Buy "Til You Die - A Walkthrough

Daniel McCarthy, Edward Wadsworth
November, 2014

1 Version 2.4.3 Overview

This version patches the Pareto/NBD component of BTYD 2.4 using the fix
that Theo Strinopoulos proposed here.

Everything below this section reads identically to the vignette of BTYD 2.4.
The main difference is that all evaluated references to BTYD file paths, libraries,
etc. now point to their patched counterparts.

As of version 2.4.1 the patched BTYD functions have been modified as
follows:

e Some functions defined in R/pnbd.R and in R/bgnbd.R (you can tell them
by their names, which start with pnbd and bgnbd respectively) have been
changed.

e Some of these functions now take an extra logical argument, hardie; if
TRUE, this function (or a function it calls) uses Bruce Hardie’s algorithm
for estimating the real part of the Gaussian hypergeometric function (see
MATLAB code on page 4 of Fader et al. (2005)); if FALSE, it makes use of
the hypergeo R package from CRAN. For the purposes of this vignette, this
parameter is set globally as allHardie = TRUE. This mirrors the choice of
the BTYD package authors, who use Bruce Hardie’s algorithm everywhere.

e Instead of base::optim, the pnbd functions use optimx::optimx and
they now allow you to pick your optimization method, using the method
argument, which defaults to L-BFGS-B without any constraints, as in the
original package.

o Some of the functions defined in R/bgnbd.R have been changed in order to
implement the fix for the NUM! error problem proposed in this note.

As of version 2.4.2 the hardie argument defaults to TRUE with the exception
of bgnbd.generalParams where it defaults to NULL.

Version 2.4.3 adds a fix to the B1B2 component of the function pnbd. pmf . General
defined in R/pnbd.R for a bug discovered by Patrik Schilter. The fix now specifies
correctly the third parameter of the B2 function described by equation (24) here
as 7 + s +x + 1. The previous, incorrect version added the ¢ component from
the first term.

https://github.com/theofilos/BTYD
http://brucehardie.com/notes/008/pareto_nbd_MATLAB.pdf
https://cran.r-project.org/web/packages/hypergeo/index.html
http://www.brucehardie.com/notes/027/bgnbd_num_error.pdf
https://www.brucehardie.com/notes/013/Pareto_NBD_interval_pmf_rev.pdf

Frequency of Repeat Transactions

— Actual
—— Model

1500
|

1000
1

Customers

500
1

o J I . - B ol = -
0 1 2 3 4 5 6 7+
Calibration period transactions

Figure 1: Calibration period fit of Pareto/NBD model to CDNOW dataset.

2 Introduction

The BTYD package contains models to capture non-contractual purchasing
behavior of customers—or, more simply, models that tell the story of people
buying until they die (become inactive as customers). The main models presented
in the package are the Pareto/NBD, BG/NBD and BG/BB models, which
describe scenario of the firm not being able to observe the exact time at which a
customer drops out. We will cover each in turn. If you are unfamiliar with these
models, Fader et al. (2004) provides a description of the BG/NBD model, Fader
et al. (2005) provides a description of the Pareto/NBD model and Fader et al.
(2010) provides a description of the BG/BB model.

3 Pareto/NBD

The Pareto/NBD model is used for non-contractual situations in which customers
can make purchases at any time. Using four parameters, it describes the rate
at which customers make purchases and the rate at which they drop out—
allowing for heterogeneity in both regards, of course. We will walk through the
Pareto/NBD functionality provided by the BTYD package using the CDNOW!
dataset. As shown by figure 1, the Pareto/NBD model describes this dataset
quite well.

IProvided with the BTYD package and available at brucehardie.com. For more details, see
the documentation of the cdnowSummary data included in the package.

http://brucehardie.com/papers/018/fader_et_al_mksc_05.pdf
http://www.brucehardie.com/notes/008/pareto_nbd_MATLAB.pdf
http://www.brucehardie.com/notes/008/pareto_nbd_MATLAB.pdf
http://www.brucehardie.com/papers/020/
http://www.brucehardie.com/papers/020/
http://www.brucehardie.com

3.1 Data Preparation

The data required to estimate Pareto/NBD model parameters is surprisingly
little. The customer-by-customer approach of the model is retained, but we need
only three pieces of information for every person: how many transactions they
made in the calibration period (frequency), the time of their last transaction
(recency), and the total time for which they were observed. A customer-by-
sufficient-statistic matrix, as used by the BTYD package, is simply a matrix
with a row for every customer and a column for each of the above-mentioned
statistics.

