sep = 7,7,
chunk.size
)
Arguments:

file.path The name of the file which the data are to be read from. Each row of the table
appears as one line of the file. If it does not contain an _absolute_ path, the file name is
_relative_ to the current working directory, 'getwd()’.

feature.names A character vector specifying the name of the features that should be included
in the HDDataset object.

feature.id Aninteger or character indicating the column (number or name respectively) iden-
tifier. Default NULL value is valid ignores defining a identification column.

start.at A numeric value to identify the reading start position.
sep the field separator character. Values on each line of the file are separated by this character.
chunk.size an integer value indicating the size of chunks taken over each iteration. By default

chunk.size is defined as 10000.
Method getColumnNames(): Gets the name of the columns comprising the subset.

Usage:
HDSubset$getColumnNames ()

Returns: A character vector containing the name of each column.

Method getNcol(): Obtains the number of columns present in the dataset.

Usage:
HDSubset$getNcol ()

Returns: A numeric value or 0 if is empty.

Method getID(): Obtains the column identifier.
Usage:
HDSubset$getID()

Returns: A character vector of size 1.

Method getIterator(): Createsthe FIterator object.
Usage:
HDSubset$getIterator(chunk.size = private$chunk.size, verbose = FALSE)
Arguments:

chunk.size An integer value indicating the size of chunks taken over each iteration. By default
chunk. size is defined as 10000.

verbose A logical value to specify if more verbosity is needed.

Returns: A FIterator object to transverse through HDSubset instances
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Method isBlinded(): Checks if the subset contains a target class.

Usage:
HDSubset$isBlinded()

Returns: A logical to specify if the subset contains a target class or not.

Method clone(): The objects of this class are cloneable with this method.

Usage:
HDSubset$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

HDDataset, DatasetLoader

InformationGainHeuristic
Feature-clustering based on InformationGain methodology.

Description

Performs the feature-clustering using entropy-based filters.

Super class

D2MCS: :GenericHeuristic -> InformationGainHeuristic

Methods
Public methods:

e InformationGainHeuristic$new()
e InformationGainHeuristic$heuristic()
e InformationGainHeuristic$clone()

Method new(): Empty function used to initialize the object arguments in runtime.
Usage:

InformationGainHeuristic$new()

Method heuristic(): The algorithm find weights of discrete attributes basing on their correla-
tion with continuous class attribute. Particularly Information Gain uses H(Class) + H(Attribute)
- H(Class, Attribute)

Usage:

InformationGainHeuristic$heuristic(coll, col2, column.names = NULL)

Arguments:
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coll A numeric vector or matrix required to perform the clustering operation.
col2 A numeric vector or matrix to perform the clustering operation.
column.names an optional character vector with the names of both columns.

Returns: A numeric vector of length 1 or NA if an error occurs.

Method clone(): The objects of this class are cloneable with this method.

Usage:
InformationGainHeuristic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Dataset, information.gain

Kappa Computes the Kappa Cohen value.

Description

Cohen’s Kappa measures the agreement between two raters who each classify N items into C mu-
tually exclusive categories.

Details

Kk is equivalent to (po — pe)/(1 —pe) =1 — (1 —po) /(1 — pe)

Super class

D2MCS: :MeasureFunction -> Kappa

Methods

Public methods:

* Kappa$new()
* Kappa$compute()
e Kappa$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
Kappa$new(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix used as basis to compute the performance.
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Method compute(): The function computes the Kappa achieved by the M.L. model.

Usage:
Kappa$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the Kappa measure.

Details: This function is automatically invoked by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Kappa$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix

KendallHeuristic Feature-clustering based on Kendall Correlation Test.

Description

Performs the feature-clustering using Kendall correlation tests.

Details

The method estimate the association between paired samples and compute a test of the value being
zero. They use different measures of association, all in the range [-1, 1] with O indicating no
association. Method valid only for bi-class problems.

Super class

D2MCS: :GenericHeuristic -> KendallHeuristic

Methods
Public methods:

¢ KendallHeuristic$new()
* KendallHeuristic$heuristic()
e KendallHeuristic$clone()

Method new(): Empty function used to initialize the object arguments in runtime.
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Usage:
KendallHeuristic$new()
Method heuristic(): Test for association between paired samples using Kendall’s tau value.

Usage:
KendallHeuristic$heuristic(coll, col2, column.names = NULL)

Arguments:

coll A numeric vector or matrix required to perform the clustering operation.
col2 A numeric vector or matrix to perform the clustering operation.
column.names An optional character vector with the names of both columns.

Returns: anumeric vector of length 1 or NA if an error occurs.

Method clone(): The objects of this class are cloneable with this method.

Usage:
KendallHeuristic$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Dataset, cor. test

MCC Computes the Matthews correlation coefficient.

Description

The Matthews correlation coefficient is used in machine learning as a measure of the quality of
binary (two-class) classifications. It takes into account true and false positives and negatives and is
generally regarded as a balanced measure which can be used even if the classes are of very different
sizes. The MCC is in essence a correlation coefficient between the observed and predicted binary
classifications; it returns a value between -1 and +1.

Details

MCC = (TP(TN — FP)FN)/(\/(TP + FP)(TP + FN)(TN + FP)(TN + FN))

Super class

D2MCS: :MeasureFunction -> MCC
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Methods

Public methods:

* MCC$new()
¢ MCC$compute()
* MCC$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:

MCC$new(performance.output = NULL)

Arguments:

performance.output An optional ConfMatrix parameter used as basis to compute the MCC
measure.

Method compute(): The function computes the MCC achieved by the M.L. model.

Usage:
MCC$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the MCC measure.

Details: This function is automatically invoke by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MCC$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix

MCCHeuristic Feature-clustering based on Matthews Correlation Coefficient score.

Description

Performs the feature-clustering using MCC score. Valid for both bi-class and multi-class problems

Super class

D2MCS: :GenericHeuristic -> MCCHeuristic



54 MeasureFunction

Methods

Public methods:
* MCCHeuristic$new()

* MCCHeuristic$heuristic()
e MCCHeuristic$clone()
Method new(): Empty function used to initialize the object arguments in runtime.
Usage:
MCCHeuristic$new()
Method heuristic(): Calculates the Matthews correlation Coefficient (MCC) score.

Usage:
MCCHeuristic$heuristic(coll, col2, column.names = NULL)

Arguments:

coll A numeric vector or matrix required to perform the clustering operation.
col2 A numeric vector or matrix to perform the clustering operation.
column.names An optional character vector with the names of both columns.

Returns: A numeric vector of length 1 or NA if an error occurs.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MCCHeuristic$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Dataset, mccr

MeasureFunction Archetype to define customized measures.

Description

Abstract class used as a template to define new M.L. performance measures.

Details

The GenericHeuristic is an full-abstract class so it cannot be instantiated. To ensure the proper
operation, compute method is automatically invoke by D2MCS framework when needed.
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Methods
Public methods:

¢ MeasureFunction$new()
e MeasureFunction$compute()
e MeasureFunction$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
MeasureFunction$new(performance = NULL)

Arguments:
performance An optional ConfMatrix parameter to define the type of object used to compute

the measure.
Method compute(): The function implements the metric used to measure the performance
achieved by the M.L. model.

Usage:
MeasureFunction$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used to

compute the measure.

