
Package ‘CASMI’
February 13, 2025

Type Package

Title 'CASMI'-Based Functions

Version 2.0.0

Description Contains Coverage Adjusted Standardized Mutual Information ('CASMI')-based func-
tions. 'CASMI' is a fundamental concept of a series of methods. For more informa-
tion about 'CASMI' and 'CASMI'-related methods, please refer to the corresponding publica-
tions (e.g., a feature selec-
tion method, Shi, J., Zhang, J., & Ge, Y. (2019) <doi:10.3390/e21121179>, and a dataset qual-
ity measure-
ment method, Shi, J., Zhang, J., & Ge, Y. (2019) <doi:10.1109/ICHI.2019.8904553>) or con-
tact the package author for the latest updates.

Imports EntropyEstimation, entropy, stats

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Jingyi (Catherine) Shi [aut, cre, cph, ctb],
Shirli Arndt [aut],
Jialin Zhang [ctb]

Maintainer Jingyi (Catherine) Shi <jshi@math.msstate.edu>

Repository CRAN

Date/Publication 2025-02-13 22:50:03 UTC

Contents
AQI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
autoBin.binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
CASMI.mineCombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
CASMI.selectFeatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Index 10

1

https://doi.org/10.3390/e21121179
https://doi.org/10.1109/ICHI.2019.8904553


2 AQI

AQI AQI Index

Description

A quantitative measure of dataset quality. The AQI Index score indicates the degree to which
features are associated with the outcome in a dataset. (Synonyms of "feature" in this document:
"independent variable," "factor," "predictor.")
For more information, please refer to the corresponding publication: Shi, J., Zhang, J. and Ge, Y.
(2019), "An Association-Based Intrinsic Quality Index for Healthcare Dataset Ranking" <doi:10.1109/ICHI.2019.8904553>

Usage

AQI(data, alpha.ind = 0.2)

Arguments

data data frame with variables as columns and observations as rows. The data must
include at least one feature (a.k.a., independent variable, predictor, factor) and
only one outcome variable (Y). The outcome variable MUST BE THE LAST
COLUMN. Both the features and the outcome MUST be categorical or discrete.
If variables are not naturally discrete, you may preprocess them using the ‘auto-
Bin.binary()‘ function in the same package.

alpha.ind level of significance for the mutual information test of independence in step 2
(<doi:10.1109/ICHI.2019.8904553>). By default, ‘alpha.ind = 0.2‘.

Value

The AQI Index score.

Examples

## ---- Generate a toy dataset: "data" ----
n <- 10000
set.seed(1)
x1 <- rbinom(n, 3, 0.5) + 0.2
set.seed(2)
x2 <- rbinom(n, 2, 0.8) + 0.5
set.seed(3)
x3 <- rbinom(n, 5, 0.3)
set.seed(4)
error <- round(runif(n, min=-1, max=1))
y <- x1 + x3 + error
data <- data.frame(cbind(x1, x2, x3, y))
colnames(data) <- c("feature1", "feature2", "feature3", "Y")

## ---- Calculate the AQI score of "data" ----
AQI(data)



autoBin.binary 3

autoBin.binary Automatically Dichotomize Quantitative Variables

Description

Automatically compute optimal cutting points (based on mutual information) to dichotomize quan-
titative variables. This function can be used as a pre-processing step before using the CASMI-based
functions.

Usage

autoBin.binary(data, index)

Arguments

data data frame with variables as columns and observations as rows. The outcome
variable (Y) MUST be categorical or discrete. The outcome variable (Y) MUST
be the last column.

index index or a vector of indices of the quantitative features (a.k.a., predictors, factors,
independent variables) that need to be automatically categorized.

Value

‘autoBin.binary()‘ returns the entire data frame after automatically dichotomizing the selected quan-
titative variable(s).

Examples

## Using the "iris" dataset embedded in R
data("iris")
head(iris) # The original data

# ---- Dichotomize One Single Feature ----
# Dichotomize the column with index 1.
newData1 <- autoBin.binary(iris, 1)
head(newData1)

# ---- Dichotomize Multiple Features at a Time ----
# Dichotomize the columns with indices 1, 2, 3, and 4.
newData2 <- autoBin.binary(iris, c(1,2,3,4))
head(newData2)

# ---- Dichotomize Features Using Column Names ----
# Dichotomize the columns with the names "Sepal.Length" and "Sepal.Width".
cols_of_interest <- c("Sepal.Length", "Sepal.Width")
col_indices <- which(names(iris) %in% cols_of_interest)
newData3 <- autoBin.binary(iris, col_indices)
head(newData3)



4 CASMI.mineCombination

CASMI.mineCombination Discover Factor Combinations based on CASMI

Description

The ‘CASMI.mineCombination()‘ function is designed to suggest combinations of factors that are
most strongly associated with the outcome in a dataset. This function is partially developed based
on the ‘CASMI.selectFeatures()‘ function. (Synonyms for "factor" in this document: "independent
variable," "feature," and "predictor.")

