Package 'CNAIM'

January 20, 2025

Type Package

Title Common Network Asset Indices Methodology (CNAIM)

Version 2.1.4

Maintainer Mohsin Vindhani <mohsin@utiligize.com>

Description Implementation of the CNAIM standard in R. Contains a series of algorithms which determine the probability of failure, consequences of failure and monetary risk associated with electricity distribution companies' assets such as transformers and cables. Results are visualized in an easy-to-understand risk matrix.

URL https://www.cnaim.io/

BugReports https://github.com/Utiligize/CNAIM/issues

License MIT + file LICENSE

Encoding UTF-8

LazyData TRUE

Depends R (>= 3.5.0)

Imports plyr, dplyr, jsonlite, magrittr, r2d3, ggplot2, stringr, tibble

RoxygenNote 7.2.1

Suggests knitr, htmltools, readxl, testthat, rmarkdown, widgetframe

VignetteBuilder knitr

NeedsCompilation no

Author Emil Larsen [aut], Kalle Hansen [aut], Kenneth Rosenorn [aut], Peter Larsen [aut], Utiligize ApS [cph], Mohsin Vindhani [aut, cre]

Repository CRAN

Date/Publication 2022-08-31 08:40:22 UTC

Contents

beta_1	6
beta_2	7
cof	7
cof_transformer_04_10kv	8
cof_transformer_11kv	10
current_health	11
dga_test_modifier	13
duty_factor_cables	
duty_factor_transformer_11_20kv	
duty_factor_transformer_33_66kv	
environmental_cof_board_04kv	
environmental_cof_cables_04_10kv	
environmental_cof_cables_60_30kv	
environmental_cof_ehv_cables	
environmental_cof_env_fittings	
environmental_cof_env_nungs	
environmental_cof_hv_switchgear_distribution	
environmental_cof_hv_switchgear_primary	
environmental_cof_lv_switchgear_and_other	
environmental_cof_lv_ugb	
environmental_cof_ohl_cond	
environmental_cof_ohl_cond_50kv	
environmental_cof_ohl_fittings_50kv	26
environmental_cof_pillar_04kv	
environmental_cof_poles	
environmental_cof_poles_ohl_support_50kv	
environmental_cof_relay	
environmental_cof_serviceline	
$environmental_cof_submarine_10kv\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\$	
environmental_cof_submarine_30_60kv	
environmental_cof_sub_cables	
environmental_cof_switchgear_30_60kv	
environmental_cof_switchgear_primary_10kv	
environmental_cof_switchgear_secondary_10kv	33
environmental_cof_towers	34
environmental_cof_tower_ohl_support_50kv	34
environmental_cof_transformers	35
environmental_cof_transformer_30_60kv	36
expected_life	37
e_cof_tf	38
 ffa_test_modifier	39
financial_cof_board_04kv	40
financial_cof_cables_04_10kv	41
financial cof cables 60 30kv	41
financial_cof_ehv_cables	42
financial_cof_ehv_fittings	
munoui_ooi_onv_num55	-+5

financial_cof_ehv_switchgear	. 44
financial_cof_hv_switchgear_distribution	. 45
financial_cof_hv_switchgear_primary	. 46
financial_cof_lv_switchgear_and_other	
financial_cof_lv_ugb	
financial_cof_ohl_cond	
financial_cof_ohl_cond_50kv	
financial_cof_ohl_fittings_50kv	
financial_cof_pillar_04kv	
financial_cof_poles	
financial_cof_poles_ohl_support_50kv	
financial_cof_relay	
financial_cof_serviceline	
financial_cof_submarine_cables_10kv	
financial_cof_submarine_cables_30_60kv	
financial_cof_sub_cables	
financial_cof_switchgear_30_60kv	. 57
financial_cof_switchgear_primary_10kv	. 57
financial_cof_switchgear_secondary_10kv	. 58
financial_cof_towers	. 59
financial_cof_tower_ohl_support_50kv	
financial_cof_transformers	
financial_cof_transformer_30_60kv	
f_cof_transformer_11kv	
health_score_excl_ehv_132kv_tf	
initial_health	. 64
initial_health	. 64 . 65
initial_health	. 64 . 65 . 67
initial_health	. 64 . 65 . 67 . 68
initial_health	. 64 . 65 . 67 . 68 . 68
initial_health	. 64 . 65 . 67 . 68 . 68 . 69
initial_health	. 64 . 65 . 67 . 68 . 68 . 69 . 70
initial_health	. 64 . 65 . 67 . 68 . 68 . 69 . 70
initial_health	. 64 . 65 . 67 . 68 . 68 . 68 . 69 . 70 . 71
initial_health	 . 64 . 65 . 67 . 68 . 68 . 69 . 70 . 71 . 71
initial_health	. 64 . 65 . 67 . 68 . 68 . 69 . 70 . 71 . 71 . 72
initial_health	. 64 . 65 . 67 . 68 . 68 . 69 . 70 . 71 . 71 . 72 . 73
initial_health	. 64 . 65 . 67 . 68 . 68 . 69 . 70 . 71 . 71 . 72 . 73 . 74
initial_health	. 64 . 65 . 67 . 68 . 68 . 69 . 70 . 71 . 71 . 72 . 73 . 74 . 75
initial_health	. 64 . 65 . 67 . 68 . 68 . 69 . 70 . 71 . 71 . 72 . 73 . 74 . 75 . 76
initial_healthlocation_factorlocation_factor_submatrix_adjusted_circlesmatrix_adjusted_intervalsmmi	. 64 . 65 . 67 . 68 . 68 . 69 . 70 . 71 . 71 . 72 . 73 . 74 . 75 . 76 . 77
initial_healthlocation_factorlocation_factor_submatrix_adjusted_circlesmatrix_adjusted_intervalsmmi	 . 64 . 65 . 67 . 68 . 69 . 70 . 71 . 72 . 73 . 74 . 75 . 76 . 77 . 78
initial_healthlocation_factorlocation_factor_submatrix_adjusted_circlesmatrix_adjusted_intervalsmmi	 . 64 . 65 . 67 . 68 . 69 . 70 . 71 . 72 . 73 . 74 . 75 . 76 . 77 . 78 . 79
initial_healthlocation_factorlocation_factor_submatrix_adjusted_circlesmatrix_adjusted_intervalsmminetwork_cof_board_04kvnetwork_cof_cables_04_10kvnetwork_cof_cables_60_30kvnetwork_cof_ehv_cablesnetwork_cof_ehv_cablesnetwork_cof_ehv_sub_cablenetwork_cof_ehv_switchgear_distributionnetwork_cof_hv_switchgear_primary	 . 64 . 65 . 67 . 68 . 69 . 70 . 71 . 71 . 72 . 73 . 74 . 75 . 76 . 77 . 78 . 79 . 80
initial_healthlocation_factorlocation_factor_submatrix_adjusted_circlesmatrix_adjusted_intervalsmmi	 . 64 . 65 . 67 . 68 . 69 . 70 . 71 . 71 . 72 . 73 . 74 . 75 . 76 . 77 . 78 . 79 . 80 . 81
initial_healthlocation_factorlocation_factor_submatrix_adjusted_circlesmatrix_adjusted_intervalsmmi	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
initial_healthlocation_factorlocation_factor_submatrix_adjusted_circlesmatrix_adjusted_intervalsmmi	$\begin{array}{ccccc} & 64 \\ & 65 \\ & 67 \\ & 68 \\ & 68 \\ & 69 \\ & 70 \\ & 71 \\ & 71 \\ & 71 \\ & 72 \\ & 73 \\ & 74 \\ & 75 \\ & 76 \\ & 77 \\ & 78 \\ & 79 \\ & 80 \\ & 81 \\ & 82 \\ & 83 \end{array}$
initial_healthlocation_factorlocation_factor_submatrix_adjusted_circlesmatrix_adjusted_intervalsmmi	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

network_cof_pillar_04kv	 . 85
network_cof_poles_ohl_support_50kv	
network_cof_relay	 . 86
network_cof_serviceline	 . 87
network_cof_submarine_cables_10kv	 . 88
network_cof_submarine_cables_30_60kv	 . 89
network_cof_switchgear_30_60kv	 . 90
network_cof_switchgear_primary_10kv	 . 90
network_cof_switchgear_secondary_10kv	 . 91
network_cof_tower	
network_cof_tower_ohl_support_50kv	 . 93
network_cof_transformers	 . 93
network_cof_transformer_30_60kv	 . 94
n_cof_excl_ehv_132kv_tf	 . 95
oil_test_modifier	
plot_pof	 . 97
pof_132kv_cb	
pof_board_04kv	
pof_building	
pof_cables_04kv_pex	
pof_cables_10kv_oil	
pof_cables_10kv_pex	
pof_cables_132kv	
pof_cables_60_30kv	
pof_cables_66_33kv	
pof_ehv_fittings	
pof_ehv_switchgear	
pof_future_board_04kv	
pof_future_building	
pof_future_cables_04kv_pex	
pof_future_cables_10kv_oil	
pof_future_cables_10kv_pex	
pof_future_cables_132kv	
pof_future_cables_60_30kv	
pof_future_cables_66_33kv	
pof_future_meter	
pof_future_ohl_cond_132_66_33kv	
pof_future_ohl_cond_50kv	
pof_future_ohl_fittings_50kv	
pof_future_pillar_04kv	
pof_future_poles	
pof_future_poles_ohl_support_50kv	
pof_future_relay	
pof_future_rtu	
pof_future_serviceline	
pof_future_submarine_cables	
pof_future_submarine_cables_10kv_oil	
pof_future_submarine_cables_10kv_pex	
$poi_iu_iu_su_iu_iu_su_iu_iu_u_u_su_iu_u_su_iu_u_su_iu_u_su_iu_u_su_iu_uu_su_iu_suiiusuiiusiusiusiusiusiusiusiusiusiusiu$. 133

pof_future_submarine_cables_30_60kv_oil	. 157
pof_future_submarine_cables_30_60kv_pex	. 159
pof_future_switchgear_30_60kv	. 161
pof_future_switchgear_primary_10kv	
pof_future_switchgear_secondary_10kv	. 165
pof_future_transformer_04_10kv	. 167
pof_future_transformer_11_20kv	
pof_future_transformer_132kv	. 172
pof_future_transformer_30_60kv	. 177
pof_future_transformer_33_66kv	. 181
pof_hv_switchgear_distribution	
pof_hv_switchgear_primary	. 188
pof_lv_switchgear_and_other	
pof_lv_ugb	
pof_meter	
pof_ohl_cond_132_66_33kv	
pof_poles	
pof submarine cables	
pof_switchgear_primary_10kv	
pof_switchgear_secondary_10kV	
pof_towers	
pof_tower_ohl_support_50kv	
pof_transformer_04_10kv	
pof_transformer_11_20kv	
pof_transformer_132kv	
pof_transformer_30_60kv	
pof_transformer_33_66kv	
predict_weibull_model	
present_value_future_risk	
risk_calculation	
risk_matrix_points_plot	
risk_matrix_structure	
risk_matrix_summary_plot	
safety_cof_board_04kv	
safety_cof_cobles_04_10kv	
safety_cof_cables_60_30kv	
safety_cof_ehv_cables	
safety_cof_ehv_fittings	
$\cdot = $	
safety_cof_hv_switchgear_distribution	
safety_cof_hv_switchgear_primary	
safety_cof_lv_switchgear_and_other	
safety_cof_lv_ugb	
safety_cof_ohl_cond	
safety_cof_ohl_cond_50kv	
safety_cof_ohl_fittings_50kv	
safety_cof_pillar_04kv	
safety_cof_poles	. 244

258

safety_cof_pole	s_ohl_support_50kv .		 					 •				. 245
safety_cof_relay	/		 					 •				. 245
safety_cof_serv	iceline		 					 				. 246
safety_cof_subr	narine_cables_10kv .		 					 				. 247
safety_cof_subr	narine_cables_30_60kv		 					 •				. 247
safety_cof_sub_	_cables		 					 				. 248
safety_cof_swit	chgear_30_60kv		 					 				. 249
safety_cof_swit	chgear_primary_10kv		 					 				. 249
safety_cof_swit	chgear_secondary_10kv	<i>.</i>	 					 				. 250
safety_cof_towe	ers		 					 				. 251
safety_cof_towe	er_ohl_support_50kv .		 					 				. 252
safety_cof_trans	sformers		 					 				. 252
safety_cof_trans	sformer_30_60kv		 					 •				. 253
s_cof_swg_tf_o	hl		 					 •				. 254
train_weibull_m	nodel		 					 				. 255
transformer_111	cv_faults		 					 				. 256

Index

```
beta_1
```

Initial Ageing Rate

Description

This function calculates the initial ageing rate for an electric network asset. See section 6.1.5 on page 36 in CNAIM (2021).

Usage

beta_1(expected_life_years)

Arguments

expected_life_years

Numeric. The output returned by the function expected_life().

Value

Numeric. Initial ageing rate for an electric network asset.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

beta_1(expected_life_years = 10)

beta_2

Description

This function calculates the forecast Ageing Rate for an electric network asset. See section 6.1.8 on page 38 in CNAIM (2021).

Usage

beta_2(current_health_score, age)

Arguments

current_health_	score
	Numeric. The output returned by the function ${\tt current_health}().$
age	Numeric. Age of the asset.

Value

Numeric. Forecast ageing rate for an electric network asset.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

beta_2(current_health_score = 1, age = 25)

cof

Consequences of Failure

Description

This function calculates consequences of failure (cf.section 7, page 75, CNAIM, 2021).

```
cof(financial_cof, safety_cof, environmental_cof, network_cof)
```

financial_cof	Numeric. Financial consequences of failure.
safety_cof	Numeric. Safety consequences of failure.
environmental_c	of
	Numeric. Environmental consequences of failure.
network_cof	Numeric. Network cost of failure.

Value

Numeric. Consequences of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

cof_transformer_04_10kv

Consequences of Failure for a 0.4/10 kV transformer

Description

This function calculates consequences of failure for a 6.6/11 kV transformer (cf.section 7, page 75, CNAIM, 2021).

Usage

```
cof_transformer_04_10kv(
   kva,
   type,
   type_risk,
   location_risk,
   prox_water,
   bunded,
   no_customers,
   kva_per_customer
)
```

)

Arguments

kva

Numeric. The rated transformer capacity measured in kVA for a 6.6/11 kV transformer. Rated capacity is used to derive the type financial factor. For a general description of type financial factor see section 7.3.3.1 on page 80 in CNAIM (2021). A setting of "Default" will result in a type financial factor equal to 1 (cf. section D1.2.1, page 178, CNAIM, 2021).

type	String. Relates to the accessibility of the transformer Options: type = c("Type A", "Type B", "Type C", "Default"). A setting of "Type A" - Normal access. A setting of "Type B" - Constrained access or confined working space. A setting of "Type C" - Underground substation. A setting of "Default" - Normal access thus same as "Type A" setting (cf. table 221, page 180, CNAIM, 2021).
type_risk	String. Risk that the asset presents to the public by its characteristics and particu- lar situation. Options: type_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a set- ting of "Medium".
location_risk	String. Proximity to areas that may affect its likelihood of trespass or interfer- ence. Options: location_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a setting of "Medium".
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021).
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.
no_customers	Numeric. The numner of customers fed by an individual asset.
kva_per_custom	er Numeric. If the asset have an exceptionally high demand per customer type in
	kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Consequences of failure for a 0.4/10 kV transformer.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

cof_transformer_11kv Consequences of Failure for a 6.6/11 kV transformer

Description

This function calculates consequences of failure for a 6.6/11 kV transformer (cf.section 7, page 75, CNAIM, 2021).

Usage

```
cof_transformer_11kv(
  kva,
  type,
  type_risk,
  location_risk,
  prox_water,
  bunded,
  no_customers,
  kva_per_customer
)
```

Arguments

kva	Numeric. The rated transformer capacity measured in kVA for a 6.6/11 kV transformer. Rated capacity is used to derive the type financial factor. For a general description of type financial factor see section 7.3.3.1 on page 80 in CNAIM (2021). A setting of "Default" will result in a type financial factor equal to 1 (cf. section D1.2.1, page 178, CNAIM, 2021).
type	String. Relates to the accessibility of the transformer Options: type = c("Type A", "Type B", "Type C", "Default"). A setting of "Type A" - Normal access. A setting of "Type B" - Constrained access or confined working space. A setting of "Type C" - Underground substation. A setting of "Default" - Normal access thus same as "Type A" setting (cf. table 221, page 180, CNAIM, 2021).
type_risk	String. Risk that the asset presents to the public by its characteristics and particu- lar situation. Options: type_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a set- ting of "Medium".
location_risk	String. Proximity to areas that may affect its likelihood of trespass or interfer- ence. Options: location_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a setting of "Medium".
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021).

current_health

bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.
no_customers	Numeric. The numner of customers fed by an individual asset.
kva_per_custome	er
	Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of
	1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Consequences of failure for a 6.6/11 kV transformer.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

current_health Current Health score

Description

This function calculates the current health score for a given electric network asset (cf. CNAIM, 2021. Page 23, section 4.3.2).

```
current_health(
    initial_health_score,
    health_score_factor,
    health_score_cap = "Default",
    health_score_collar = "Default",
    reliability_factor = "Default"
)
```

initial_health_score

Numeric. The output from the function initial_health().

health_score_factor

Numeric. E.g. output from the function health_score_excl_ehv_132kv_tf().

health_score_cap

Numeric. Specifies the maximum value of current health score. The cap is used in situations where a good result from a condition inspection or measurement implies that the health score should be no more than the specified value. The cap is derived as the minimum of the observed condition cap and the measured condition cap. Measured and observed condition caps are found in lookup tables depending in the asset category, when determine the observed and measured condition factors. A setting of "Default" sets the health_score_cap to 10.

health_score_collar

Numeric. Specifies the minimum value of Current Health Score. The collar is used in situations where a poor result from a condition inspection or measurement implies that the health score should be at least the specified value. The collar is derived as the minimum of the observed condition collar and the measured condition collar. Measured and observed condition collars are found in lookup tables depending in the asset category, when determine the observed and measured condition factors. A setting of "Default" sets the health_score_collar to 0.5.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

Numeric. The Current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

dga_test_modifier DGA Test Modifier

Description

This function calculates the DGA test modifier for 33/10kV, 66/10kV and 132kV transformers. See e.g. section 6.12 on page 65 in CNAIM (2017).

Usage

```
dga_test_modifier(
   hydrogen = "Default",
   methane = "Default",
   ethylene = "Default",
   ethane = "Default",
   acetylene = "Default",
   hydrogen_pre = "Default",
   methane_pre = "Default",
   ethylene_pre = "Default",
   ethylene_pre = "Default",
   acetylene_pre = "Default",
   acetylene_p
```

Arguments

hydrogen	Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels are measured in ppm. A setting of "Default" will result in the best possible result.
methane	Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethylene	Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethane	Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.
acetylene	Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
hydrogen_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
methane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.

acetylene_pre Numeric. Previous results. A setting of "Default" will result in the best possible result.

Value

Data table.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# DGA test modifier
dga_test_modifier(hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
acetylene_pre = "Default",
```

duty_factor_cables Duty Factor for all cables (incl. submarine cables).

Description

This function calculates the duty factor for under all types of cables depending on the maximum percentage utilisation under normal operating conditions. The duty factor is used in the deriviation of the expected life of an asset. See e.g. expected_life(). For more general information about the derivation of the duty factor see section 6.6 on page 51 in CNAIM (2021)

```
duty_factor_cables(
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   voltage_level = "EHV"
)
```

utilisation_pct	
	Numeric. The max percentage of utilisation under normal operating conditions.
operating_volta	ge_pct
	Numeric. The ratio in percent of operating/design voltage.
voltage_level	String. Specify the voltage level. Options: voltage_level = c("EHV", "HV"). Choose "EHV" for cables >= 33kV and "HV" for cables < 33kV.

Value

Numeric. Duty factor for cables.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
duty_factor_cables(utilisation_pct = "Default",
operating_voltage_pct = "Default",
voltage_level = "EHV")
```

duty_factor_transformer_11_20kv Duty Factor for 6.6/11kV and 20kV Transformers

Description

This function calculates the duty factor for 6.6/11kV and 20kV transformers depending on the maximum percentage utilisation under normal operating conditions. The duty factor is used in the deriviation of the expected life of an asset. See e.g. expected_life(). For more general information about the derivation of the duty factor see section 6.6 on page 51 in CNAIM (2021)

Usage

```
duty_factor_transformer_11_20kv(utilisation_pct = "Default")
```

Arguments

utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

Value

Numeric. Duty factor for 6.6/11kV or 20kV transformer.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

duty_factor_transformer_11_20kv(utilisation_pct = 95)

duty_factor_transformer_33_66kv

Duty Factor for 33/10kV and 66/10kV Transformers and Tapchanger

Description

This function calculates the duty factor for 33/10kV and 66/10kV transformers depending on the maximum percentage utilisation under normal operating conditions. And the tapchanger depending on the average number of daily taps. The duty factor is used in the derivation of the expected life of an asset. See e.g. expected_life(). For more general information about the derivation of the duty factor see section 6.6 on page 51 in CNAIM (2021)

Usage

```
duty_factor_transformer_33_66kv(
    utilisation_pct = "Default",
    no_taps = "Default"
)
```

Arguments

utilisation_pct Numeric. The max percentage of utilisation under normal operating conditions. no_taps Numeric. Average number of daily taps (tapchanger).

Value

Data table. Duty factor for the transformer and for the tapcharger

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
duty_factor_transformer_33_66kv(utilisation_pct = 95,
no_taps = 25)
```

environmental_cof_board_04kv

Environmental cost of Failure for 0.4kV Board

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for 0.4kV board Outputted in DKK

Usage

environmental_cof_board_04kv()

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

environmental_cof_board_04kv()

environmental_cof_cables_04_10kv Environmental cost of Failure for 0.4kV and 10kV UG Cables

Description

This function calculates environmental consequences of failure Outputted in DKK hv_asset_category = c("10kV UG Cable (Oil)", "10kV UG Cable (Non Pressurised)", "0.4kV UG Cable (Non Pressurised)".

Usage

```
environmental_cof_cables_04_10kv(hv_asset_category, prox_water, bunded)
```

Arguments

hv_asset_categ	ory
	String The type of HV asset category A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m
prox_water	Numeric. Specify the proximity to a water course in meters.
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

Examples

```
environmental_cof_cables_04_10kv(hv_asset_category = "10kV UG Cable (0il)",
prox_water = 95, bunded = "Yes")
```

environmental_cof_cables_60_30kv

Environmental cost of Failure for 30-60 kV UG cables

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear ehv_asset_category = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Oil)", "60kV UG Cable (Oil)"). The default setting is ehv_asset_category = "60kV UG Cable (Gas)".

Usage

```
environmental_cof_cables_60_30kv(ehv_asset_category, prox_water, bunded)
```

Arguments

ehv_asset_category

Asset category for the analysis

prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021).
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
environmental_cof_cables_60_30kv(ehv_asset_category = "30kV UG Cable (0il)",
prox_water = 95, bunded = "Yes")
```

18

Environmental cost of Failure for EHV UG cables & 132 kV UG cables

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear

Usage

```
environmental_cof_ehv_cables(ehv_asset_category, prox_water, bunded)
```

Arguments

ehv_asset_category	
	<pre>String The type of EHV cable distribution asset category Options: ehv_asset_category = c("33kV UG Cable (0il)", "33kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV UG Cable (0il)", "66kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "132kV UG Cable (0il)", "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)").</pre>
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021).
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
environmental_cof_ehv_cables(ehv_asset_category = "33kV UG Cable (0il)",
prox_water = 95, bunded = "Yes")
```

environmental_cof_ehv_fittings

Environmental cost of Failure for EHV/132kV fittings

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear

Usage

environmental_cof_ehv_fittings(ehv_asset_category)

Arguments

ehv_asset_category

String The type of EHV asset category Options: ehv_asset_category = c("33kV
Fittings", "66kV Fittings", "132kV Fittings")

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

environmental_cof_ehv_fittings(ehv_asset_category = "33kV Fittings")

environmental_cof_ehv_switchgear Environmental cost of Failure for EHV swicthgear & 132kV CB

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear

```
environmental_cof_ehv_switchgear(
    ehv_asset_category,
    type_env_factor,
    prox_water,
    bunded
)
```

ehv_asset_category		
	String The type of EHV swicthgear & 132kV CB Options: ehv_asset_category	
	= c("33kV CB (Air Insulated Busbars)(ID)(GM)","33kV CB (Air Insulated	
	Busbars)(OD)(GM)","33kV CB (Gas Insulated Busbars)(ID)(GM)","33kV CB	
	(Gas Insulated Busbars)(OD)(GM)","33kV RMU","33kV Switch (GM)","66kV	
	CB (Air Insulated Busbars)(ID)(GM)","66kV CB (Air Insulated Busbars)(OD)(GM)","66kV	
	CB (Gas Insulated Busbars)(ID)(GM)","66kV CB (Gas Insulated Busbars)(OD)(GM)")	
type_env_factor		
	String The type environment factor of EHV asset category	
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of	
	"Default" will result in a proximity factor of 1. Thus assume the proximity	
	to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM,	
	2021).	
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.	

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
environmental_cof_ehv_switchgear(ehv_asset_category = "33kV RMU",
type_env_factor = "0il",
prox_water = 95,
bunded = "Yes")
```

environmental_cof_hv_switchgear_distribution Environmental cost of Failure for HV switchgear distribution

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for HV switchgear

```
environmental_cof_hv_switchgear_distribution(
    hv_asset_category,
    type_env_factor,
    prox_water,
    bunded
)
```

hv_asset_categ	ory	
	<pre>String The type of HV switchgear distribution asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Secondary", "6.6/11kV RMU", "6.6/11kV X-type RMU", "6.6/11kV Switch (GM)", "20kV CB (GM) Secondary", "20kV RMU", "20kV Switch (GM)")</pre>	
type_env_factor		
	<pre>String The type environment factor of HV asset category Options: type_env_factor = c("0il", "SF6", "Niether", "Default").</pre>	
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021).	
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.	

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
environmental_cof_hv_switchgear_distribution(
hv_asset_category = "6.6/11kV CB (GM) Secondary",
type_env_factor = "0il", prox_water = 95,
bunded = "Yes")
```

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for HV switchgear

```
environmental_cof_hv_switchgear_primary(
    hv_asset_category,
    type_env_factor,
    prox_water,
    bunded
)
```

hv_asset_category	
	String The type of HV asset category Options: hv_asset_category = c("6.6/11kV
	CB (GM) Primary","20kV CB (GM) Primary")
type_env_factor	r
	<pre>String The type environment factor of HV asset category Options: type_env_factor = c("Oil", "SF6", "Niether", "Default").</pre>
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021).
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
environmental_cof_hv_switchgear_primary(
hv_asset_category = "6.6/11kV CB (GM) Primary",
type_env_factor = "0il",
prox_water = 95, bunded = "Yes")
```

environmental_cof_lv_switchgear_and_other Environmental cost of Failure for LV switchgear and others

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear

Usage

```
environmental_cof_lv_switchgear_and_other(lv_asset_category)
```

Arguments

```
lv_asset_category
```

String The type of LV asset category Options: lv_asset_category = c("LV Board (WM)","LV Board (X-type Network) (WM)", "LV Circuit Breaker","LV Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)")

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

environmental_cof_lv_switchgear_and_other(lv_asset_category = "LV Board (WM)")

environmental_cof_lv_ugb

Environmental cost of Failure for LV UGB

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV UGB

Usage

environmental_cof_lv_ugb(lv_asset_category)

Arguments

lv_asset_category
String The type of LV asset category Option: lv_asset_category = "LV UGB"

Value

Numeric. Environmental consequences of failure for LV UGB

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

environmental_cof_lv_ugb(lv_asset_category = "LV UGB")

environmental_cof_ohl_cond

Environmental cost of Failure for Overhead line conductors

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#'

Usage

```
environmental_cof_ohl_cond(ohl_cond_asset_category)
```

Arguments

```
ohl_cond_asset_category
```

String The type of Pole asset category Options: ohl_cond_asset_category =
c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor",
"132kV OHL (Tower Line) Conductor").

Value

Numeric. Financial consequences of failure for LV switchgear

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

environmental_cof_ohl_cond(ohl_cond_asset_category = "33kV OHL (Tower Line) Conductor")

environmental_cof_ohl_cond_50kv Environmental cost of Failure for 50kV Overhead Line Conductors

Description

This function calculates environmental consequences of failure Outputted in DKK

Usage

environmental_cof_ohl_cond_50kv()

Examples

environmental_cof_ohl_cond_50kv()

environmental_cof_ohl_fittings_50kv Environmental cost of Failure for 50kV Fittings

Description

This function calculates environmental consequences of failure Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
environmental_cof_ohl_fittings_50kv()
```

Value

Numeric. Financial consequences of failure for 50kv fittings Outputted in DKK.

Examples

environmental_cof_ohl_fittings_50kv()

```
environmental_cof_pillar_04kv
```

Environmental cost of Failure for 0.4kv Pillar

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
environmental_cof_pillar_04kv()
```

Value

Numeric. Financial consequences of failure for 0.4kV pillar Outputted in DKK.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

26

Examples

environmental_cof_pillar_04kv()

environmental_cof_poles

Environmental cost of Failure for Poles

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
environmental_cof_poles(pole_asset_category)
```

Arguments

```
pole_asset_category
```

String The type of pole asset category Options: pole_asset_category = c("LV Poles", "6.6/11kV Poles", "20kV Poles", "33kV Pole", "66kV Pole").

Value

Numeric. Financial consequences of failure for Poles

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

environmental_cof_poles(pole_asset_category = "33kV Pole")

environmental_cof_poles_ohl_support_50kv Environmental cost of Failure for Poles OHL Support 50kV

Description

This function calculates environmental consequences of failure Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for Poles OHL support 50kV Outputted in DKK.

Usage

environmental_cof_poles_ohl_support_50kv()

Examples

environmental_cof_poles_ohl_support_50kv()

environmental_cof_relay

Environmental cost of Failure for Relays

Description

This function calculates environmental consequences of failure. Environmental consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK. Financial consequences of failure for relay

Usage

```
environmental_cof_relay(type_env_factor, prox_water, bunded)
```

Arguments

type_env_factor

	<pre>String The type environment factor of HV asset category Options: type_env_factor = c("0il", "SF6", "Neither", "Default").</pre>
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

Examples

```
environmental_cof_relay(
type_env_factor = "Oil",
prox_water = 95,
bunded = "Yes")
```

```
environmental_cof_serviceline
Environmental cost of Failure for Service Lines
```

Description

This function calculates environmental consequences of failure Outputted in DKK

Usage

environmental_cof_serviceline(prox_water, bunded)

Arguments

prox_water	Numeric. Specify the proximity to a water course in meters. A setting of
	"Default" will result in a proximity factor of 1. Thus assume the proximity
	to a water course is between 80m and 120m
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

Examples

environmental_cof_serviceline(prox_water = 95, bunded = "Yes")

environmental_cof_submarine_10kv

Environmental cost of Failure for 10kV Submarine Cables

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for 10kV submarine cables Outputted in DKK.