You may find yourself with the data available as an event log. This is a data
structure which contains a row for every transaction, with a customer identifier,
date of purchase, and (optionally) the amount of the transaction. dc.ReadLines
is a function to convert an event log in a comma-delimited file to an data frame in
R—you could use another function such as read.csv or read.table if desired,
but dc.ReadLines simplifies things by only reading the data you require and
giving the output appropriate column names. In the example below, we create
an event log from the file “cdnowElog.csv”, which has customer IDs in the second
column, dates in the third column and sales numbers in the fifth column.

cdnowElog <- system.file("data/cdnowElog.csv", package = "BTYD")
elog <- dc.ReadLines(cdnowElog, cust.idx = 2,

date.idx = 3, sales.idx = 5)
elog[1:3,]

cust date sales
1 1 19970101 29.33
2 1 19970118 29.73
3 1 19970802 14.96

Note the formatting of the dates in the output above. dc.Readlines saves
dates as characters, exactly as they appeared in the original comma-delimited
file. For many of the data-conversion functions in BTYD, however, dates need
to be compared to each other—and unless your years/months/days happen to
be in the right order, you probably want them to be sorted chronologically and
not alphabetically. Therefore, we convert the dates in the event log to R Date
objects:

elog$date <- as.Date(elog$date, "%Y%/mJd")
elog[1:3,]

cust date sales
1 1 1997-01-01 29.33
2 1 1997-01-18 29.73
3 1 1997-08-02 14.96

Our event log now has dates in the right format, but a bit more cleaning needs
to be done. Transaction-flow models, such as the Pareto/NBD, is concerned

with interpurchase time. Since our timing information is only accurate to the
day, we should merge all transactions that occurred on the same day. For this,
we use dc.MergeTransactionsOnSameDate. This function returns an event log
with only one transaction per customer per day, with the total sum of their
spending for that day as the sales number.

elog <- dc.MergeTransactionsOnSameDate (elog)

To validate that the model works, we need to divide the data up into a
calibration period and a holdout period. This is relatively simple with either an
event log or a customer-by-time matrix, which we are going to create soon. I
am going to use 30 September 1997 as the cutoff date, as this point (39 weeks)
divides the dataset in half. The reason for doing this split now will become
evident when we are building a customer-by-sufficient-statistic matrix from the
customer-by-time matrix—it requires a last transaction date, and we want to
make sure that last transaction date is the last date in the calibration period
and not in the total period.

end.of.cal.period <- as.Date("1997-09-30")
elog.cal <- elogl[which(elog$date <= end.of.cal.period),]

The final cleanup step is a very important one. In the calibration period,
the Pareto/NBD model is generally concerned with repeat transactions—that
is, the first transaction is ignored. This is convenient for firms using the model
in practice, since it is easier to keep track of all customers who have made
at least one transaction (as opposed to trying to account for those who have
not made any transactions at all). The one problem with simply getting rid
of customers’ first transactions is the following: We have to keep track of a
“time zero” as a point of reference for recency and total time observed. For this
reason, we use dc.SplitUpElogForRepeatTrans, which returns a filtered event
log ($repeat.trans.elog) as well as saving important information about each
customer ($cust.data).

split.data <- dc.SplitUpElogForRepeatTrans(elog.cal)
clean.elog <- split.data$repeat.trans.elog

The next step is to create a customer-by-time matrix. This is simply a matrix
with a row for each customer and a column for each date. There are several
different options for creating these matrices:

- Frequency—each matrix entry will contain the number of transactions
made by that customer on that day. Use dc.CreateFreqCBT. If you have
already used dc.MergeTransactionsOnSameDate, this will simply be a
reach customer-by-time matrix.