Details: This function is automatically invoke by the D2MCS framework.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MeasureFunction$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
MeasureFunction
Methodology Abstract class to compute the probability prediction based on combi-
nation between metrics.
Description

Abstract class used as a template to define new customized strategies to combine the probability
predictions made by different metrics.
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Methods

Public methods:
* Methodology$new()
e Methodology$getRequiredMetrics()
* Methodology$compute()
* Methodology$clone()

Method new(): Method for initializing the object arguments during runtime.
Usage:
Methodology$new(required.metrics)
Arguments:

required.metrics A character vector of length greater than 2 with the name of the required
metrics.

Method getRequiredMetrics(): The function returns the required metrics that will participate
in the methodology to compute a metric based on all of them.

Usage:

Methodology$getRequiredMetrics()

Returns: A character vector of length greater than 2 with the name of the required metrics.

Method compute(): Function to compute the probability of the final prediction based on differ-
ent metrics.
Usage:
Methodology$compute(raw.pred, prob.pred, positive.class, negative.class)
Arguments:
raw.pred A character list of length greater than 2 with the class value of the predictions made
by the metrics.
prob.pred A numeric list of length greater than 2 with the probability of the predictions made
by the metrics.
positive.class A character with the value of the positive class.
negative.class A character with the value of the negative class.

Returns: A numeric value indicating the probability of the instance is predicted as positive
class.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Methodology$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ProbBasedMethodology
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MinimizeFN Combined metric strategy to minimize FN errors.

Description

Calculates if the positive class is the predicted one in any of the metrics, otherwise, the instance is
not considered to have the positive class associated.

Super class

D2MCS: :CombinedMetrics ->MinimizeFN

Methods

Public methods:
e MinimizeFN$new()
* MinimizeFN$getFinalPrediction()
e MinimizeFN$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
MinimizeFN$new(required.metrics = c(”"MCC", "PPV"))

Arguments:
required.metrics A character vector of length 1 with the name of the required metrics.

Method getFinalPrediction(): Function to obtain the final prediction based on different
metrics.

Usage:
MinimizeFN$getFinalPrediction(
raw.pred,
prob.pred,
positive.class,
negative.class

)

Arguments:

raw.pred A character list of length greater than 2 with the class value of the predictions made
by the metrics.

prob.pred A numeric list of length greater than 2 with the probability of the predictions made
by the metrics.

positive.class A character with the value of the positive class.

negative.class A character with the value of the negative class.

Returns: A logical value indicating if the instance is predicted as positive class or not.

Method clone(): The objects of this class are cloneable with this method.
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Usage:
MinimizeFN$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

CombinedMetrics

MinimizeFP Combined metric strategy to minimize FP errors.

Description
Calculates if the positive class is the predicted one in all metrics, otherwise, the instance is not
considered to have the positive class associated.

Super class

D2MCS: :CombinedMetrics ->MinimizeFP

Methods

Public methods:
e MinimizeFP$new()
* MinimizeFP$getFinalPrediction()
e MinimizeFP$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
MinimizeFP$new(required.metrics = c(”"MCC", "PPV"))

Arguments:
required.metrics A character vector of length greater than 2 with the name of the required

metrics.

Method getFinalPrediction(): Function to obtain the final prediction based on different
metrics.

Usage:
MinimizeFP$getFinalPrediction(
raw.pred,
prob.pred,
positive.class,
negative.class
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Arguments:

raw.pred A character list of length greater than 2 with the class value of the predictions made
by the metrics.

prob.pred A numeric list of length greater than 2 with the probability of the predictions made
by the metrics.

positive.class A character with the value of the positive class.
negative.class A character with the value of the negative class.

Returns: A logical value indicating if the instance is predicted as positive class or not.
Method clone(): The objects of this class are cloneable with this method.

Usage:

MinimizeFP$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

CombinedMetrics

MultinformationHeuristic

Feature-clustering based on Mutual Information Computation theory.

Description

Performs the feature-clustering using MCC score. Valid for both bi-class and multi-class problems.
Only valid for bi-class problems.
Super class

D2MCS: :GenericHeuristic ->MultinformationHeuristic

Methods
Public methods:

e MultinformationHeuristic$new()
e MultinformationHeuristic$heuristic()
e MultinformationHeuristic$clone()

Method new(): Empty function used to initialize the object arguments in runtime.
Usage:
MultinformationHeuristic$new()

Method heuristic(): Mutinformation takes two random variables as input and computes the
mutual information in nats according to the entropy estimator method.
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Usage:
MultinformationHeuristic$heuristic(coll, col2, column.names = NULL)

Arguments:

coll A vector/factor denoting a random variable or a data.frame denoting a random vector
where columns contain variables/features and rows contain outcomes/samples.

col2 An another random variable or random vector (vector/factor or data.frame).
column.names An optional character vector with the names of both columns.

Returns: Returns the mutual information I(X;Y) in nats.

Method clone(): The objects of this class are cloneable with this method.

Usage:
MultinformationHeuristic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Dataset, mutinformation

NoProbability Compute performance across resamples.

Description

Computes the performance across resamples when class probabilities cannot be computed.

Super class

D2MCS: : SummaryFunction -> NoProbability

Methods

Public methods:
* NoProbability$new()
* NoProbability$execute()
e NoProbability$clone()

Method new(): The function defined during runtime the usage of five measures: ’Kappa’,
*Accuracy’, "TCR_9’, "MCC’ and "PPV’.

Usage:

NoProbability$new()

Method execute(): The function computes the performance across resamples using the previ-
ously defined measures.
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Usage:
NoProbability$execute(data, lev = NULL, model = NULL)

Arguments:

data A data.frame containing the data used to compute the performance.
lev An optional value used to define the levels of the target class.

model An optional value used to define the M.L. model used.

Returns: A vector of performance estimates.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NoProbability$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

SummaryFunction

NPV Computes the Negative Predictive Value.

Description

Negative Predictive Values are the proportions of negative results in statistics and diagnostic tests
that are true negative results.

Details

NPV =TN/(TN + FN)

Super class

D2MCS: :MeasureFunction -> NPV

Methods

Public methods:

* NPV$new()
¢ NPV$compute()
* NPV$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
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NPV$new(performance.output = NULL)
Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the NPV measure.
Method compute(): The function computes the NPV achieved by the M.L. model.

Usage:
NPV$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the NPV measure.

Details: This function is automatically invoke by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
NPV$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix

OddsRatioHeuristic Feature-clustering based on Odds Ratio measure.

Description

Performs the feature-clustering using Odds Ratio methodology. Valid only for bi-class problems.

Super class

D2MCS: :GenericHeuristic -> OddsRatioHeuristic

Methods
Public methods:

e OddsRatioHeuristic$new()
¢ OddsRatioHeuristic$heuristic()
e OddsRatioHeuristic$clone()
Method new(): Empty function used to initialize the object arguments in runtime.

Usage:
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OddsRatioHeuristic$new()

Method heuristic(): Calculates the Odds Ratio method.

Usage:
OddsRatioHeuristic$heuristic(coll, col2, column.names = NULL)

Arguments:
col1 The object from whom odds ratio will be computed.

col2 A second factor or numeric object.
column.names An optional character vector with the names of both columns.

Returns: A numeric vector of length 1 or NA if an error occurs.

Method clone(): The objects of this class are cloneable with this method.

Usage:
OddsRatioHeuristic$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Dataset, odds.ratio

PearsonHeuristic Feature-clustering based on Pearson Correlation Test.

Description

Performs the feature-clustering using Pearson correlation tests. Valid for both, bi-class and multi-
class problems.