```
environmental_cof_submarine_10kv()
```

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

environmental_cof_submarine_10kv()

environmental_cof_submarine_30_60kv Environmental cost of Failure for 30kV and 60kV Submarine Cables

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for 30kV and 60kV submarine cables Outputted in DKK.

Usage

environmental_cof_submarine_30_60kv()

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

environmental_cof_submarine_30_60kv()

environmental_cof_sub_cables

Environmental cost of Failure for sub cables

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

environmental_cof_sub_cables(sub_cable_asset_category)

Arguments

```
sub_cable_asset_category
```

String The type of Submarine cable asset category Options: sub_cable_asset_category
= c("HV Sub Cable", "EHV Sub Cable", "132kV Sub Cable").

Value

Numeric. Financial consequences of failure for sub cables

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2017: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

environmental_cof_sub_cables(sub_cable_asset_category = "HV Sub Cable")

environmental_cof_switchgear_30_60kv *Environmental cost of Failure for 30kV and 60kV Switchgear*

Description

This function calculates environmental consequences of failure Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' Outputted in DKK.

```
environmental_cof_switchgear_30_60kv(
    ehv_asset_category,
    type_env_factor,
    prox_water,
    bunded
)
```

ehv_asset_category	
	String The type of EHV asset category Options: ehv_asset_category = c("30kV", "60kV").
type_env_facto)r
	String The type environment factor of 30kV and 60kV switchgear Options: type_env_factor = c("Oil", "SF6", "Niether", "Default").
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

Value

Numeric. Financial consequences of failure for 30kV and 60kV switchgear

Examples

```
environmental_cof_switchgear_30_60kv(ehv_asset_category = "30kV",
type_env_factor = "0il",
prox_water = 95,
bunded = "Yes")
```

environmental_cof_switchgear_primary_10kv Environmental cost of Failure for 10kV Switchgear Primary

Description

This function calculates environmental consequences of failure Environmental consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
environmental_cof_switchgear_primary_10kv(type_env_factor, prox_water, bunded)
```

Arguments

type_env_facto	r
	<pre>String The type environment factor of HV asset category Options: type_env_factor = c("0il", "SF6", "Niether", "Default").</pre>
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

Value

Numeric. Financial consequences of failure for 10kV switchgear

Examples

```
environmental_cof_switchgear_primary_10kv(
type_env_factor = "Oil",
prox_water = 95, bunded = "Yes")
```

environmental_cof_switchgear_secondary_10kv Environmental cost of Failure for 10kV Switchgear Secondary

Description

This function calculates environmental consequences of failure. Environmental consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK. Financial consequences of failure for 10 kV switchgear secondary

Usage

```
environmental_cof_switchgear_secondary_10kv(
  type_env_factor,
  prox_water,
  bunded
)
```

Arguments

type_env_factor	
	<pre>String The type environment factor of HV asset category Options: type_env_factor = c("Oil", "SF6", "Niether", "Default").</pre>
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

Examples

```
environmental_cof_switchgear_secondary_10kv(
type_env_factor = "Oil", prox_water = 95,
bunded = "Yes")
```

environmental_cof_towers

Environmental cost of Failure for towers

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
environmental_cof_towers(tower_asset_category)
```

Arguments

```
tower_asset_category
```

String The type of tower asset category Options: tower_asset_category =
c("33kV Tower", "66kV Tower", "132kV Tower").

Value

Numeric. Financial consequences of failure for towers

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

environmental_cof_towers(tower_asset_category = "33kV Tower")

environmental_cof_tower_ohl_support_50kv Environmental cost of Failure for Tower OHL Support 50 kV

Description

This function calculates environmental consequences of failure Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

environmental_cof_tower_ohl_support_50kv()

Value

Numeric. Financial consequences of failure for tower ohl support 50 kV Outputted in DKK.

Examples

```
environmental_cof_tower_ohl_support_50kv()
```

environmental_cof_transformers Environmental cost of Failure for Transformers

Description

This function calculates environmental consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().#' @return Numeric. Financial consequences of failure for LV switchgear

Usage

```
environmental_cof_transformers(
  tf_asset_category,
  prox_water,
  bunded,
  size_kva_mva = NULL,
  size_conversion = NULL
)
```

Arguments

tf_asset_category		
	<pre>String The type of Transformer asset category Options: tf_asset_category = c("6.6/11kV Transformer (GM)","20kV Transformer (GM)", "33kV Transformer (GM)", "66kV Transformer (GM) " "132kV Transformer (GM) ").</pre>	
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021).	
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.	
size_kva_mva	Numeric The MVA KVA rating for the transformer	
size_conversion		
	String The size conversion for the transformer	

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 1.1, 2017: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
environmental_cof_transformers(tf_asset_category = "33kV Transformer (GM)",
prox_water = 95, bunded = "Yes", size_kva_mva = 20, size_conversion = "33/20kV")
```

environmental_cof_transformer_30_60kv

Environmental cost of Failure for 30/10kV and 60/10kV Transformers

Description

This function calculates environmental consequences of failure Outputted in DKK.

Usage

```
environmental_cof_transformer_30_60kv(
   tf_asset_category,
   prox_water,
   bunded,
   size_kva_mva = NULL
)
```

Arguments

tf_asset_category	
	<pre>String The type of Transformer Options: tf_asset_category = c("30kV Transformer (GM)","60kV Transformer (GM)").</pre>
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.
size_kva_mva	Numeric The MVA KVA rating for the transformer

Examples

environmental_cof_transformer_30_60kv(tf_asset_category = "30kV Transformer (GM)",
prox_water = 95, bunded = "Yes", size_kva_mva = 20)
Description

This function calculates the expected life of an electric network asset measured in years when it would be expected to first observe significant deterioration. The expected life is derived based on the assets normal expected life, duty factor and location factor. See section 6.1.4 on page 36 in CNAIM (2021).

Usage

```
expected_life(normal_expected_life, duty_factor, location_factor)
```

Arguments

	normal_expected_life		
		Numeric. The number of years a new asset is expected to normally last. I.e. technical life time. See page 107, table 20 in CNAIM (2021).	
	duty_factor	Numeric. E.g. the output returned by the function duty_factor_transformer_11_20kv().	
location_factor			
		Numeric. The output returned by the function location_factor().	

Value

Numeric. Expected life.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

e_cof_tf

Description

This function calculates environmental consequences of failure for all type of transformers. (cf. section 7.5, page 84, CNAIM, 2021). Environmental consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
e_cof_tf(
   asset_type_tf,
   rated_capacity = "Default",
   prox_water = "Default",
   bunded = "Default"
)
```

Arguments

asset_type_tf	String. Transformer types. Options: asset_type_tf = c("6.6/11kV Transformer (GM)","20kV Transformer (GM)", "33kV Transformer (GM)","66kV Transformer (GM)", "132kV Transformer (GM)").
rated_capacity	Numeric. The rated capacity for a transformer. For type "6.6/11kV Transformer (GM)" and "20kV Transformer (GM)" use kVA ratings. For "20kV Transformer (GM)", "33kV Transformer (GM)", "66kV Transformer (GM)", "132kV Transformer (GM)" use MVA ratings. A setting of "Default" will result in a size environmental factor of 1 (cf. table 230, page 187, CNAIM, 2021).
prox_water	Numeric. Specify the proximity to a water course in meters. A setting of "Default" will result in a proximity factor of 1. Thus assume the proximity to a water course is between 80m and 120m (cf. table 231, page 188, CNAIM, 2021).
bunded	String. Options: bunded = c("Yes", "No", "Default"). A setting of "Default" will result in a bunding factor of 1.

Value

Numeric. Financial cost of failure for a 10kV transformer.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

ffa_test_modifier

Examples

```
# Environmental consequences of failure for a 6.6/11 kV transformer
e_cof_tf(asset_type_tf = "6.6/11kV Transformer (GM)",
rated_capacity = 750, prox_water = 100, bunded = "Yes")
```

ffa_test_modifier Oil Test Modifier

Description

This function calculates the FFA test modifier based on the levels of furfuraldehyde in the transformer oil. This function applies for 33/10kV, 66/10kV and 132kV transformers. See e.g. section 6.13 on page 71 in CNAIM (2021).

Usage

ffa_test_modifier(furfuraldehyde = "Default")

Arguments

furfuraldehyde Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuraldehyde levels are measured in ppm. A setting of "Default" will result in the best possible result.

Value

Data table.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# FFA test modifier
ffa_test_modifier(furfuraldehyde = 50)
```

```
financial_cof_board_04kv
```

Financial cost of Failure for 0.4kV Board

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in (DKK).

Usage

```
financial_cof_board_04kv(
  type_financial_factor_criteria = "Asbestos clad",
  access_factor_criteria
)
```

Arguments

```
type_financial_factor_criteria
```

String Type Financial factor criteria for 0.4kV board (cf. section D1.2.1, page 178, CNAIM, 2021). Options: type_financial_factor_criteria = c("Non Asbestos clad", "Asbestos clad").

access_factor_criteria

String. Asses Financial factor criteria for 0.4kV board setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Value

Numeric. Financial consequences of failure for 0.4kV board

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
financial_cof_board_04kv(
type_financial_factor_criteria = "Asbestos clad",
access_factor_criteria = "Type A")
```

financial_cof_cables_04_10kv

Financial cost of Failure for 0.4kV and 10kV UG Cables

Description

This function calculates financial consequences of failure Outputted in DKK

Usage

```
financial_cof_cables_04_10kv(hv_asset_category)
```

Arguments

hv_asset_category

String The type of HV asset category hv_asset_category = c("10kV UG Cable
(0il)","10kV UG Cable (Non Pressurised)", "0.4kV UG Cable (Non Pressurised)".

Value

Numeric. Financial consequences of failure for 0.4kV and 10kV UG cables

Examples

financial_cof_cables_04_10kv(hv_asset_category = "10kV UG Cable (0il)")

financial_cof_cables_60_30kv

Financial cost of Failure for 30-60 kV UG cables

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof(). ehv_asset_category = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Non Pressurised)", "30kV UG Cable (0il)", "60kV UG Cable (0il)"). The default setting is ehv_asset_category = "60kV UG Cable (Gas)".

Usage

financial_cof_cables_60_30kv(ehv_asset_category)

Arguments

ehv_asset_category

Asset category for the analysis

Numeric. Financial consequences of failure for EHV switchgear

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

financial_cof_cables_60_30kv(ehv_asset_category = "30kV UG Cable (0il)")

financial_cof_ehv_cables

Financial cost of Failure for EHV UG cables & 132 kV UG cables

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

financial_cof_ehv_cables(ehv_asset_category)

Arguments

ehv_asset_category

String The type of EHV cable distribution asset category Options: ehv_asset_category
= c("33kV UG Cable (0il)", "33kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV
UG Cable (0il)", "66kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "132kV
UG Cable (0il)", "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)").

Value

Numeric. Financial consequences of failure for EHV switchgear

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
financial_cof_ehv_cables(ehv_asset_category = "33kV UG Cable (0il)")
```

financial_cof_ehv_fittings

Financial cost of Failure for EHV/132kV fittings

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_ehv_fittings(
    ehv_asset_category,
    type_financial_factor_criteria,
    access_factor_criteria
)
```

Arguments

```
ehv_asset_category
String The type of EHV asset category Options: ehv_asset_category = c("33kV
Fittings", "66kV Fittings", "132kV Fittings")
type_financial_factor_criteria
String. Type Financial factor criteria for EHV fittings type_financial_factor_criteria
= c("Suspension", "Tension").
access_factor_criteria
String. Asses Financial factor criteria for EHV fittings setting (cf. table 221,
page 180, CNAIM, 2021). access_factor_criteria = c("Type A", "Type
B").
```

Value

Numeric. Financial consequences of failure for EHV fittings

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
financial_cof_ehv_fittings(ehv_asset_category = "33kV Fittings",
type_financial_factor_criteria = "Tension",
access_factor_criteria = "Type A")
```

financial_cof_ehv_switchgear

Financial cost of Failure for EHV switchgear & 132kV CB

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

financial_cof_ehv_switchgear(ehv_asset_category, access_factor_criteria)

Arguments

ehv_asset_category

String The type of EHV switchgear & 132kV CB Options: ehv_asset_category
= c("33kV CB (Air Insulated Busbars)(ID)(GM)", "33kV CB (Air Insulated
Busbars)(OD)(GM)", "33kV CB (Gas Insulated Busbars)(ID)(GM)", "33kV CB
(Gas Insulated Busbars)(OD)(GM)", "33kV RMU", "33kV Switch (GM)", "66kV
CB (Air Insulated Busbars)(ID)(GM)", "66kV CB (Air Insulated Busbars)(OD)(GM)", "66kV
CB (Gas Insulated Busbars)(ID)(GM)", "66kV CB (Gas Insulated Busbars)(OD)(GM)", "66kV

access_factor_criteria

String. Asses Financial factor criteria for EHV switchgear & 132kV CB setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Value

Numeric. Financial consequences of failure for EHV switchgear & 132kV CB

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

financial_cof_ehv_switchgear(ehv_asset_category = "33kV RMU", access_factor_criteria = "Type A")

financial_cof_hv_switchgear_distribution Financial cost of Failure for HV switchgear distribution

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_hv_switchgear_distribution(
    hv_asset_category,
    access_factor_criteria
)
```

Arguments

hv_asset_category

String The type of HV switchgear distribution asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Secondary", "6.6/11kV RMU", "6.6/11kV X-type RMU", "6.6/11kV Switch (GM)", "20kV CB (GM) Secondary", "20kV RMU", "20kV Switch (GM)")

access_factor_criteria

String. Asses Financial factor criteria for HV switchgear setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Value

Numeric. Financial consequences of failure for LV switchgear

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
financial_cof_hv_switchgear_distribution(
hv_asset_category = "6.6/11kV CB (GM) Secondary",
access_factor_criteria = "Type A")
```

```
financial_cof_hv_switchgear_primary
```

Financial cost of Failure for HV switchgear primary

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

financial_cof_hv_switchgear_primary(hv_asset_category, access_factor_criteria)

Arguments

hv_asset_category

String The type of HV switchgear distribution asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Primary", "20kV CB (GM) Primary")

access_factor_criteria

String. Asses Financial factor criteria for HV switchgear setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Value

Numeric. Financial consequences of failure for HV switchgear primary

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
financial_cof_hv_switchgear_primary(
hv_asset_category = "6.6/11kV CB (GM) Primary",
access_factor_criteria = "Type A")
```

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_lv_switchgear_and_other(
    lv_asset_category,
    type_financial_factor_criteria,
    access_factor_criteria
)
```

Arguments

```
lv_asset_category
String The type of LV asset category Options: lv_asset_category = c("LV
Board (WM)", "LV Board (X-type Network) (WM)", "LV Circuit Breaker", "LV
Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)")
type_financial_factor_criteria
String Type Financial factor criteria for LV switchgear (cf. section D1.2.1, page
178, CNAIM, 2021). Options: type_financial_factor_criteria = c("Non
Asbestos clad", "Asbestos clad")
access_factor_criteria
String. Asses Financial factor criteria for LV switchgear setting (cf. table 221,
page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A",
"Type B", "Type C").
```

Value

Numeric. Financial consequences of failure for LV switchgear

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
financial_cof_lv_switchgear_and_other(lv_asset_category = "LV Board (WM)",
type_financial_factor_criteria = "Asbestos clad",
access_factor_criteria = "Type A")
```

financial_cof_lv_ugb Financial cost of Failure for LV UGB

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_lv_ugb(lv_asset_category)
```

Arguments

lv_asset_category

String The type of LV asset category Option: lv_asset_category = "LV UGB"

Value

Numeric. Financial consequences of failure for LV UGB

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

financial_cof_lv_ugb(lv_asset_category = "LV UGB")

financial_cof_ohl_cond

Financial cost of Failure for Overhead Line Conductors

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

financial_cof_ohl_cond(ohl_cond_asset_category, access_factor_criteria)

Arguments

ohl_cond_asset_category

String The type of Pole asset category Options: ohl_cond_asset_category =
c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor",
"132kV OHL (Tower Line) Conductor").

access_factor_criteria

String. Asses Financial factor criteria for Pole setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B").

Value

Numeric. Financial consequences of failure for Poles

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
financial_cof_ohl_cond(
  ohl_cond_asset_category = "33kV OHL (Tower Line) Conductor",
  access_factor_criteria = "Type A")
```

financial_cof_ohl_cond_50kv

Financial cost of Failure for 50kV Overhead Line Conductors

Description

This function calculates financial consequences of failure Outputted in DKK

Usage

financial_cof_ohl_cond_50kv(access_factor_criteria)

Arguments

```
access_factor_criteria
```

String. Asses Financial factor criteria for Overhead Line Conductors. Options: access_factor_criteria = c("Type A", "Type B").

Value

Numeric. Financial consequences of failure for Overhead Line Conductors

Examples

```
financial_cof_ohl_cond_50kv(
access_factor_criteria = "Type A")
```

financial_cof_ohl_fittings_50kv Financial cost of Failure for 50kV Fittings

Description

This function calculates financial consequences of failure. Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK

Usage

```
financial_cof_ohl_fittings_50kv(
   type_financial_factor_criteria,
   access_factor_criteria
)
```

Arguments

```
type_financial_factor_criteria
String. Type Financial factor criteria for EHV fittings Options: type_financial_factor_criteria
= c("Suspension", "Tension").
```

access_factor_criteria

String. Asses Financial factor criteria for EHV fittings setting. Options: access_factor_criteria = c("Type A", "Type B").

Value

Numeric. Financial consequences of failure for EHV fittings

Examples

```
financial_cof_ohl_fittings_50kv(
type_financial_factor_criteria = "Tension",
access_factor_criteria = "Type A")
```

50

financial_cof_pillar_04kv

Financial cost of Failure for 0.4kV Pillar

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_pillar_04kv(
   type_financial_factor_criteria = "Asbestos clad",
   access_factor_criteria
)
```

Arguments

```
type_financial_factor_criteria
```

String Type Financial factor criteria for 0.4kV Pillar (cf. section D1.2.1, page 178, CNAIM, 2021). Options: type_financial_factor_criteria = c("Non Asbestos clad", "Asbestos clad").

access_factor_criteria

String. Asses Financial factor criteria for 0.4kV Pillar setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Value

Numeric. Financial consequences of failure for 0.4kV Pillar

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
financial_cof_pillar_04kv(
type_financial_factor_criteria = "Asbestos clad",
access_factor_criteria = "Type A")
```

financial_cof_poles Financial cost of Failure for Poles

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_poles(
   pole_asset_category,
   type_financial_factor_criteria,
   access_factor_criteria
)
```

Arguments

```
pole_asset_category
```

```
String The type of pole asset category Options: pole_asset_category = c("LV Poles", "6.6/11kV Poles", "20kV Poles", "33kV Pole", "66kV Pole").
```

type_financial_factor_criteria

String. Type Financial factor criteria for Pole Options: type_financial_factor_criteria = c("Pole (supporting conductor only)", "Pole (supporting plant or equipment)", "Small footprint steel masts").

access_factor_criteria

String. Asses Financial factor criteria for Pole setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B").

Value

Numeric. Financial consequences of failure for Poles

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
financial_cof_poles(pole_asset_category = "33kV Pole",
type_financial_factor_criteria = "Small footprint steel masts",
access_factor_criteria = "Type A")
```

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_poles_ohl_support_50kv(
   pole_asset_category,
   type_financial_factor_criteria,
   access_factor_criteria
)
```

Arguments

```
pole_asset_category
String The type of Pole asset category
```

type_financial_factor_criteria

String. Type Financial factor criteria for Pole Options: type_financial_factor_criteria = c("Pole (supporting conductor only)", "Pole (supporting plant or equipment)", "Small footprint steel masts").

```
access_factor_criteria
```

String. Asses Financial factor criteria for Pole setting. Options: access_factor_criteria = c("Type A", "Type B").

Value

Numeric. Financial consequences of failure for Poles

```
financial_cof_poles_ohl_support_50kv(
type_financial_factor_criteria = "Small footprint steel masts",
access_factor_criteria = "Type A")
```

financial_cof_relay Financial cost of Failure for Relays

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_relay(access_factor_criteria)
```

Arguments

```
access_factor_criteria
```

String. Asses Financial factor criteria for relay setting. Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Examples

financial_cof_relay(access_factor_criteria = "Type A")

financial_cof_serviceline

Financial cost of Failure for Service Lines

Description

This function calculates financial consequences of failure Outputted in DKK

Usage

```
financial_cof_serviceline()
```

Value

Numeric. Financial consequences of failure for service line

Examples

financial_cof_serviceline()

financial_cof_submarine_cables_10kv Financial cost of Failure for 10kV Submarine Cables

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

financial_cof_submarine_cables_10kv()

Value

Numeric. Financial consequences of failure for 10kV submarine cables

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

financial_cof_submarine_cables_10kv()

financial_cof_submarine_cables_30_60kv

Financial cost of Failure for 30kV and 60kV Submarine Cables

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_submarine_cables_30_60kv()
```

Value

Numeric. Financial consequences of failure for 30kV and 60kV submarine cables

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

financial_cof_submarine_cables_30_60kv()

financial_cof_sub_cables

Financial cost of Failure for Sub cables

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

financial_cof_sub_cables(sub_cable_asset_category)

Arguments

```
sub_cable_asset_category
```

String The type of Submarine cable asset category Options: sub_cable_asset_category = c("HV Sub Cable", "EHV Sub Cable", "132kV Sub Cable").

Value

Numeric. Financial consequences of failure for Sub cables

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

financial_cof_sub_cables(sub_cable_asset_category = "HV Sub Cable")

financial_cof_switchgear_30_60kv

Financial cost of Failure for 30kV and 60kV Switchgear

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_switchgear_30_60kv(ehv_asset_category, access_factor_criteria)
```

Arguments

```
ehv_asset_category
    String The type of 30kV and 60kV switchgear Options: ehv_asset_category
    = c("30kV", "60kV").
```

access_factor_criteria

String. Asses Financial factor criteria for 30kV and 60kV switchgear setting. Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Value

Numeric. Financial consequences of failure for 30kV and 60kV switchgear

Examples

```
financial_cof_switchgear_30_60kv(ehv_asset_category = "30kV",
access_factor_criteria = "Type A")
```

financial_cof_switchgear_primary_10kv Financial cost of Failure for 10kV Switchgear Primary

T manetar cost of Tanare jor Tokt Stricingear T

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

financial_cof_switchgear_primary_10kv(access_factor_criteria)

Arguments

access_factor_criteria

String. Asses Financial factor criteria for 10KV switchgear setting. Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Value

Numeric. Financial consequences of failure for HV switchgear primary

Examples

financial_cof_switchgear_primary_10kv(access_factor_criteria = "Type A")

financial_cof_switchgear_secondary_10kv Financial cost of Failure for 10 kV Switchgear Secondary

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

financial_cof_switchgear_secondary_10kv(access_factor_criteria)

Arguments

```
access_factor_criteria
```

String. Asses Financial factor criteria for 10 kV Switchgear Secondary setting. Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Examples

```
financial_cof_switchgear_secondary_10kv(
access_factor_criteria = "Type A")
```

58

financial_cof_towers Financial cost of Failure for Towers

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_towers(
   tower_asset_category,
   type_financial_factor_criteria,
   access_factor_criteria
)
```

Arguments

```
tower_asset_category
    String The type of tower asset category Options: tower_asset_category =
        c("33kV Tower", "66kV Tower", "132kV Tower").
type_financial_factor_criteria
    String The type financial factor for Tower type_financial_factor_criteria
        = c("Suspension", "Tension", "Terminal").
access_factor_criteria
    String. Asses Financial factor criteria for Tower setting (cf. table 221, page 180,
        CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B").
```

Value

Numeric. Financial consequences of failure for Poles

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
financial_cof_towers(tower_asset_category = "33kV Tower",
type_financial_factor_criteria = "Suspension",
access_factor_criteria = "Type A")
```

financial_cof_tower_ohl_support_50kv

Financial cost of Failure for Tower OHL Support 50 kV

Description

This function calculates financial consequences of failure Financial consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
financial_cof_tower_ohl_support_50kv(
   type_financial_factor_criteria,
   access_factor_criteria
)
```

Arguments

```
type_financial_factor_criteria
    String The type financial factor for Tower Options: type_financial_factor_criteria
    = c("Suspension", "Tension", "Terminal").
access_factor_criteria
```

String. Asses Financial factor criteria for Tower Options: access_factor_criteria = c("Type A", "Type B").

Value

Numeric. Financial consequences of failure for tower ohl support 50 kV

Examples

```
financial_cof_tower_ohl_support_50kv(
type_financial_factor_criteria = "Suspension",
access_factor_criteria = "Type A")
```

financial_cof_transformers

Financial cost of Failure for Transformers

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
financial_cof_transformers(
  tf_asset_category,
  type_financial_factor_size = NULL,
  type_financial_factor_kva_mva = NULL,
  access_factor_criteria
)
```

Arguments

Value

Numeric. Financial consequences of failure for Transformer

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
financial_cof_transformers(tf_asset_category = "33kV Transformer (GM)",
type_financial_factor_size = "33/20kV, CMR equivalent",
type_financial_factor_kva_mva = 20,
access_factor_criteria = "Type A")
```

financial_cof_transformer_30_60kv Financial cost of Failure for 30/10 kV and 60/10 kV Transformers

Description

This function calculates financial consequences of failure Outputted in DKK.

Usage

```
financial_cof_transformer_30_60kv(
   tf_asset_category,
   type_financial_factor_kva_mva = NULL,
   access_factor_criteria
)
```

Arguments

tf_asset_category
 String The type of Transformer asset category Options: tf_asset_category =
 c("30kV Transformer (GM)","60kV Transformer (GM)").
type_financial_factor_kva_mva
 Numeric The type financial factor kVA MVA for Transformer

access_factor_criteria

String. Asses Financial factor criteria for Transformer setting (cf. table 221, page 180, CNAIM, 2021). Options: access_factor_criteria = c("Type A", "Type B", "Type C").

Value

Numeric. Financial consequences of failure for Transformer

Examples

```
financial_cof_transformer_30_60kv(tf_asset_category = "30kV Transformer (GM)",
type_financial_factor_kva_mva = 20,
access_factor_criteria = "Type A")
```

f_cof_transformer_11kv

Financial Consequences of Failure for a 6.6/11 kV Transformer

Description

This function calculates financial consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Financial consequences of failure is used in the derivation of consequences of failure see cof().

Usage

f_cof_transformer_11kv(kva = "Default", type = "Default")

62

Arguments

kva	Numeric. The rated transformer capacity measured in kVA for a 6.6/11 kV transformer. Rated capacity is used to derive the type financial factor. For a general description of type financial factor see section 7.3.3.1 on page 80 in CNAIM (2021). A setting of "Default" will result in a type financial factor equal to 1 (cf. section D1.2.1, page 178, CNAIM, 2021).
type	String. Relates to the accessibility of the transformer Options: type = c("Type A", "Type B", "Type C", "Default"). A setting of "Type A" - Normal access. A setting of "Type B" - Constrained access or confined working space. A setting of "Type C" - Underground substation. A setting of "Default" - Normal access thus same as "Type A" setting (cf. table 221, page 180, CNAIM, 2021).

Value

Numeric. Financial consequences of failure for a 6.6/11 kV transformer.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

Financial consequences of failure for a 6.6/11 kV transformer f_cof_transformer_11kv(kva = 700, type = "Default")

health_score_excl_ehv_132kv_tf

Health Score Factor for all Assets Categories excl. EHV and 132kV Transformers

Description

This function calculates the health score factor for all asset categories exclusive the assets EHV and 132kV transformers. For EHV and 132kV transformers see mmi(). The function combines observed and measured condition factors using the simplified maximum and multiple increment (MMI) technique to construct the health score factor (cf. CNAIM, 2021, page 56, table 9).

Usage

```
health_score_excl_ehv_132kv_tf(
   observed_condition_factor,
   measured_condition_factor
)
```

Arguments

observed_condition_factor Numeric. measured_condition_factor Numeric.