Usage

CASMI.mineCombination(
data,
NumOfVar = NULL,
NA.handle = "stepwise",
alpha = 0.05,
alpha.ind = 0.1,
intermediate.steps = FALSE,
kappa.star.cap = 1,
NumOfComb = 3

)

Arguments

data data frame with variables as columns and observations as rows. The data MUST
include at least one feature (a.k.a., independent variable, predictor, factor) and
only one outcome variable (Y). The outcome variable MUST BE THE LAST
COLUMN. Both the features and the outcome MUST be categorical or discrete.
If variables are not naturally discrete, you may preprocess them using the ‘auto-
Bin.binary()‘ function in the same package.

NumOfVar the number of variables in a combination (integer). This setting is optional. If
NULL, an automatically suggested number of variables will be returned.

NA.handle method for handling missing values. This parameter is inherited from the ‘CASMI.selectFeature()‘
function. There are three possible options: ‘NA.handle = "stepwise"‘ (default),
‘NA.handle = "na.omit"‘, or ‘NA.handle = "NA as a category"‘. Check the
‘CASMI.selectFeature()‘ documentation for more details.

alpha level of significance used for the confidence intervals in the results; the default
is 0.05.

alpha.ind level of significance used for the initial screening of features based on a test of
independence; the default is 0.1. This parameter is also used in the ‘CASMI.selectFeature()‘
function; check the ‘CASMI.selectFeature()‘ documentation for more details.

intermediate.steps

setting for outputting intermediate steps while awaiting the final results. There
are two possible settings: ‘intermediate.steps = TRUE‘ or ‘intermediate.steps =
FALSE‘.



CASMI.mineCombination 5

kappa.star.cap threshold of ‘kappa*‘ for halting the feature selection process. This parameter is
inherited from the ‘CASMI.selectFeature()‘ function; check the ‘CASMI.selectFeature()‘
documentation for more details. This setting is applicable only when ‘NumOf-
Var‘ is set to NULL (default).

NumOfComb the number of top combinations to be returned; the default is 3. This setting is
used only when a ‘NumOfVar‘ value is defined (not NULL); if ‘NumOfVar ==
NULL‘, only the automatically suggested combination will be returned.

Value

‘CASMI.mineCombination()‘ returns the following components:

• `Outcome`: Name of the outcome variable (last column) in the input dataset.

• `Conf.Level`: Confidence level used for the results.

• `NumOfVar`: The number of variables in each combination.

• `TopResults`: A results data frame. The number of combinations (rows) returned depends
on the ‘NumOfComb‘ setting.

• `Comb.Idx`: Indices of the variables in the combination.

• `n`: Number of observations used in the analysis.

• `kappa*`: A comprehensive score reflecting the association between the factor combination
and the outcome. A larger ‘kappa*‘ indicates that the factor combination has a stronger asso-
ciation with the outcome. For more information about ‘kappa*‘, please refer to the paper: Shi,
J., Zhang, J. and Ge, Y. (2019), "CASMI—An Entropic Feature Selection Method in Turing’s
Perspective" <doi:10.3390/e21121179>

• `kappa*.low`: Lower bound of the confidence interval for ‘kappa*‘.

• `kappa*.upr`: Upper bound of the confidence interval for ‘kappa*‘.

• `SMIz`: Standardized Mutual Information (SMI) (using the z-estimator) between the factor
combination and the outcomes.

• `SMIz.low`: Lower bound of the confidence interval for ‘SMIz‘.

• `SMIz.upr`: Upper bound of the confidence interval for ‘SMIz‘.

• `p.MIz`: P-value between the factor combination and the outcome using the mutual informa-
tion test of independence based on the z-estimator.

• `Var.Name`: Names of the variables in the combination.