Details

The test statistic is based on Pearson’s product moment correlation coefficient cor(x, y) and follows
a t distribution with length(x)-2 degrees of freedom if the samples follow independent normal dis-
tributions. If there are at least 4 complete pairs of observation, an asymptotic confidence interval is
given based on Fisher’s Z transform.

Super class

D2MCS: :GenericHeuristic -> PearsonHeuristic
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Methods
Public methods:

* PearsonHeuristic$new()
* PearsonHeuristic$heuristic()
* PearsonHeuristic$clone()
Method new(): Creates a PearsonHeuristic object.
Usage:
PearsonHeuristic$new()
Method heuristic(): Test for association between paired samples using Pearson test.

Usage:
PearsonHeuristic$heuristic(coll, col2, column.names = NULL)

Arguments:

coll A numeric vector or matrix required to perform the clustering operation.
col2 A numeric vector or matrix to perform the clustering operation.
column.names An optional character vector with the names of both columns.

Returns: A numeric vector of length 1 or NA if an error occurs.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PearsonHeuristic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Dataset, cor

PPV Computes the Positive Predictive Value.

Description

Positive Predictive Values are the proportions of positive results in statistics and diagnostic tests that
are true positive results.

Details

PPV =TP/(TP + FP)
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Super class

D2MCS: :MeasureFunction -> PPV

Methods

Public methods:

* PPV$new()
e PPV$compute()
* PPV$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
PPV$new(performance.output = NULL)

Arguments:

performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the PPV measure.
Method compute(): The function computes the PPV achieved by the M.L. model.

Usage:
PPV$compute(performance.output = NULL)

Arguments:

performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the PPV measure.

Details: This function is automatically invoke by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PPV$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix
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Precision Computes the Precision Value.

Description

Precision is the fraction of relevant instances among the retrieved instances

Details
precision = TP/(TP + FP)

Super class

D2MCS: :MeasureFunction -> Precision

Methods
Public methods:

* Precision$new()
* Precision$compute()
* Precision$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
Precision$new(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the measure.
Method compute(): The function computes the Precision achieved by the M.L. model.

Usage:
Precision$compute(performance.output = NULL)

Arguments:

performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the Precision measure.

Details: This function is automatically invoke by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.
Usage:
Precision$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
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See Also

MeasureFunction, ClassificationOutput, ConfMatrix

PredictionOutput Encapsulates the achieved predictions.

Description

The class used to encapsulates all the computed predictions to facilitate their access and mainte-
nance.

Methods

Public methods:
* PredictionOutput$new()
* PredictionOutput$getPredictions()
* PredictionOutput$getType()
* PredictionOutput$getTarget()
* PredictionOutput$clone()

Method new(): Method for initializing the object arguments during runtime.
Usage:
PredictionOutput$new(predictions, type, target)
Arguments:

predictions A list of FinalPred elements.

type A character to define which type of predictions should be returned. If not defined all type
of probabilities will be returned. Conversely if "prob" or "raw" is defined then computed
"probabilistic’ or ’class’ values are returned.

target A character defining the value of the positive class.

Method getPredictions(): The function returns the final predictions.

Usage:
PredictionOutput$getPredictions()
Returns: A list containing the final predictions or NULL if classification stage was not success-
fully performed.
Method getType(): The function returns the type of prediction should be returned. If "prob" or
"raw" is defined then computed *probabilistic’ or ’class’ values are returned.

Usage:
PredictionOutput$getType()

Returns: A character value.

Method getTarget(): The function returns the value of the target class.
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Usage:
PredictionOutput$getTarget()

Returns: A character value.

Method clone(): The objects of this class are cloneable with this method.

Usage:
PredictionOutput$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also
D2MCS

ProbAverageVoting Implementation of Probabilistic Average voting.

Description

Computes the final prediction by performing the mean value of the probability achieved by each
prediction.

Super class

D2MCS: :SimpleVoting -> ProbAverageVoting

Methods

Public methods:

* ProbAverageVoting$new()

* ProbAverageVoting$getMajorityClass()
* ProbAverageVoting$getClassTie()

* ProbAverageVoting$execute()

* ProbAverageVoting$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
ProbAverageVoting$new(cutoff = 0.5, class.tie = NULL, majority.class = NULL)

Arguments:

cutoff A character vector defining the minimum probability used to perform a positive classi-
fication. If is not defined, 0.5 will be used as default value.

class.tie A character used to define the target class value used when a tie is found. If NULL
positive class value will be assigned.
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majority.class A character defining the value of the majority class. If NULL will be used
same value as training stage.
Method getMajorityClass(): The function returns the value of the majority class.

Usage:
ProbAverageVoting$getMajorityClass()

Returns: A character vector of length 1 with the name of the majority class.

Method getClassTie(): The function gets the class value assigned to solve ties.

Usage:
ProbAverageVoting$getClassTie()

Returns: A character vector of length 1.

Method execute(): The function implements the majority voting procedure.

Usage:

ProbAverageVoting$execute(predictions, verbose = FALSE)

Arguments:

predictions A ClusterPredictions object containing all the predictions achieved for each
cluster.

verbose A logical value to specify if more verbosity is needed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ProbAverageVoting$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

D2MCS, ClassMajorityVoting, ClassWeightedVoting, ProbAverageVoting, ProbAverageWeightedVoting,
ProbBasedMethodology

ProbAverageWeightedVoting
Implementation of Probabilistic Average Weighted voting.

Description

Computes the final prediction by performing the weighted mean of the probability achieved by each
cluster prediction. By default, weight values are consistent with the performance value achieved by
the best M.L. model on each cluster.

Super class

D2MCS: :SimpleVoting -> ProbAverageWeightedVoting
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Methods

Public methods:
* ProbAverageWeightedVoting$new()
* ProbAverageWeightedVoting$getClassTie()
* ProbAverageWeightedVoting$getWeights()
* ProbAverageWeightedVoting$setWeights()
* ProbAverageWeightedVoting$execute()
e ProbAverageWeightedVoting$clone()

Method new(): Method for initializing the object arguments during runtime.
Usage:
ProbAverageWeightedVoting$new(cutoff = 0.5, class.tie = NULL, weights = NULL)
Arguments:

cutoff A character vector defining the minimum probability used to perform a positive classi-
fication. If is not defined, 0.5 will be used as default value.

class.tie A character used to define the target class value used when a tie is found. If NULL
positive class value will be assigned.

weights A numeric vector with the weights of each cluster. If NULL performance achieved
during training will be used as default.
Method getClassTie(): The function gets the class value assigned to solve ties.
Usage:
ProbAverageWeightedVoting$getClassTie()

Returns: A character vector of length 1.

Method getWeights(): The function returns the value of the majority class.
Usage:
ProbAverageWeightedVoting$getWeights()

Returns: A character vector of length 1 with the name of the majority class.

Method setWeights(): The function allows changing the value of the weights.
Usage:
ProbAverageWeightedVoting$setWeights(weights)
Arguments:

weights A numeric vector containing the new weights.

Method execute(): The function implements the cluster-weighted probabilistic voting proce-
dure.

Usage:
ProbAverageWeightedVoting$execute(predictions, verbose = FALSE)
Arguments:

predictions A ClusterPredictions object containing all the predictions achieved for each
cluster.
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verbose A logical value to specify if more verbosity is needed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ProbAverageWeightedVoting$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

D2MCS, ClassMajorityVoting, ClassWeightedVoting, ProbAverageVoting, ProbAverageWeightedVoting,
ProbBasedMethodology

ProbBasedMethodology  Methodology to obtain the combination of the probability of different
metrics.