Value

Numeric. Health score factor.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# An asset with an observed condition factor of 1 and a measured condition
# factor of 0.33
health_score_excl_ehv_132kv_tf(observed_condition_factor = 1,
measured_condition_factor = 0.33)
```

initial_health Initial Health

Description

Calculating the initial health score for a given asset. See section 6.1.6 on page 36 in CNAIM (2021).

Usage

```
initial_health(b1, age)
```

Arguments

b1	Numeric. The output returned by the function beta_1().
age	Numeric. The crurrent age of the asset.

Value

Numeric. Initial health for an electric network asset.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Healh & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

64

location_factor

Examples

location_factor Location Factor (Excl.Submarine Cables)

Description

This function calculates the location factor for an electric network asset based in the specific location of the asset. See section 6.4 on page 46 in CNAIM (2021). For calculating the location factor for submarine cables please see the function location_factor_sub(). Note the location factor for all other cables are always equal to 1 hence the function will return a location factor of 1 for other cables than submarine cables.

Usage

```
location_factor(
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   asset_type = "6.6/11kV Transformer (GM)",
   sub_division = NULL
)
```

Arguments

placement	String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from_	_coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5. corrosion_category_index is used to derive the corrosion category factor. See page 111, table 24 in CNAIM (2021). A setting of "Default" will set the corrosion category factor to 1 independent of asset_type.

String. A sting that refers to the specific asset category. For LV UGB and asset_type non-submarine cables a location factor of 1 is assigned. See See page 17, table 1 in CNAIM (2021). Options: asset_type = c("LV Poles", "LV Circuit Breaker", "LV Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)", "LV Board (WM)", "LV UGB", "LV Board (X-type Network) (WM)", "6.6/11kV Poles", "20kV Poles", "6.6/11kV CB (GM) Primary", "6.6/11kV CB (GM) Secondary", "6.6/11kV Switch (GM)", "6.6/11kV RMU", "6.6/11kV X-type RMU", "20kV CB (GM) Primary", "20kV CB (GM) Secondary", "20kV Switch (GM)", "20kV RMU", "6.6/11kV Transformer (GM)", "20kV Transformer (GM)", "33kV Pole", "66kV Pole", "33kV OHL (Tower Line) Conductor", "33kV Tower", "33kV Fittings", "66kV OHL (Tower Line) Conductor", "66kV Tower", "66kV Fittings", "33kV UG Cable (Non Pressurised)", "33kV UG Cable (0il)", "33kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "66kV UG Cable (0il)", "66kV UG Cable (Gas)","33kV CB (Air Insulated Busbars)(ID) (GM)","33kV CB (Air Insulated Busbars)(OD) (GM)", "33kV CB (Gas Insulated Busbars)(ID) (GM)", "33kV CB (Gas Insulated Busbars)(OD) (GM)", "33kV Switch (GM)", "33kV RMU", "66kV CB (Air Insulated Busbars)(ID) (GM)", "66kV CB (Air Insulated Busbars)(OD) (GM)","66kV CB (Gas Insulated Busbars)(ID) (GM)","66kV CB (Gas Insulated Busbars)(OD) (GM)", "33kV Transformer (GM)", "66kV Transformer (GM)", "132kV OHL (Tower Line) Conductor", "132kV Tower", "132kV Fittings", "132kV UG Cable (Non Pressurised)", "132kV UG Cable (Oil)", "132kV UG Cable (Gas)", "132kV CB (Air Insulated Busbars)(ID) (GM)", "132kV CB (Air Insulated Busbars)(OD) (GM)","132kV CB (Gas Insulated Busbars)(ID) (GM)","132kV CB (Gas Insulated Busbars)(OD) (GM)", "132kV Transformer (GM)") sub_division String. Refers to material the sub division in the asset category

Value

Numeric. Location factor

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Location factor for a 6.6/11 kV Transformer with default values
location_factor(placement = "Default", altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
asset_type = "6.6/11kV Transformer (GM)")
```

location_factor_sub Location Factor (Excl.Submarine Cables)

Description

This function calculates the location factor for submarine cables based in the specific location of the cable. See section 6.5 on page 48 in CNAIM (2021). For calculating the location factor for all other network assets please see the function location_factor().

Usage

```
location_factor_sub(
  topography = "Default",
  situation = "Default",
  wind_wave = "Default",
  intensity = "Default",
  landlocked = "no"
)
```

Arguments

topography	<pre>String. Describe the topography around the submarine cable. Options: typography = c("Low Detrimental Topography", "Medium Detrimental Topography", "High Detrimental Topography", "Very High Detrimental Topography", "Default")</pre>
situation	String. Descibes how the submarine cable af fixed to the sea floor. Options: sitution=c("Laid on bed", "Covered", "Buried", "Default")
wind_wave	<pre>Numeric. Options: wind_wave=c(1, 2, 3, "Default"). Settings: wind_wave = 1: Sheltered sea loch, Wind <200 W/m2 wind_wave = 2: Wave <15kW/m, Wind 200-800 W/m2 wind_wave = 3: Wave <15kW/m, Wind 200-800 W/m2 wind_wave = "Default": No data available</pre>
intensity	String. Combined wave and current energy factor. Options: intensity=c("Low", "Moderate", "High", "Default").
landlocked	<pre>String. Options: landlocked = c("yes", "no"). Default setting for landlocked = "no".</pre>

Value

Numeric. Location factor

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

matrix_adjusted_circles

Adjust circles for matrix visualization

Description

This function manipulates the data structure before inputting into javascript D3 risk matrix visualization

Usage

```
matrix_adjusted_circles(risk_data_matrix, dots_vector, dot_radius)
```

Arguments

risk_data_matrix		
	Long format matrix data.	
dots_vector	Coordinates of the dots.	
dot_radius	Radius of the dots.	

Value

Long format matrix data. circles for D3 matrix visualization adjusted

matrix_adjusted_intervals

Adjust banding for matrix visualization

Description

This function manipulates the data structure before inputting into javascript D3 risk matrix visualization

Usage

```
matrix_adjusted_intervals(risk_data_matrix, x_intervals, y_intervals)
```

68

mmi

Arguments

risk_data_matrix		
	Long format matrix data.	
x_intervals	An array of x spacing in percent (sum to 100)	
y_intervals	An array of y spacing in percent (sum to 100)	

Value

Long format matrix data. intervals for matrix D3 visualization adjusted

mmi

Maximum and Multiple Increment (MMI) Technique

Description

This function returns a combined factor using a maximum and multiple increment (MMI) technique (cf. CNAIM, 2021. page 54, section 6.7.2). The function can be used to derive the health score factor for EHV and 132kV transformers. For deriviation of the health score factor for all other assets see health_score_excl_ehv_132kv_tf. To derive the health score factor for EHV and 132kV transformers one needs to use mmi() to derive the health score factor for the main transformer and for the tapchanger respectively. The constants factor_divider_1, factor_divider_2 and max_no_combined_factors are all available in the lookup table 10 and 11 on page 57 and 58 in CNAIM (2021). For an in dept description see also section 6.8 on page 57 in CNAIM (2021). The mmi() can also be used in the derivation of observed and measured condition factors for all assets, using measured and observed input factors. The constants factor_divider_1, factor_divider_2 and max_no_combined_factors can be found in table 13 on page 63 (observed condition factors) and in table 15 on page 67 (measured condition factors).

Usage

mmi(factors, factor_divider_1, factor_divider_2, max_no_combined_factors)

Arguments

factors	Numeric vector. Factors to me combined.	
factor_divider_1		
	Numeric. Constant that specifies the degree to which additional "good" or "bad" factors are able further drive the combined factor.	
factor_divider_2		
	Numeric. Constant that specifies the degree to which additional "good" or "bad" factors are able further drive the combined factor.	
<pre>max_no_combined_factors</pre>		
	Numeric. Specifies how many factors are able to simultaneously affect the com- bined factor.	

Value

Numeric. Combined factor.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
mmi(factors = c(1,
1.5),
factor_divider_1 = 1.5,
factor_divider_2 = 1.5,
max_no_combined_factors = 1)
```

network_cof_board_04kv

Network cost of Failure for 0.4kV Board

Description

This function calculates network cost of failure for 0.4kV board (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure Outputted in DKK is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_board_04kv(no_customers, kva_per_customer = "Default")
```

Arguments

no_customers Numeric. The number of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

70

Examples

```
network_cof_board_04kv(no_customers = 750, kva_per_customer = 51)
```

```
network_cof_cables_04_10kv
```

Network cost of Failure for 0.4kV and 10kV UG Cables

Description

This function calculates network cost of failure for 0.4kV and 10kV UG cables, outputted in DKK hv_asset_category = c("10kV UG Cable (Oil)", "10kV UG Cable (Non Pressurised)", "0.4kV UG Cable (Non Pressurised)".

Usage

```
network_cof_cables_04_10kv(hv_asset_category, actual_load_mva, secure = T)
```

Arguments

hv_asset_category		
	String The type of HV asset category	
actual_load_mva		
	Numeric. The actual load on the asset	
secure	Boolean If the asset is in a secure network or not	

Value

Numeric. Network cost of failure.

Examples

```
network_cof_cables_04_10kv(hv_asset_category = "10kV UG Cable (0il)",
actual_load_mva = 15)
```

network_cof_cables_60_30kv

Network cost of Failure for 30-60 kV UG cables

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof(). ehv_asset_category = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Non Pressurised)", "30kV UG Cable (0i1)", "60kV UG Cable (0i1)"). The default setting is ehv_asset_category = "60kV UG Cable (Gas)".

```
network_cof_cables_60_30kv(ehv_asset_category, actual_load_mva, secure = T)
```

Arguments

ehv_asset_category		
	Asset category for the analysis	
actual_load_mva		
	Numeric. The actual load on the asset	
secure	Boolean If the asset is in a secure network or not	

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
network_cof_cables_60_30kv(ehv_asset_category = "30kV UG Cable (0il)",
actual_load_mva = 15)
```

network_cof_ehv_cables

Network cost of Failure for EHV UG cabkes & 132 kV UG cables

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_ehv_cables(ehv_asset_category, actual_load_mva, secure = T)
```

Arguments

```
ehv_asset_category
```

String The type of EHV cable distribution asset category Options: ehv_asset_category
= c("33kV UG Cable (0il)", "33kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV
UG Cable (0il)", "66kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "132kV
UG Cable (0il)", "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)").
actual_load_mva	3
	Numeric. The actual load on the asset
secure	Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
network_cof_ehv_cables(ehv_asset_category = "33kV UG Cable (0il)",
actual_load_mva = 15)
```

network_cof_ehv_fittings

Network cost of Failure for EHV/132kV Fittings

Description

This function calculates network cost of failure for EHV fittings (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

network_cof_ehv_fittings(ehv_asset_category, actual_load_mva, secure = T)

Arguments

ehv_asset_cate	gory
	<pre>String The type of EHV asset category Options: ehv_asset_category = c("33kV Fittings", "66kV Fittings", "132kV Fittings")</pre>
actual_load_mva	
	Numeric. The actual load on the asset
secure	Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
network_cof_ehv_fittings(ehv_asset_category = "33kV Fittings",
actual_load_mva = 15)
```

network_cof_ehv_pole Network cost of Failure for Poles

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_ehv_pole(pole_asset_category, actual_load_mva, secure = T)
```

Arguments

pole_asset_category	
	String The type of pole asset category Options: pole_asset_category = c("LV
	Poles", "6.6/11kV Poles", "20kV Poles", "33kV Pole", "66kV Pole").
actual_load_mva	
	Numeric. The actual load on the asset
secure	Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_ehv_pole(pole_asset_category = "33kV Pole",
actual_load_mva = 15)
```

network_cof_ehv_sub_cable

Network cost of Failure for EHV /132 kV sub cables

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_ehv_sub_cable(
   sub_cable_asset_category,
   actual_load_mva,
   secure = T
)
```

Arguments

<pre>sub_cable_asset_category</pre>		
	<pre>String The type of Submarine cable asset category Options: sub_cable_asset_category = c("EHV Sub Cable", "132kV Sub Cable").</pre>	
actual_load_mva		
	Numeric. The actual load on the asset	
secure	Boolean If the asset is in a secure network or not	

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_ehv_sub_cable(sub_cable_asset_category = "EHV Sub Cable",
actual_load_mva = 15, secure = TRUE)
```

```
network_cof_ehv_switchgear
```

Network cost of Failure for EHV switchgear & 132kV CB

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_ehv_switchgear(ehv_asset_category, actual_load_mva, secure = T)
```

Arguments

ehv_asset_cate	gory	
	String The type of EHV swicthgear & 132kV CB Options: ehv_asset_category	
	= c("33kV CB (Air Insulated Busbars)(ID)(GM)","33kV CB (Air Insulated	
	Busbars)(OD)(GM)","33kV CB (Gas Insulated Busbars)(ID)(GM)","33kV CB	
	(Gas Insulated Busbars)(OD)(GM)","33kV RMU","33kV Switch (GM)","66kV	
	CB (Air Insulated Busbars)(ID)(GM)","66kV CB (Air Insulated Busbars)(OD)(GM)","66kV	
	CB (Gas Insulated Busbars)(ID)(GM)","66kV CB (Gas Insulated Busbars)(OD)(GM)")	
actual_load_mva		
	Numeric. The actual load on the asset	
secure	Boolean If the asset is in a secure network or not	

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

network_cof_ehv_switchgear(ehv_asset_category = "33kV RMU", actual_load_mva = 15) network_cof_hv_lv_poles

Network cost of Failure for LV,HV,EHV Poles

Description

This function calculates network cost of failure for Poles (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_hv_lv_poles(
  pole_asset_category,
  no_customers,
  kva_per_customer = "Default"
)
```

Arguments

```
pole_asset_category
                 String The type of pole asset category Options: pole_asset_category = c("LV
                 Poles", "6.6/11kV Poles", "20kV Poles", "33kV Pole", "66kV Pole").
                 Numeric. The number of customers fed by an individual asset.
no_customers
```

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_ asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_hv_lv_poles(pole_asset_category = "20kV Poles",
no_customers = 750, kva_per_customer = 51)
```

```
network_cof_hv_sub_cables
```

Network cost of Failure for HV Sub cables

Description

This function calculates network cost of failure for Sub cables (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_hv_sub_cables(
   sub_cable_asset_category,
   no_customers,
   kva_per_customer = "Default"
)
```

Arguments

```
sub_cable_asset_category
```

String The type of Submarine cable asset category Option: sub_cable_asset_category
= "HV Sub Cable".

no_customers Numeric. The number of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_hv_sub_cables(sub_cable_asset_category = "HV Sub Cable",
no_customers = 750, kva_per_customer = 51)
```

network_cof_hv_switchgear_distribution Network cost of Failure for HV Switchgear distribution

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_hv_switchgear_distribution(
    hv_asset_category,
    no_customers,
    kva_per_customer = "Default"
)
```

Arguments

```
hv_asset_category
```

String The type of HV switchgear distribution asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Secondary", "6.6/11kV RMU", "6.6/11kV X-type RMU", "6.6/11kV Switch (GM)", "20kV CB (GM) Secondary", "20kV RMU", "20kV Switch (GM)")

no_customers Numeric. The numner of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_hv_switchgear_distribution(hv_asset_category = "LV Board (WM)",
no_customers = 750, kva_per_customer = 51)
```

```
network_cof_hv_switchgear_primary
```

Network cost of Failure for HV Switchgear Primary

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_hv_switchgear_primary(
    hv_asset_category,
    no_customers,
    kva_per_customer = "Default"
)
```

Arguments

```
hv_asset_category
```

String The type of HV asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Primary", "20kV CB (GM) Primary")

no_customers Numeric. The numner of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_hv_switchgear_primary(hv_asset_category = "6.6/11kV CB (GM) Secondary",
no_customers = 750, kva_per_customer = 51)
```

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_lv_switchgear_and_other(
    lv_asset_category,
    no_customers,
    kva_per_customer = "Default"
)
```

Arguments

lv_asset_category

String The type of LV asset category Options: lv_asset_category = c("LV Board (WM)","LV Board (X-type Network) (WM)", "LV Circuit Breaker","LV Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)")

no_customers Numeric. The numner of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_lv_switchgear_and_other(lv_asset_category = "LV Board (WM)",
no_customers = 750, kva_per_customer = 51)
```

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_lv_ugb(
    lv_asset_category,
    no_customers,
    kva_per_customer = "Default"
)
```

Arguments

lv_asset_category

String The type of LV asset category Option: lv_asset_category = "LV UGB"

no_customers Numeric. The number of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_lv_ugb(lv_asset_category = "LV UGB",
no_customers = 750, kva_per_customer = 51)
```

network_cof_ohl_cond Network cost of Failure for Overhead Line Conductors

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

network_cof_ohl_cond(ohl_cond_asset_category, actual_load_mva, secure = T)

Arguments

ohl_cond_asset_	category
	<pre>String The type of Pole asset category Options: ohl_cond_asset_category = c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor", "132kV OHL (Tower Line) Conductor").</pre>
actual_load_mva	
	Numeric. The actual load on the asset

secure Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_ohl_cond(ohl_cond_asset_category = "33kV OHL (Tower Line) Conductor",
actual_load_mva = 15)
```

network_cof_ohl_cond_50kv

Network cost of Failure for 50kV Overhead Line Conductors

Description

This function calculates network cost of failure Outputted in DKK

Usage

network_cof_ohl_cond_50kv(actual_load_mva, secure = T)

Arguments

actual_load_mva

	Numeric. The actual load on the asset
secure	Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Examples

network_cof_ohl_cond_50kv(
actual_load_mva = 15)

network_cof_ohl_fittings_50kv

Network cost of Failure for 50kV Fittings

Description

This function calculates network cost of failure for 50kV fittings Network cost of failure is used in the derivation of consequences of failure. cof(). Outputted in DKK.

Usage

```
network_cof_ohl_fittings_50kv(actual_load_mva, secure = T)
```

actual_load_mv	a
	Numeric. The actual load on the asset
secure	Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Examples

network_cof_ohl_fittings_50kv(
actual_load_mva = 15)

network_cof_pillar_04kv

Network cost of Failure for 0.4kV Pillar

Description

This function calculates network cost of failure for 0.4kV Pillar all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_pillar_04kv(no_customers, kva_per_customer = "Default")
```

Arguments

no_customers Numeric. The number of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_pillar_04kv(no_customers = 750, kva_per_customer = 51)
```

network_cof_poles_ohl_support_50kv

Network cost of Failure for Poles OHL Support 50kV

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_poles_ohl_support_50kv(
   pole_asset_category,
   actual_load_mva,
   secure = T
)
```

Arguments

<pre>pole_asset_cate</pre>	egory
	String The type of Pole asset category
actual_load_mva	
	Numeric. The actual load on the asset
secure	Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Examples

```
network_cof_poles_ohl_support_50kv(
actual_load_mva = 15)
```

network_cof_relay Network cost of Failure for Relays

Description

This function calculates network cost of failure for Relays Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_relay(no_customers, kva_per_customer = "Default")
```

Arguments

no_customers Numeric. The number of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Examples

```
network_cof_relay(
no_customers = 100, kva_per_customer = 40)
```

Description

This function calculates network cost of failure for service line, outputted in DKK

Usage

```
network_cof_serviceline(actual_load_mva, secure = T)
```

Arguments

actual_load_mv	a
	Numeric. The actual load on the asset
secure	Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

```
network_cof_serviceline(actual_load_mva = 0.5)
```

in of

Network cost of Failure for 10kV Submarine Cables

Description

This function calculates network cost of failure for Sub cables (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_submarine_cables_10kv(no_customers, kva_per_customer = "Default")
```

Arguments

no_customers	Numeric. The number of customers fed by an individual asset.
kva_per_custome	r
	Numeric. If the asset have an exceptionally high demand per customer type kVA per customer. A setting of "Default" results in a multiplication factor 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_submarine_cables_10kv(
no_customers = 250, kva_per_customer = 51)
```

network_cof_submarine_cables_30_60kv

Network cost of Failure for 30kV and 60kV Submarine Cables

Description

This function calculates network cost of failure for Sub cables (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_submarine_cables_30_60kv(
    no_customers,
    kva_per_customer = "Default"
)
```

Arguments

no_customers Numeric. The number of customers fed by an individual asset.

kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 89, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_submarine_cables_30_60kv(
no_customers = 250, kva_per_customer = 51)
```

network_cof_switchgear_30_60kv

Network cost of Failure for 30kV and 60kV Switchgear

Description

This function calculates network cost of failure for 30kV and 60kV switchgear. Network cost of failure used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_switchgear_30_60kv(ehv_asset_category, actual_load_mva, secure = T)
```

Arguments

ehv_asset_cate	egory	
	String The type of 30kV and 60kV switchgear category Options: ehv_asset_category = c("30kV", "60kV").	
actual_load_mva		
	Numeric. The actual load on the asset	
secure	Boolean If the asset is in a secure network or not	

Value

Numeric. Network cost of failure.

Examples

```
network_cof_switchgear_30_60kv(ehv_asset_category = "30kV",
actual_load_mva = 15)
```

network_cof_switchgear_primary_10kv

Network cost of Failure for 10kV Switchgear Primary

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_switchgear_primary_10kv(no_customers, kva_per_customer = "Default")
```

Arguments

no_customers Numeric. The numner of customers fed by an individual asset. kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1.

Value

Numeric. Network cost of failure.

Examples

```
network_cof_switchgear_primary_10kv(
no_customers = 750, kva_per_customer = 51)
```

network_cof_switchgear_secondary_10kv *Network cost of Failure for 10kV Switchgear Secondary*

Description

This function calculates network cost of failure for 10kV Switchgear Secondary Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_switchgear_secondary_10kv(
    no_customers,
    kva_per_customer = "Default"
)
```

Arguments

no_customers Numeric. The number of customers fed by an individual asset. kva_per_customer

Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Network cost of failure.

```
network_cof_switchgear_secondary_10kv(
no_customers = 750, kva_per_customer = 51)
```

network_cof_tower Network cost of Failure for Towers

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_tower(tower_asset_category, actual_load_mva, secure = T)
```

Arguments

tower_asset_category		
	<pre>String The type of tower asset category Options: tower_asset_category = c("33kV Tower", "66kV Tower", "132kV Tower").</pre>	
actual_load_mva		
	Numeric. The actual load on the asset	
secure	Boolean If the asset is in a secure network or not	

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
network_cof_tower(tower_asset_category = "33kV Tower",
actual_load_mva = 15)
```

network_cof_tower_ohl_support_50kv

Network cost of Failure for Tower OHL Support 50 kV

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. Network cost of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
network_cof_tower_ohl_support_50kv(actual_load_mva, secure = T)
```

1 1

Arguments

actual_load_mva

	Numeric. The actual load on the asset
secure	Boolean If the asset is in a secure network or not

Value

Numeric. Network cost of failure.

Examples

```
network_cof_tower_ohl_support_50kv(
actual_load_mva = 15)
```

network_cof_transformers

Network cost of Failure for Transformers

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
network_cof_transformers(tf_asset_category, actual_load_mva, secure = T)
```

Arguments

tf_asset_category		
	String The type of Transformer asset category Options: tf_asset_category = c("6.6/11kV Transformer (GM)", "20kV Transformer (GM)", "33kV Transformer	
	(GM)", "66kV Transformer (GM) " "132kV Transformer (GM) ").	
actual_load_mva		
	Numeric. The actual load on the asset	
secure	Boolean If the asset is in a secure network or not	

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
network_cof_transformers(tf_asset_category = "33kV Transformer (GM)",
actual_load_mva = 15)
```

network_cof_transformer_30_60kv Network cost of Failure for 30/10kV and 60/10kV Transformers

Description

This function calculates network cost of failure for Outputted in DKK.

Usage

```
network_cof_transformer_30_60kv(tf_asset_category, actual_load_mva, secure = T)
```

tf_asset_catego	bry	
	<pre>String The type of Tower Options: tf_asset_category = c("30kV Transformer (GM)","60kV Transformer (GM)").</pre>	
actual_load_mva		
	Numeric. The actual load on the asset	
secure	Boolean If the asset is in a secure network or not	

Value

Numeric. Network cost of failure.

Examples

```
network_cof_transformer_30_60kv(tf_asset_category = "30kV Transformer (GM)",
actual_load_mva = 15)
```

n_cof_excl_ehv_132kv_tf

Network cost of Failure for all Assets Categories excl. EHV and 132kV Transformers

Description

This function calculates network cost of failure for all asset categories exclusive the assets EHV and 132kV transformers. (cf. section 7.6, page 87, CNAIM, 2021). Network cost of failure is used in the derivation of consequences of failure see cof().

Usage

```
n_cof_excl_ehv_132kv_tf(
   asset_type_ncf,
   no_customers,
   kva_per_customer = "Default"
)
```

```
asset_type_ncf String.asset_type_ncf = c("LV Poles", "LV Circuit Breaker", "LV Pillar
                (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)",
                "LV Board (WM)", "LV UGB", "LV Board (X-type Network) (WM)", "6.6/11kV
                Poles", "20kV Poles", "HV Sub Cable", "6.6/11kV CB (GM) Primary", "6.6/11kV
                CB (GM) Secondary", "6.6/11kV Switch (GM)", "6.6/11kV RMU", "6.6/11kV
                X-type RMU", "20kV CB (GM) Primary", "20kV CB (GM) Secondary", "20kV Switch
                (GM)", "20kV RMU", "6.6/11kV Transformer (GM)", "20kV Transformer (GM)",
                "33kV Pole", "66kV Pole", "33kV OHL (Tower Line) Conductor", "33kV Tower",
                "33kV Fittings", "66kV OHL (Tower Line) Conductor", "66kV Tower", "66kV
                Fittings", "33kV UG Cable (Non Pressurised)", "33kV UG Cable (0il)", "33kV
                UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "66kV UG Cable (0il)",
                "66kV UG Cable (Gas)", "33kV CB (Air Insulated Busbars)(ID) (GM)", "33kV
                CB (Air Insulated Busbars)(OD) (GM)", "33kV CB (Gas Insulated Busbars)(ID)
                (GM)", "33kV CB (Gas Insulated Busbars)(OD) (GM)", "33kV Switch (GM)", "33kV
                RMU", "66kV CB (Air Insulated Busbars)(ID) (GM)", "66kV CB (Air Insulated
                Busbars)(OD) (GM)","66kV CB (Gas Insulated Busbars)(ID) (GM)","66kV
                CB (Gas Insulated Busbars)(OD) (GM)", "33kV Transformer (GM)", "66kV Transformer
                (GM)")
```

no_customers Numeric. The numner of customers fed by an individual asset. kva_per_customer Numeric. If the asset have an exceptionally high demand per customer type in kVA per customer. A setting of "Default" results in a multiplication factor of

kVA per customer. A setting of "Default" results in a multiplication factor of 1 (cf. table 18, page 90, CNAIM, 2021).

Value

Numeric. Network cost of failure.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Network cost of failure for a 6.6/11 kV transformer with 750 customers
# and 51 kVA per customer.
n_cof_excl_ehv_132kv_tf(asset_type_ncf = "6.6/11kV Transformer (GM)",
no_customers = 750, kva_per_customer = 51)
```

oil_test_modifier Oil Test Modifier

Description

This function calculates the oil test modifier for 33/10kV, 66/10kV and 132kV transformers and tapchangers. See e.g. section 6.11 on page 68 in CNAIM (2021).

Usage

```
oil_test_modifier(
  moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
  transformer_type_all = "20kV Transformer (GM)"
)
```

moisture	Numeric. Refers to the moisture level in the transformer oil. Moisture levels are measured in ppm. A setting of "Default" will result in the best possible result.
acidity	Numeric. Refers to the acidity level in the transformer oil. Acidity levels are measured in (mgKOH/g). A setting of "Default" will result in the best possible result.

plot_pof

bd_strength	Numeric. Refers to the breakdown strength. Breakdown strength is measured in kV. A setting of "Default" will result in the best possible result.
transformer_ty	
	<pre>String. A sting that refers to the specific transformer type. Options: transformer_type_all = c("6.6/11kV Transformer (GM)", "20kV Transformer (GM)", "33kV Transformer (GM)", "66kV Transformer (GM)", "132kV Transformer (GM)"). The default setting is transformer_type = "66kV Transformer (GM)"</pre>

Value

Data table.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Oil test modifier
oil_test_modifier(moisture = 15,
acidity = 0.15,
bd_strength = 30,
transformer_type_all = "20kV Transformer (GM)")
```

plot_pof

Plot of probability of failure

Description

This function is plotting the probability of failure for an electric network asset in a percentage.

Usage

```
plot_pof(pof_function = "Default")
```

Arguments

Examples

probability of failure curve

pof_132kv_cb

Description

This function calculates the current annual probability of failure per kilometer 132kV Switchgear The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_132kv_cb(
    cb_asset_category = "132kV CB (Air Insulated Busbars)(ID) (GM)",
    placement = "Default",
    number_of_operations = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default"
)
```

cb_asset_category		
	String The type of 132kV asset category	
placement	String. Specify if the asset is located outdoor or indoor.	
number_of_oper	ations	
	The number of operations for duty factor	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_	coast_km	
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_category_index		
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
measured_condition_inputs		
	Named list observed_conditions_input	

pof_132kv_cb

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Current annual probability of failure for EHV Swicthgear
pof_132kv_cb(
cb_asset_category = "132kV CB (Air Insulated Busbars)(ID) (GM)",
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default"
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default"),
"support_structure" = list("Condition Criteria: Observed Condition" = "Default"),
"air_systems" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test/ Gas Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
"ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
reliability_factor = "Default")
```

pof_board_04kv

Description

This function calculates the current annual probability of failure for 0.4kV Board The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. A sting that refers to the specific asset category.

Usage

```
pof_board_04kv(
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.0069,
    c_value = 1.087,
    normal_expected_life = 60
)
```

placement	String. Specify if the asset is located outdoor or indoor.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea	
	level.altitude_m is used to derive the altitude factor. A setting of "Default"	
	will set the altitude factor to 1 independent of asset_type.	
distance_from_c	coast_km	
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km	
	is used to derive the distance from coast factor. A setting of "Default" will set	
	the distance from coast factor to 1 independent of asset_type.	
corrosion_category_index		
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
<pre>measured_condition_inputs</pre>		
	Named list observed_conditions_input	
observed_condit	cion_inputs	
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau	
reliability_fac	ctor	
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A	
	setting of "Default" sets the reliability_factor to 1. See section 6.14 on	
	page 73 in CNAIM (2021).	

k_value	Numeric. $k_value = 0.0069$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 60 by default. The default value is accord- ingly to the CNAIM standard on page 107.	

