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Abstract

Computing standard errors and confidence intervals for estimated parameters is a com-
mon task in regression analysis. These quantities allow the analyst to quantify the certainty
(confidence) associated with the obtained estimates. In Countr two different approaches
have been implemented to do this job. First, using asymptotic MLE (Maximum Likelihood
Estimator) theory, numeric computation of the inverse Hessian matrix can be used as a
consistent estimator of the variance-covariance matrix, which in turn can be used to derive
standard errors and confidence intervals. The second option available in Countr is to use
bootsrap (Efron et al., 1979). In this document, we give the user an overview of how to do
to the computation in Countr.

This vignette is part of package Countr (see Kharrat et al., 2019).

Before starting our analysis, we need to load the useful packages. On top of Countr, the
dplyr package (Wickham and Francois, 2016) will be used:

library(Countr)
library(dplyr)
library(xtable)

1 Maximum Likelihood estimator (MLE)

1.1 Theory

Let f(y,x,0) be the probability density function of a renewal-count model, where y is the
count variable, x the vector of covariate values and 6 the vector of coefficients to be estimated
(¢ x 1 vector). Define the log-likelihood by £ = >~ ; Inf(y;|x;, 8;). Under regularity conditions
(Cameron and Trivedi, 2013, see for example)[Section 2.3], the MLE 8 is the solution of the
first-order conditions,

Z alnfZ o, (1)

where f; = f(vi|x;, 6;) and ‘39 is a g x 1 vector.
Let 6y be the true value of 8. Using MLE theory and assuming regularity conditions, we
obtain 6 & 0y and

Vi(Barz — 80) % N[0, V7], (2)
where the ¢ X ¢ matrix V matrix is defined as
0% 1In f;
V= E [Z 0606’ ‘90]' ®)



To use this result, we need a consistent estimator of the variance matrix V. Many options
are available: the one implemented in Countr is known as the Hessian estimator and simply
evaluates Equation 3 at 8 without taking expectation and limit.

1.2 TImplementation in Countr

The easiest way to compute the variance-covariance matrix when fitting a renewal-count model
with Countr is to set the argument computeHessian to TRUE when calling the fitting routine
renewalCount (). Note that this is the default behaviour and it will save the matrix in the
returned object (slot vcov). Following standard practice in R, the matrix can be extracted or
recomputed using the vcov() method. We show here an example with the fertility data.

data(fertility)
form <- children ~ german + years_school + voc_train + university + Religion +
year_birth + rural + age_marriage

gam <- renewalCount(formula = form, data = fertility, dist = "gamma",
computeHessian = TRUE,
control = renewal.control(trace = 0, method = "nlminb")
)

vl <- gam$vcov
v2 <- vcov(gam)

all(vl == v2)
[1] TRUE

The above vcov() method simply extracts the variance-covariance matrix if it has been
computed at fitted. Otherwise, the function will re-compute it. The user can choose the
computation method by specifying the method argument: asymptotic for numerical hessian
computation or boot for the bootstrap method. In the latter case, user can customise the
bootstrap computation as will be discussed in Section 2 by using the ... argument.

Parameters’ standard errors and confidence intervals can be computed by calls to the generic
functions se.coef() and confint(). The hessian method can be specified by setting the
argument type = "asymptotic"

se <- se.coef(gam, type = "asymptotic")
se
rate_ rate_germanyes rate_years_school
0.2523375 0.0590399 0.0265014
rate_voc_trainyes rate_universityyes rate_ReligionCatholic
0.0358390 0.1296149 0.0578032
rate_ReligionMuslim rate_ReligionProtestant rate_year_birth
0.0698429 0.0622954 0.0019471
rate_ruralyes rate_age_marriage shape_
0.0311876 0.0053274 0.0710611
ci <- confint(gam, type = "asymptotic")
ci



2.5 % 97.5 %

rate_ 1.0621317 2.0512766
rate_germanyes -0.3054815 -0.0740495
rate_years_school -0.0202566 0.0836270
rate_voc_trainyes -0.2141792 -0.0736929
rate_universityyes -0.4000943 0.1079867
rate_ReligionCatholic 0.0924771 0.3190616
rate_ReligionMuslim 0.3857453 0.6595243
rate_ReligionProtestant -0.0149604 0.2292330
rate_year_birth -0.0014721 0.0061603
rate_ruralyes -0.0056353 0.1166177
rate_age_marriage -0.0392385 -0.0183553
shape_ 1.3000440 1.5785983

One can validate the result obtained here by comparing them to what is reported in Winkel-
mann (1995, Table 1).