Description

Calculates the mean of the probabilities of the different metrics.

Super class

D2MCS: :Methodology -> ProbBasedMethodology

Methods

Public methods:

¢ ProbBasedMethodology$new()
¢ ProbBasedMethodology$compute ()
* ProbBasedMethodology$clone()

Method new(): Method for initializing the object arguments during runtime.
Usage:
ProbBasedMethodology$new(required.metrics = c("MCC", "PPV"))

Arguments:

required.metrics A character vector of length greater than 2 with the name of the required
metrics.

Method compute(): Function to compute the probability of the final prediction based on differ-
ent metrics.

Usage:
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ProbBasedMethodology$compute(
raw.pred,
prob.pred,
positive.class,
negative.class

)

Arguments:

raw.pred A character list of length greater than 2 with the class value of the predictions made
by the metrics.

prob.pred A numeric list of length greater than 2 with the probability of the predictions made
by the metrics.

positive.class A character with the value of the positive class.

negative.class A character with the value of the negative class.

Returns: A numeric value indicating the probability of the instance is predicted as positive
class.

Method clone(): The objects of this class are cloneable with this method.

Usage:
ProbBasedMethodology$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

Methodology

Recall Computes the Recall Value.

Description

Recall (also known as sensitivity) is the fraction of the total amount of relevant instances that were
actually retrieved.

Details
recall =TP/(TP + FN)

Super class

D2MCS: :MeasureFunction -> Recall
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Methods

Public methods:
* Recall$new()
* Recall$compute()
e Recall$clone()
Method new(): Method for initializing the object arguments during runtime.

Usage:
Recall$new(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the measure.
Method compute(): The function computes the Recall achieved by the M.L. model.

Usage:
Recall$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the Recall measure.

Details: This function is automatically invoke by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Recall$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix

Sensitivity Computes the Sensitivity Value.

Description

Sensitivity is a measure of the proportion of actual positive cases that got predicted as positive (or
true positive).

Details

Sensitivity = TP/(TP + FN)
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Super class

D2MCS: :MeasureFunction -> Sensitivity

Methods

Public methods:
e Sensitivity$new()
e Sensitivity$compute()
e Sensitivity$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
Sensitivity$new(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the Sensitivity measure.

Method compute(): The function computes the Sensitivity achieved by the M.L. model.

Usage:
Sensitivity$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as
basis to compute the Sensitivity measure.

Details: This function is automatically invoke by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Sensitivity$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix
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SimpleStrategy Simple feature clustering strategy.

Description

Features are sorted by descendant according to the relevance value obtained after applying an spe-
cific heuristic. Next, features are distributed into N clusters following a card-dealing methodology.
Finally best distribution is assigned to the distribution having highest homogeneity.

Details

The strategy is suitable for all features that are valid for the indicated heuristics. Invalid features are
automatically grouped into a specific cluster named as "unclustered’.

Super class

D2MCS: :GenericClusteringStrategy -> SimpleStrategy

Methods

Public methods:

e SimpleStrategy$new()

e SimpleStrategy$execute()

* SimpleStrategy$getBestClusterDistribution()
e SimpleStrategy$getUnclustered()

e SimpleStrategy$getDistribution()

e SimpleStrategy$createTrain()

e SimpleStrategy$plot()

* SimpleStrategy$saveCSV()

e SimpleStrategy$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
SimpleStrategy$new(
subset,
heuristic,
configuration = StrategyConfiguration$new()

)

Arguments:

subset The Subset used to apply the feature-clustering strategy.

heuristic The heuristic used to compute the relevance of each feature. Must inherit from
GenericHeuristic abstract class.

configuration Optional parameter to customize configuration parameters for the strategy.
Must inherited from StrategyConfiguration abstract class.
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Method execute(): Function responsible of performing the clustering strategy over the defined
Subset.

Usage:

SimpleStrategy$execute(verbose = FALSE)

Arguments:
verbose A logical value to specify if more verbosity is needed.

Method getBestClusterDistribution(): The function obtains the best clustering distribu-
tion.

Usage:

SimpleStrategy$getBestClusterDistribution()

Returns: A list of clusters. Each list element represents a feature group.

Method getUnclustered(): The function is used to return the features that cannot be clustered
due to incompatibilities with the used heuristic.

Usage:

SimpleStrategy$getUnclustered()

Returns: A character vector containing the unclassified features.

Method getDistribution(): Function used to obtain a specific cluster distribution.

Usage:
SimpleStrategy$getDistribution(
num.clusters = NULL,
num.groups = NULL,
include.unclustered = FALSE
)
Arguments:
num.clusters A numeric value to select the number of clusters (define the distribution).

num.groups A single or numeric vector value to identify a specific group that forms the clus-
tering distribution.
include.unclustered A logical value to determine if unclustered features should be included.

Returns: A list with the features comprising an specific clustering distribution.

Method createTrain(): The function is used to create a Trainset object from a specific
clustering distribution.
Usage:
SimpleStrategy$createTrain(
subset,
num.clusters = NULL,
num. groups = NULL,
include.unclustered = FALSE
)

Arguments:

subset The Subset object used as a basis to create the train set (see Trainset class).
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num.clusters A numeric value to select the number of clusters (define the distribution).

num.groups A single or numeric vector value to identify a specific group that forms the clus-
tering distribution.

include.unclustered A logical value to determine if unclustered features should be included.

Details: If num.clusters and num.groups are not defined, best clustering distribution is used
to create the train set.

Returns: A Trainset object.

Method plot(): The function is responsible for creating a plot to visualize the clustering distri-
bution.

Usage:
SimpleStrategy$plot(dir.path = NULL, file.name = NULL)

Arguments:

dir.path An optional argument to define the name of the directory where the exported plot
will be saved. If not defined, the file path will be automatically assigned to the current
working directory, *getwd()’.

file.name A character to define the name of the PDF file where the plot is exported.

Method saveCSV(): The function is used to save the clustering distribution to a CSV file.

Usage:
SimpleStrategy$saveCSV(dir.path, name = NULL, num.clusters = NULL)

Arguments:
dir.path The name of the directory to save the CSV file.
name Defines the name of the CSV file.

num.clusters An optional parameter to select the number of clusters to be saved. If not de-
fined, all cluster distributions will be saved.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SimpleStrategy$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

GenericClusteringStrategy, StrategyConfiguration
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SimpleVoting Abtract class to define simple voting schemes.

Description

Abstract class used as a template to define new customized simple voting schemes.

Methods

Public methods:
e SimpleVoting$new()
e SimpleVoting$getCutoff ()
e SimpleVoting$getFinalPred()
e SimpleVoting$execute()
e SimpleVoting$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
SimpleVoting$new(cutoff = NULL)

Arguments:

cutoff A character vector defining the minimum probability used to perform a positive classi-
fication. If is not defined, 0.5 will be used as default value.

Method getCutoff(): The function obtains the minimum probabilistic value used to perform a
positive classification.

Usage:

SimpleVoting$getCutoff()

Returns: A numeric value.

Method getFinalPred(): The function is used to return the prediction values computed by a
voting strategy.