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for 0.4kV board
pof_board_04kv(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"compound_leaks" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_cond" = list("Condition Criteria: Observed Condition" = "Default"),
"insulation" = list("Condition Criteria: Observed Condition" = "Default"),
"signs_heating" = list("Condition Criteria: Observed Condition" = "Default"),
"phase_barriers" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("opsal_adequacy" =
list("Condition Criteria: Operational Adequacy" = "Default")),
reliability_factor = "Default",
k_value = 0.0069,
c_value = 1.087,
normal_expected_life = 60)
```

pof_building

Current Probability of Failure for Primary Substation Building and Secondary Substation Building.

Description

This function calculates the current annual probability of failure for primary substation building and secondary substation building. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_building(
  substation_type = "Secondary",
 material_type = "Wood",
 placement = "Outdoor",
 altitude_m = "Default",
 distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  temperature_reading = "Default",
  coolers_radiator = "Default",
 kiosk = "Default",
 cable_boxes = "Default",
  reliability_factor = "Default",
 k_value = "Default",
 c_value = 1.087,
 normal_expected_life_building = "Default"
)
```

Arguments

substation_type	9	
	<pre>String. A sting that refers to the specific substation type. Options: substation_type = c("Primary", "Secondary"). The default setting is substation_type = "Secondary"</pre>	
<pre>material_type</pre>	<pre>String. A sting that refers to the specific material_type. Options: material_type = c("Brick", "Steel", "Wood"). The default setting is substation_type = "Wood"</pre>	
placement	String. Specify if the asset is located outdoor or indoor.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_coast_km		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_category_index		
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the building.	
temperature_reading		
	<pre>String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default").</pre>	
coolers_radiate	pr	
	<pre>String. Indicating the observed condition of the coolers/radiators. Options: coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant Deterioration", "Default"). in CNAIM (2021).</pre>	
kiosk	String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").	

102

cable_boxes	<pre>String. Indicating the observed condition of the cable boxes. Options: cable_boxes = c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa Deterioration", "Default")</pre>
reliability_fa	ctor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
k_value	Numeric. k_value = "Default" by default. This number is given in a percent-

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

```
normal_expected_life_building
```

age.

Numeric. normal_expected_life_building = "Default" by default.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
pof_building(substation_type = "Secondary",
material_type = "Wood",
placement = "Outdoor",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 43,
temperature_reading = "Default",
coolers_radiator = "Default",
kiosk = "Default",
cable_boxes = "Default",
reliability_factor = "Default",
k_value = "Default",
c_value = 1.087,
normal_expected_life_building = "Default")
```

pof_cables_04kv_pex Current Probability of Failure for 0.4kV UG PEX Non Pressurised Cables

Description

This function calculates the current annual probability of failure per kilometer for a 0.4kV Pex non Pressurised cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_cables_04kv_pex(
    utilisation_pct = "Default",
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    reliability_factor = "Default",
    age,
    k_value = 0.0658,
    c_value = 1.087,
    normal_expected_life = 80
)
```

Arguments

utilisation_pct		
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_volt	age_pct	
	Numeric. The ratio in percent of operating/design voltage.	
sheath_test	String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").	
partial_discha	rge	
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").</pre>	
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
age	Numeric. The current age in years of the cable.	
k_value	Numeric. k_value = 0.0658 by default.	
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 80 by default.	

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

104

Examples

```
# Current annual probability of failure for 0.4kV non pressurised pex cable, 50 years old
pof_cables_04kv_pex(
    utilisation_pct = 80,
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    reliability_factor = "Default",
    age = 50,
    k_value = 0.0658,
    c_value = 1.087,
    normal_expected_life = 80)
```

pof_cables_10kv_oil Current Probability of Failure for 10kV UG Oil Non Preesurised Cables (Armed Paper Lead)

Description

This function calculates the current annual probability of failure per kilometer for a Oil non Preesurised cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_cables_10kv_oil(
    utilisation_pct = "Default",
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    reliability_factor = "Default",
    age,
    k_value = 0.24,
    c_value = 1.087,
    normal_expected_life = 80
)
```

```
utilisation_pct
Numeric. The max percentage of utilisation under normal operating conditions.
operating_voltage_pct
Numeric. The ratio in percent of operating/design voltage.
sheath_test
String. Only applied for non pressurised cables. Indicating the state of the
sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").
```

partial_dischar	ge	
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").</pre>	
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
age	Numeric. The current age in years of the cable.	
k_value	Numeric. k_value = 0.24 by default.	
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 80 by default.	

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for 10kV oil cable, 50 years old
pof_cables_10kv_oil(
    utilisation_pct = 80,
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    reliability_factor = "Default",
    age = 50,
    k_value = 0.24,
    c_value = 1.087,
    normal_expected_life = 80)
```

<pre>pof_cables_10kv_pex</pre>	Current Probability of Failure for 10kV UG PEX Non Pressurised Ca-
	bles

Description

This function calculates the current annual probability of failure per kilometer for a 10kV PEX non Pressurised cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

pof_cables_10kv_pex

Usage

```
pof_cables_10kv_pex(
    utilisation_pct = "Default",
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    reliability_factor = "Default",
    age,
    k_value = 0.0658,
    c_value = 1.087,
    normal_expected_life = 80
)
```

Arguments

utilisation_pct Numeric. The max percentage of utilisation under normal operating conditions. operating_voltage_pct Numeric. The ratio in percent of operating/design voltage. String. Only applied for non pressurised cables. Indicating the state of the sheath_test sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). partial_discharge String. Only applied for non pressurised cables. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). fault_hist Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. reliability_factor Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021). Numeric. The current age in years of the cable. age Numeric. k_value = 0.0658 by default. k_value Numeric. c_value = 1.087 by default. The default value is accordingly to the c_value CNAIM standard see page 110 normal_expected_life Numeric. normal_expected_life = 80 by default.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for 10kV pex cable, 50 years old
pof_cables_10kv_pex(
    utilisation_pct = 80,
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    reliability_factor = "Default",
    age = 50,
    k_value = 0.0658,
    c_value = 1.087,
    normal_expected_life = 80)
```

pof_cables_132kv Current Probability of Failure for 132kV cables

Description

This function calculates the current annual probability of failure per kilometer for a 132kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_cables_132kv(
    cable_type = "132kV UG Cable (Gas)",
    sub_division = "Aluminium sheath - Aluminium conductor",
    utilisation_pct = "Default",
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    leakage = "Default",
    reliability_factor = "Default",
    age
)
```

Arguments

```
cable_type String. A sting that refers to the specific asset category. See See page 17, ta-
ble 1 in CNAIM (2021). Options: cable_type = c("132kV UG Cable (Gas)",
    "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)"). The de-
fault setting is cable_type = "132kV UG Cable (Gas)".
```

108
sub_division	<pre>String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")</pre>	
utilisation_pct		
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_volta	age_pct	
	Numeric. The ratio in percent of operating/design voltage.	
sheath_test	<pre>String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 157, table 184 in CNAIM (2021).</pre>	
partial_dischar	ge	
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 157, table 185 in CNAIM (2021).</pre>	
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 157, table 186 in CNAIM (2021).	
leakage	String. Only applied for oil and gas pressurised cables. Options: leakage = c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 158, table 187 (oil) and 188 (gas) in CNAIM (2021).	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
age	Numeric. The current age in years of the cable.	

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Current annual probability of failure for
# "132kV UG Cable (Non Pressurised)", 50 years old
pof_cables_132kV_non <-
pof_cables_132kv(cable_type = "132kV UG Cable (Non Pressurised)",
sub_division = "Lead sheath - Copper conductor",
utilisation_pct = 80,
operating_voltage_pct = 60,
sheath_test = "Default",
```

```
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
age = 50) * 100
paste0(sprintf("Probability of failure %.4f", pof_cables_132kV_non),
" percent per annum")
```

pof_cables_60_30kv Current Probability of Failure for 30-60kV cables

Description

This function calculates the current annual probability of failure per kilometer for a 30-60kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_cables_60_30kv(
    cable_type = "60kV UG Cable (Gas)",
    sub_division = "Aluminium sheath - Aluminium conductor",
    utilisation_pct = "Default",
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    leakage = "Default",
    reliability_factor = "Default",
    age
)
```

Arguments

cable_type	String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: cable_type = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Non Pressurised)", "30kV UG Cable (Oil)", "60kV UG Cable (Oil)"). The de- fault setting is cable_type = "60kV UG Cable (Gas)".
sub_division	<pre>String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")</pre>
utilisation_pc	
	Numeric The max percentage of utilisation under normal operating conditions

Numeric. The max percentage of utilisation under normal operating conditions.

operating_volta	ge_pct
	Numeric. The ratio in percent of operating/design voltage.
sheath_test	<pre>String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 153, table 168 in CNAIM (2021).</pre>
partial_dischar	ge
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 153, table 169 in CNAIM (2021).</pre>
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 153, table 170 in CNAIM (2021).
leakage	<pre>String. Only applied for oil and gas pressurised cables. Options: leakage = c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 157, table 182 (oil) and 183 (gas) in CNAIM (2021).</pre>
reliability_fac	tor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
age	Numeric. The current age in years of the cable.

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Current annual probability of failure for
# "60kV UG Cable (Non Pressurised)", 50 years old
pof_cables_60_30kv(cable_type = "66kV UG Cable (Non Pressurised)",
sub_division = "Lead sheath - Copper conductor",
utilisation_pct = 80,
operating_voltage_pct = 60,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
age = 50)
```

pof_cables_66_33kv Current Probability of Failure for 33-66kV cables

Description

This function calculates the current annual probability of failure per kilometer for a 33-66kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_cables_66_33kv(
    cable_type = "66kV UG Cable (Gas)",
    sub_division = "Aluminium sheath - Aluminium conductor",
    utilisation_pct = "Default",
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    leakage = "Default",
    reliability_factor = "Default",
    age
)
```

Arguments

cable_type	<pre>String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: cable_type = c("33kV UG Cable (Gas)", "66kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV UG Cable (Non Pressurised)", "33kV UG Cable (011)", "66kV UG Cable (011)"). The de- fault setting is cable_type = "66kV UG Cable (Gas)".</pre>	
sub_division	<pre>String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")</pre>	
utilisation_pct		
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_voltage_pct		
	Numeric. The ratio in percent of operating/design voltage.	
sheath_test	String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 153, table 168 in CNAIM (2021).	
partial_discharge		
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 153, table 169 in CNAIM (2021).</pre>	

fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 153, table 170 in CNAIM (2021).	
leakage	String. Only applied for oil and gas pressurised cables. Options: leakage = c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 157, table 182 (oil) and 183 (gas) in CNAIM (2021).	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
age	Numeric. The current age in years of the cable.	

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current annual probability of failure for
# "66kV UG Cable (Non Pressurised)", 50 years old
pof_cables_66_33kv(cable_type = "66kV UG Cable (Non Pressurised)",
sub_division = "Lead sheath - Copper conductor",
utilisation_pct = 80,
operating_voltage_pct = 60,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
age = 50)
```

pof_ehv_fittings Current Probability of Failure for EHV/132kV Fittings

Description

This function calculates the current annual probability of failure per kilometer EHV Fittings The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_ehv_fittings(
    ehv_asset_category = "33kV Fittings",
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default"
)
```

Arguments

ehv_asset_category		
	String The type of EHV asset category	
placement	String. Specify if the asset is located outdoor or indoor.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_d	<pre>coast_km Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 inde- pendent of asset_type.</pre>	
corrosion_category_index Integer. Specify the corrosion index category, 1-5.		
age	Numeric. The current age in years of the conductor.	
measured_condi	tion_inputs Named list observed_conditions_input	
observed_condi	tion_inputs Named list observed_conditions_input conductor_samp = c("Low","Medium/Normal","High","Defau See page 161, table 199 and 201 in CNAIM (2021).	
reliability_fac	ctor Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

114

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for EHV Swicthgear
pof_ehv_fittings(
ehv_asset_category = "33kV Fittings",
placement = "Default",
altitude_m = "Default"
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("insulator_elec_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"insulator_mech_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"conductor_fitting_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"tower_fitting_cond" =
list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("thermal_imaging" =
list("Condition Criteria: Thermal Imaging Result" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Result" = "Default")),
reliability_factor = "Default")
```

pof_ehv_switchgear Current Probability of Failure for EHV Switchgear

Description

This function calculates the current annual probability of failure per kilometer EHV Switchgear The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_ehv_switchgear(
    ehv_asset_category = "33kV RMU",
    placement = "Default",
    number_of_operations = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
```

```
corrosion_category_index = "Default",
  age,
  measured_condition_inputs,
  observed_condition_inputs,
  reliability_factor = "Default"
)
```

Arguments

<pre>ehv_asset_cat</pre>	egory
	String The type of EHV asset category
placement	String. Specify if the asset is located outdoor or indoor.
number_of_ope	rations The number of operations for duty factor
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from	_coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_cat	egory_index
	Integer. Specify the corrosion index category, 1-5.
age	Numeric. The current age in years of the conductor.
measured_cond	ition_inputs Named list observed_conditions_input
observed_cond	ition_inputs
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).
reliability_f	actor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current annual probability of failure for EHV Swicthgear
pof_ehv_switchgear(
ehv_asset_category = "33kV RMU",
number of operations = "Default".
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default"),
"support_structure" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
"ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
reliability_factor = "Default")
```

pof_future_board_04kv Future Probability of Failure for 0.4kV Board

Description

This function calculates the future annual probability of failure per kilometer 0.4kV board. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_board_04kv(
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.0069,
```

```
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100
)
```

Arguments

placement	String. Specify if the asset is located outdoor or indoor.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from_o	coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_cate	gory_index
	Integer. Specify the corrosion index category, 1-5.
age	Numeric. The current age in years of the conductor.
<pre>measured_condi</pre>	tion_inputs
	Named list observed_conditions_input
observed_condi	tion_inputs
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau
reliability_fac	ctor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
k_value	Numeric. $k_value = 0.0069$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110
normal_expected_life	
	Numeric. normal_expected_life = 60 by default. The default value is accord- ingly to the CNAIM standard on page 107.
simulation_end_year	
	Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

```
# Future annual probability of failure for 0.4kV board
pof_future_board_04kv(
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
```

```
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"compound_leaks" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_cond" = list("Condition Criteria: Observed Condition" = "Default"),
"insulation" = list("Condition Criteria: Observed Condition" = "Default"),
"signs_heating" = list("Condition Criteria: Observed Condition" = "Default"),
"phase_barriers" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("opsal_adequacy" =
list("Condition Criteria: Operational Adequacy" = "Default")),
reliability_factor = "Default",
k_value = 0.0069,
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

pof_future_building Future Probability of Failure for Primary Substation Building and Secondary Substation Building.

Description

This function calculates the future annual probability of failure for primary substation building and secondary substation building. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_building(
  substation_type = "Secondary",
 material_type = "Wood",
 placement = "Outdoor",
  altitude_m = "Default"
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  temperature_reading = "Default",
  coolers_radiator = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  reliability_factor = "Default",
  k_value = "Default",
  c_{value} = 1.087,
  normal_expected_life_building = "Default",
  simulation_end_year = 100
)
```

Arguments

substation_type	
	<pre>String. A sting that refers to the specific substation type. Options: substation_type = c("Primary", "Secondary"). The default setting is substation_type = "Secondary"</pre>
material_type	<pre>String. A sting that refers to the specific material_type. Options: material_type = c("Brick", "Steel", "Wood"). The default setting is substation_type = "Wood"</pre>
placement	String. Specify if the asset is located outdoor or indoor.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from_c	coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_categ	
	Integer. Specify the corrosion index category, 1-5.
age	Numeric. The current age in years of the building.
temperature_rea	ding String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default").
coolers_radiato	
	<pre>String. Indicating the observed condition of the coolers/radiators. Options: coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant Deterioration", "Default"). in CNAIM (2021).</pre>
kiosk	String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Substantial Deterioration", "Default").
cable_boxes	<pre>String. Indicating the observed condition of the cable boxes. Options: cable_boxes = c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa Deterioration", "Default")</pre>
reliability_fac	
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
k_value	Numeric. k_value = "Default" by default. This number is given in a percent- age.
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110
normal_expected	L_life_building
	Numeric. normal_expected_life_building = "Default" by default.
simulation_end_	
	Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future probability of failure for a Secondary substation Building
pof_future_building(substation_type = "Secondary",
material_type = "Wood",
placement = "Outdoor",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 1,
temperature_reading = "Default",
coolers_radiator = "Default",
kiosk = "Default",
cable_boxes = "Default",
reliability_factor = "Default",
k_value = "Default",
c_value = 1.087,
normal_expected_life_building = "Default",
simulation_end_year = 100)
```

pof_future_cables_04kv_pex Future Probability of Failure for 0.4kV UG PEX Non Pressurised Cables

Description

This function calculates the future annual probability of failure per kilometer for a 0.4kV PEX non Pressurised cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_cables_04kv_pex(
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   reliability_factor = "Default",
   age,
   k_value = 0.0658,
   c_value = 1.087,
   normal_expected_life = 80,
   simulation_end_year = 100
)
```

Arguments

utilisation_pct		
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_volt	age_pct	
	Numeric. The ratio in percent of operating/design voltage.	
sheath_test	<pre>String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").</pre>	
partial_discha	irge	
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").</pre>	
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
age	Numeric. The current age in years of the cable.	
k_value	Numeric. k_value = 0.0658 by default.	
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 80 by default.	
simulation_end	l_year	
	Numeric. The last year of simulating probability of failure. Default is 100.	

Value

DataFrame. Future probability of failure along with future health score

```
# future annual probability of failure for 0.4kV cable pex, 50 years old
pof_future_cables_04kv_pex(
utilisation_pct = 80,
operating_voltage_pct = 60,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
reliability_factor = "Default",
age = 50,
k_value = 0.0658,
c_value = 1.087,
normal_expected_life = 80,
simulation_end_year = 100)
```

pof_future_cables_10kv_oil

Future Probability of Failure for 10kV UG Oil Non Preesurised Cables (Armed Paper Lead)

Description

This function calculates the future #' annual probability of failure per kilometer for a 10kV Oil non Preesurised cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_cables_10kv_oil(
    utilisation_pct = "Default",
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    reliability_factor = "Default",
    age,
    k_value = 0.24,
    c_value = 1.087,
    normal_expected_life = 80,
    simulation_end_year = 100
)
```

Arguments

utilisation_pct	
	Numeric. The max percentage of utilisation under normal operating conditions.
operating_volta	lge_pct
	Numeric. The ratio in percent of operating/design voltage.
sheath_test	<pre>String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").</pre>
partial_dischar	ge
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").</pre>
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.
reliability_fac	tor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

age	Numeric. The current age in years of the cable.	
k_value	Numeric. $k_value = 0.24$ by default.	
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 80 by default.	
simulation_end_year		
	Numeric. The last year of simulating probability of failure. Default is 100.	

DataFrame. Future probability of failure along with future health score

Examples

```
# future annual probability of failure for 10kV oil cable, 50 years old
pof_future_cables_10kv_oil(
utilisation_pct = 80,
operating_voltage_pct = 60,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
reliability_factor = "Default",
age = 50,
k_value = 0.24,
c_value = 1.087,
normal_expected_life = 80,
simulation_end_year = 100)
```

pof_future_cables_10kv_pex

Future Probability of Failure for 10kV UG PEX Non Pressurised Cables

Description

This function calculates the future #' annual probability of failure per kilometer for a 10kV PEX non Pressurised cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_cables_10kv_pex(
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
```

```
fault_hist = "Default",
reliability_factor = "Default",
age,
k_value = 0.0658,
c_value = 1.087,
normal_expected_life = 80,
simulation_end_year = 100
)
```

Arguments

utilisation_pct		
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_volta	ge_pct	
	Numeric. The ratio in percent of operating/design voltage.	
sheath_test	<pre>String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").</pre>	
partial_dischar	ge	
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").</pre>	
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.	
reliability_fac	tor	
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
age	Numeric. The current age in years of the cable.	
k_value	Numeric. k_value = 0.0658 by default.	
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected	l_life	
	Numeric. normal_expected_life = 80 by default.	
simulation_end_year		
	Numeric. The last year of simulating probability of failure. Default is 100.	

Value

DataFrame. Future probability of failure along with future health score

```
# future annual probability of failure for 10kV cable pex, 50 years old
pof_future_cables_10kv_pex(
  utilisation_pct = 80,
  operating_voltage_pct = 60,
```

```
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
reliability_factor = "Default",
age = 50,
k_value = 0.0658,
c_value = 1.087,
normal_expected_life = 80,
simulation_end_year = 100)
```

pof_future_cables_132kv

Future Probability of Failure for 132kV cables

Description

This function calculates the future annual probability of failure per kilometer for a 132kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_cables_132kv(
    cable_type = "132kV UG Cable (Gas)",
    sub_division = "Aluminium sheath - Aluminium conductor",
    utilisation_pct = "Default",
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    leakage = "Default",
    reliability_factor = "Default",
    age,
    simulation_end_year = 100
)
```

Arguments

cable_type	<pre>String. A sting that refers to the specific asset category. See See page 17, ta- ble 1 in CNAIM (2021). Options: cable_type = c("132kV UG Cable (Gas)", "132kV UG Cable (Gas)","132kV UG Cable (Non Pressurised)"). The de- fault setting is cable_type = "132kV UG Cable (Gas)".</pre>
sub_division	<pre>String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")</pre>

126

utilisation_pct		
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_volta	ge_pct	
	Numeric. The ratio in percent of operating/design voltage.	
sheath_test	<pre>String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 157, table 184 in CNAIM (2021).</pre>	
partial_dischar	ge	
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 157, table 185 in CNAIM (2021).</pre>	
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 157, table 186 in CNAIM (2021).	
leakage	String. Only applied for oil and gas pressurised cables. Options: leakage = c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 158, table 187 (oil) and 188 (gas) in CNAIM (2021).	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
age	Numeric. The current age in years of the cable.	
simulation_end_year		
	Numeric. The last year of simulating probability of failure. Default is 100.	

DataFrame. Future probability of failure along with future health score

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Future probability of failure for 132kV UG Cable (Non Pressurised)
pof_future_cables_132kv(cable_type = "132kV UG Cable (Non Pressurised)",
sub_division = "Aluminium sheath - Aluminium conductor",
utilisation_pct = 75,
operating_voltage_pct = 50,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
```

```
age = 1,
simulation_end_year = 100)
```

pof_future_cables_60_30kv

Future Probability of Failure for 30-60kV cables

Description

This function calculates the future annual probability of failure per kilometer for a 30-60kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_cables_60_30kv(
    cable_type = "60kV UG Cable (Gas)",
    sub_division = "Aluminium sheath - Aluminium conductor",
    utilisation_pct = "Default",
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    leakage = "Default",
    reliability_factor = "Default",
    age,
    simulation_end_year = 100
)
```

Arguments

cable_type	String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: cable_type = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Non Pressurised)", "30kV UG Cable (0il)", "60kV UG Cable (0il)"). The de- fault setting is cable_type = "60kV UG Cable (Gas)".	
sub_division	<pre>String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")</pre>	
utilisation_pct		
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_voltage_pct		
	Numeric. The ratio in percent of operating/design voltage.	

128

sheath_test

ss", "Failed Minor", "Failed Major","Default"). 1).		
ed cables. Indicating the level of par- narge = c("Low", "Medium", "High", CNAIM (2021).		
rised cables. The calculated fault rate er. A setting of "No historic faults 153, table 170 in CNAIM (2021).		
ressurised cables. Options: leakage = ge recorded","Low/moderate", "High", 157, table 182 (oil) and 183 (gas) in		
reliability_factor		
have a value between 0.6 and 1.5. A .ity_factor to 1. See section 6.14 on		
e cable.		
simulation_end_year		
obability of failure. Default is 100.		

String. Only applied for non pressurised cables. Indicating the state of the

Value

DataFrame. Future probability of failure along with future health score

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Future probability of failure for 60kV UG Cable (Non Pressurised)
pof_future_cables_60_30kv(cable_type = "60kV UG Cable (Non Pressurised)",
sub_division = "Aluminium sheath - Aluminium conductor",
utilisation_pct = 75,
operating_voltage_pct = 50,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
age = 1,
simulation_end_year = 100)
```

pof_future_cables_66_33kv

Future Probability of Failure for 33-66kV cables

Description

This function calculates the future annual probability of failure per kilometer for a 33-66kV cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_cables_66_33kv(
    cable_type = "66kV UG Cable (Gas)",
    sub_division = "Aluminium sheath - Aluminium conductor",
    utilisation_pct = "Default",
    operating_voltage_pct = "Default",
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    leakage = "Default",
    reliability_factor = "Default",
    age,
    simulation_end_year = 100
)
```

Arguments

cable_type	<pre>String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: cable_type = c("33kV UG Cable (Gas)", "66kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV UG Cable (Non Pressurised)", "33kV UG Cable (0il)", "66kV UG Cable (0il)"). The de- fault setting is cable_type = "66kV UG Cable (Gas)".</pre>	
sub_division	<pre>String. Refers to material the sheath and conductor is made of. Options: sub_division = c("Aluminium sheath - Aluminium conductor", "Aluminium sheath - Copper conductor", "Lead sheath - Aluminium conductor", "Lead sheath - Copper conductor")</pre>	
utilisation_pct		
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_voltage_pct		
	Numeric. The ratio in percent of operating/design voltage.	
sheath_test	<pre>String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 153, table 168 in CNAIM (2021).</pre>	

partial_discharge		
	String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 153, table 169 in CNAIM (2021).	
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 153, table 170 in CNAIM (2021).	
leakage	String. Only applied for oil and gas pressurised cables. Options: leakage = c("No (or very low) historic leakage recorded", "Low/ moderate", "High", "Very High", "Default"). See page 157, table 182 (oil) and 183 (gas) in CNAIM (2021).	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
age	Numeric. The current age in years of the cable.	
simulation_end_year		
	Numeric. The last year of simulating probability of failure. Default is 100.	

DataFrame. Future probability of failure per annum per kilometre for 33-66kV cables along with future health score

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Future probability of failure for 66kV UG Cable (Non Pressurised)
pof_future_cables_66_33kv(cable_type = "66kV UG Cable (Non Pressurised)",
sub_division = "Aluminium sheath - Aluminium conductor",
utilisation_pct = 75,
operating_voltage_pct = 50,
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
leakage = "Default",
reliability_factor = "Default",
age = 1,
simulation_end_year = 100)
```

pof_future_meter

Description

This function calculates the future annual probability of failure meters. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_meter(
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.128,
    c_value = 1.087,
    normal_expected_life = 25,
    simulation_end_year = 100
)
```

Arguments

String. Specify if the asset is located outdoor or indoor.		
Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default"		
will set the altitude factor to 1 independent of asset_type.		
oast_km		
Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.		
corrosion_category_index		
Integer. Specify the corrosion index category, 1-5.		
Numeric. The current age in years of the conductor.		
<pre>measured_condition_inputs</pre>		
Named list observed_conditions_input		
observed_condition_inputs		
Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau		
reliability_factor		
Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).		

k_value	Numeric. $k_value = 0.128$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110
normal_expected_life	
	Numeric. normal_expected_life = 50 by default. The default value is accord- ingly to the CNAIM standard on page 107.
simulation_end_year	
	Numeric. The last year of simulating probability of failure. Default is 100.

DataFrame. Future probability of failure along with future health score

Examples

```
# future annual probability of failure for meter
pof_future_meter(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 1,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.128,
c_value = 1.087,
normal_expected_life = 25,
simulation_end_year = 100)
```

pof_future_ohl_cond_132_66_33kv *Future Probability of Failure for 33-132kV OHL Conductors*

Description

This function calculates the future annual probability of failure per kilometer 33-132kV OHL conductors. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_ohl_cond_132_66_33kv(
    ohl_conductor = "66kV OHL (Tower Line) Conductor",
    sub_division = "Cu",
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    conductor_samp = "Default",
    corr_mon_survey = "Default",
    visual_cond = "Default",
    midspan_joints = "Default",
    reliability_factor = "Default",
    simulation_end_year = 100
)
```

Arguments

ohl_conductor	String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: ohl_conductor = c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor", "132kV OHL (Tower Line) Conductor"). The default setting is ohl_conductor = "66kV OHL (Tower Line) Conductor".
sub_division	String. Refers to material the conductor is made of. Options: sub_division = c("ACSR - greased", "ACSR - non-greased", "AAAC", "Cad Cu", "Cu", "Other"). See page 107, table 20 in CNAIM (2021).
placement	String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from_	coast_km Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM

	(2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_categ	gory_index	
	Integer. Specify the corrosion index category, 1-5. corrosion_category_index is used to derive the corrosion category factor. See page 111, table 24 in CNAIM (2021). A setting of "Default" will set the corrosion category factor to 1 independent of asset_type.	
age	Numeric. The current age in years of the conductor.	
conductor_samp	String. Conductor sampling. Options: conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).	
corr_mon_survey		
	String. Corrosion monitoring survey. Options: corr_mon_survey = c("Low", "Medium/Normal", "High' See page 161, table 200 and 202 in CNAIM (2021).	
visual_cond	<pre>String. Visual condition. Options: visual_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 146, table 140 and 142 in CNAIM (2021).</pre>	
midspan_joints	Integer. Number of midspan joints on the conductor. A span includes all con- ductors in that span. See page 146, table 141 and 143 in CNAIM (2021).	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
simulation_end_year		

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

```
# Future annual probability of failure for 66kV OHL (Tower Line) Conductor
pof_future_ohl_cond_132_66_33kv(
  ohl_conductor = "66kV OHL (Tower Line) Conductor",
  sub_division = "Cu",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age = 10,
  conductor_samp = "Default",
  corr_mon_survey = "Default",
```

```
visual_cond = "Default",
midspan_joints = "Default",
reliability_factor = "Default",
simulation_end_year = 100)
```

pof_future_ohl_cond_50kv

```
Future Probability of Failure for 50kV OHL Conductors
```

Description

This function calculates the future annual probability of failure per kilometer 50kV OHL conductors. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_ohl_cond_50kv(
  sub_division = "Cu",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  conductor_samp = "Default",
  corr_mon_survey = "Default",
  visual_cond = "Default",
  midspan_joints = "Default",
  reliability_factor = "Default",
  k_value = 0.008,
  c_value = 1.087,
  normal_expected_life = "Default",
  simulation_end_year = 100
)
```

Arguments

sub_division	String. Refers to material the conductor is made of. Options: sub_division = c("ACSR - greased", "ACSR - non-greased", "AAAC", "Cad Cu", "Cu", "Other"). See page 107, table 20 in CNAIM (2021).
placement	String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

136

altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from_c	•
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_categ	gory_index
	Integer. Specify the corrosion index category, 1-5. corrosion_category_index is used to derive the corrosion category factor. See page 111, table 24 in CNAIM (2021). A setting of "Default" will set the corrosion category factor to 1 inde- pendent of asset_type.
age	Numeric. The current age in years of the conductor.
conductor_samp	String. Conductor sampling. Options: conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).
corr_mon_survey	
	String. Corrosion monitoring survey. Options: corr_mon_survey = c("Low", "Medium/Normal", "High" See page 161, table 200 and 202 in CNAIM (2021).
visual_cond	<pre>String. Visual condition. Options: visual_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 146, table 140 and 142 in CNAIM (2021).</pre>
midspan_joints	Integer. Number of midspan joints on the conductor. A span includes all con- ductors in that span. See page 146, table 141 and 143 in CNAIM (2021).
reliability_fac	ctor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
k_value	Numeric. $k_value = 0.0069$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110
normal_expected	d_life
	Numeric. normal_expected_life = 60 by default. The default value is accord- ingly to the CNAIM standard on page 107.
simulation_end_	-
	Numeric. The last year of simulating probability of failure. Default is 100.

DataFrame. Future probability of failure along with future health score

Examples

Future annual probability of failure for 50kV OHL (Tower Line) Conductor

```
pof_future_ohl_cond_50kv(
sub_division = "Cu",
placement = "Default"
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
conductor_samp = "Default",
corr_mon_survey = "Default",
visual_cond = "Default",
midspan_joints = "Default"
reliability_factor = "Default",
k_value = 0.0080,
c_value = 1.087,
normal_expected_life = "Default",
simulation_end_year = 100)
```

pof_future_ohl_fittings_50kv

Future Probability of Failure for 50 kV Fittings

Description

This function calculates the future annual probability of failure per kilometer for a 50 kV fittings. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_ohl_fittings_50kv(
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.0096,
    c_value = 1.087,
    normal_expected_life = 40,
    simulation_end_year = 100
)
```

Arguments

placement String. Specify if the asset is located outdoor or indoor.