Examples

# ---- Generate a toy dataset for usage examples: "data" ----
set.seed(123)
n <- 200
x1 <- sample(c("A", "B", "C", "D"), size = n, replace = TRUE, prob = c(0.1, 0.2, 0.3, 0.4))
x2 <- sample(c("W", "X", "Y", "Z"), size = n, replace = TRUE, prob = c(0.4, 0.3, 0.2, 0.1))
x3 <- sample(c("E", "F", "G", "H", "I"), size = n,

replace = TRUE, prob = c(0.2, 0.3, 0.2, 0.2, 0.1))
x4 <- sample(c("A", "B", "C", "D"), size = n, replace = TRUE)
x5 <- sample(c("L", "M", "N"), size = n, replace = TRUE)
x6 <- sample(c("E", "F", "G", "H", "I"), size = n, replace = TRUE)



6 CASMI.selectFeatures

# Generate y variable dependent on x1 to x3
x1_num <- as.numeric(factor(x1, levels = c("A", "B", "C", "D")))
x2_num <- as.numeric(factor(x2, levels = c("W", "X", "Y", "Z")))
x3_num <- as.numeric(factor(x3, levels = c("E", "F", "G", "H", "I")))
# Calculate y with added noise
y_numeric <- 3*x1_num + 2*x2_num - 2*x3_num + rnorm(n,mean=0,sd=2)
# Discretize y into categories
y <- cut(y_numeric, breaks = 10, labels = paste0("Category", 1:10))

# Combine into a dataframe
data <- data.frame(x1, x2, x3, x4, x5, x6, y)

# The outcome of the toy dataset is dependent on x1, x2, and x3
# but is independent of x4, x5, and x6.
head(data)

# ---- Usage Examples ----

## Return the suggested combination with the default settings:
CASMI.mineCombination(data)

## Return combinations when the number of variables to be included
## in each combination is specified (e.g., NumOfVar = 2):
CASMI.mineCombination(data, NumOfVar = 2)

## Return combinations when the number of variables to be included
## in each combination is specified (e.g., NumOfVar = 2),
## while the number of top combinations to return is specified
## (e.g., NumOfComb = 2):
CASMI.mineCombination(data,

NumOfVar = 2,
NumOfComb = 2)

CASMI.selectFeatures CASMI Feature Selection

Description

Selects features that are associated with an outcome while taking into account a sample coverage
penalty and feature redundancy. It automatically determines the number of features to be selected,
and the chosen features are ranked. (Synonyms for "feature" in this document: "independent vari-
able," "factor," and "predictor.")
For additional information, please refer to the publication: Shi, J., Zhang, J. and Ge, Y. (2019),
"CASMI—An Entropic Feature Selection Method in Turing’s Perspective" <doi:10.3390/e21121179>



CASMI.selectFeatures 7

Usage

CASMI.selectFeatures(
data,
NA.handle = "stepwise",
alpha = 0.05,
alpha.ind = 0.1,
intermediate.steps = FALSE,
kappa.star.cap = 1,
feature.num.cap = ncol(data)

)

Arguments

data data frame with variables as columns and observations as rows. The data MUST
include at least one feature (a.k.a., independent variable, predictor, factor) and
only one outcome variable (Y). The outcome variable MUST BE THE LAST
COLUMN. Both the features and the outcome MUST be categorical or discrete.
If variables are not naturally discrete, you may preprocess them using the ‘auto-
Bin.binary()‘ function in the same package.

NA.handle options for handling NA values in the data. There are three options: ‘NA.handle
= "stepwise"‘ (default), ‘NA.handle = "na.omit"‘, and ‘NA.handle = "NA as
a category"‘. (1) ‘NA.handle = "stepwise"‘ excludes NA rows only when a
particular variable is being used in a sub-step. For example, suppose we have
data (Feature1: A, NA, B; Feature2: C, D, E; Feature3: F, G, H; Outcome:
O, P, Q); the second observation will be excluded only when a particular step
includes Feature1, but will not be excluded when a step is analyzing only Fea-
ture2, Feature3, and the Outcome. This option is designed to take advantage
of the maximum possible number of observations. (2) ‘NA.handle = "na.omit"‘
excludes observations with any NA values at the beginning of the analysis. (3)
‘NA.handle = "NA as a category"‘ treats the NA value as a new category. This
is designed to be used when NA values in the data have a consistent meaning in-
stead of being missing values. For example, in survey data asking for comments,
each NA value might consistently mean "no opinion."

alpha level of significance for the confidence intervals in final results. By default,
‘alpha = 0.05‘.

