BayesChange
provides C++ functions to perform Bayesian
change points analysis.
To install BayesChange
the package devtools
is needed.
install.packages("devtools")
Now BayesChange
can be installed through the GitHub repository
of the package:
::install_github("lucadanese/BayesChange") devtools
The package contains two main functions:
detect_cp
change points detection on time series and
epidemic diffusions.clust_cp
clustering of time series or epidemic
diffusions with common change points.Additional methods and functions are included:
print()
and summary()
return information
about the algorithm.posterior_estimate()
estimates the change points or the
final partition of the data.plot()
provides a graphical representation of the
results.sim_epi_data()
generates an arbitrary number of
simulated survival functions.library(BayesChange)
## Univariate time series
<- as.numeric(c(rnorm(50,0,0.1), rnorm(50,1,0.25)))
data_vec
<- detect_cp(data = data_vec, n_iterations = 2500, n_burnin = 500,
out params = list(a = 1, b = 1, c = 0.1), kernel = "ts")
print(out)
summary(out)
posterior_estimate(out)
plot(out)
## Multivariate time series
<- matrix(NA, nrow = 3, ncol = 100)
data_mat
1,] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_mat[2,] <- as.numeric(c(rnorm(50,0,0.125), rnorm(50,1,0.225)))
data_mat[3,] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280)))
data_mat[
<- detect_cp(data = data_mat, n_iterations = 2500, n_burnin = 500,
out params = list(m_0 = rep(0,3), k_0 = 0.25, nu_0 = 4,
S_0 = diag(1,3,3)), kernel = "ts")
print(out)
summary(out)
posterior_estimate(out)
plot(out)
## Epidemic diffusions
<- matrix(NA, nrow = 1, ncol = 100)
data_mat
<- c(rep(0.45, 25),rep(0.14,75))
betas
<- sim_epi_data(10000, 10, 100, betas, 1/8)
inf_times
<- rep(0,100)
inf_times_vec names(inf_times_vec) <- as.character(1:100)
for(j in 1:100){
if(as.character(j) %in% names(table(floor(inf_times)))){
= table(floor(inf_times))[which(names(table(floor(inf_times))) == j)]
inf_times_vec[j]
}
}
1,] <- inf_times_vec
data_mat[
<- detect_cp(data = data_mat, n_iterations = 500, n_burnin = 100,
out params = list(M = 250, xi = 1/8, a0 = 40, b0 = 10), kernel = "epi")
print(out)
summary(out)
posterior_estimate(out)
plot(out)
## Univariate time series
<- matrix(NA, nrow = 5, ncol = 100)
data_mat
1,] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_mat[2,] <- as.numeric(c(rnorm(50,0,0.125), rnorm(50,1,0.225)))
data_mat[3,] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280)))
data_mat[4,] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225)))
data_mat[5,] <- as.numeric(c(rnorm(25,0,0.155), rnorm(75,1,0.280)))
data_mat[
<- clust_cp(data = data_mat, n_iterations = 5000, n_burnin = 1000,
out L = 1, params = list(phi = 0.5), B = 1000, kernel = "ts")
print(out)
summary(out)
posterior_estimate(out)
plot(out)
## Multivariate time series
<- array(data = NA, dim = c(3,100,5))
data_array
1,,1] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_array[2,,1] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_array[3,,1] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_array[
1,,2] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_array[2,,2] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_array[3,,2] <- as.numeric(c(rnorm(50,0,0.100), rnorm(50,1,0.250)))
data_array[
1,,3] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280)))
data_array[2,,3] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280)))
data_array[3,,3] <- as.numeric(c(rnorm(50,0,0.175), rnorm(50,1,0.280)))
data_array[
1,,4] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225)))
data_array[2,,4] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225)))
data_array[3,,4] <- as.numeric(c(rnorm(25,0,0.135), rnorm(75,1,0.225)))
data_array[
1,,5] <- as.numeric(c(rnorm(25,0,0.155), rnorm(75,1,0.280)))
data_array[2,,5] <- as.numeric(c(rnorm(25,0,0.155), rnorm(75,1,0.280)))
data_array[3,,5] <- as.numeric(c(rnorm(25,0,0.155), rnorm(75,1,0.280)))
data_array[
<- clust_cp(data = data_array, n_iterations = 3000, n_burnin = 1000,
out params = list(phi = 0.5, k_0 = 0.25,
nu_0 = 5, S_0 = diag(0.1,3,3),
m_0 = rep(0,3)), B = 1000, kernel = "ts")
print(out)
summary(out)
posterior_estimate(out)
plot(out)
## Epidemic diffusions
<- matrix(NA, nrow = 5, ncol = 50)
data_mat
<- list(c(rep(0.45, 25),rep(0.14,25)),
betas c(rep(0.55, 25),rep(0.11,25)),
c(rep(0.50, 25),rep(0.12,25)),
c(rep(0.52, 10),rep(0.15,40)),
c(rep(0.53, 10),rep(0.13,40)))
<- list()
inf_times
for(i in 1:5){
<- sim_epi_data(10000, 10, 50, betas[[i]], 1/8)
inf_times[[i]]
<- rep(0,50)
vec names(vec) <- as.character(1:50)
for(j in 1:50){
if(as.character(j) %in% names(table(floor(inf_times[[i]])))){
= table(floor(inf_times[[i]]))[which(names(table(floor(inf_times[[i]]))) == j)]
vec[j]
}
}<- vec
data_mat[i,]
}
<- clust_cp(data = data_mat, n_iterations = 100, n_burnin = 10,
out params = list(M = 100, xi = 1/8), B = 1000, kernel = "epi")
print(out)
summary(out)
posterior_estimate(out)
plot(out)