Usage:

SimpleVoting$getFinalPred(type = NULL, target = NULL, filter = NULL)

Arguments:

type A character to define which type of predictions should be returned. If not defined all type
of probabilities will be returned. Conversely if "prob’ or 'raw’ is defined then computed
“probabilistic’ or ’class’ values are returned.

target A character defining the value of the positive class.

filter A logical value used to specify if only predictions matching the target value should be
returned or not. If TRUE the function returns only the predictions matching the target value.
Conversely if FALSE (by default) the function returns all the predictions.

Returns: A FinalPred object.
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Method execute(): Abstract function used to implement the operation of the voting scheme.

Usage:

SimpleVoting$execute(predictions, verbose = FALSE)

Arguments:

predictions A ClusterPredictions object containing all the predictions achieved for each
cluster.

verbose A logical value to specify if more verbosity is needed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SimpleVoting$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

D2MCS, ClassMajorityVoting, ClassWeightedVoting, ProbAverageVoting, ProbAverageWeightedVoting,
ProbBasedMethodology, CombinedVoting

SingleVoting Manages the execution of Simple Votings.

Description

The class is responsible of initializing and executing voting schemes. Additionally, to ensure a
proper operation, the class automatically checks the compatibility of defined voting schemes.

Super class

D2MCS: :VotingStrategy -> SingleVoting

Methods

Public methods:
e SingleVoting$new()
e SingleVoting$execute()
* SingleVoting$clone()

Method new(): The function initializes the object arguments during runtime.

Usage:
SingleVoting$new(voting.schemes, metrics)

Arguments:
voting.schemes A vector of voting schemes inheriting from SimpleVoting class.
metrics A list containing the metrics used as basis to perform the voting strategy.
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Method execute(): The function is used to execute all the previously defined (and compatible)
voting schemes.

Usage:
SingleVoting$execute(predictions, verbose = FALSE)

Arguments:
predictions A ClusterPredictions object containing all the predictions computed in the
classification stage.
verbose A logical value to specify if more verbosity is needed.
Method clone(): The objects of this class are cloneable with this method.

Usage:
SingleVoting$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
D2MCS, SimpleVoting, CombinedVoting

SpearmanHeuristic Feature-clustering based on Spearman Correlation Test.

Description

Performs the feature-clustering using Spearman’s rho statistic.

Details

Spearman’s rho statistic is to estimate a rank-based measure of association. These tests may be used
if the data do not necessarily come from a bivariate normal distribution.

Super class

D2MCS: :GenericHeuristic -> SpearmanHeuristic

Methods
Public methods:

e SpearmanHeuristic$new()
e SpearmanHeuristic$heuristic()
e SpearmanHeuristic$clone()

Method new(): Creates a SpearmanHeuristic object.

Usage:
SpearmanHeuristic$new()
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Method heuristic(): Test for correlation between paired samples using Spearman rho statistic.

Usage:
SpearmanHeuristic$heuristic(coll, col2, column.names = NULL)

Arguments:

coll A numeric vector or matrix required to perform the clustering operation.
col2 A numeric vector or matrix to perform the clustering operation.
column.names An optional character vector with the names of both columns.

Returns: A numeric vector of length 1 or NA if an error occurs.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SpearmanHeuristic$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

Dataset, cor. test

Specificity Computes the Specificity Value.

Description

Specificity is defined as the proportion of actual negatives, which got predicted as the negative (or
true negative). This implies that there will be another proportion of actual negative, which got
predicted as positive and could be termed as false positives.

Details

Speci ficity = TrueNegative/(TrueNegative + FalsePositive)

Super class

D2MCS: :MeasureFunction -> Specificity

Methods

Public methods:
* Specificity$new()
* Specificity$compute()
e Specificity$clone()

Method new(): Method for initializing the object arguments during runtime.
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Usage:
Specificity$new(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as

basis to compute the measure.

Method compute(): The function computes the Specificity achieved by the M.L. model.

Usage:
Specificity$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as

basis to compute the Specificity measure.

Details: This function is automatically invoke by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
Specificity$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix

StrategyConfiguration Default Strategy Configuration handler.

Description

Define default configuration parameters for the clustering strategies.

Details

The StrategyConfiguration can be used to define the default configuration parameters for a
feature clustering strategy or as an archetype to define new customized parameters.
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Methods

Public methods:

e StrategyConfiguration$new()

* StrategyConfiguration$minNumClusters()
e StrategyConfiguration$maxNumClusters()
e StrategyConfiguration$clone()

Method new(): Empty function used to initialize the object arguments in runtime.

Usage:

StrategyConfiguration$new()
Method minNumClusters(): Function used to return the minimum number of clusters distribu-
tions used. By default the minimum is set in 2.

Usage:
StrategyConfiguration$minNumClusters(...)

Arguments:

. Further arguments passed down to minNumClusters function.
Returns: A numeric vector of length 1.
Method maxNumClusters(): The function is responsible of returning the maximum number of
cluster distributions used. By default the maximum number is set in 50.

Usage:
StrategyConfiguration$maxNumClusters(...)

Arguments:

. Further arguments passed down to maxNumClusters function.

Returns: A numeric vector of length 1.

Method clone(): The objects of this class are cloneable with this method.

Usage:
StrategyConfiguration$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

DependencyBasedStrategyConfiguration
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Subset Classification set.

Description

The Subset is used for testing or classification purposes. If a target class is defined the Subset can
be used as test and classification, otherwise the Subset only classification is compatible.

Details

Use Dataset to ensure the creation of a valid Subset object.

Methods

Public methods:

* Subset$new()

e Subset$getColumnNames()
* Subset$getFeatures()

* Subset$getID()

e Subset$getIterator()

* Subset$getClassValues()
* Subset$getClassBalance()
* Subset$getClassIndex()

* Subset$getClassName()

* Subset$getNcol()

* Subset$getNrow()

* Subset$getPositiveClass()
e Subset$isBlinded()

Method new(): Method for initializing the object arguments during runtime.

Usage:
Subset$new(
dataset,
class.index = NULL,
class.values = NULL,
positive.class = NULL,
feature.id = NULL
)
Arguments:
dataset A fully filled data.frame.
class.index A numeric value identifying the column representing the target class
class.values A character vector containing all the values of the target class.
positive.class A character value representing the positive class value.
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feature.id A numeric value specifying the column number used as identifier.

Method getColumnNames(): Get the name of the columns comprising the subset.

Usage:
Subset$getColumnNames ()

Returns: A character vector containing the name of each column.

Method getFeatures(): Gets the values of all features or those indicated by arguments.

Usage:
Subset$getFeatures(feature.names = NULL)

Arguments:
feature.names A character vector comprising the name of the features to be obtained.

Returns: A character vector or NULL if subset is empty.

Method getID(): Gets the column name used as identifier.

Usage:
Subset$getID()
Returns: A character vector of size 1 of NULL if column id is not defined.

Method getIterator(): Creates the Dlterator object.

Usage:
Subset$getlterator(chunk.size = private$chunk.size, verbose = FALSE)

Arguments:

chunk.size Aninteger value indicating the size of chunks taken over each iteration. By default
chunk.size is defined as 10000.

verbose A logical value to specify if more verbosity is needed.

Returns: A DIterator object to transverse through Subset instances.

Method getClassValues(): Gets all the values of the target class.

Usage:
Subset$getClassValues()

Returns: A factor vector with all the values of the target class.
Method getClassBalance(): The function is used to compute the ratio of each class value in

the Subset.

Usage:
Subset$getClassBalance(target.value = NULL)

Arguments:
target.value The class value used as reference to perform the comparison.

Returns: A numeric value.