138

altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_coast_km		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_cate	gory_index	
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
measured_condit	tion_inputs	
	Named list observed_conditions_input	
observed_condit	tion_inputs	
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).	
reliability_fac	ctor	
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
k_value	Numeric. $k_value = 0.0069$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected	d_life	
	Numeric. normal_expected_life = 60 by default. The default value is accord- ingly to the CNAIM standard on page 107.	
simulation_end_year		
	Numeric. The last year of simulating probability of failure. Default is 100.code	

DataFrame. Future probability of failure along with future health score

```
# Future annual probability of failure for 50kV fittings
pof_future_ohl_fittings_50kv(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("insulator_elec_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
```

```
"insulator_mech_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"conductor_fitting_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
"tower_fitting_cond" =
list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("thermal_imaging" =
list("thermal_imaging" =
list("Condition Criteria: Thermal Imaging Result" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.0096,
c_value = 1.087,
normal_expected_life = 40,
simulation_end_year = 100)
```

pof_future_pillar_04kv

Future Probability of Failure for 0.4kV Pillar

Description

This function calculates the future annual probability of failure per kilometer 0.4kV Pillar. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_pillar_04kv(
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.0046,
    c_value = 1.087,
    normal_expected_life = 60,
    simulation_end_year = 100
)
```

Arguments

placement String. Specify if the asset is located outdoor or indoor.

```
140
```

altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1	
	independent of asset_type.	
distance_from_c	coast_km	
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km	
	is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 inde-	
	pendent of asset_type.	
corrosion_categ		
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
measured_condit	tion_inputs	
	Named list observed_conditions_input	
observed_condit	tion_inputs	
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).	
reliability_fac	ctor	
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
k_value	Numeric. $k_value = 0.0069$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected	d_life	
	Numeric. normal_expected_life = 60 by default. The default value is accord- ingly to the CNAIM standard on page 107.	
simulation_end_year		
	Numeric. The last year of simulating probability of failure. Default is 100.	

DataFrame. Future probability of failure along with future health score

```
# Future annual probability of failure for 0.4kV Pillar
pof_future_pillar_04kv(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_cond" =
list("Condition Criteria: Observed Condition" = "Default"),
```

```
"compound_leaks" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_cond" = list("Condition Criteria: Observed Condition" = "Default"),
"insulation" = list("Condition Criteria: Observed Condition" = "Default"),
"signs_heating" = list("Condition Criteria: Observed Condition" = "Default"),
"phase_barriers" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("opsal_adequacy" =
list("Condition Criteria: Operational Adequacy" = "Default")),
reliability_factor = "Default",
k_value = 0.0046,
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

pof_future_poles Future Probability of Failure for Poles

Description

This function calculates the future annual probability of failure per kilometer for a poles. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_poles(
    pole_asset_category = "20kV Poles",
    sub_division = "Wood",
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    pole_decay = "default",
    observed_condition_inputs,
    reliability_factor = "Default",
    simulation_end_year = 100
)
```

Arguments

 pole_asset_category

 String The type of asset category

 sub_division

 String. Refers to material the pole is made of.

 placement

 String. Specify if the asset is located outdoor or indoor.

142

age

altitude_m	Numeric. Specify the altitude location for the asset measured in meters from
	sea level.altitude_m is used to derive the altitude factor. See page 111, table
	23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1
	independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

Numeric. The current age in years of the conductor.

pole_decay Numeric Pole Decay

observed_condition_inputs

Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

Numeric array. Future probability of failure per annum per kilometre for poles.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

```
# Future annual probability of failure for HV Poles
pof_future_poles(
  pole_asset_category = "20kV Poles",
  sub_division = "Wood",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age = 10,
    observed_condition_inputs =
    list("visual_pole_cond" =
    list("Condition Criteria: Pole Top Rot Present?" = "Default"),
    "pole_leaning" = list("Condition Criteria: Pole Leaning?" = "Default"),
    "bird_animal_damage" =
```

```
list("Condition Criteria: Bird/Animal Damage?" = "Default"),
"top_rot" = list("Condition Criteria: Pole Top Rot Present?" = "Default")),
pole_decay = "Default",
reliability_factor = "Default",
simulation_end_year = 100)
```

pof_future_poles_ohl_support_50kv

Future Probability of Failure for Poles OHL support 50 kV

Description

This function calculates the future annual probability of failure per kilometer for a Poles OHL support 50 kV. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_poles_ohl_support_50kv(
    sub_division = "Wood",
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.0285,
    c_value = 1.087,
    normal_expected_life = "Default",
    simulation_end_year = 100
)
```

Arguments

sub_division	String Sub Division	
placement	String. Specify if the asset is located outdoor or indoor.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_coast_km		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	

144
corrosion_category_index		
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
measured_condition_inputs		
	Named list observed_conditions_input	
observed_condi	tion_inputs	
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
k_value	Numeric. $k_value = 0.0069$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 60 by default. The default value is accord- ingly to the CNAIM standard on page 107.	
simulation_end_year		
	Numeric. The last year of simulating probability of failure. Default is 100.	

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future annual probability of failure for Poles OHL support 50 kV
pof_future_poles_ohl_support_50kv(
sub_division = "Wood",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("visual_pole_cond" =
list("Condition Criteria: Pole Top Rot Present?" = "Default"),
"pole_leaning" = list("Condition Criteria: Pole Leaning?" = "Default"),
"bird_animal_damage" =
list("Condition Criteria: Bird/Animal Damage?" = "Default"),
"top_rot" = list("Condition Criteria: Pole Top Rot Present?" = "Default")),
measured_condition_inputs =
list("pole_decay" =
list("Condition Criteria: Degree of Decay/Deterioration" = "Default")),
reliability_factor = "Default",
k_{value} = 0.0285,
c_value = 1.087,
```

```
normal_expected_life = "Default",
simulation_end_year = 100)
```

pof_future_relay Future Probability of Failure for Relay

Description

This function calculates the future annual probability of failure relay. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_relay(
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.128,
    c_value = 1.087,
    normal_expected_life = 30,
    simulation_end_year = 100
)
```

Arguments

placement	String. Specify if the asset is located outdoor or indoor.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_coast_km		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_category_index		
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
<pre>measured_condition_inputs</pre>		
	Named list observed_conditions_input	

observed_cond	lition_inputs
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).
reliability_f	actor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
k_value	Numeric. k_value = 0.0069 by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110
normal_expect	ed_life
	Numeric. normal_expected_life = 60 by default. The default value is accord- ingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# future annual probability of failure for relay
pof_future_relay(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.128,
c_value = 1.087,
normal_expected_life = 30,
simulation_end_year = 100)
```

pof_future_rtu

Description

This function calculates the future annual probability of failure RTU. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_rtu(
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.128,
    c_value = 1.087,
    normal_expected_life = 20,
    simulation_end_year = 100
)
```

Arguments

placement	String. Specify if the asset is located outdoor or indoor.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_coast_km		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_category_index		
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
<pre>measured_condition_inputs</pre>		
	Named list observed_conditions_input	
observed_condition_inputs		
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).	

reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
k_value	Numeric. $k_value = 0.0069$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 60 by default. The default value is accord- ingly to the CNAIM standard on page 107.	
simulation_end_year		
	Numeric. The last year of simulating probability of failure. Default is 100.	

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# future annual probability of failure for RTU
pof_future_rtu(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 1,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_{value} = 0.128,
c_value = 1.087,
normal_expected_life = 20,
simulation_end_year = 100)
```

pof_future_serviceline

Future Probability of Failure for Service Line

Description

This function calculates the future annual probability of failure per kilometer for a service line The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_serviceline(
   utilisation_pct = "Default",
   operating_voltage_pct = "Default",
   sheath_test = "Default",
   partial_discharge = "Default",
   fault_hist = "Default",
   reliability_factor = "Default",
   age,
   k_value = 0.0329,
   c_value = 1.087,
   normal_expected_life = 75,
   simulation_end_year = 100
)
```

Arguments

utilisation_pct		
	Numeric Utilisation Percentage	
operating_voltage_pct		
	Numeric Operating Voltage Percentage	
sheath_test	String Sheath Test	
partial_discha	rge	
	String Partial Discharge	
fault_hist	String Fault Histogram	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
age	Numeric. The current age in years of the conductor.	
k_value	Numeric. k_value = 0.0069 by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110	

```
normal_expected_life
```

Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# future annual probability of failure for service line, 50 years old
pof_future_serviceline(
    utilisation_pct = 80,
    operating_voltage_pct = 60,
    sheath_test = "Default",
    partial_discharge = "Default",
    fault_hist = "Default",
    reliability_factor = "Default",
    age = 50,
    k_value = 0.0329,
    c_value = 1.087,
    normal_expected_life = 75,
    simulation_end_year = 100)
```

```
pof_future_submarine_cables
```

Future Probability of Failure for Submarine Cables

Description

This function calculates the Future annual probability of failure per kilometer for submarine cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_submarine_cables(
  sub_cable_type = "EHV Sub Cable",
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  topography = "Default",
  situation = "Default",
  wind_wave = "Default",
  intensity = "Default",
  landlocked = "no",
```

```
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age,
reliability_factor = "Default",
simulation_end_year = 100
)
```

Arguments

<pre>sub_cable_type</pre>	String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: sub_cable_type = c("HV Sub Cable", "EHV Sub Cable", "132kV Sub Cable"). The deafult setting is sub_cable_type = "EHV Sub Cable".	
utilisation_pc	t	
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_volta		
	Numeric. The ratio in percent of operating/design voltage.	
topography	<pre>String. Describe the topography around the submarine cable. Options: typography = c("Low Detrimental Topography", "Medium Detrimental Topography", "High Detrimental Topography", "Very High Detrimental Topography", "Default")</pre>	
situation	Situation of the cable	
wind_wave	Numeric. Options: wind_wave=c(1, 2, 3, "Default"). Settings:	
	 wind_wave = 1: Sheltered sea loch, Wind <200 W/m2 	
	• wind_wave = 2: Wave <15kW/m, Wind 200-800 W/m2	
	• wind_wave = 3: Wave <15kW/m, Wind 200-800 W/m2	
	 wind_wave = "Default": No data available 	
intensity	<pre>String. Combined wave and current energy factor. Options: intensity=c("Low", "Moderate", "High", "Default").</pre>	
landlocked	String. Options: landlocked = c("yes", "no"). Default setting for landlocked = "no".	
sheath_test	<pre>String. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 158, table 189 in CNAIM (2021).</pre>	
partial_discharge		
	<pre>String. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 158, table 190 in CNAIM (2021).</pre>	
fault_hist	Numeric. The calculated fault rate for the cable per annum per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 158, table 191 in CNAIM (2021).	
condition_armour		
	<pre>String. Indicating the external condition of the submarine cables armour. Op- tions: condition_armour = c("Good", "Poor", "Critical", "Default")</pre>	

age Numeric. The current age in years of the cable.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current annual probability of failure for 1 km EHV Sub Cable
pof_future_submarine_cables(
sub_cable_type = "EHV Sub Cable",
 utilisation_pct = "Default",
 operating_voltage_pct = "Default",
 topography = "Default",
 situation = "Default",
wind_wave = "Default",
 intensity = "Default",
 landlocked = "no",
 sheath_test = "Default"
 partial_discharge = "Default",
 fault_hist = "Default",
 condition_armour = "Default",
 age = 10,
 reliability_factor = "Default",
 simulation_end_year = 100)
```

Description

This function calculates the future annual probability of failure per kilometer for a 10kV Oil submarine cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_future_submarine_cables_10kv_oil(
 utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  topography = "Default",
  sitution = "Default",
 wind_wave = "Default",
  intensity = "Default",
  landlocked = "no",
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  condition_armour = "Default",
  age,
  reliability_factor = "Default",
 k_value = 2.0944,
 c_value = 1.087,
 normal_expected_life = 60,
 simulation_end_year = 100
)
```

Arguments

utilisation_pct

derriederen_per	-	
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_volta	age_pct	
	Numeric. The ratio in percent of operating/design voltage.	
topography	String Topography	
sitution	String Situation	
wind_wave	String Wind Wave	
intensity	String Intensity	
landlocked	String Land Locked	
sheath_test	String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").	
partial_discharge		
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").</pre>	
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.	
condition_armour		
	String Condition Armour	
age	Numeric. The current age in years of the cable.	

	reliability_fac	ctor
		Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
	k_value	Numeric. $k_value = 0.0658$ by default.
	c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110
normal_expected_life		d_life
		Numeric. normal_expected_life = 80 by default.
simulation_end_year		_year
		Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future annual probability of failure for 1 km 10kV Oil Sub Cable
pof_future_submarine_cables_10kv_oil(
utilisation_pct = "Default",
operating_voltage_pct = "Default",
topography = "Default",
sitution = "Default",
wind_wave = "Default"
intensity = "Default",
landlocked = "no",
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age = 10,
reliability_factor = "Default",
k_value = 0.0202,
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

Description

This function calculates the future annual probability of failure per kilometer for a 10kV non pressurised submarine cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_future_submarine_cables_10kv_pex(
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  topography = "Default",
  sitution = "Default",
 wind_wave = "Default",
  intensity = "Default",
  landlocked = "no",
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  condition_armour = "Default",
  age,
  reliability_factor = "Default",
  k_{value} = 0.0202,
  c_value = 1.087,
  normal_expected_life = 60,
  simulation_end_year = 100
)
```

Arguments

utilisation_pct

defined the period		
Numeric. The max percentage of utilisation under normal operating conditions.		
age_pct		
Numeric. The ratio in percent of operating/design voltage.		
String Topography		
String Situation		
String Wind Wave		
String Intensity		
String Land Locked		
<pre>String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").</pre>		
partial_discharge		
<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").</pre>		
Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.		
condition_armour		
String Condition Armour		
Numeric. The current age in years of the cable.		

reliability_factor

	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
k_value	Numeric. k_value = 0.0658 by default.	
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 80 by default.	
simulation_end_year		

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future annual probability of failure for 1 km 10kV non pressurised Sub Cable
pof_future_submarine_cables_10kv_pex(
utilisation_pct = "Default",
operating_voltage_pct = "Default",
topography = "Default",
sitution = "Default",
wind_wave = "Default"
intensity = "Default",
landlocked = "no",
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age = 10,
reliability_factor = "Default",
k_value = 0.0202,
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

Description

This function calculates the future annual probability of failure per kilometer for a 30kV and 60kV oil submarine cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_future_submarine_cables_30_60kv_oil(
 utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  topography = "Default",
  sitution = "Default",
 wind_wave = "Default",
  intensity = "Default",
  landlocked = "no",
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  condition_armour = "Default",
  age,
  reliability_factor = "Default",
 k_value = 2.0944,
 c_value = 1.087,
 normal_expected_life = 60,
 simulation_end_year = 100
)
```

Arguments

utilisation_pct

defined the period		
Numeric. The max percentage of utilisation under normal operating conditions.		
age_pct		
Numeric. The ratio in percent of operating/design voltage.		
String Topography		
String Situation		
String Wind Wave		
String Intensity		
String Land Locked		
<pre>String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").</pre>		
partial_discharge		
<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").</pre>		
Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.		
condition_armour		
String Condition Armour		
Numeric. The current age in years of the cable.		

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A
setting of "Default" sets the reliability_factor to 1. See section 6.14 on
page 73 in CNAIM (2021).k_valueNumeric. k_value = 0.0658 by default.c_valueNumeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110

Numeric. normal_expected_life = 80 by default.

simulation_end_year

normal_expected_life

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
pof_future_submarine_cables_30_60kv_oil(
utilisation_pct = "Default",
operating_voltage_pct = "Default",
topography = "Default",
sitution = "Default",
wind_wave = "Default"
intensity = "Default",
landlocked = "no",
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age = 10,
reliability_factor = "Default",
k_value = 0.0202,
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

pof_future_submarine_cables_30_60kv_pex

Future Probability of Failure for 30kV and 60kV Non Pressurised Submarine Cables

Description

This function calculates the future annual probability of failure per kilometer for a 30kV and 60kV Non Pressurised submarine cables The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_future_submarine_cables_30_60kv_pex(
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  topography = "Default",
  sitution = "Default",
 wind_wave = "Default",
  intensity = "Default",
  landlocked = "no",
  sheath_test = "Default",
  partial_discharge = "Default",
  fault_hist = "Default",
  condition_armour = "Default",
  age,
  reliability_factor = "Default",
  k_{value} = 0.0202,
  c_value = 1.087,
  normal_expected_life = 60,
  simulation_end_year = 100
)
```

Arguments

utilisation_pct

activation_per	-	
	Numeric. The max percentage of utilisation under normal operating conditions.	
operating_volta	age_pct	
	Numeric. The ratio in percent of operating/design voltage.	
topography	String Topography	
sitution	String Situation	
wind_wave	String Wind Wave	
intensity	String Intensity	
landlocked	String Land Locked	
sheath_test	<pre>String. Only applied for non pressurised cables. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default").</pre>	
partial_discharge		
	<pre>String. Only applied for non pressurised cables. Indicating the level of par- tial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default").</pre>	
fault_hist	Numeric. Only applied for non pressurised cables. The calculated fault rate for the cable in the period per kilometer. A setting of "No historic faults recorded" indicates no fault.	
condition_armour		
	String Condition Armour	
age	Numeric. The current age in years of the cable.	

reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
k_value	Numeric. k_value = 0.0658 by default.	
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 80 by default.	
simulation_end	_year	
	Numeric. The last year of simulating probability of failure. Default is 100.	

Value

DataFrame. Future probability of failure along with future health score

Examples

```
pof_future_submarine_cables_30_60kv_pex(
utilisation_pct = "Default",
operating_voltage_pct = "Default",
topography = "Default",
sitution = "Default",
wind_wave = "Default"
intensity = "Default",
landlocked = "no",
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age = 10,
reliability_factor = "Default",
k_value = 0.0202,
c_value = 1.087,
normal_expected_life = 60,
simulation_end_year = 100)
```

pof_future_switchgear_30_60kv *Future Probability of Failure for 30kV and 60kV Switchgear*

Description

This function calculates the future annual probability of failure 30kV and 60kV switchgear. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_future_switchgear_30_60kv(
  asset_type = "30kV",
  placement = "Default",
  number_of_operations = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
 measured_condition_inputs,
  observed_condition_inputs,
  reliability_factor = "Default",
  k_value = "Default",
  c_value = 1.087,
  normal_expected_life = 55,
  simulation_end_year = 100
)
```

Arguments

```
asset_type
                 String Asset Type
                 String Placement
placement
number_of_operations
                 String Number of Operations
altitude_m
                 String Altitude
distance_from_coast_km
                 String Distance from coast
corrosion_category_index
                 String Corrosion Category Index
                 Numeric Age
age
measured_condition_inputs
                 Named list observed_conditions_input
observed_condition_inputs
                 Named list observed_conditions_input
reliability_factor
                 String Reliability Factor
k_value
                 Numeric. k_value = 0.0077 by default. This number is given in a percentage.
                 The default value is accordingly to the standard "DE-10kV apb kabler CNAIM"
                 on p. 34.
                 Numeric. c_value = 1.087 by default. The default value is accordingly to the
c_value
                 CNAIM standard see page 110
normal_expected_life
                 Numeric. normal_expected_life = 55 by default. The default value is accord-
                 ingly to the standard "DE-10kV apb kabler CNAIM" on p. 33.
simulation_end_year
                 Numeric. The last year of simulating probability of failure. Default is 100.
```

Value

Numeric. Current probability of failure per annum.

Examples

```
# Future annual probability of failure for 30kV and 60kV Swicthgear
pof_future_switchgear_30_60kv(
asset_type = "30kV",
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default"),
"support_structure" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
"ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
reliability_factor = "Default",
k_value = "Default",
c_value = 1.087,
normal_expected_life = 55,
simulation_end_year = 100)
```

pof_future_switchgear_primary_10kv *Future Probability of Failure for 10kV Switchgear Primary*

Description

This function calculates the future annual probability of failure 10kV switchgear Primary. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_future_switchgear_primary_10kv(
 placement = "Default",
 number_of_operations = "Default",
 altitude_m = "Default",
 distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
 age,
 measured_condition_inputs,
 observed_condition_inputs,
 reliability_factor = "Default",
 k_value = 0.0052,
 c_value = 1.087,
 normal_expected_life = 55,
 simulation_end_year = 100
)
```

Arguments

- .		
placement	String. Specify if the asset is located outdoor or indoor.	
number_of_oper	ations	
	The number of operations for duty factor	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_cate	gory_index	
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
<pre>measured_condition_inputs</pre>		
	Named list observed_conditions_input	
observed_condition_inputs		
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
k_value	Numeric. $k_value = 0.0052$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110	

```
normal_expected_life
```

Numeric. normal_expected_life = 55 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
# Future annual probability of failure for 10 kV Switchgear (GM) Primary
pof_future_switchgear_primary_10kv(
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
"ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
reliability_factor = "Default",
k_value = 0.0052,
c_value = 1.087,
normal_expected_life = 55,
simulation_end_year = 100)
```

pof_future_switchgear_secondary_10kv *Future Probability of Failure for 10kV Switchgear Secondary*

Description

This function calculates the future annual probability of failure 10kV switchgear secondary. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_future_switchgear_secondary_10kv(
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.0067,
    c_value = 1.087,
    normal_expected_life = 55,
    simulation_end_year = 100
)
```

Arguments

placement	String. Specify if the asset is located outdoor or indoor.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_	coast_km	
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_cate	gory_index	
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
measured_condition_inputs		
	Named list observed_conditions_input	
observed_condi	tion_inputs	
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
k_value	Numeric. $k_value = 0.0069$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 60 by default. The default value is accord- ingly to the CNAIM standard on page 107.	

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
pof_future_switchgear_secondary_10kv(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.0067,
c_value = 1.087,
normal_expected_life = 55,
simulation_end_year = 100)
```

pof_future_transformer_04_10kv *Future Probability of Failure for 0.4/10kV Transformers*

Description

This function calculates the future annual probability of failure for 0.4/10kV Transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_transformer_04_10kv(
    utilisation_pct = "Default",
    placement = "Default",
```

```
altitude_m = "Default",
 distance_from_coast_km = "Default",
 corrosion_category_index = "Default",
 age,
 partial_discharge = "Default",
 temperature_reading = "Default",
 observed_condition = "Default",
 reliability_factor = "Default",
 moisture = "Default",
 acidity = "Default",
 bd_strength = "Default",
 k_value = 0.0077,
 c_value = 1.087,
 normal_expected_life = 55,
 simulation_end_year = 100
)
```

Arguments

utilisation_pct

	Numeric. The max percentage of utilisation under normal operating conditions.
placement	String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from_c	coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_categ	•
	Integer. Specify the corrosion index category, 1-5.
age	Numeric. The current age in years.
partial_dischar	ge
	String. Indicating the
temperature_rea	•
	<pre>String. Indicating the criticality. Options for temperature_reading: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 153, table 172 in CNAIM (2021).</pre>
observed_condit	
	String. Indicating the observed condition of the transformer. Options for observed_condition: observed_condition = c("No deterioration", "Superficial/minor deterioration",

"Slight deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 130, table 81 in CNAIM (2021).

reliability_factor

acidity

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021). moisture Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021). String Acidity bd strength Numeric the amount of breakdown strength given in (kV) See page 162 table

bu_strength	205 in CNAIM (2021).
k_value	Numeric. k_value = 0.0069 by default. This number is given in a percentage.

The default value is accordingly to the CNAIM standard on p. 110. c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the

CNAIM standard see page 110 normal_expected_life

> Numeric. normal_expected_life = 60 by default. The default value is accordingly to the CNAIM standard on page 107.

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Examples

```
pof_future_transformer_04_10kv(utilisation_pct = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 20,
partial_discharge = "Default",
temperature_reading = "Default",
observed_condition = "Default",
reliability_factor = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
k_value = 0.0077,
c_value = 1.087,
normal_expected_life = 55,
simulation_end_year = 100)
```

pof_future_transformer_11_20kv

Future Probability of Failure for 6.6/11kV and 20kV Transformers

Description

This function calculates the future annual probability of failure for 6.6/11kV and 20kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_transformer_11_20kv(
  hv_transformer_type = "6.6/11kV Transformer (GM)",
  utilisation_pct = "Default",
 placement = "Default",
  altitude_m = "Default"
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  partial_discharge = "Default"
  temperature_reading = "Default",
  observed_condition = "Default",
  reliability_factor = "Default",
 moisture = "Default",
  oil_acidity = "Default",
 bd_strength = "Default",
  simulation_end_year = 100
)
```

Arguments

hv_transformer_type

String. Refers to the high voltage transformer type the calculation is done for. Options: hv_transformer_type = c("6.6/11kV Transformer (GM)", "20kV Transformer (GM)"). The default setting is hv_transformer_type = 6.6/11kV Transformer (GM).

```
utilisation_pct
```

Numeric. The max percentage of utilisation under normal operating conditions.

placement String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.

altitude_m	Numeric. Specify the altitude location for the asset measured in meters from
	sea level.altitude_m is used to derive the altitude factor. See page 111, table
	23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1
	independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_category_index

Integer. Specify the corrosion index category, 1-5.

Numeric. The current age in years.

partial_discharge

age

String. Indicating the

temperature_reading

String. Indicating the criticality. Options for temperature_reading: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 153, table 172 in CNAIM (2021).

observed_condition

String. Indicating the observed condition of the transformer. Options for observed_condition: observed_condition = c("No deterioration", "Superficial/minor deterioration", "Slight deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 130, table 81 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

- moisture Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021).
- oil_acidity Oil Acidity level of partial discharge. Options for partial_discharge: partial_discharge = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 153, table 171 in CNAIM (2021).
- bd_strength Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021).

simulation_end_year

Value

DataFrame. Future probability of failure along with future health score

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Numeric. The last year of simulating probability of failure. Default is 100.