2 Bootstrap

2.1 Theory

The type of bootstrap used in Countr is known as nonparametric or bootstrap pairs. It is
valid under the assumption that (y;, x;) is iid. The algorithm works as follows: (a) Generate a
pseudo-sample of size n, (y/,%x]), | =1,...,n, by sampling with replacement from the original
pairs (yi,x;), i =1,...,n. (b) Compute the estimator 6; from the pseudo-sample generated in
1. (c) Repeat steps 1 and 2 B times giving B estimates 61,...,0p5. (d) The bootstrap estimate
of the variance-covariance matrix is given by VBOOt[é] = ﬁ Zfil(éb — é)(éb — 6) where
6 = [61,...,0,] and 6; is the sample mean 0; = (1/B) X2, éjyb.

Asymptotically (B — o0), the bootstrap variance-covariance matrix and standard errors
are equivalent to their robust counterpart obtained by sandwich estimators. In practice, using
B = 400 is usually recommended (Cameron and Trivedi, 2013, Section 2.6.4)}

2.2 Implementation in Countr

The bootstrap computations in Countr are based on the boot () function from the package with
the same name (Canty and Ripley, 2017).

The variance-covariance matrix is again computed with the renewal method for vcov()
by specifying the argument method = "boot". The computation can be further customised
by passing other options accepted by boot () other than data and statistic which are pro-
vided by the Countr code. Note that the matrix is only computed if it is not found in the
passed renewal object. The bootstrap sample is actually computed by a separate function
addBootSampleObject (), which computes the bootstrap sample and adds it as component
boot to the renewal object. Functions like vcov() and confint () check if a bootstrap sample
is already available and use it is. It is a good idea to call addBootSampleObject () before at-
tempting computations based on bootstrapping. We show below how to update the previously
fitted gamma model with 400 bootstrap iterations using the parallel option and 14 CPUs. if
B is large and depending on how fast the model can be fitted, this computation may be time
consuming.

gam <- addBootSampleObject(gam, R = 400, parallel = "multicore", ncpus = 14)



Once the object is updated, the variance-covariance matrix is computed by vcov in a
straightforward way:

gam$vcov <- matrix()
varCovar <- vcov(gam, method = "boot")

This arranges the above results in a table (see Table 1):

capboot <- "Bootstrap variance-covariance matrix of model \texttt{gam}."
print (xtable(varCovar, digits = -1, caption = capboot, label = "tab:varCovar"),
rotate.colnames = TRUE, floating.environment = "sidewaystable" )

Bootstrap standard errors are also very easy to compute by calling se. coef () with argument
type="boot". As discussed before, if the boot object is not found in the renewal object, users
can customise the boot () call by passing the appropriate arguments in "...".

se_boot <- se.coef(gam, type = "boot")

se_boot
rate_ rate_germanyes rate_years_school
0.2705321 0.0610739 0.0268098
rate_voc_trainyes rate_universityyes rate_ReligionCatholic
0.0375714 0.1257020 0.0564330
rate_ReligionMuslim rate_ReligionProtestant rate_year_birth
0.0684739 0.0608356 0.0019361
rate_ruralyes rate_age_marriage shape_
0.0322879 0.0054811 0.1133149

Finally bootstrap confidence intervals can also be computed by confint () using the same
logic described for se.coef (). Different types of confidence intervals are available (default is
normal) and can be selected by choosing the appropriate type in bootType. We refer the user
to the boot package (Canty and Ripley, 2017) for more information.