Method getClassIndex(): The function is used to obtain the index of the column containing
the target class.



86

Subset

Usage:
Subset$getClassIndex()

Returns: A numeric value.

Method getClassName(): The function is used to specify the name of the column containing
the target class.

Usage:
Subset$getClassName()

Returns: A character value.

Method getNcol(): The function is in charge of obtaining the number of columns comprising
the Subset. See ncol for more information.

Usage:
Subset$getNcol()

Returns: An integer of length 1 or NULL.

Method getNrow(): The function is used to determine the number of rows present in the Subset.
See nrow for more information.

Usage:
Subset$getNrow()

Returns: An integer of length 1 or NULL.

Method getPositiveClass(): The function returns the value of the positive class.

Usage:
Subset$getPositiveClass()

Returns: A character vector of size 1 or NULL if not defined.

Method isBlinded(): The function is used to check if the Subset contains a target class.

Usage:
Subset$isBlinded()

Returns: A logical value where TRUE represents the absence of target class and FALSE its
presence.

See Also

Dataset, DatasetlLoader, Trainset
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SummaryFunction Abstract class to computing performance across resamples.

Description

Abstract used as template to define customized metrics to compute model performance during train.

Details

This class is an archetype, so it cannot be instantiated.

Methods
Public methods:

e SummaryFunction$new()

e SummaryFunction$execute()

e SummaryFunction$getMeasures()
e SummaryFunction$clone()

Method new(): The function carries out the initialization of parameters during runtime.
Usage:
SummaryFunction$new(measures)

Arguments:
measures A character vector with the measures used.

Method execute(): Abstract function used to implement the performance calculator method.
To guarantee a proper operation, this method is automatically invoked by D2MCS framework.
Usage:
SummaryFunction$execute()
Method getMeasures(): The function obtains the measures used to compute the performance
across resamples.
Usage:
SummaryFunction$getMeasures()

Returns: A character vector of NULL if measures are not defined.

Method clone(): The objects of this class are cloneable with this method.

Usage:
SummaryFunction$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also
NoProbability, UseProbability
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N Computes the True Negative value.

Description
This is the number of individuals with a negative condition for which the test result is negative. The

value entered here must be non-negative.

Super class

D2MCS: :MeasureFunction -> TN

Methods

Public methods:
* TN$new()
* TN$compute()
* TN$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
TN$new(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used to

compute the TN measure.
Method compute(): The function computes the TN achieved by the M.L. model.

Usage:
TN$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as

basis to compute the TN measure.

Details: This function is automatically invoke by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TN$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix
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TP Computes the True Positive Value.

Description
TP is the number of individuals with a positive condition for which the test result is positive. The

value entered here must be non-negative.

Super class

D2MCS: :MeasureFunction -> TP

Methods

Public methods:
* TP$new()
* TP$compute()
e TP$clone()
Method new(): Method for initializing the object arguments during runtime.
Usage:
TP$new(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used to

compute the measure.
Method compute(): The function computes the TP achieved by the M.L. model.

Usage:
TP$compute(performance.output = NULL)

Arguments:
performance.output An optional ConfMatrix parameter to define the type of object used as

basis to compute the TP measure.
Details: This function is automatically invoke by the ClassificationOutput object.

Returns: A numeric vector of size 1 or NULL if an error occurred.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TP$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

MeasureFunction, ClassificationOutput, ConfMatrix
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TrainFunction Control parameters for train stage.

Description

Abstract class used as template to define customized functions to control the computational nuances
of train function.

Methods

Public methods:

* TrainFunction$new()

e TrainFunction$create()

* TrainFunction$getResamplingMethod()
e TrainFunction$getNumberFolds()

* TrainFunction$getSavePredictions()
* TrainFunction$getClassProbs()

* TrainFunction$getAllowParallel()

* TrainFunction$getVerboseIter()

e TrainFunction$getTrFunction()

* TrainFunction$getMeasures()

* TrainFunction$getType()

e TrainFunction$getSeed()

* TrainFunction$setSummaryFunction()
* TrainFunction$setClassProbs()

e TrainFunction$clone()

Method new(): Function used to initialize the object parameters during execution time.

Usage:

TrainFunction$new(
method,
number,
savePredictions,
classProbs,
allowParallel,
verboselter,
seed

)

Arguments:

method The resampling method: "boot", "boot632", "optimism_boot", "boot_all", "cv", "re-
peatedev"”, "LOOCV", "LGOCV" (for repeated training/test splits), "none" (only fits one
model to the entire training set), "oob" (only for random forest, bagged trees, bagged earth,
bagged flexible discriminant analysis, or conditional tree forest models), timeslice, "adap-
tive_cv", "adaptive_boot" or "adaptive_LGOCV"
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number Either the number of folds or number of resampling iterations

savePredictions An indicator of how much of the hold-out predictions for each resample
should be saved. Values can be either "all", "final", or "none". A logical value can also be
used that convert to "all" (for true) or "none" (for false). "final" saves the predictions for the
optimal tuning parameters.

classProbs A logical value. Should class probabilities be computed for classification models
(along with predicted values) in each resample?

allowParallel A logical value. If a parallel backend is loaded and available, should the func-
tion use it?

verboseIter A logical for printing a training log.
seed An optional integer that will be used to set the seed during model training stage.

Method create(): Creates a trainControl requires for the training stage.
Usage:
TrainFunction$create(summaryFunction, search.method = "grid", class.probs)

Arguments:
summaryFunction An object inherited from SummaryFunction class.

search.method Either "grid" or "random", describing how the tuning parameter grid is deter-
mined.

class.probs A logical indicating if class probabilities should be computed for classification
models (along with predicted values) in each resample.
Method getResamplingMethod(): Returns the resampling method used during training staged.

Usage:
TrainFunction$getResamplingMethod()

Returns: A character vector or length 1 or NULL if not defined.
Method getNumberFolds(): Returns the number or folds or number of iterations used during
training.

Usage:

TrainFunction$getNumberFolds()

Returns: An integer vector or length 1 or NULL if not defined.

Method getSavePredictions(): Indicates if the predictions for each resample should be saved.

Usage:
TrainFunction$getSavePredictions()

Returns: A logical value or NULL if not defined.
Method getClassProbs(): Indicates if class probabilities should be computed for classification
models in each resample.

Usage:
TrainFunction$getClassProbs()

Returns: A logical value.
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Method getAllowParallel(): Determines if model training is performed in parallel.
Usage:
TrainFunction$getAllowParallel ()
Returns: A logical value. TRUE indicates parallelization is enabled and FALSE otherwise.

Method getVerboseIter(): Determines if training log should be printed.
Usage:
TrainFunction$getVerboselIter()

Returns: A logical value. TRUE indicates training log is enabled and FALSE otherwise.

Method getTrFunction(): Function used to return the trainControl object.
Usage:
TrainFunction$getTrFunction()

Returns: A trainControl object.

Method getMeasures(): Returns the measures used to optimize model hyperparameters.
Usage:
TrainFunction$getMeasures()

Returns: A character vector.

Method getType(): Obtains the type of classification problem ("Bi-class" or "Multi-class").
Usage:
TrainFunction$getType()

Returns: A character vector with length 1. Either "Bi-class" or "Multi-class".

Method getSeed(): Indicates seed used during model training stage.
Usage:
TrainFunction$getSeed()
Returns: An integer value or NULL if not defined.

Method setSummaryFunction(): Function used to change the SummaryFunction used in the
training stage.