Examples

```
# Future probability of a 6.6/11 kV transformer
future_pof_transformer <-</pre>
pof_future_transformer_11_20kv(hv_transformer_type = "6.6/11kV Transformer (GM)",
utilisation_pct = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 20,
partial_discharge = "Default",
temperature_reading = "Default",
observed_condition = "Default",
reliability_factor = "Default",
moisture = "Default",
oil_acidity = "Default",
bd_strength = "Default",
simulation_end_year = 100)
```

pof_future_transformer_132kv Future Probability of Failure for 132kV Transformers

Description

This function calculates the future annual probability of failure for 132kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_future_transformer_132kv(
  transformer_type = "132kV Transformer (GM)",
  year_of_manufacture,
  utilisation_pct = "Default",
  no_taps = "Default",
  placement = "Default"
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
  main_tank = "Default",
  coolers_radiator = "Default",
```

```
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default",
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default",
simulation_end_year = 100
```

Arguments

)

transformer_typ	De
	String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: transformer_type = c("132kV Transformer (GM)"
year_of_manufac	cture
	Numeric. Normal expected life depends on the year for manufacture, see page 107 table 20 in CNAIM (2021).
utilisation_pc	t
	Numeric. The max percentage of utilisation under normal operating conditions.
no_taps	Numeric. Average number of daily taps (tapchanger).
placement	String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_o	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km
	is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_cate;	• • • • • • • • • • • • • • • • • • • •
	Integer. Specify the corrosion index category, 1-5.
age_tf	Numeric. The current age in years of the transformer.
age_tc	Numeric. The current age in years of the tapchanger
partial_discha	
	String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 155, table 176 in CNAIM (2021).
partial_discha	rge_tc
	<pre>String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 156, table 178 in CNAIM (2021).</pre>
temperature_rea	ading
	<pre>String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 155, table 177 in CNAIM (2021).</pre>
main_tank	<pre>String. Indicating the observed condition of the main tank. Options: main_tank = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 134, table 93 in CNAIM (2021).</pre>
coolers_radiate	or
	String. Indicating the observed condition of the coolers/radiators. Options: coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant Deterioration", "Default"). See page 134, table 94 in CNAIM (2021).
bushings	<pre>String. Indicating the observed condition of the bushings. Options: bushings = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 135, table 95 in CNAIM (2021).</pre>
kiosk	String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 135, table 96 in CNAIM (2021).
cable_boxes	<pre>String. Indicating the observed condition of the cable boxes. Options: cable_boxes = c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa Deterioration", "Default"). See page 135, table 97 in CNAIM (2021).</pre>
external_tap	String. Indicating the observed external condition of the tapchanger. Options: external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 98 in CNAIM (2021).
internal_tap	String. Indicating the observed internal condition of the tapchanger. Options: internal_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 99 in CNAIM (2021).
mechnism_cond	<pre>String. Indicating the observed condition of the drive mechnism. Options: mechnism_cond = c("No deterioration", "Superficial/minor deterioration",</pre>

	"Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 100 in CNAIM (2021).
diverter_contac	cts
	String. Indicating the observed condition of the selector and diverter contacts. Options: diverter_contacts = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 101 in CNAIM (2021).
diverter_braids	S
	String. Indicating the observed condition of the selector and diverter braids. Options: diverter_braids = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 102 in CNAIM (2021)
moisture	Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021).
acidity	Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204 in CNAIM (2021).
bd_strength	Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021).
hydrogen	Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels are measured in ppm. A setting of "Default" will result in the best possible result.
methane	Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethylene	Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethane	Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.
acetylene	Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
hydrogen_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
methane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
acetylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
furfuraldehyde	Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuralde- hyde levels are measured in ppm. A setting of "Default" will result in the best possible result.

```
reliability_factor
```

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

simulation_end_year

Numeric. The last year of simulating probability of failure. Default is 100.

Value

DataFrame. Future probability of failure along with future health score

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Future probability of failure for a 66/10kV transformer
pof_future_transformer_132kv(transformer_type = "132kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
placement = "Default"
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default",
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default"
hydrogen_pre = "Default",
```

```
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default",
simulation_end_year = 100)
```

```
pof_future_transformer_30_60kv

Future Probability of Failure for 30/10kV and 60/10kV Transformers
```

Description

This function calculates the future annual probability of failure for 30/10kV and 60/10kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_future_transformer_30_60kv(
  transformer_type = "60kV Transformer (GM)",
  year_of_manufacture,
  utilisation_pct = "Default",
  no_taps = "Default",
  placement = "Default"
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
  main_tank = "Default",
  coolers_radiator = "Default",
  bushings = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  external_tap = "Default",
  internal_tap = "Default",
  mechnism_cond = "Default",
  diverter_contacts = "Default",
  diverter_braids = "Default",
  moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
```

```
hydrogen = "Default",
 methane = "Default",
 ethylene = "Default",
 ethane = "Default",
 acetylene = "Default",
 hydrogen_pre = "Default",
 methane_pre = "Default",
 ethylene_pre = "Default",
 ethane_pre = "Default",
 acetylene_pre = "Default",
 furfuraldehyde = "Default",
 reliability_factor = "Default",
 k_value = 0.454,
 c_value = 1.087,
 normal_expected_life_tf = "Default",
 normal_expected_life_tc = "Default",
 simulation_end_year = 100
)
```

Arguments

transformer_type		
	String. A sting that refers to the specific asset category. Options: transformer_type = c("30kV Transformer (GM)", "60kV Transformer (GM)"). The default setting is transformer_type = "60kV Transformer (GM)"	
year_of_manufac	cture	
	Numeric. Normal expected life depends on the year for manufacture.	
utilisation_pct	t	
	Numeric. The max percentage of utilisation under normal operating conditions.	
no_taps	Numeric. Average number of daily taps (tapchanger).	
placement	String. Specify if the asset is located outdoor or indoor.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_coast_km		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_category_index		
	Integer. Specify the corrosion index category, 1-5.	
age_tf	Numeric. The current age in years of the transformer.	
age_tc	Numeric. The current age in years of the tapchanger	
partial_discharge_tf		
	<pre>String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default").</pre>	

partial_dischar	-ge_tc
	String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default").
temperature_rea	ading
	<pre>String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default").</pre>
main_tank	<pre>String. Indicating the observed condition of the main tank. Options: main_tank = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).</pre>
coolers_radiate)r
	<pre>String. Indicating the observed condition of the coolers/radiators. Options: coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant Deterioration", "Default"). in CNAIM (2021).</pre>
bushings	<pre>String. Indicating the observed condition of the bushings. Options: bushings = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").</pre>
kiosk	String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").
cable_boxes	<pre>String. Indicating the observed condition of the cable boxes. Options: cable_boxes = c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa Deterioration", "Default").</pre>
external_tap	<pre>String. Indicating the observed external condition of the tapchanger. Options: external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).</pre>
internal_tap	<pre>String. Indicating the observed internal condition of the tapchanger. Options: external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).</pre>
mechnism_cond	<pre>String. Indicating the observed condition of the drive mechnism. Options: mechnism_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).</pre>
diverter_contac	
	<pre>String. Indicating the observed condition of the selector and diverter contacts. Options: diverter_contacts = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).</pre>
diverter_braids	
	<pre>String. Indicating the observed condition of the selector and diverter braids. Options: diverter_braids = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").</pre>
moisture	Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021).
acidity	Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204 in CNAIM (2021).
bd_strength	Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021).

hydrogen	Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels are measured in ppm. A setting of "Default" will result in the best possible result.
methane	Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethylene	Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethane	Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.
acetylene	Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
hydrogen_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
methane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
acetylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
furfuraldehyde	Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuralde- hyde levels are measured in ppm. A setting of "Default" will result in the best possible result.
reliability_factor	
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
k_value	Numeric. k_value = "0.0454" by default. This number is given in a percent- age. The default value is accordingly to the CNAIM standard on p. 110.
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110
normal_expected_life_tf	
_	Numeric. normal_expected_life_tf = "Default" by default. The default value is accordingly to the CNAIM standard on page 107.
normal_expected_life_tc	
-tanalastan - J	Numeric. normal_expected_life_tc = "Default" by default. The default value is accordingly to the CNAIM standard on page 107.
simulation_end_year Numeric. The last year of simulating probability of failure. Default is 100.	
	Numerie. The fast year of simulating probability of famule. Default 18 100.

Value

DataFrame. Future probability of failure along with future health score
Examples

```
# Future probability of failure for a 60/10kV transformer
pof_future_transformer_30_60kv(transformer_type = "60kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
placement = "Default"
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default"
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default"
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default",
k_value = 0.454,
c_value = 1.087,
normal_expected_life_tf = "Default",
normal_expected_life_tc = "Default",
simulation_end_year = 100)
```

pof_future_transformer_33_66kv *Future Probability of Failure for 33/10kV and 66/10kV Transformers*

Description

This function calculates the future annual probability of failure for 33/10kV and 66/10kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_future_transformer_33_66kv(
  transformer_type = "66kV Transformer (GM)",
  year_of_manufacture = 1980,
  utilisation_pct = "Default",
  no_taps = "Default",
  placement = "Default"
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
  main_tank = "Default",
  coolers_radiator = "Default",
  bushings = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  external_tap = "Default"
  internal_tap = "Default",
  mechnism_cond = "Default",
  diverter_contacts = "Default",
  diverter_braids = "Default",
 moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
  hydrogen = "Default",
 methane = "Default",
  ethylene = "Default",
  ethane = "Default",
  acetylene = "Default",
  hydrogen_pre = "Default",
  methane_pre = "Default",
  ethylene_pre = "Default",
  ethane_pre = "Default",
  acetylene_pre = "Default",
  furfuraldehyde = "Default",
  reliability_factor = "Default",
  simulation_end_year = 100
```

)

Arguments

transformer_type		
	<pre>String. A sting that refers to the specific asset category. See See page 17, ta- ble 1 in CNAIM (2021). Options: transformer_type = c("33kV Transformer (GM)", "66kV Transformer (GM)"). The default setting is transformer_type = "66kV Transformer (GM)"</pre>	
year_of_manufac	sture	
	Numeric. Normal expected life depends on the year for manufacture, see page 107 table 20 in CNAIM (2021).	
utilisation_pct		
	Numeric. The max percentage of utilisation under normal operating conditions.	
no_taps	Numeric. Average number of daily taps (tapchanger).	
placement	String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from	
	sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_coast_km		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_categ	gory_index	
	Integer. Specify the corrosion index category, 1-5.	
age_tf	Numeric. The current age in years of the transformer.	
age_tc	Numeric. The current age in years of the tapchanger	
partial_dischar	rge_tf	
	<pre>String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 154, table 173 in CNAIM (2021).</pre>	
partial_discharge_tc		
	<pre>String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 155, table 175 in CNAIM (2021).</pre>	
temperature_rea		
	String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 154, table 174 in CNAIM (2021).	

main_tank	<pre>String. Indicating the observed condition of the main tank. Options: main_tank = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 131, table 83 in CNAIM (2021).</pre>
coolers_radiate	
	String. Indicating the observed condition of the coolers/radiators. Options: coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant Deterioration", "Default"). See page 131, table 84 in CNAIM (2021).
bushings	<pre>String. Indicating the observed condition of the bushings. Options: bushings = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 131, table 85 in CNAIM (2021).</pre>
kiosk	String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 132, table 86 in CNAIM (2021).
cable_boxes	<pre>String. Indicating the observed condition of the cable boxes. Options: cable_boxes = c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa Deterioration", "Default"). See page 132, table 87 in CNAIM (2021).</pre>
external_tap	String. Indicating the observed external condition of the tapchanger. Options: external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 133, table 88 in CNAIM (2021).
internal_tap	String. Indicating the observed internal condition of the tapchanger. Options: internal_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 133, table 89 in CNAIM (2021).
mechnism_cond	<pre>String. Indicating the observed condition of the drive mechnism. Options: mechnism_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 133, table 90 in CNAIM (2021).</pre>
diverter_contac	cts
	<pre>String. Indicating the observed condition of the selector and diverter contacts. Options: diverter_contacts = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 133, table 91 in CNAIM (2021).</pre>
diverter_braids	5
	<pre>String. Indicating the observed condition of the selector and diverter braids. Options: diverter_braids = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 134, table 92 in CNAIM (2021)</pre>
moisture	Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021).
acidity	Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204 in CNAIM (2021).
bd_strength	Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021).
hydrogen	Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels are measured in ppm. A setting of "Default" will result in the best possible result.

methane	Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.	
ethylene	Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.	
ethane	Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.	
acetylene	Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.	
hydrogen_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.	
methane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.	
ethylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.	
ethane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.	
acetylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.	
furfuraldehyde	Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuralde- hyde levels are measured in ppm. A setting of "Default" will result in the best possible result.	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
simulation_end	•	
	Numeric. The last year of simulating probability of failure. Default is 100.	

Value

DataFrame. Future probability of failure along with future health score

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Future probability of failure for a 66/10kV transformer
pof_future_transformer_33_66kv(transformer_type = "66kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
```

```
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default",
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default",
simulation_end_year = 100)
```

pof_hv_switchgear_distribution

Current Probability of Failure for HV Switchgear Distribution

Description

This function calculates the current annual probability of failure per kilometer HV Switchgear Distribution The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

pof_hv_switchgear_distribution(

```
hv_asset_category = "6.6/11kV CB (GM) Secondary",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age,
measured_condition_inputs,
observed_condition_inputs,
reliability_factor = "Default"
```

)

hv_asset_cate	gory
	String The type of LV asset category
placement	String. Specify if the asset is located outdoor or indoor.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from	_coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_cat	egory_index
	Integer. Specify the corrosion index category, 1-5.
age	Numeric. The current age in years of the conductor.
measured_cond	ition_inputs
	Named list observed_conditions_input
observed_cond	ition_inputs
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).
reliability_f	actor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
luo	

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current annual probability of failure for HV Swicthgear distribution
pof_hv_switchgear_distribution(
hv_asset_category = "6.6/11kV CB (GM) Secondary",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default")
```

pof_hv_switchgear_primary

Current Probability of Failure for HV Switchgear Primary

Description

This function calculates the current annual probability of failure per kilometer HV Switchgear Primary The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_hv_switchgear_primary(
  hv_asset_category = "6.6/11kV CB (GM) Primary",
  placement = "Default",
  number_of_operations = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  measured_condition_inputs,
  observed_condition_inputs,
```

```
reliability_factor = "Default"
)
```

hv_asset_category String The type of HV asset category String. Specify if the asset is located outdoor or indoor. placement number_of_operations The number of operations for duty factor altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type. distance_from_coast_km Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type. corrosion_category_index Integer. Specify the corrosion index category, 1-5. Numeric. The current age in years of the conductor. age measured_condition_inputs Named list observed conditions input observed_condition_inputs Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021). reliability_factor Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_ asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current annual probability of failure for HV Swicthgear Primary
pof_hv_switchgear_primary(
hv_asset_category = "6.6/11kV CB (GM) Primary",
placement = "Default",
```

```
number_of_operations = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
 measured_condition_inputs = list("partial_discharge" =
 list("Condition Criteria: Partial Discharge Test Results" = "Default"),
 "ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
 "oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
 "temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
 "trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
 "ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
 reliability_factor = "Default")
```

pof_lv_switchgear_and_other

Current Probability of Failure for LV switchgear and others

Description

This function calculates the current annual probability of failure for LV switchgear and others The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_lv_switchgear_and_other(
    lv_asset_category = "LV Circuit Breaker",
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default"
)
```

Arguments

lv_asset_category

String The type of LV asset category

placement	String. Specify if the asset is located outdoor or indoor.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from_	coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_cate	gory_index
	Integer. Specify the corrosion index category, 1-5.
age	Numeric. The current age in years of the conductor.
<pre>measured_condi</pre>	tion_inputs
	Named list observed_conditions_input
observed_condi	tion_inputs
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defa See page 161, table 199 and 201 in CNAIM (2021).
reliability_fa	ctor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for LV Switchgear and other
pof_lv_switchgear_and_other(
lv_asset_category = "LV Circuit Breaker",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("operational_adequacy" =
list("Condition Criteria: Operational Adequacy" = "Default")),
reliability_factor = "Default")
```

pof_lv_ugb

Description

This function calculates the current annual probability of failure for LV UGB The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_lv_ugb(
    lv_asset_category = "LV UGB",
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default"
)
```

Arguments

lv_asset_category

	5	
	String The type of LV asset category	
placement	String. Specify if the asset is located outdoor or indoor.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_c	coast_km	
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_category_index		
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
measured_condit	ion_inputs	
	Named list observed_conditions_input	
observed_condit	ion_inputs	
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).	

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current annual probability of failure for 10kV OHL (Tower Line) Conductor
pof_lv_ugb(
lv_asset_category = "LV UGB",
placement = "Default",
altitude_m = "Default"
distance_from_coast_km = "Default"
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("steel_cover_and_pit_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"water_moisture" = list("Condition Criteria: Observed Condition" = "Default"),
"bell_cond" = list("Condition Criteria: Observed Condition" = "Default"),
"insulation_cond" = list("Condition Criteria: Observed Condition" = "Default"),
"signs_heating" = list("Condition Criteria: Observed Condition" = "Default"),
"phase_barriers" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("opsal_adequacy" =
list("Condition Criteria: Operational Adequacy" = "Default")),
reliability_factor = "Default")
```

pof_meter

Current Probability of Failure for Meters

Description

This function calculates the current annual probability of failure meter The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_meter(
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default",
   k_value = 0.128,
   c_value = 1.087,
   normal_expected_life = 25
)
```

Arguments

placement	String. Specify if the asset is located outdoor or indoor.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from	_coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_cat	egory_index
	Integer. Specify the corrosion index category, 1-5.
age	Numeric. The current age in years of the conductor.
measured_cond	ition_inputs
	Named list observed_conditions_input
observed_cond	ition_inputs
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau
reliability_f	actor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
k_value	Numeric. $k_value = 0.128$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110
normal_expect	ed_life
	Numeric. normal_expected_life = 50 by default. The default value is accord- ingly to the CNAIM standard on page 107.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for meter
pof_meter(
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.128,
c_value = 1.087,
normal_expected_life = 25)
```

pof_ohl_cond_132_66_33kv

Current Probability of Failure for 33-132kV OHL Conductors

Description

This function calculates the current annual probability of failure per kilometer 33-132kV OHL conductors. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_ohl_cond_132_66_33kv(
    ohl_conductor = "66kV OHL (Tower Line) Conductor",
    sub_division = "Cu",
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
```

```
conductor_samp = "Default",
corr_mon_survey = "Default",
visual_cond = "Default",
midspan_joints = "Default",
reliability_factor = "Default")
```

ohl_conductor	String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: ohl_conductor = c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor", "132kV OHL (Tower Line) Conductor"). The default setting is ohl_conductor = "66kV OHL (Tower Line) Conductor".
sub_division	<pre>String. Refers to material the conductor is made of. Options: sub_division = c("ACSR - greased", "ACSR - non-greased", "AAAC", "Cad Cu", "Cu", "Other") . See page 107, table 20 in CNAIM (2021).</pre>
placement	String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from_c	coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_categ	gory_index
	Integer. Specify the corrosion index category, 1-5. corrosion_category_index is used to derive the corrosion category factor. See page 111, table 24 in CNAIM (2021). A setting of "Default" will set the corrosion category factor to 1 inde- pendent of asset_type.
age	Numeric. The current age in years of the conductor.
conductor_samp	String. Conductor sampling. Options: conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).
corr_mon_survey	
	String. Corrosion monitoring survey. Options: corr_mon_survey = c("Low", "Medium/Normal", "High See page 161, table 200 and 202 in CNAIM (2021).
visual_cond	<pre>String. Visual condition. Options: visual_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 146, table 140 and 142 in CNAIM (2021).</pre>

pof_poles

midspan_joints Integer. Number of midspan joints on the conductor. A span includes all conductors in that span. See page 146, table 141 and 143 in CNAIM (2021).

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current annual probability of failure for 66kV OHL (Tower Line) Conductor
pof_ohl_cond_132_66_33kv(
  ohl_conductor = "66kV OHL (Tower Line) Conductor",
  sub_division = "Cu",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age = 10,
    conductor_samp = "Default",
    corr_mon_survey = "Default",
    visual_cond = "Default",
    midspan_joints = "Default",
    reliability_factor = "Default")
```

pof_poles

Current Probability of Failure for Poles

Description

This function calculates the current annual probability of failure per kilometer Poles The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_poles(
   pole_asset_category = "20kV Poles",
   sub_division = "Wood",
   placement = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   corrosion_category_index = "Default",
   age,
   measured_condition_inputs,
   observed_condition_inputs,
   reliability_factor = "Default"
)
```

Arguments

pole_asset_category String Th

pore_asser_cat	String The type of asset category
sub_division	String. Refers to material the pole is made of.
placement	String. Specify if the asset is located outdoor or indoor.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from_	coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_cate	gory_index
	Integer. Specify the corrosion index category, 1-5.
age	Numeric. The current age in years of the conductor.
measured_condi	tion_inputs
	Named list observed_conditions_input
observed_condi	tion_inputs
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).
reliability_fa	ctor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for HV Poles
pof_poles(
pole_asset_category = "20kV Poles",
sub_division = "Wood",
placement = "Default"
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("visual_pole_cond" =
list("Condition Criteria: Pole Top Rot Present?" = "Default"),
"pole_leaning" = list("Condition Criteria: Pole Leaning?" = "Default"),
"bird_animal_damage" =
list("Condition Criteria: Bird/Animal Damage?" = "Default"),
"top_rot" = list("Condition Criteria: Pole Top Rot Present?" = "Default")),
measured_condition_inputs =
list("pole_decay" =
list("Condition Criteria: Degree of Decay/Deterioration" = "Default")),
reliability_factor = "Default")
```

pof_submarine_cables Current Probability of Failure for Submarine Cables

Description

This function calculates the current annual probability of failure per kilometer for submarine cables. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_submarine_cables(
  sub_cable_type = "EHV Sub Cable",
  utilisation_pct = "Default",
  operating_voltage_pct = "Default",
  topography = "Default",
  situation = "Default",
  wind_wave = "Default",
  intensity = "Default",
```

```
landlocked = "no",
sheath_test = "Default",
partial_discharge = "Default",
fault_hist = "Default",
condition_armour = "Default",
age,
reliability_factor = "Default"
```

	String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: sub_cable_type = c("HV Sub Cable", "EHV Sub Cable", "132kV Sub Cable"). The deafult setting is sub_cable_type = "EHV Sub Cable".
utilisation_pc	
	Numeric. The max percentage of utilisation under normal operating conditions.
operating_volta	
	Numeric. The ratio in percent of operating/design voltage.
topography	<pre>String. Describe the topography around the submarine cable. Options: typography = c("Low Detrimental Topography", "Medium Detrimental Topography", "High Detrimental Topography", "Very High Detrimental Topography", "Default")</pre>
situation	Situation of the cable
wind_wave	Numeric. Options: wind_wave=c(1, 2, 3, "Default"). Settings:
	• wind_wave = 1: Sheltered sea loch, Wind <200 W/m2
	• wind_wave = 2: Wave <15kW/m, Wind 200-800 W/m2
	• wind_wave = 3: Wave <15kW/m, Wind 200-800 W/m2
	 wind_wave = "Default": No data available
intensity	<pre>String. Combined wave and current energy factor. Options: intensity=c("Low", "Moderate", "High", "Default").</pre>
landlocked	String. Options: landlocked = c("yes", "no"). Default setting for landlocked = "no".
sheath_test	<pre>String. Indicating the state of the sheath. Options: sheath_test = c("Pass", "Failed Minor", "Failed Major", "Default"). See page 158, table 189 in CNAIM (2021).</pre>
partial_discham	rge
	<pre>String. Indicating the level of partial discharge. Options: partial_discharge = c("Low", "Medium", "High", "Default"). See page 158, table 190 in CNAIM (2021).</pre>
fault_hist	Numeric. The calculated fault rate for the cable per annum per kilometer. A setting of "No historic faults recorded" indicates no fault. See page 158, table 191 in CNAIM (2021).
condition_armou	
	<pre>String. Indicating the external condition of the submarine cables armour. Op- tions: condition_armour = c("Good", "Poor", "Critical", "Default")</pre>

age

Numeric. The current age in years of the cable.

reliability_factor

Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
# Current annual probability of failure for 1 km EHV Sub Cable
pof_submarine_cables(
sub_cable_type = "EHV Sub Cable",
utilisation_pct = "Default",
 operating_voltage_pct = "Default",
 topography = "Default",
 situation = "Default",
 wind_wave = "Default"
 intensity = "Default",
 landlocked = "no",
 sheath_test = "Default",
 partial_discharge = "Default",
 fault_hist = "Default",
 condition_armour = "Default",
age = 10,
reliability_factor = "Default"
)
```

pof_switchgear_primary_10kv

Current Probability of Failure for 10 kV Switchgear (GM) Primary

Description

This function calculates the current annual probability of failure 10 kV Switchgear (GM) Primary The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_switchgear_primary_10kv(
    placement = "Default",
    number_of_operations = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    measured_condition_inputs,
    observed_condition_inputs,
    reliability_factor = "Default",
    k_value = 0.0052,
    c_value = 1.087,
    normal_expected_life = 55
)
```

Arguments

placement number_of_oper	String. Specify if the asset is located outdoor or indoor.	
	The number of operations for duty factor	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_coast_km		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_cate	gory_index	
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years of the conductor.	
measured_condi		
	Named list observed_conditions_input	
observed_condi		
	Named list observed_conditions_input conductor_samp = c("Low","Medium/Normal","High","Defau	
reliability_fa		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
k_value	Numeric. $k_value = 0.0052$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life		
	Numeric. normal_expected_life = 55 by default. The default value is accord- ingly to the CNAIM standard on page 107.	

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for 10 kV Switchgear (GM) Primary
pof_switchgear_primary_10kv(
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default"),
"ir_test" = list("Condition Criteria: IR Test Results" = "Default" )),
reliability_factor = "Default",
k_value = 0.0052,
c_value = 1.087,
normal_expected_life = 55)
```

pof_switchgear_secondary_10kV

Current Probability of Failure for 10kV Switchgear secondary

Description

This function calculates the current annual probability of failure 10kV Switchgear secondary The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_switchgear_secondary_10kV(
    placement = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
```

```
corrosion_category_index = "Default",
  age,
  measured_condition_inputs,
  observed_condition_inputs,
  reliability_factor = "Default",
  k_value = 0.0067,
  c_value = 1.087,
  normal_expected_life = 55
)
```

placement	String. Specify if the asset is located outdoor or indoor.
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.
distance_from_	coast_km
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
corrosion_cate	gory_index
	Integer. Specify the corrosion index category, 1-5.
age	Numeric. The current age in years of the conductor.
measured_condi	tion_inputs
	Named list observed_conditions_input
observed_condi	tion_inputs
	Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau
reliability_fa	
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
k_value	Numeric. $k_value = 0.0067$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.
c_value	Numeric. $c_value = 1.087$ by default. The default value is accordingly to the CNAIM standard see page 110
normal_expecte	d_life
	Numeric. normal_expected_life = 55 by default. The default value is accord- ingly to the CNAIM standard on page 107.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for 10kV Switchgear secondary
pof_switchgear_secondary_10kV(
```

pof_towers

```
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
observed_condition_inputs =
list("external_condition" =
list("Condition Criteria: Observed Condition" = "Default"),
"oil_gas" = list("Condition Criteria: Observed Condition" = "Default"),
"thermo_assment" = list("Condition Criteria: Observed Condition" = "Default"),
"internal_condition" = list("Condition Criteria: Observed Condition" = "Default"),
"indoor_env" = list("Condition Criteria: Observed Condition" = "Default")),
measured_condition_inputs =
list("partial_discharge" =
list("Condition Criteria: Partial Discharge Test Results" = "Default"),
"ductor_test" = list("Condition Criteria: Ductor Test Results" = "Default"),
"oil_test" = list("Condition Criteria: Oil Test Results" = "Default"),
"temp_reading" = list("Condition Criteria: Temperature Readings" = "Default"),
"trip_test" = list("Condition Criteria: Trip Timing Test Result" = "Default")),
reliability_factor = "Default",
k_value = 0.0067,
c_value = 1.087,
normal_expected_life = 55)
```

pof_towers

Current Probability of Failure for Towers

Description

This function calculates the current annual probability of failure per kilometer EHV Switchgear The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_towers(
   tower_asset_category = "33kV Tower",
   foundation_type = "Foundation - Fully Encased Concrete",
   paint_type = "Paint System - Paint",
   placement = "Default",
   number_of_operations = "Default",
   altitude_m = "Default",
   distance_from_coast_km = "Default",
   age,
   observed_condition_inputs_steelwork,
   observed_condition_inputs_paint,
   observed_condition_inputs_foundation,
```

```
reliability_factor = "Default"
)
```

tower_asset_category			
	String The type of Tower asset category		
foundation_typ	e		
	String Foundation type of the tower		
<pre>paint_type</pre>	String Paint type of the tower		
placement	String. Specify if the asset is located outdoor or indoor.		
number_of_operations			
	Numeric Number of operations for the tower		
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.		
distance_from_	coast_km		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.		
corrosion_category_index			
	Integer. Specify the corrosion index category, 1-5.		
age	Numeric. The current age in years of the conductor.		
observed_condition_inputs_steelwork			
	Named list observed_conditions_input		
observed_condition_inputs_paint			
	Named list observed_conditions_input		
observed_condi	<pre>tion_inputs_foundation Named list observed_conditions_input conductor_samp = c("Low", "Medium/Normal", "High", "Defau See page 161, table 199 and 201 in CNAIM (2021).</pre>		
reliability_factor			
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).		

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current annual probability of failure for Towers
pof towers(
tower_asset_category = "33kV Tower",
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
paint_type = "Paint System - Galvanising",
foundation_type = "Foundation - Earth Grillage",
observed_condition_inputs_steelwork =
list("tower_legs" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_bracings" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_crossarms" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_peak" = list("Condition Criteria: Observed Condition" = "Default")),
observed_condition_inputs_paint =
list("paintwork_cond" = list("Condition Criteria: Observed Condition" = "Default")),
observed_condition_inputs_foundation =
list("foundation_cond" = list("Condition Criteria: Observed Condition" = "Default")),
reliability_factor = "Default")
```

pof_tower_ohl_support_50kv

Current Probability of Failure for Towers OHL support 50kV

Description

This function calculates the current annual probability of failure per kilometer EHV for Towers OHL support 50kV The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_tower_ohl_support_50kv(
    foundation_type = "Foundation - Fully Encased Concrete",
    paint_type = "Paint System - Paint",
    placement = "Default",
    number_of_operations = "Default",
    altitude_m = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    observed_condition_inputs_steelwork,
    observed_condition_inputs_foundation,
    reliability_factor = "Default",
```

```
k_value = 0.0545,
c_value = 1.087,
normal_expected_life = "Default"
)
```

1	guments		
foundation_type			
		<pre>String. Foundation type of the tower foundation_type = c("Foundation - Fully Encased Concrete", "Foundation - Earth Grillage")</pre>	
	paint_type	<pre>String. Paint type of the tower foundation_type = c(Paint System - Galvanising, Paint System - Paint)</pre>	
	placement	String. Specify if the asset is located outdoor or indoor.	
	number_of_opera	ations	
		Numeric Number of operations for the tower	
	altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
	distance_from_c	coast_km	
		Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
	corrosion_categ	gory_index	
		Integer. Specify the corrosion index category, 1-5.	
	age	Numeric. The current age in years of the conductor.	
	observed_condit	tion_inputs_steelwork	
		Named list observed_conditions_input	
observed_condition_inputs_paint			
		Named list observed_conditions_input	
	observed_condit	tion_inputs_foundation	
		Named list observed_conditions_input conductor_samp = c("Low","Medium/Normal","High","Defau	
	reliability_fac		
		Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
	k_value	Numeric. $k_value = 0.0545$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
	c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110	
	normal_expected		
		Numeric. normal_expected_life = "Default" by default. The default value is accordingly to the CNAIM standard on page 107.	

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current annual probability of failure for Towers
pof_tower_ohl_support_50kv(
number_of_operations = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
paint_type = "Paint System - Galvanising",
foundation_type = "Foundation - Earth Grillage",
observed_condition_inputs_steelwork =
list("tower_legs" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_bracings" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_crossarms" = list("Condition Criteria: Observed Condition" = "Default"),
"tower_peak" = list("Condition Criteria: Observed Condition" = "Default")),
observed_condition_inputs_paint =
list("paintwork_cond" = list("Condition Criteria: Observed Condition" = "Default")),
observed_condition_inputs_foundation =
list("foundation_cond" = list("Condition Criteria: Observed Condition" = "Default")),
reliability_factor = "Default",
k_value = 0.0545,
c_value = 1.087,
normal_expected_life = "Default")
```

pof_transformer_04_10kv

Current Probability of Failure for 0.4/10kV Transformers

Description

This function calculates the current annual probability of failure for 0.4/10kV Transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

```
pof_transformer_04_10kv(
    utilisation_pct = "Default",
    placement = "Default",
    distance_from_coast_km = "Default",
    corrosion_category_index = "Default",
    age,
    partial_discharge = "Default",
    temperature_reading = "Default",
    observed_condition = "Default",
    reliability_factor = "Default",
```

```
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
k_value = 0.0077,
c_value = 1.087,
normal_expected_life = 55
)
```

utilisation_pct		
	Numeric Utilisation percentage	
placement	String. Specify if the asset is located outdoor or indoor.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_coast_km		
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_categ	jory_index	
	Integer. Specify the corrosion index category, 1-5.	
age	Numeric. The current age in years.	
partial_dischar		
	<pre>String. Indicating the level of partial discharge. Options for partial_discharge: partial_discharge = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default").</pre>	
temperature_rea	-	
	<pre>String. Indicating the criticality. Options for temperature_reading: temperature_reading = c("Normal", "Moderately High", "Very High", "Default").</pre>	
observed_condit	ion	
	<pre>String. Indicating the observed condition of the transformer. Options for observed_condition: observed_condition = c("No deterioration", "Superficial/minor deterioration", "Slight deterioration", "Some Deterioration", "Substantial Deterioration", "Default").</pre>	
reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
moisture	Numeric. the amount of moisture given in (ppm)	
acidity	Oil Acidity	
bd_strength	Numeric. the amount of breakdown strength given in (kV)	
k_value	Numeric. $k_value = 0.0077$ by default. This number is given in a percentage. The default value is accordingly to the standard "DE-10kV apb kabler CNAIM" on p. 34.	

c_value Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110

normal_expected_life

Numeric. normal_expected_life = 55 by default. The default value is accordingly to the standard "DE-10kV apb kabler CNAIM" on p. 33.