alpha.ind level of significance for the mutual information test of independence in step 1
of the features selection (for an initial screening). The smaller the ‘alpha.ind‘,
the fewer features are sent to step 2 (<doi:10.3390/e21121179>). By default,
‘alpha.ind = 0.1‘.

intermediate.steps

setting for outputting intermediate steps while awaiting the final results. There
are two possible settings: ‘intermediate.steps = TRUE‘ or ‘intermediate.steps =
FALSE‘.

kappa.star.cap a threshold of ‘kappa*‘ for halting the feature selection process. The program
will automatically terminate at the first feature whose cumulative ‘kappa*‘ value
exceeds the ‘kappa.star.cap‘ threshold. By default, ‘kappa.star.cap = 1.0‘, which



8 CASMI.selectFeatures

is the maximum possible value. A lower value may result in fewer final features
but reduced computing time.

feature.num.cap

the maximum number of features to be selected. A lower value may result in
fewer final features but less computing time.

Value

‘CASMI.selectFeatures()‘ returns the following components:

• `Outcome`: Name of the outcome variable (last column) in the input dataset.

• `Conf.Level`: Confidence level used for the results.

• `KappaStar`: The estimated ‘kappa*‘ of all selected features. A larger ‘kappa*‘ indicates
that the selected features have a stronger association with the outcome.

• `KappaStarCI`: The confidence interval of ‘kappa*‘ for all selected features.

• `Results`: A results data frame. The selected features are ranked.

• `Var.Idx`: Column index of the selected feature.

• `n`: Number of observations used in the analysis.

• `cml.kappa*`: The estimated cumulative ‘kappa*‘ score when this particular feature was
added to the list. That is, the ‘kappa*‘ score of all currently selected features.

• `SMIz`: The Standardized Mutual Information (SMI) (using the z-estimator) between this
particular feature and the outcome.

• `SMIz.Low`: Lower bound of the confidence interval for ‘SMIz‘.

• `SMIz.Upr`: Upper bound of the confidence interval for ‘SMIz‘.

• `p.MIz`: P-value between this particular feature and the outcome using the mutual informa-
tion test of independence based on the z-estimator.

• `Var.Name`: Column name of the selected feature.

Examples

# ---- Generate a toy dataset for usage examples: "data" ----
set.seed(123)
n <- 200
x1 <- sample(c("A", "B", "C", "D"), size = n, replace = TRUE, prob = c(0.1, 0.2, 0.3, 0.4))
x2 <- sample(c("W", "X", "Y", "Z"), size = n, replace = TRUE, prob = c(0.4, 0.3, 0.2, 0.1))
x3 <- sample(c("E", "F", "G", "H", "I"), size = n,

replace = TRUE, prob = c(0.2, 0.3, 0.2, 0.2, 0.1))
x4 <- sample(c("A", "B", "C", "D"), size = n, replace = TRUE)
x5 <- sample(c("L", "M", "N"), size = n, replace = TRUE)
x6 <- sample(c("E", "F", "G", "H", "I"), size = n, replace = TRUE)

# Generate y variable dependent on x1 to x3
x1_num <- as.numeric(factor(x1, levels = c("A", "B", "C", "D")))
x2_num <- as.numeric(factor(x2, levels = c("W", "X", "Y", "Z")))
x3_num <- as.numeric(factor(x3, levels = c("E", "F", "G", "H", "I")))
# Calculate y with added noise
y_numeric <- 3*x1_num + 2*x2_num - 2*x3_num + rnorm(n,mean=0,sd=2)



CASMI.selectFeatures 9

# Discretize y into categories
y <- cut(y_numeric, breaks = 10, labels = paste0("Category", 1:10))

# Combine into a dataframe
data <- data.frame(x1, x2, x3, x4, x5, x6, y)

# The outcome of the toy dataset is dependent on x1, x2, and x3
# but is independent of x4, x5, and x6.
head(data)

# ---- Usage Examples ----

## Select features and provide relevant results:
CASMI.selectFeatures(data)

## Adjust 'feature.num.cap' for including fewer features:
## (Note: A lower 'feature.num.cap' value may result in fewer
## final features but less computing time.)
CASMI.selectFeatures(data, feature.num.cap = 2)



Index

AQI, 2
autoBin.binary, 3

CASMI.mineCombination, 4
CASMI.selectFeatures, 6

10


	AQI
	autoBin.binary
	CASMI.mineCombination
	CASMI.selectFeatures
	Index