Usage:

TrainFunction$setSummaryFunction(summaryFunction)

Arguments:

summaryFunction An object inherited from SummaryFunction class.

Method setClassProbs(): The function allows changing the class computation capabilities.
Usage:
TrainFunction$setClassProbs(class.probs)
Arguments:

class.probs A logical indicating if class probabilities should be computed for classification
models (along with predicted values) in each resample
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Method clone(): The objects of this class are cloneable with this method.

Usage:
TrainFunction$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

TwoClass

TrainOutput Stores the results achieved during training.

Description

This class manages the results achieved during training stage (such as optimized hyperparameters,
model information, utilized metrics).

Methods

Public methods:
e TrainOutput$new()
* TrainOutput$getModels()
* TrainOutput$getPerformance()
e TrainOutput$savePerformance()
e TrainOutput$plot()
* TrainOutput$getMetrics()
* TrainOutput$getClassValues()
* TrainOutput$getPositiveClass()
* TrainOutput$getSize()
e TrainOutput$clone()

Method new(): Function used to initialize the object arguments during runtime.
Usage:
TrainOutput$new(models, class.values, positive.class)
Arguments:
models A list containing the best M.L. model for each cluster.
class.values A character vector containing the values of the target class.
positive.class A character with the value of the positive class.

Method getModels(): The function is used to obtain the best M.L. model of each cluster.

Usage:
TrainOutput$getModels(metric)
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Arguments:

metric A character vector which specifies the metric(s) used for configuring M.L. hyperpa-
rameters.

Returns: A list is returned of class train.

Method getPerformance(): The function returns the performance value of M.L. models during
training stage.

Usage:

TrainOutput$getPerformance(metrics = NULL)

Arguments:

metrics A character vector which specifies the metric(s) used to train the M.L. models.

Returns: A character vector containing the metrics used for configuring M.L. hyperparameters.

Method savePerformance(): The function is used to save into CSV file the performance
achieved by the M.L. models during training stage.

Usage:
TrainOutput$savePerformance(dir.path, metrics = NULL)

Arguments:
dir.path The location to store the into a CSV file the performance of the trained M.L.

metrics An optional parameter specifying the metric(s) used to train the M.L. models. If not
defined, all the metrics used in train stage will be saved.

Method plot(): The function is responsible for creating a plot to visualize the performance
achieved by the best M.L. model on each cluster.

Usage:
TrainOutput$plot(dir.path, metrics = NULL)

Arguments:
dir.path The location to store the exported plot will be saved.

metrics An optional parameter specifying the metric(s) used to train the M.L. models. If not
defined, all the metrics used in train stage will be plotted.

Method getMetrics(): The function returns all metrics used for configuring M.L. hyperparam-
eters during train stage.

Usage:
TrainOutput$getMetrics()

Returns: A character value.

Method getClassValues(): The function is used to get the values of the target class.

Usage:
TrainOutput$getClassValues()

Returns: A character containing the values of the target class.

Method getPositiveClass(): The function returns the value of the positive class.
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Usage:
TrainOutput$getPositiveClass()

Returns: A character vector of size 1.
Method getSize(): The function is used to get the number of the trained M.L. models. Each
cluster contains the best M.L. model.

Usage:
TrainOutput$getSize()

Returns: A numeric value or NULL training was not successfully performed.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TrainOutput$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also
D2MCS

Trainset Trainning set.

Description

The Trainset is used to perform training operations over M.L. models. A target class should be
defined to guarantee a full compatibility with supervised models.

Details

Use Dataset object to ensure the creation of a valid Trainset object.

Methods
Public methods:

e Trainset$new()

* Trainset$getPositiveClass()
* Trainset$getClassName()

* Trainset$getClassValues()

e Trainset$getColumnNames ()

* Trainset$getFeatureValues()
* Trainset$getInstances()

* Trainset$getNumClusters()
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Method new(): Method for initializing the object arguments during runtime.

Usage:
Trainset$new(cluster.dist, class.name, class.values, positive.class)

Arguments:

cluster.dist The type of cluster distribution used as basis to build the Trainset. See GenericClusteringStrategy
for more information.

class.name Used to specify the name of the column containing the target class.

class.values Specifies all the possible values of the target class.

positive.class A character with the value of the positive class.

Method getPositiveClass(): The function is used to obtain the value of the positive class.

Usage:
Trainset$getPositiveClass()

Returns: A numeric value with the positive class value.

Method getClassName(): The function is used to return the name of the target class.
Usage:
Trainset$getClassName()

Returns: A character vector with length 1.

Method getClassValues(): The function is used to compute all the possible target class values.
Usage:
Trainset$getClassValues()

Returns: A factor value.

Method getColumnNames(): The function returns the name of the columns comprising an
specific cluster distribution.

Usage:

Trainset$getColumnNames(num.cluster)

Arguments:

num.cluster A numeric value used to specify the cluster number of the cluster distribution

used when creating the Trainset.

Returns: A character vector with all column names.

Method getFeatureValues(): The function returns the values of the columns comprising an
specific cluster distribution. Target class is omitted.

Usage:

Trainset$getFeatureValues(num.cluster)

Arguments:

num.cluster A numeric value used to specify the cluster number of the cluster distribution
used when creating the Trainset.

Returns: A data.frame with the values of the features comprising the selected cluster distribu-
tion.
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Method getInstances(): The function returns the values of the columns comprising an specific
cluster distribution. Target class is included as the last column.

Usage:

Trainset$getInstances(num.cluster)

Arguments:

num.cluster A numeric value used to specify the cluster number of the cluster distribution

Returns: A data.frame with the values of the features comprising the selected cluster distribu-

used when creating the Trainset.

tion.

Method getNumClusters():

the cluster distribution.

Usage:
Trainset$getNumClusters()

Returns: A numeric vector of size 1.

See Also

Dataset, DatasetlLoader, Subset, GenericClusteringStrategy

TwoClass

Description

Implementation to control the computational nuances of train function for bi-class problems.

Super class

D2MCS: : TrainFunction -> TwoClass

Methods

Public methods:

TwoClass$new()
TwoClass$create()
TwoClass$getTrFunction()
TwoClass$setClassProbs()
TwoClass$getMeasures()
TwoClass$getType()
TwoClass$setSummaryFunction()
TwoClass$clone()

Method new():

The function obtains the number of groups (clusters) that forms

Control parameters for train stage (Bi-class problem).



98

TwoClass

Usage:

TwoClass$new(
method,
number,
savePredictions,
classProbs,
allowParallel,
verboselter,
seed = NULL

)

Arguments:

method The resampling method: "boot", "boot632", "optimism_boot", "boot_all", "cv", "re-
peatedcv"”, "LOOCV", "LGOCV" (for repeated training/test splits), "none" (only fits one
model to the entire training set), "oob" (only for random forest, bagged trees, bagged earth,
bagged flexible discriminant analysis, or conditional tree forest models), timeslice, "adap-
tive_cv", "adaptive_boot" or "adaptive_LGOCV"

number Either the number of folds or number of resampling iterations

savePredictions An indicator of how much of the hold-out predictions for each resample
should be saved. Values can be either "all", "final", or "none". A logical value can also be
used that convert to "all" (for true) or "none" (for false). "final" saves the predictions for the
optimal tuning parameters.

classProbs A logical value. Should class probabilities be computed for classification models
(along with predicted values) in each resample?

allowParallel A logical value. If a parallel backend is loaded and available, should the func-
tion use it?

verboseIter A logical for printing a training log.
seed An optional integer that will be used to set the seed during model training stage.