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current probability of failure for 0.4/10kV Transformers
pof_transformer_04_10kv(utilisation_pct = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
partial_discharge = "Default",
temperature_reading = "Default",
observed_condition = "Default",
reliability_factor = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
k_value = 0.0077,
c_value = 1.087,
normal_expected_life = 55)
```

pof_transformer_11_20kv

Current Probability of Failure for 6.6/11kV and 20kV Transformers

Description

This function calculates the current annual probability of failure for 6.6/11kV and 20kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_transformer_11_20kv(
    hv_transformer_type = "6.6/11kV Transformer (GM)",
    utilisation_pct = "Default",
    placement = "Default",
    altitude_m = "Default",
```

```
distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age,
  partial_discharge = "Default",
  temperature_reading = "Default",
  observed_condition = "Default",
  reliability_factor = "Default",
  moisture = "Default",
  oil_acidity = "Default",
  bd_strength = "Default"
```

hv_transformer_type String. Refers to the high voltage transformer type the calculation is done for. Options: hv_transformer_type = c("6.6/11kV Transformer (GM)", "20kV Transformer (GM)"). The default setting is hv_transformer_type = 6.6/11kV Transformer (GM). utilisation_pct Numeric. The max percentage of utilisation under normal operating conditions. placement String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments. altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type. distance_from_coast_km Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type. corrosion_category_index Integer. Specify the corrosion index category, 1-5. Numeric. The current age in years. age partial_discharge String. Indicating the temperature_reading String. Indicating the criticality. Options for temperature_reading: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 153, table 172 in CNAIM (2021). observed_condition String. Indicating the observed condition of the transformer. Options for observed_condition: observed_condition = c("No deterioration", "Superficial/minor deterioration",

	"Slight deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 130, table 81 in CNAIM (2021).
reliability_fa	ictor
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).
moisture	Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021).
oil_acidity	Oil Acidity level of partial discharge. Options for partial_discharge: partial_discharge = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 153, table 171 in CNAIM (2021).
bd_strength	Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current probability of failure for a 6.6/11 kV transformer
pof_transformer_11_20kv(hv_transformer_type = "6.6/11kV Transformer (GM)",
utilisation_pct = "Default",
placement = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age = 10,
partial_discharge = "Default",
temperature_reading = "Default",
observed_condition = "Default",
reliability_factor = "Default",
moisture = "Default",
oil_acidity = "Default",
bd_strength = "Default")
```

pof_transformer_132kv Current Probability of Failure for 132kv Transformers

Description

This function calculates the current annual probability of failure for 132kv transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

```
pof_transformer_132kv(
  transformer_type = "132kV Transformer (GM)",
 year_of_manufacture,
  utilisation_pct = "Default",
  no_taps = "Default",
  placement = "Default"
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
  main_tank = "Default",
  coolers_radiator = "Default",
  bushings = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  external_tap = "Default"
  internal_tap = "Default",
  mechnism_cond = "Default",
  diverter_contacts = "Default",
  diverter_braids = "Default",
 moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
  hydrogen = "Default",
 methane = "Default",
  ethylene = "Default",
  ethane = "Default",
  acetylene = "Default",
  hydrogen_pre = "Default",
  methane_pre = "Default",
  ethylene_pre = "Default",
  ethane_pre = "Default",
  acetylene_pre = "Default",
  furfuraldehyde = "Default",
  reliability_factor = "Default"
)
```

transformer_type		
	String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: transformer_type = c("132kV Transformer (GM)"	
year_of_manufac	cture	
	Numeric. Normal expected life depends on the year for manufacture, see page 107 table 20 in CNAIM (2021).	
utilisation_pc	t	
	Numeric. The max percentage of utilisation under normal operating conditions.	
no_taps	Numeric. Average number of daily taps (tapchanger).	
placement	String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.	
altitude_m	Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.	
distance_from_o	coast_km	
	Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.	
corrosion_categ	gory_index	
	Integer. Specify the corrosion index category, 1-5.	
age_tf	Numeric. The current age in years of the transformer.	
age_tc	Numeric. The current age in years of the tapchanger	
partial_discham	rge_tf	
	<pre>String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 155, table 176 in CNAIM (2021).</pre>	
partial_dischar		
	<pre>String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 156, table 178 in CNAIM (2021).</pre>	
temperature_reading		
	<pre>String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 155, table 177 in CNAIM (2021).</pre>	
main_tank	<pre>String. Indicating the observed condition of the main tank. Options: main_tank = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 134, table 93 in CNAIM (2021).</pre>	

coolers_radiat	or	
	String. Indicating the observed condition of the coolers/radiators. Options: coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant Deterioration", "Default"). See page 134, table 94 in CNAIM (2021).	
bushings	String. Indicating the observed condition of the bushings. Options: bushings = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 135, table 95 in CNAIM (2021).	
kiosk	String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 135, table 96 in CNAIM (2021).	
cable_boxes	<pre>String. Indicating the observed condition of the cable boxes. Options: cable_boxes = c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa Deterioration", "Default"). See page 135, table 97 in CNAIM (2021).</pre>	
external_tap	String. Indicating the observed external condition of the tapchanger. Options: external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 98 in CNAIM (2021).	
internal_tap	String. Indicating the observed internal condition of the tapchanger. Options: internal_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 99 in CNAIM (2021).	
mechnism_cond	<pre>String. Indicating the observed condition of the drive mechnism. Options: mechnism_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 100 in CNAIM (2021).</pre>	
diverter_conta		
	<pre>String. Indicating the observed condition of the selector and diverter contacts. Options: diverter_contacts = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 101 in CNAIM (2021).</pre>	
diverter_braid	S	
	<pre>String. Indicating the observed condition of the selector and diverter braids. Options: diverter_braids = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 136, table 102 in CNAIM (2021)</pre>	
moisture	Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021).	
acidity	Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204 in CNAIM (2021).	
bd_strength	Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021).	
hydrogen	Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels are measured in ppm. A setting of "Default" will result in the best possible result.	
methane	Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.	
Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.		
--	--	--
Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.		
Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.		
Numeric. Previous results. A setting of "Default" will result in the best possible result.		
Numeric. Previous results. A setting of "Default" will result in the best possible result.		
Numeric. Previous results. A setting of "Default" will result in the best possible result.		
Numeric. Previous results. A setting of "Default" will result in the best possible result.		
Numeric. Previous results. A setting of "Default" will result in the best possible result.		
Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuraldehyde levels are measured in ppm. A setting of "Default" will result in the best possible result.		
reliability_factor		
Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).		

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current probability of failure for a 132kV transformer
pof_transformer_132kv(transformer_type = "132kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
```

```
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default"
mechnism_cond = "Default"
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default")
```

pof_transformer_30_60kv

Current Probability of Failure for 30/10kV and 60/10kV Transformers

Description

This function calculates the current annual probability of failure for 30/10kV and 60/10kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function.

Usage

```
pof_transformer_30_60kv(
   transformer_type = "60kV Transformer (GM)",
   year_of_manufacture,
   utilisation_pct = "Default",
   no_taps = "Default",
   placement = "Default",
   altitude_m = "Default",
```

218

```
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf,
age_tc,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default"
external_tap = "Default"
internal_tap = "Default",
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default"
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default",
k_{value} = 0.454,
c_value = 1.087,
normal_expected_life_tf = "Default",
normal_expected_life_tc = "Default"
```

Arguments

)

transformer_type
String. A sting that refers to the specific asset category. Options: transformer_type
= c("30kV Transformer (GM)", "60kV Transformer (GM)"). The default setting is transformer_type = "60kV Transformer (GM)"
year_of_manufacture
Numeric. Normal expected life depends on the year for manufacture.
utilisation_pct

Numeric. The max percentage of utilisation under normal operating conditions.

Numeric. Average number of daily taps (tapchanger).
String. Specify if the asset is located outdoor or indoor.
Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. A setting of "Default" will set the altitude factor to 1 independent of asset_type.
coast_km
Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor. A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.
gory_index
Integer. Specify the corrosion index category, 1-5.
Numeric. The current age in years of the transformer.
Numeric. The current age in years of the tapchanger
rge_tf
<pre>String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default").</pre>
rge_tc
<pre>String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default").</pre>
ading
<pre>String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default").</pre>
<pre>String. Indicating the observed condition of the main tank. Options: main_tank = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).</pre>
or
<pre>String. Indicating the observed condition of the coolers/radiators. Options: coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant Deterioration", "Default"). in CNAIM (2021).</pre>
<pre>String. Indicating the observed condition of the bushings. Options: bushings = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").</pre>
String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").
<pre>String. Indicating the observed condition of the cable boxes. Options: cable_boxes = c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa Deterioration", "Default").</pre>
<pre>String. Indicating the observed external condition of the tapchanger. Options: external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).</pre>
<pre>String. Indicating the observed internal condition of the tapchanger. Options: external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).</pre>

mechnism_cond	String. Indicating the observed condition of the drive mechnism. Options: mechnism_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).
diverter_contac	
	String. Indicating the observed condition of the selector and diverter contacts. Options: diverter_contacts = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). in CNAIM (2021).
diverter_braids	
	<pre>String. Indicating the observed condition of the selector and diverter braids. Options: diverter_braids = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default").</pre>
moisture	Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021).
acidity	Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204 in CNAIM (2021).
bd_strength	Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021).
hydrogen	Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels are measured in ppm. A setting of "Default" will result in the best possible result.
methane	Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethylene	Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethane	Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.
acetylene	Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
hydrogen_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
methane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
acetylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.

furfuraldehyde Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuraldehyde levels are measured in ppm. A setting of "Default" will result in the best possible result.

reliability_factor		
	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).	
k_value	Numeric. $k_value = "0.0454"$ by default. This number is given in a percentage. The default value is accordingly to the CNAIM standard on p. 110.	
c_value	Numeric. c_value = 1.087 by default. The default value is accordingly to the CNAIM standard see page 110	
normal_expected_life_tf		
	Numeric. normal_expected_life_tf = "Default" by default. The default value is accordingly to the CNAIM standard on page 107.	
normal_expected_life_tc		
	Numeric. normal_expected_life_tc = "Default" by default. The default value is accordingly to the CNAIM standard on page 107.	

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Examples

```
# Current probability of failure for a 60/10kV transformer
pof_transformer_30_60kv(transformer_type = "60kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
placement = "Default",
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default",
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
```

```
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default",
k_value = 0.454,
c_value = 1.087,
normal_expected_life_tf = "Default",
normal_expected_life_tc = "Default")
```

pof_transformer_33_66kv

Current Probability of Failure for 33/10kV and 66/10kV Transformers

Description

This function calculates the current annual probability of failure for 33/10kV and 66/10kV transformers. The function is a cubic curve that is based on the first three terms of the Taylor series for an exponential function. For more information about the probability of failure function see section 6 on page 34 in CNAIM (2021).

Usage

```
pof_transformer_33_66kv(
  transformer_type = "66kV Transformer (GM)",
  year_of_manufacture,
  utilisation_pct = "Default",
  no_taps = "Default",
  placement = "Default",
  altitude_m = "Default",
  distance_from_coast_km = "Default",
  corrosion_category_index = "Default",
  age_tf,
  age_tc,
  partial_discharge_tf = "Default",
  partial_discharge_tc = "Default",
  temperature_reading = "Default",
  main_tank = "Default",
  coolers_radiator = "Default",
  bushings = "Default",
  kiosk = "Default",
  cable_boxes = "Default",
  external_tap = "Default"
  internal_tap = "Default",
```

```
mechnism_cond = "Default",
  diverter_contacts = "Default",
  diverter_braids = "Default",
 moisture = "Default",
  acidity = "Default",
  bd_strength = "Default",
  hydrogen = "Default",
 methane = "Default",
  ethylene = "Default",
  ethane = "Default",
  acetylene = "Default",
  hydrogen_pre = "Default",
  methane_pre = "Default",
  ethylene_pre = "Default",
  ethane_pre = "Default",
  acetylene_pre = "Default"
  furfuraldehyde = "Default",
  reliability_factor = "Default"
)
```

```
Arguments
```

```
transformer_type
```

String. A sting that refers to the specific asset category. See See page 17, table 1 in CNAIM (2021). Options: transformer_type = c("33kV Transformer (GM)", "66kV Transformer (GM)"). The default setting is transformer_type = "66kV Transformer (GM)"

year_of_manufacture

Numeric. Normal expected life depends on the year for manufacture, see page 107 table 20 in CNAIM (2021).

```
utilisation_pct
```

	Numeric. The max percentage of utilisation under normal operating conditions.
no_taps	Numeric. Average number of daily taps (tapchanger).

- placement String. Specify if the asset is located outdoor or indoor. A setting of "Outdoor" means the asset is located in an outside environment, and a setting of "Indoor" means the asset is located in an indoor environment. A setting of "Default" will result in either an indoor or an outdoor environment setting that depends on the specification of asset_type. See page 110-113, table 26 in CNAIM (2021) for default environments.
- altitude_m Numeric. Specify the altitude location for the asset measured in meters from sea level.altitude_m is used to derive the altitude factor. See page 111, table 23 in CNAIM (2021). A setting of "Default" will set the altitude factor to 1 independent of asset_type.

distance_from_coast_km

Numeric. Specify the distance from the coast measured in kilometers. distance_from_coast_km is used to derive the distance from coast factor See page 110, table 22 in CNAIM (2021). A setting of "Default" will set the distance from coast factor to 1 independent of asset_type.

corrosion_categ	gory_index
	Integer. Specify the corrosion index category, 1-5.
age_tf	Numeric. The current age in years of the transformer.
age_tc	Numeric. The current age in years of the tapchanger
partial_dischar	rge_tf
	<pre>String. Indicating the level of partial discharge in the transformer. Options: partial_discharge_tf = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 154, table 173 in CNAIM (2021).</pre>
partial_dischar	rge_tc
	<pre>String. Indicating the level of partial discharge in the tapchanger Options: partial_discharge_tc = c("Low", "Medium", "High (Not Confirmed)", "High (Confirmed)", "Default"). See page 155, table 175 in CNAIM (2021).</pre>
temperature_rea	ading
	<pre>String. Indicating the criticality. Options: temperature_reading = c("Normal", "Moderately High", "Very High", "Default"). See page 154, table 174 in CNAIM (2021).</pre>
main_tank	<pre>String. Indicating the observed condition of the main tank. Options: main_tank = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 131, table 83 in CNAIM (2021).</pre>
coolers_radiate	br
	String. Indicating the observed condition of the coolers/radiators. Options: coolers_radiator = c("Superficial/minor deterioration", "Some Deterioration", "Substant Deterioration", "Default"). See page 131, table 84 in CNAIM (2021).
bushings	<pre>String. Indicating the observed condition of the bushings. Options: bushings = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 131, table 85 in CNAIM (2021).</pre>
kiosk	String. Indicating the observed condition of the kiosk. Options: kiosk = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 132, table 86 in CNAIM (2021).
cable_boxes	<pre>String. Indicating the observed condition of the cable boxes. Options: cable_boxes = c("No Deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substa Deterioration", "Default"). See page 132, table 87 in CNAIM (2021).</pre>
external_tap	<pre>String. Indicating the observed external condition of the tapchanger. Options: external_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 133, table 88 in CNAIM (2021).</pre>
internal_tap	<pre>String. Indicating the observed internal condition of the tapchanger. Options: internal_tap = c("Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 133, table 89 in CNAIM (2021).</pre>
mechnism_cond	<pre>String. Indicating the observed condition of the drive mechnism. Options: mechnism_cond = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 133, table 90 in CNAIM (2021).</pre>
diverter_contac	
	String. Indicating the observed condition of the selector and diverter contacts. Options: diverter_contacts = c("No deterioration", "Superficial/minor

	deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 133, table 91 in CNAIM (2021).
diverter_braids	
-	<pre>String. Indicating the observed condition of the selector and diverter braids. Options: diverter_braids = c("No deterioration", "Superficial/minor deterioration", "Some Deterioration", "Substantial Deterioration", "Default"). See page 134, table 92 in CNAIM (2021)</pre>
moisture	Numeric. the amount of moisture given in (ppm) See page 162, table 203 in CNAIM (2021).
acidity	Numeric. the amount of acidicy given in (mg KOH/g) See page 162, table 204 in CNAIM (2021).
bd_strength	Numeric. the amount of breakdown strength given in (kV) See page 162, table 205 in CNAIM (2021).
hydrogen	Numeric. Refers to the hydrogen level in the transformer oil. Hydrogen levels are measured in ppm. A setting of "Default" will result in the best possible result.
methane	Numeric. Refers to the methane level in the transformer oil. Methane levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethylene	Numeric. Refers to the ethylene level in the transformer oil. Ethylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
ethane	Numeric. Refers to the ethane level in the transformer oil. Ethane levels are measured in ppm. A setting of "Default" will result in the best possible result.
acetylene	Numeric. Refers to the acetylene level in the transformer oil. Acetylene levels are measured in ppm. A setting of "Default" will result in the best possible result.
hydrogen_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
methane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
ethane_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
acetylene_pre	Numeric. Previous results. A setting of "Default" will result in the best possible result.
furfuraldehyde	Numeric. Refers to the furfuraldehyde level in the transformer oil. furfuralde- hyde levels are measured in ppm. A setting of "Default" will result in the best possible result.
reliability_fac	tor
-	Numeric. reliability_factor shall have a value between 0.6 and 1.5. A setting of "Default" sets the reliability_factor to 1. See section 6.14 on page 73 in CNAIM (2021).

Value

DataFrame Current probability of failure per annum per kilometer along with current health score.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
# Current probability of failure for a 66/10kV transformer
pof_transformer_33_66kv(transformer_type = "66kV Transformer (GM)",
year_of_manufacture = 1980,
utilisation_pct = "Default",
no_taps = "Default",
placement = "Default"
altitude_m = "Default",
distance_from_coast_km = "Default",
corrosion_category_index = "Default",
age_tf = 43,
age_tc = 43,
partial_discharge_tf = "Default",
partial_discharge_tc = "Default",
temperature_reading = "Default",
main_tank = "Default",
coolers_radiator = "Default",
bushings = "Default",
kiosk = "Default",
cable_boxes = "Default",
external_tap = "Default",
internal_tap = "Default",
mechnism_cond = "Default",
diverter_contacts = "Default",
diverter_braids = "Default",
moisture = "Default",
acidity = "Default",
bd_strength = "Default",
hydrogen = "Default",
methane = "Default",
ethylene = "Default",
ethane = "Default",
acetylene = "Default",
hydrogen_pre = "Default",
methane_pre = "Default",
ethylene_pre = "Default",
ethane_pre = "Default",
acetylene_pre = "Default",
furfuraldehyde = "Default",
reliability_factor = "Default")
```

predict_weibull_model Prediction function for Weibull model

Description

This function uses the Weibull model parameters trained by the function train_weibull_model(), together with the environmental factors for a specific transformer, and determines the probability of failure at a given age.

Usage

```
predict_weibull_model(
  age,
 environmental_factors = data.frame(utilisation_pct = "Default", placement = "Default",
  altitude_m = "Default", distance_from_coast_km = "Default", corrosion_category_index
    = "Default", partial_discharge = "Default", oil_acidity = "Default",
    temperature_reading = "Default", observed_condition = "Default"),
 weibull_model_parameters = data.frame(shapes = c(3.597272, 2.528015, 2.273607, 2.10145,
  2.048909), scales.intercept = c(100.17922, 45.54622, 73.63507, 29.99655, 31.19306),
  scales.1 = c(0.0028536801, 0.0014449054, 0.0011716558, -0.0003356626, -0.0017302242),
  scales.2 = c(-8.202209, -3.856043, -2.818854, -2.388243, -2.940468), scales.3 =
  c(-0.003023546, -0.001602048, -0.00134834, -0.00198866, -0.003149921), scales.4 =
  c(-0.040016081, -0.028129483, -0.017586604, -0.009426902, -0.02178312), scales.5 =
    c(-1.4776137, -0.6794045,
     -0.6000869, -0.3839049, -0.4445468), scales.6 =
  c(-0.811395564, 0.015705206, -9.815935489, -0.002548827, -0.085903822), scales.7 =
    c(-4.4776511, -0.3677058, 0.4590218, -0.6364809, -0.3314029), scales.8 =
  c(-1.5861982, 0, -0.1398528, -0.1721091, 0), scales.9 = c(-0.7914404, -0.2632199,
    -1.1882148, 0, 0))
)
```

Arguments age

Numeric. Age of transformer which should be used in the prediction.

environmental_factors

Data frame. Must contain the following fields: utilisation_pct: Numeric or "Default", placement: "Indoor", "Outdoor" or "Default", altitude_m: Numeric or "Default", distance_from_coast_km: Numeric or "Default", corrosion_category_index: Numeric or "Default", partial_discharge: "Low", "Medium", "High (Not Confirmed)", "High (Confirmed)" or "Default", oil_acidity: Numeric or "Default", temperature_reading: "Normal", "Moderately High", "Very High" or "Default", observed_condition: "No deterioration", "Superficial/minor deterioration", "Slight Deterioration", "Some deterioration", "Substantial deterioration" or "Default" Default value if environmental_factors is not provided: data frame with value "Default" for all fields weibull_model_parameters

Data frame. The output returned by the function train_weibull_model(). Default value if weibull_parameters is not provided: data frame with parameters trained on data set transformer_11kv_faults.rda

Value

Numeric. Probability of failure at the given age.

Source

https://www.cnaim.io/docs/fault-analysis/

Examples

predict_weibull_model(age = 50)

present_value_future_risk

Present Value of Future Risk

Description

This function calculates the present value of future risk. See section 5.5 on page 32 in CNAIM (2021).

Usage

```
present_value_future_risk(pof, cof, r = 0.035)
```

Arguments

pof	A vector of the probability of failure of the asset over years
cof	The consequence of failure of the asset
r	discount rate

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
present_value_future_risk(c(0.1, 0.2, 0.5), 100)
```

risk_calculation

Description

This function calculates risk matrix coordinates dimensions.

Usage

```
risk_calculation(
  matrix_dimensions,
  id,
  chs,
  cof,
  asset_type,
  hi_bands = NULL,
  ci_bands = NULL
)
```

Arguments

matrix_dimensions

	A data frame with the dimensions of the desired risk matrix.
id	An integer that identifies the asset
chs	The Current Health Score (CHS) of the asset
cof	The Consequence of Failure of the asset
asset_type	The asset type to be calculated for class
hi_bands	Specific Health Index (HI) bands for risk matrix. Default values are the same as defined in the CNAIM v2.1 standard
ci_bands	Specific Criticality Index (CI) bands for the risk matrix. Default values are the same as defined in the CNAIM v.2.1 standard.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

Calculate risk matrix coordinates for an asset # 1. Make the risk matrix structure matrix_structure <- risk_matrix_structure(5,4,NA)</pre>

2. Calculate risk matrix coordinates
risk_calculation(matrix_dimensions = matrix_structure,

```
id = 1,
chs = 4,
cof = 15000,
asset_type = "6.6/11kV Transformer (GM)")
```

risk_matrix_points_plot

```
Make a risk matrix with individual asset points
```

Description

This function makes a D3 visualization of monetary risk with each asset as a point on the grid.

Usage

risk_matrix_points_plot(risk_data_matrix, dots_vector, dot_radius)

Arguments

risk_data_matrix		
	Long format matrix data.	
dots_vector	Coordinates of the dots.	
dot_radius	Radius of the dots.	

risk_matrix_structure Makes a default risk matrix structure

Description

This function makes a simple matrix structure that can be used as an input to the risk_matrix_points and risk_matrix_summary functions

Usage

```
risk_matrix_structure(cols, rows, value = NA)
```

Arguments

cols	Number of columns
rows	Number of rows
value	Default value of each cell

```
risk_matrix_summary_plot
```

Make a risk matrix with non-linear spacing

Description

This function makes a D3 visualization of monetary risk with non-linear x and y intervals.

Usage

```
risk_matrix_summary_plot(
   risk_data_matrix,
   x_intervals = rep(20, 5),
   y_intervals = rep(25, 4)
)
```

Arguments

risk_data_matrix

	Long format matrix data.
x_intervals	An array of x spacing in percent (sum to 100)
y_intervals	An array of y spacing in percent (sum to 100)

safety_cof_board_04kv Safety cost of Failure for 0.4kV Board

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in (DKK).

Usage

```
safety_cof_board_04kv(location_risk, type_risk)
```

Arguments

location_risk	String Type Financial factor criteria for 0.4kV board (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".
type_risk	String. Asses Financial factor criteria for 0.4kV board setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for 0.4kV board

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
safety_cof_board_04kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_cables_04_10kv

Safety cost of Failure for 0.4kV and 10kV UG Cables

Description

This function calculates safety consequences of failure Outputted in DKK

Usage

safety_cof_cables_04_10kv(hv_asset_category)

Arguments

```
hv_asset_category
```

String The type of HV asset category hv_asset_category = c("10kV UG Cable (0il)","10kV UG Cable (Non Pressurised)", "0.4kV UG Cable (Non Pressurised)".

Value

Numeric. Financial consequences of failure for 0.4kV and 10kV UG cables

Examples

safety_cof_cables_04_10kv(hv_asset_category = "10kV UG Cable (0il)")

safety_cof_cables_60_30kv

Safety cost of Failure for 30-60 kV UG cables

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof(). #' ehv_asset_category = c("30kV UG Cable (Gas)", "60kV UG Cable (Gas)", "30kV UG Cable (Non Pressurised)", "60kV UG Cable (Non Pressurised)", "30kV UG Cable (0il)", "60kV UG Cable (0il)"). The default setting is ehv_asset_category = "60kV UG Cable (Gas)".

Usage

safety_cof_cables_60_30kv(ehv_asset_category)

Arguments

ehv_asset_category

Asset category for analysis

Value

Numeric. Financial consequences of failure for 30-60 kV UG cables

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

safety_cof_cables_60_30kv(ehv_asset_category = "30kV UG Cable (0il)")

safety_cof_ehv_cables Safety cost of Failure for EHV UG cables & 132 kV UG cables

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

safety_cof_ehv_cables(ehv_asset_category)

Arguments

ehv_asset_category

String The type of EHV cable distribution asset category Options: ehv_asset_category
= c("33kV UG Cable (0il)", "33kV UG Cable (Gas)", "33kV UG Cable (Non Pressurised)", "66kV
UG Cable (0il)", "66kV UG Cable (Gas)", "66kV UG Cable (Non Pressurised)", "132kV
UG Cable (0il)", "132kV UG Cable (Gas)", "132kV UG Cable (Non Pressurised)").