ci_boot <- confint(gam, level = 0.95, type = "boot", bootType = "norm")
ci_boot

Bootstrap quantiles, type = normal

2.5 % 97.5 %
rate_ 1.0105534 2.0710199
rate_germanyes -0.3116866 -0.0722812
rate_years_school -0.0176548 0.0874376
rate_voc_trainyes -0.2211511 -0.0738740
rate_universityyes -0.4072628 0.0854802
rate_ReligionCatholic 0.0985243 0.3197377
rate_ReligionMuslim 0.3871631 0.6555759
rate_ReligionProtestant -0.0133962 0.2250750
rate_year_birth -0.0016933 0.0058961
rate_ruralyes -0.0098069 0.1167594
rate_age_marriage -0.0401915 -0.0187062
shape_ 1.1860640 1.6302501

We conclude this analysis by saving the workspace to avoid re-running the computation in
future exportation of the document:

save.image()
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rate. . 7.3E-02 5.0E-03 -5.7E-03 8.8E-04 1.7E-02 -7.2E-04 -3.5E-03 -6.3E-04 -1.8E-04 -2.0E-03 -3.6E-04 8.6E-03
rate_germanyes 5.0E-03 3.7E-03 -7.0E-04 -4.4E-04 1.8E-03 -9.5E-04 1.2E-03 -1.3E-03 -3.9E-05 -2.3E-04 6.8E-05 1.2E-05
rate_years_school -5.7E-03 -7.0E-04 7.2E-04 -1.6E-04 -2.3E-03 -5.1E-05 1.4E-04 -4.9E-05 5.6E-06 1.2E-04 -1.9E-05«w 6.3E-05
rate_voc_trainyes 8.8E-04 -4.4E-04 -1.6E-04 14E-03 1.7E-03 5.5E-05 2.1E-04 9.6E-06 9.9E-06 3.5E-04 -3.0E-06 4.8E-04
rate_universityyes 1.7E-02 1.8E-03 -2.3E-03 1.7E-03 1.6E-02 5.2E-04 5.0E-04 5.3E-04 3.1E-06 4.0E-04 3.1E-05 4.1E-04
rate_ ReligionCatholic -7.2E-04 -9.5E-04 -5.1E-05 5.5E-05 5.2E-04 3.2E-03 1.6E-03 2.8E-03 -24E-06 2.1E-04 -3.1E-05 -6.7E-05
rate_ ReligionMuslim -3.5E-03 1.2E-03 1.4E-04 2.1E-04 5.0E-04 1.6E-03 4.7E-03 1.4E-03 -1.8E-05 3.8E-04 1.8E-05 8.1E-05
rate_ ReligionProtestant -6.3E-04 -1.3E-03 -4.9E-05 9.6E-06 5.3E-04 28E-03 1.4E-03 3.7E-03 1.7E-06 1.9E-04 -44E-05 -2.3E-04
rate_year_birth -1.8E-04 -3.9E-05 5.6E-06 9.9E-06 3.1E-06 -2.4E-06 -1.8E-05 1.7E-06 3.7E-06 -2.1E-07 -2.3E-06 -2.4E-05
rate_ruralyes -2.0E-03 -2.3E-04 1.2E-04 3.5E-04 4.0E-04 2.1E-04 3.8E-04 19E-04 -2.1E-07 1.0E-03 1.3E-05 1.3E-04
rate_age marriage -3.6E-04 6.8E-05 -1.9E-05 -3.0E-06 3.1E-05 -3.1E-05 1.8E-05 -4.4E-05 -2.3E-06 1.3E-05 3.0E-05 8.9E-05
shape_  8.6E-03 1.2E-05 6.3E-05 4.8E-04 4.1E-04 -6.7TE-05 8.1E-05 -2.3E-04 -2.4E-05 1.3E-04 8.9E-05 1.3E-02

Table 1: Bootstrap variance-covariance matrix of model extttgam.