Method create(): Creates a trainControl requires for the training stage.
Usage:
TwoClass$create(summaryFunction, search.method = "grid", class.probs = NULL)
Arguments:

summaryFunction An object inherited from SummaryFunction class.

search.method Either "grid" or "random", describing how the tuning parameter grid is deter-
mined.

class.probs A logical indicating if class probabilities should be computed for classification
models (along with predicted values) in each resample
Method getTrFunction(): Function used to return the trainControl object.

Usage:
TwoClass$getTrFunction()

Returns: A trainControl object.

Method setClassProbs(): The function allows changing the class computation capabilities.

Usage:
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TwoClass$setClassProbs(class.probs)

Arguments:
class.probs A logical value. TRUE implies classification probabilities should be computed

for classification models and FALSE otherwise.

Method getMeasures(): Returns the measures used to optimize model hyperparameters.

Usage:
TwoClass$getMeasures()

Returns: A character vector.

Method getType(): Obtains the type of classification problem ("Bi-class" or "Multi-class").

Usage:
TwoClass$getType()
A character vector with "Bi-class" value.

Returns:
Function used to change the SummaryFunction used in the

Method setSummaryFunction():
training stage.

Usage:
TwoClass$setSummaryFunction(summaryFunction)

Arguments:
summaryFunction An object inherited from SummaryFunction class.

Method clone(): The objects of this class are cloneable with this method.

Usage:
TwoClass$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

TrainFunction

TypeBasedStrategy Feature clustering strategy.

Description
Features are sorted by descendant according to the relevance value obtained after applying an spe-
cific heuristic. Next, features are distributed into N clusters following a card-dealing methodology.

Finally best distribution is assigned to the distribution having highest homogeneity.

Details
The strategy is suitable only for binary and real features. Other features are automatically grouped

into a specific cluster named as "unclustered’.
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Super class

D2MCS: :GenericClusteringStrategy -> TypeBasedStrategy

Methods

Public methods:

* TypeBasedStrategy$new()

* TypeBasedStrategy$execute()

e TypeBasedStrategy$getDistribution()
e TypeBasedStrategy$createTrain()

e TypeBasedStrategy$plot()

e TypeBasedStrategy$saveCSV()

e TypeBasedStrategy$clone()

Method new(): Method for initializing the object arguments during runtime.

Usage:
TypeBasedStrategy$new(
subset,
heuristic,
configuration = StrategyConfiguration$new()

)

Arguments:

subset The Subset used to apply the feature-clustering strategy.

heuristic The heuristic used to compute the relevance of each feature. Must inherit from
GenericHeuristic abstract class.

configuration Optional parameter to customize configuration parameters for the strategy.
Must inherited from StrategyConfiguration abstract class.

Method execute(): Function responsible of performing the clustering strategy over the defined
Subset.

Usage:

TypeBasedStrategy$execute(verbose = FALSE)

Arguments:

verbose A logical value to specify if more verbosity is needed.

Method getDistribution(): Function used to obtain a specific cluster distribution.

Usage:
TypeBasedStrategy$getDistribution(
num.clusters = NULL,
num.groups = NULL,
include.unclustered = FALSE

)
Arguments:
num.clusters A numeric value to select the number of clusters (define the distribution).
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num.groups A single or numeric vector value to identify a specific group that forms the clus-
tering distribution.
include.unclustered A logical value to determine if unclustered features should be included.

Returns: A list with the features comprising an specific clustering distribution.

Method createTrain(): The function is used to create a Trainset object from a specific clus-
tering distribution.
Usage:
TypeBasedStrategy$createTrain(
subset,
num.clusters = NULL,
num.groups = NULL,
include.unclustered = FALSE

)

Arguments:

subset The Subset object used as a basis to create the train set (see Trainset class).

num.clusters A numeric value to select the number of clusters (define the distribution).

num.groups A single or numeric vector value to identify a specific group that forms the clus-
tering distribution.

include.unclustered A logical value to determine if unclustered features should be included.

Details: If num.clusters and num. groups are not defined, best clustering distribution is used
to create the train set.

Returns: A Trainset object.

Method plot(): The function is responsible for creating a plot to visualize the clustering distri-
bution.

Usage:

TypeBasedStrategy$plot(dir.path = NULL, file.name = NULL)

Arguments:

dir.path An optional character argument to define the name of the directory where the ex-
ported plot will be saved. If not defined, the file path will be automatically assigned to the
current working directory, *getwd()’.

file.name A character to define the name of the PDF file where the plot is exported.

Method saveCSV(): The function is used to save the clustering distribution to a CSV file.

Usage:

TypeBasedStrategy$saveCSV(dir.path = NULL, name = NULL, num.clusters = NULL)
Arguments:

dir.path The name of the directory to save the CSV file.

name Defines the name of the CSV file.

num.clusters An optional parameter to select the number of clusters to be saved. If not de-
fined, all cluster distributions will be saved.

Method clone(): The objects of this class are cloneable with this method.
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Usage:
TypeBasedStrategy$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

GenericClusteringStrategy, StrategyConfiguration

UseProbability Compute performance across resamples.

Description

Computes the performance across resamples when class probabilities can be computed.

Super class

D2MCS: : SummaryFunction -> UseProbability

Methods

Public methods:
e UseProbability$new()
* UseProbability$execute()
e UseProbability$clone()

Method new(): The function defined during runtime the usage of seven measures: 'ROC’,
’Sens’, Kappa’, *Accuracy’, "TCR_9’, "MCC’ and "PPV"’.

Usage:

UseProbability$new()
Method execute(): The function computes the performance across resamples using the previ-
ously defined measures.

Usage:

UseProbability$execute(data, lev = NULL, model = NULL)

Arguments:

data A data.frame containing the data used to compute the performance.
lev An optional value used to define the levels of the target class.

model An optional value used to define the M.L. model used.

Returns: A vector of performance estimates.

Method clone(): The objects of this class are cloneable with this method.
Usage:
UseProbability$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
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See Also

SummaryFunction

VotingStrategy Voting Strategy template.

Description

Abstract class used to define new SingleVoting and CombinedVoting schemes.

Methods

Public methods:

e VotingStrategy$new()

* VotingStrategy$getVotingSchemes()
* VotingStrategy$getMetrics()

* VotingStrategy$execute()

e VotingStrategy$getName ()

* VotingStrategy$clone()

Method new(): Abstract method used to initialize the object arguments during runtime.

Usage:

VotingStrategy$new()
Method getVotingSchemes(): The function returns the voting schemes that will participate in
the voting strategy.

Usage:
VotingStrategy$getVotingSchemes()

Returns: A vector of object inheriting from VotingStrategy class.
Method getMetrics(): The function is used to get the metric that will be used during the voting
strategy.

Usage:
VotingStrategy$getMetrics()

Returns: A character vector.

Method execute(): Abstract function used to implement the operation of the voting schemes.

Usage:

VotingStrategy$execute(predictions, ...)

Arguments:

predictions A ClusterPredictions object containing the prediction achieved for each clus-
ter.

. Further arguments passed down to execute function.
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Method getName(): The function returns the name of the voting scheme.
Usage:
VotingStrategy$getName()

Returns: A character vector of size 1.

Method clone(): The objects of this class are cloneable with this method.

Usage:
VotingStrategy$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

D2MCS, SingleVoting, CombinedVoting

VotingStrategy
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