Value

Numeric. Financial consequences of failure for EEHV UG cabkes & 132 kV UG cables

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

safety_cof_ehv_cables(ehv_asset_category = "33kV UG Cable (0il)")

```
safety_cof_ehv_fittings
```

Safety cost of Failure for EHV/132kV Fittings

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_ehv_fittings(ehv_asset_category, location_risk, type_risk)
```

Arguments

ehv_asset_category	
	<pre>String The type of EHV asset category Options: ehv_asset_category = c("33kV Fittings", "66kV Fittings", "132kV Fittings")</pre>
location_risk	String Type Financial factor criteria for EHV fittings (cf. section D1.2.1, page 178, CNAIM, 2021). location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".
type_risk	String. Asses Financial factor criteria for EHV fittings setting (cf. table 221, page 180, CNAIM, 2021). type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for EHV fittings

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
safety_cof_ehv_fittings(ehv_asset_category = "33kV Fittings",
location_risk = "Default",
type_risk = "Default")
```

safety_cof_ehv_switchgear

Safety cost of Failure for EHV switchgear & 132kV CB

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

safety_cof_ehv_switchgear(ehv_asset_category, location_risk, type_risk)

Arguments

ehv_asset_category		
	<pre>String The type of EHV switchgear & 132kV CB Options: ehv_asset_category = c("33kV CB (Air Insulated Busbars)(ID)(GM)", "33kV CB (Air Insulated Busbars)(OD)(GM)", "33kV CB (Gas Insulated Busbars)(ID)(GM)", "33kV CB (Gas Insulated Busbars)(OD)(GM)", "33kV RMU", "33kV Switch (GM)", "66kV CB (Air Insulated Busbars)(ID)(GM)", "66kV CB (Air Insulated Busbars)(OD)(GM)", "66kV CB (Gas Insulated Busbars)(ID)(GM)", "66kV CB (Gas Insulated Busbars)(OD)(GM)")</pre>	
location_risk	String Type Financial factor criteria for EHV switchgear & 132kV CB (cf. sec- tion D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".	
type_risk	String. Asses Financial factor criteria for EHV swicthgear & 132kV CB setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".	

Value

Numeric. Financial consequences of failure for EHV switchgear & 132kV CB

236

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

```
safety_cof_ehv_switchgear(ehv_asset_category = "33kV RMU",
location_risk = "Default",
type_risk = "Default")
```

safety_cof_hv_switchgear_distribution
Safety cost of Failure for HV Switchgear Distribution

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safetyr consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_hv_switchgear_distribution(
    hv_asset_category,
    location_risk,
    type_risk
)
```

Arguments

```
hv_asset_category
```

	<pre>String The type of HV switchgear distribution asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Secondary", "6.6/11kV RMU", "6.6/11kV X-type RMU", "6.6/11kV Switch (GM)", "20kV CB (GM) Secondary", "20kV RMU", "20kV Switch (GM)")</pre>
location_risk	String Type Financial factor criteria for HV switchgear (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".
type_risk	String. Asses Financial factor criteria for HV switchgear setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for LV switchgear

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
safety_cof_hv_switchgear_distribution(
hv_asset_category = "6.6/11kV CB (GM) Secondary",
location_risk = "Default",
type_risk = "Default")
```

safety_cof_hv_switchgear_primary
Safety cost of Failure for HV Switchgear Primary

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safetyr consequences of failure is used in the derivation of consequences of failure see cof().

Usage

safety_cof_hv_switchgear_primary(hv_asset_category, location_risk, type_risk)

Arguments

hv_asset_category	
	String The type of HV asset category Options: hv_asset_category = c("6.6/11kV CB (GM) Primary", "20kV CB (GM) Primary")
location_risk	String Type Financial factor criteria for HV switchgear (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".
type_risk	String. Asses Financial factor criteria for HV switchgear setting (cf. table 218, page 176, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for HV switchgear

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

238

Examples

```
safety_cof_hv_switchgear_primary(
hv_asset_category = "6.6/11kV CB (GM) Primary",
location_risk = "Default",
type_risk = "Default")
```

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safetyr consequences of failure is used in the derivation of consequences of failure see cof().

Usage

safety_cof_lv_switchgear_and_other(lv_asset_category, location_risk, type_risk)

Arguments

lv_asset_category		
	<pre>String The type of LV asset category Options: lv_asset_category = c("LV Board (WM)","LV Board (X-type Network) (WM)", "LV Circuit Breaker","LV Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)")</pre>	
location_risk	String Type Financial factor criteria for LV switchgear (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".	
type_risk	<pre>String. Asses Financial factor criteria for LV switchgear setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".</pre>	

Value

Numeric. Financial consequences of failure for LV switchgear

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
safety_cof_lv_switchgear_and_other(lv_asset_category = "LV Board (WM)",
location_risk = "Default",
type_risk = "Default")
```

safety_cof_lv_ugb Safety cost of Failure for LV UGB

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_lv_ugb(lv_asset_category, location_risk, type_risk)
```

Arguments

lv_asset_category	
	String The type of LV asset category Option: <pre>lv_asset_category = "LV UGB"</pre>
location_risk	<pre>String Type Financial factor criteria for LV UGB (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".</pre>
type_risk	String. Asses Financial factor criteria for LV UGB setting (cf. table 221, page 178, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for LV UGB

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

safety_cof_lv_ugb(lv_asset_category = "LV UGB", location_risk = "Default", type_risk = "Default")

safety_cof_ohl_cond Safety cost of Failure for Overhead Line Conductors

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

safety_cof_ohl_cond(ohl_cond_asset_category, location_risk, type_risk)

Arguments

ohl_cond_asset_category	
	<pre>String The type of Pole asset category Options: ohl_cond_asset_category = c("33kV OHL (Tower Line) Conductor", "66kV OHL (Tower Line) Conductor", "132kV OHL (Tower Line) Conductor").</pre>
location_risk	String Type Financial factor criteria for Overhead Line Conductors (cf. section D1.2.1, page 178, CNAIM, 2021). location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".
type_risk	<pre>String. Asses Financial factor criteria for Overhead Line Conductors setting (cf. table 221, page 180, CNAIM, 2021). type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".</pre>

Value

Numeric. Safety consequences of failure for Overhead Line Conductors

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
safety_cof_ohl_cond(
ohl_cond_asset_category = "33kV OHL (Tower Line) Conductor",
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_ohl_cond_50kv
```

Safety cost of Failure for 50kV Overhead Line Conductors

Description

This function calculates safety consequences of failure Outputted in DKK

Usage

```
safety_cof_ohl_cond_50kv(location_risk, type_risk)
```

Arguments

location_risk	<pre>String Type Financial factor criteria for Overhead Line Conductors Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".</pre>
type_risk	<pre>String. Asses Financial factor criteria for Overhead Line Conductors Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".</pre>

Value

Numeric. Safety consequences of failure for Overhead Line Conductors

Examples

```
safety_cof_ohl_cond_50kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_ohl_fittings_50kv
Safety cost of Failure for 50kV Fittings

Description

This function calculates safety consequences of failure Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_ohl_fittings_50kv(location_risk, type_risk)
```

Arguments

location_risk	String Type Financial factor criteria for 50kV fittings Options: location_risk
	<pre>= c("Low", "Medium", "High"). The default setting is location_risk = "Medium".</pre>
type_risk	String. Asses Financial factor criteria for 50kV fittings setting Options: type_risk
	<pre>= c("Low", "Medium", "High"). The default setting is type_risk = "Medium".</pre>

Value

Numeric. Financial consequences of failure for EHV fittings

Examples

```
safety_cof_ohl_fittings_50kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_pillar_04kv

Safety cost of Failure for 0.4kV Pillar

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK

Usage

safety_cof_pillar_04kv(location_risk, type_risk)

Arguments

location_risk	String Type Financial factor criteria for 0.4kV Pillar (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".
type_risk	String. Asses Financial factor criteria for 0.4kV Pillar setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for 0.4kV Pillar

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
safety_cof_pillar_04kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_poles Safety cost of Failure for Pole

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

safety_cof_poles(pole_asset_category, location_risk, type_risk)

Arguments

pole_asset_category		
	String The type of pole asset category Options: pole_asset_category = c("LV Poles", "6.6/11kV Poles", "20kV Poles", "33kV Pole", "66kV Pole").	
location_risk	String Type Financial factor criteria for Pole (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".	
type_risk	String. Asses Financial factor criteria for pole setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".	

Value

Numeric. Safety consequences of failure for poles

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
safety_cof_poles(pole_asset_category = "33kV Pole",
location_risk = "Default",
type_risk = "Default")
```

244

safety_cof_poles_ohl_support_50kv
Safety cost of Failure for Poles OHL Support 50kV

Description

This function calculates safety consequences of failure Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_poles_ohl_support_50kv(
   pole_asset_category,
   location_risk,
   type_risk
)
```

Arguments

pole_asset_category		
	String The type of Pole asset category	
location_risk	<pre>String Type Financial factor criteria for Pole Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".</pre>	
type_risk	String. Asses Financial factor criteria for pole setting. Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".	

Value

Numeric. Safety consequences of failure for poles

Examples

```
safety_cof_poles_ohl_support_50kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_relay Safety cost of Failure for Relays

Description

This function calculates safety consequences of failure. Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_relay(location_risk, type_risk)
```

Arguments

location_risk	<pre>String Type Financial factor criteria for 50kV fittings Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".</pre>
type_risk	<pre>String. Asses Financial factor criteria for 50kV fittings setting Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".</pre>

Value

Numeric. Financial consequences of failure for relay

Examples

```
safety_cof_relay(
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_serviceline
```

Safety cost of Failure for Service Lines

Description

This function calculates safety consequences of failure Outputted in DKK

Usage

```
safety_cof_serviceline()
```

Value

Numeric. Financial consequences of failure for service line

Examples

safety_cof_serviceline()

246

safety_cof_submarine_cables_10kv Safety cost of Failure for 10kV Submarine Cables

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

safety_cof_submarine_cables_10kv()

Value

Numeric. Safety consequences of failure for Sub cables

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
safety_cof_submarine_cables_10kv()
```

safety_cof_submarine_cables_30_60kv

Safety cost of Failure for 30kV and 60kV Submarine Cables

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_submarine_cables_30_60kv()
```

Value

Numeric. Safety consequences of failure for Sub cables

Source

```
DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf
```

Examples

safety_cof_submarine_cables_30_60kv()

safety_cof_sub_cables Safety cost of Failure for Sub cables

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

safety_cof_sub_cables(sub_cable_asset_category)

Arguments

```
sub_cable_asset_category
```

String The type of Submarine cable asset category Options: sub_cable_asset_category
= c("HV Sub Cable", "EHV Sub Cable", "132kV Sub Cable").

Value

Numeric. Safety consequences of failure for Sub cables

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

safety_cof_sub_cables(sub_cable_asset_category = "HV Sub Cable")

248

safety_cof_switchgear_30_60kv

Safety cost of Failure for 30kV and 60kV Switchgear

Description

This function calculates safety consequences of failure Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_switchgear_30_60kv(ehv_asset_category, location_risk, type_risk)
```

Arguments

ehv_asset_category		
	<pre>String The type of 30kV and 60kV switchgear Options: ehv_asset_category = c("30kV", "60kV").</pre>	
location_risk	<pre>String Type Financial factor criteria for 30kV and 60kV switchgear Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".</pre>	
type_risk	String. Asses Financial factor criteria for 30kV and 60kV switchgear setting. Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".	

Value

Numeric. Financial consequences of failure for 30kV and 60kV switchgear

Examples

```
safety_cof_switchgear_30_60kv(ehv_asset_category = "30kV",
location_risk = "Default",
type_risk = "Default")
```

safety_cof_switchgear_primary_10kv
Safety cost of Failure for 10kV Switchgear Primary

Description

This function calculates safety consequences of failure Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_switchgear_primary_10kv(location_risk, type_risk)
```

Arguments

location_risk	<pre>String Type Financial factor criteria for 10kV switchgear Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".</pre>
type_risk	<pre>String. Asses Financial factor criteria for 10kV switchgear setting. Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".</pre>

Value

Numeric. Financial consequences of failure for HV switchgear

Examples

```
safety_cof_switchgear_primary_10kv(
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_switchgear_secondary_10kv
```

Safety cost of Failure for 10 kV Switchgear Secondary

Description

This function calculates safety consequences of failure. Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_switchgear_secondary_10kv(location_risk, type_risk)
```

Arguments

location_risk	String Type Financial factor criteria for 10kV switchgear secondary (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low",
	"Medium", "High"). The default setting is location_risk = "Medium".
type_risk	String. Asses Financial factor criteria for 10kV switchgear secondary setting. Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".

Value

Numeric. Financial consequences of failure for 10kV switchgear secondary

safety_cof_towers

Examples

```
safety_cof_switchgear_secondary_10kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_towers Safety cost of Failure for tower

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_towers(tower_asset_category, location_risk, type_risk)
```

Arguments

tower_asset_category		
	<pre>String The type of tower asset category Options: tower_asset_category = c("33kV Tower", "66kV Tower", "132kV Tower").</pre>	
location_risk	String Type Financial factor criteria for tower (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".	
type_risk	String. Asses Financial factor criteria for tower setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".	

Value

Numeric. Safety consequences of failure for towers

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
safety_cof_towers(tower_asset_category = "33kV Tower",
location_risk = "Default",
type_risk = "Default")
```

```
safety_cof_tower_ohl_support_50kv
```

Safety cost of Failure for Tower OHL Support 50 kV

Description

This function calculates safety consequences of failure Safety consequences of failure is used in the derivation of consequences of failure see cof(). Outputted in DKK.

Usage

```
safety_cof_tower_ohl_support_50kv(location_risk, type_risk)
```

Arguments

location_risk	<pre>String Type Financial factor criteria for tower Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".</pre>
type_risk	<pre>String. Asses Financial factor criteria for tower Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".</pre>

Value

Numeric. Safety consequences of failure for tower ohl support 50 kV

Examples

```
safety_cof_tower_ohl_support_50kv(
location_risk = "Default",
type_risk = "Default")
```

safety_cof_transformers

Safety cost of Failure for Transformer

Description

This function calculates safety consequences of failure (cf. section 7.3, page 79, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
safety_cof_transformers(tf_asset_category, location_risk, type_risk)
```

Arguments

tf_asset_category		
	<pre>String The type of Transformer asset category Options: tf_asset_category = c("6.6/11kV Transformer (GM)","20kV Transformer (GM)", "33kV Transformer (GM)", "66kV Transformer (GM) " "132kV Transformer (GM) ").</pre>	
location_risk	<pre>String Type Financial factor criteria for Transformer (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".</pre>	
type_risk	<pre>String. Asses Financial factor criteria for Transformer setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".</pre>	

Value

Numeric. Safety consequences of failure for Transformers

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

```
safety_cof_transformers(tf_asset_category = "33kV Transformer (GM)",
location_risk = "Default",
type_risk = "Default")
```

safety_cof_transformer_30_60kv Safety cost of Failure for 30/10kv and 60/10kv Transformer

Description

This function calculates safety consequences of failure Outputted in DKK.

Usage

```
safety_cof_transformer_30_60kv(tf_asset_category, location_risk, type_risk)
```

Arguments

tf_asset_category

String The type of Transformer Options: tf_asset_category = c("30kV Transformer (GM)","60kV Transformer (GM)").

location_risk	String Type Financial factor criteria for Transformer (cf. section D1.2.1, page 178, CNAIM, 2021). Options: location_risk = c("Low", "Medium", "High"). The default setting is location_risk = "Medium".
type_risk	<pre>String. Asses Financial factor criteria for Transformer setting (cf. table 221, page 180, CNAIM, 2021). Options: type_risk = c("Low", "Medium", "High"). The default setting is type_risk = "Medium".</pre>

Value

Numeric. Safety consequences of failure for Transformers

Examples

```
safety_cof_transformer_30_60kv(tf_asset_category = "30kV Transformer (GM)",
location_risk = "Default",
type_risk = "Default")
```

s_cof_swg_tf_ohl	Safety Consequences	of Failure	for Switchgears,	Transformers &
	Overhead Lines			

Description

This function calculates safety consequences of failure for switchgear, transformers and overhead lines (cf. section 7.4, page 80, CNAIM, 2021). Safety consequences of failure is used in the derivation of consequences of failure see cof().

Usage

```
s_cof_swg_tf_ohl(
  type_risk = "Default",
  location_risk = "Default",
  asset_type_scf
)
```

Arguments

type_risk	String. Risk that the asset presents to the public by its characteristics and particu- lar situation. Options: type_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a set- ting of "Medium".
location_risk	String. Proximity to areas that may affect its likelihood of trespass or interfer-

ence. Options: location_risk = c("Low", "Medium", "High", "Default") (cf. table 225, page 183, CNAIM, 2021). A setting of "Default" equals a setting of "Medium".

```
asset_type_scf String. Options: asset_type_scf = c("LV Poles", "LV Circuit Breaker", "LV
                Pillar (ID)", "LV Pillar (OD at Substation)", "LV Pillar (OD not at a Substation)",
                "LV Board (WM)", "LV UGB", "LV Board (X-type Network) (WM)", "6.6/11kV
                Poles", "20kV Poles", "6.6/11kV CB (GM) Primary", "6.6/11kV CB (GM) Secondary",
                "6.6/11kV Switch (GM)", "6.6/11kV RMU", "6.6/11kV X-type RMU", "20kV CB
                (GM) Primary", "20kV CB (GM) Secondary", "20kV Switch (GM)", "20kV RMU",
                "6.6/11kV Transformer (GM)","20kV Transformer (GM)", "33kV Pole", "66kV
                Pole", "33kV OHL (Tower Line) Conductor", "33kV Tower", "33kV Fittings", "66kV
                OHL (Tower Line) Conductor", "66kV Tower", "66kV Fittings", "33kV CB (Air
                Insulated Busbars)(ID) (GM)","33kV CB (Air Insulated Busbars)(OD) (GM)","33kV
                CB (Gas Insulated Busbars)(ID) (GM)", "33kV CB (Gas Insulated Busbars)(OD)
                (GM)", "33kV Switch (GM)", "33kV RMU", "66kV CB (Air Insulated Busbars)(ID)
                (GM)","66kV CB (Air Insulated Busbars)(OD) (GM)","66kV CB (Gas Insulated
                Busbars)(ID) (GM)","66kV CB (Gas Insulated Busbars)(OD) (GM)", "33kV
                Transformer (GM)", "66kV Transformer (GM)", "132kV OHL (Tower Line) Conductor", "132kV
                Tower", "132kV Fittings", "132kV CB (Air Insulated Busbars)(ID) (GM)", "132kV
                CB (Air Insulated Busbars)(OD) (GM)","132kV CB (Gas Insulated Busbars)(ID)
                (GM)", "132kV CB (Gas Insulated Busbars)(OD) (GM)", "132kV Transformer
                (GM)")
```

Value

Numeric. Safety consequences of failure for switchgear, transformers and overhead lines.

Source

DNO Common Network Asset Indices Methodology (CNAIM), Health & Criticality - Version 2.1, 2021: https://www.ofgem.gov.uk/sites/default/files/docs/2021/04/dno_common_network_asset_indices_methodology_v2.1_final_01-04-2021.pdf

Examples

train_weibull_model Training function for Weibull model

Description

This function uses transformer fault statistics data to train a Weibull model: Based on the environmental factors determining a transformer's expected lifetime, the set of all data points is first partitioned into five parts. Then a multilinear estimate for the expected lifetime of a transformer is trained for each part separately, and the corresponding Weibull shape and scale parameters for the five parts are estimated. The function returns the shape and scale parameters needed for the function predict_weibull_model().

Usage

train_weibull_model(transformer_faults_data)

Arguments

transformer_faults_data

Data frame. Contains past data on transformer faults, together with environmental factors. Must contain the following fields: utilisation_pct: Numeric or "Default", placement: "Indoor", "Outdoor" or "Default", altitude_m: Numeric or "Default", distance_from_coast_km: Numeric or "Default", corrosion_category_index: Numeric or "Default", partial_discharge: "Low", "Medium", "High (Not Confirmed)", "High (Confirmed)" or "Default", oil_acidity: Numeric or "Default", temperature_reading: "Normal", "Moderately High", "Very High" or "Default", observed_condition: "No deterioration", "Superficial/minor deterioration", "Slight Deterioration", "Some deterioration", "Substantial deterioration" or "Default" age: Numeric

Value

Data frame. All shape and scale parameters needed for the function predict_weibull_model().

Source

https://www.cnaim.io/docs/fault-analysis/

Examples

train_weibull_model(transformer_faults_data = transformer_11kv_faults)

transformer_11kv_faults

Failure statistics dataset for 10,000 6.6/11kV transformers

Description

A dataset containing failure statistics for 10,000 6.6/11kV transformers from the CNAIM standard, simulated over 100 years. The variables are as follows:

Usage

transformer_11kv_faults

256

Format

A data frame with 103,848 rows and 13 variables:

utilisation_pct Utilization of a transformer in %
placement Is the transformer placed indoors or outdoors?
altitude_m Altitude above sea level (m)
distance_from_coast_km Distance from salt water (km)
corrosion_category_index Corrosion zone the asset exists in
partial_discharge Condition converted from TEV %-measurement
oil_acidity Oil acidity (mg KOH/g)
temperature_reading Temperature condition band
observed_condition Observed condition band
age Age of transformer (years)
pof Probability of failure (current and future) when the transformer failed
transformer_id Id of transformer that died
dead Monte carlo result showing if the transformer has died (TRUE)

Source

https://www.cnaim.io/

Index

* datasets transformer_11kv_faults, 256 beta_1, 6, 64 beta_2, 7 cof, 7, 17-35, 38, 40-48, 50-60, 62, 70-86, 88-93, 95, 232, 234-245, 247-252, 254 cof_transformer_04_10kv, 8 cof_transformer_11kv, 10 current_health, 7, 11 dga_test_modifier, 13 duty_factor_cables, 14 duty_factor_transformer_11_20kv, 15, 37 duty_factor_transformer_33_66kv, 16 e_cof_tf, 38 environmental_cof_board_04kv, 17 environmental_cof_cables_04_10kv, 17 environmental_cof_cables_60_30kv, 18 environmental_cof_ehv_cables, 19 environmental_cof_ehv_fittings, 20 environmental_cof_ehv_switchgear, 20 environmental_cof_hv_switchgear_distribution, financial_cof_ehv_cables, 42 21 environmental_cof_hv_switchgear_primary, 22 environmental_cof_lv_switchgear_and_other, 23 environmental_cof_lv_ugb, 24 environmental_cof_ohl_cond, 25 environmental_cof_ohl_cond_50kv, 25 environmental_cof_ohl_fittings_50kv, 26 environmental_cof_pillar_04kv, 26 environmental_cof_poles, 27 environmental_cof_poles_ohl_support_50kv, 28

environmental_cof_relay, 28 environmental_cof_serviceline, 29 environmental_cof_sub_cables, 30 environmental_cof_submarine_10kv, 29 environmental_cof_submarine_30_60kv, 30 environmental_cof_switchgear_30_60kv, 31 environmental_cof_switchgear_primary_10kv, 32 environmental_cof_switchgear_secondary_10kv, 33 environmental_cof_tower_ohl_support_50kv, 34 environmental_cof_towers, 34 environmental_cof_transformer_30_60kv, 36 environmental_cof_transformers, 35 expected_life, 6, 14-16, 37 f_cof_transformer_11kv, 62 ffa_test_modifier, 39 financial_cof_board_04kv, 40 financial_cof_cables_04_10kv, 41 financial_cof_cables_60_30kv, 41 financial_cof_ehv_fittings, 43 financial_cof_ehv_switchgear, 44 financial_cof_hv_switchgear_distribution, 45 financial_cof_hv_switchgear_primary, 46 financial_cof_lv_switchgear_and_other, 47 financial_cof_lv_ugb, 48 financial_cof_ohl_cond, 48 financial_cof_ohl_cond_50kv, 49 financial_cof_ohl_fittings_50kv, 50 financial_cof_pillar_04kv, 51 financial_cof_poles, 52

INDEX

financial_cof_poles_ohl_support_50kv, 53 financial_cof_relay, 54 financial_cof_serviceline, 54 financial_cof_sub_cables, 56 financial_cof_submarine_cables_10kv, 55 financial_cof_submarine_cables_30_60kv, 55 financial_cof_switchgear_30_60kv, 57 financial_cof_switchgear_primary_10kv, 57 financial_cof_switchgear_secondary_10kv, 58 financial_cof_tower_ohl_support_50kv, 60 financial_cof_towers, 59 financial_cof_transformer_30_60kv, 61 financial_cof_transformers, 60 health_score_excl_ehv_132kv_tf, 12, 63, 69 initial_health, 12, 64 location_factor, 37, 65, 67 location_factor_sub, 65, 67 matrix_adjusted_circles, 68 matrix_adjusted_intervals, 68 mmi, 63, 69 n_cof_excl_ehv_132kv_tf, 95 network_cof_board_04kv, 70 network_cof_cables_04_10kv, 71 network_cof_cables_60_30kv, 71 network_cof_ehv_cables, 72 network_cof_ehv_fittings, 73 network_cof_ehv_pole, 74 network_cof_ehv_sub_cable, 75 network_cof_ehv_switchgear, 76 network_cof_hv_lv_poles, 77 network_cof_hv_sub_cables, 78 network_cof_hv_switchgear_distribution, 79 network_cof_hv_switchgear_primary, 80 network_cof_lv_switchgear_and_other, 81

network_cof_lv_ugb, 82

network_cof_ohl_cond, 83 network_cof_ohl_cond_50kv, 84 network_cof_ohl_fittings_50kv, 84 network_cof_pillar_04kv, 85 network_cof_poles_ohl_support_50kv, 86 network_cof_relay, 86 network_cof_serviceline, 87 network_cof_submarine_cables_10kv, 88 network_cof_submarine_cables_30_60kv, 89 network_cof_switchgear_30_60kv, 90 network_cof_switchgear_primary_10kv, 90 network_cof_switchgear_secondary_10kv, 91 network_cof_tower, 92 network_cof_tower_ohl_support_50kv, 93 network_cof_transformer_30_60kv, 94 network_cof_transformers, 93 oil_test_modifier, 96 plot_pof, 97 pof_132kv_cb, 98 pof_board_04kv, 100 pof_building, 101 pof_cables_04kv_pex, 103 pof_cables_10kv_oil, 105 pof_cables_10kv_pex, 106 pof_cables_132kv, 108 pof_cables_60_30kv, 110 pof_cables_66_33kv, 112 pof_ehv_fittings, 113 pof_ehv_switchgear, 115 pof_future_board_04kv, 117 pof_future_building, 119 pof_future_cables_04kv_pex, 121 pof_future_cables_10kv_oil, 123 pof_future_cables_10kv_pex, 124 pof_future_cables_132kv, 126 pof_future_cables_60_30kv, 128 pof_future_cables_66_33kv, 130 pof_future_meter, 132 pof_future_ohl_cond_132_66_33kv, 133 pof_future_ohl_cond_50kv, 136 pof_future_ohl_fittings_50kv, 138 pof_future_pillar_04kv, 140 pof_future_poles, 142 pof_future_poles_ohl_support_50kv, 144

pof_future_relay, 146 pof_future_rtu, 148 pof_future_serviceline, 150 pof_future_submarine_cables, 151 pof_future_submarine_cables_10kv_oil, 153 pof_future_submarine_cables_10kv_pex, 155 pof_future_submarine_cables_30_60kv_oil, 157 pof_future_submarine_cables_30_60kv_pex, 159 pof_future_switchgear_30_60kv, 161 pof_future_switchgear_primary_10kv, 163 pof_future_switchgear_secondary_10kv, 165 pof_future_transformer_04_10kv, 167 pof_future_transformer_11_20kv, 170 pof_future_transformer_132kv, 172 pof_future_transformer_30_60kv, 177 pof_future_transformer_33_66kv, 181 pof_hv_switchgear_distribution, 186 pof_hv_switchgear_primary, 188 pof_lv_switchgear_and_other, 190 pof_1v_ugb, 192 pof_meter, 193 pof_ohl_cond_132_66_33kv, 195 pof_poles, 197 pof_submarine_cables, 199 pof_switchgear_primary_10kv, 201 pof_switchgear_secondary_10kV, 203 pof_tower_ohl_support_50kv, 207 pof_towers, 205 pof_transformer_04_10kv, 209 pof_transformer_11_20kv, 211 pof_transformer_132kv, 213 pof_transformer_30_60kv, 218 pof_transformer_33_66kv, 223 predict_weibull_model, 228, 255, 256 present_value_future_risk, 229

risk_calculation, 230
risk_matrix_points_plot, 231
risk_matrix_structure, 231
risk_matrix_summary_plot, 232

s_cof_swg_tf_ohl, 254
safety_cof_board_04kv, 232

safety_cof_cables_04_10kv, 233 safety_cof_cables_60_30kv, 234 safety_cof_ehv_cables, 234 safety_cof_ehv_fittings, 235 safety_cof_ehv_switchgear, 236 safety_cof_hv_switchgear_distribution, 237 safety_cof_hv_switchgear_primary, 238 safety_cof_lv_switchgear_and_other, 239 safety_cof_lv_ugb, 240 safety_cof_ohl_cond, 241 safety_cof_ohl_cond_50kv, 242 safety_cof_ohl_fittings_50kv, 242 safety_cof_pillar_04kv, 243 safety_cof_poles, 244 safety_cof_poles_ohl_support_50kv, 245 safety_cof_relay, 245 safety_cof_serviceline, 246 safety_cof_sub_cables, 248 safety_cof_submarine_cables_10kv, 247 safety_cof_submarine_cables_30_60kv, 247 safety_cof_switchgear_30_60kv, 249 safety_cof_switchgear_primary_10kv, 249 safety_cof_switchgear_secondary_10kv, 250 safety_cof_tower_ohl_support_50kv, 252 safety_cof_towers, 251 safety_cof_transformer_30_60kv, 253 safety_cof_transformers, 252

train_weibull_model, 228, 229, 255
transformer_11kv_faults, 256

260