- Reach—each matrix entry will contain a 1 if the customer made any
transactions on that day, and 0 otherwise. Use dc.CreateReachCBT.

- Spend—each matrix entry will contain the amount spent by that customer
on that day. Use dc.CreateSpendCBT. You can set whether to use to-
tal spend for each day or average spend for each day by changing the
is.avg.spend parameter. In most cases, leaving is.avg.spend as FALSE
is appropriate.

freq.cbt <- dc.CreateFreqCBT(clean.elog)
freq.cbt[1:3,1:5]

date

cust 1997-01-08 1997-01-09 1997-01-10 1997-01-11 1997-01-12
1 0 0 0 0 0
2 0 0 0 0 0
6 0 0 0 1 0

There are two things to note from the output above:

1. Customers 3, 4, and 5 appear to be missing, and in fact they are. They
did not make any repeat transactions and were removed when we used
dc.SplitUpElogForRepeatTrans. Do not worry though—we will get them
back into the data when we use dc.MergeCustomers (soon).

2. The columns start on January 8—this is because we removed all the first
transactions (and nobody made 2 transactions withing the first week).

We have a small problem now—since we have deleted all the first transactions,
the frequency customer-by-time matrix does not have any of the customers who
made zero repeat transactions. These customers are still important; in fact, in
most datasets, more customers make zero repeat transactions than any other
number. Solving the problem is reasonably simple: we create a customer-by-time
matrix using all transactions, and then merge the filtered CBT with this total
CBT (using data from the filtered CBT and customer IDs from the total CBT).

tot.cbt <- dc.CreateFreqCBT(elog)
cal.cbt <- dc.MergeCustomers(tot.cbt, freq.cbt)

From the calibration period customer-by-time matrix (and a bit of addi-
tional information we saved earlier), we can finally create the customer-by-
sufficient-statistic matrix described earlier. The function we are going to use
is dc.BuildCBSFromCBTAndDates, which requires a customer-by-time matrix,
starting and ending dates for each customer, and the time of the end of the
calibration period. It also requires a time period to use—in this case, we are
choosing to use weeks. If we chose days instead, for example, the recency
and total time observed columns in the customer-by-sufficient-statistic matrix
would have gone up to 273 instead of 39, but it would be the same data in
the end. This function could also be used for the holdout period by setting
cbt.is.during.cal.period to FALSE. There are slight differences when this

function is used for the holdout period—it requires different input dates (simply
the start and end of the holdout period) and does not return a recency (which
has little value in the holdout period).

birth.periods <- split.data$cust.data$birth.per
last.dates <- split.data$cust.data$last.date
cal.cbs.dates <- data.frame(birth.periods, last.dates,
end.of .cal.period)
cal.cbs <- dc.BuildCBSFromCBTAndDates(cal.cbt, cal.cbs.dates,
per="week")

You’ll be glad to hear that, for the process described above, the package
contains a single function to do everything for you: dc.ElogToCbsCbt. However,
it is good to be aware of the process above, as you might want to make small
changes for different situations—for example, you may not want to remove
customers’ initial transactions, or your data may be available as a customer-by-
time matrix and not as an event log. For most standard situations, however,
dc.ElogToCbsCbt will do. Reading about its parameters and output in the
package documentation will help you to understand the function well enough to
use it for most purposes.

3.2 Parameter Estimation

Now that we have the data in the correct format, we can estimate model parame-
ters. To estimate parameters, we use pnbd.EstimateParameters, which requires
a calibration period customer-by-sufficient-statistic matrix and (optionally) start-
ing parameters. (1,1,1,1) is used as default starting parameters if none are
provided. The function which is maximized is pnbd.cbs.LL, which returns the
log-likelihood of a given set of parameters for a customer-by-sufficient-statistic
matrix.

params <- pnbd.EstimateParameters(cal.cbs = cal.cbs,
hardie = allHardie)
round(params, digits = 3)

[1] 0.553 10.580 0.606 11.656

LL <- pnbd.cbs.LL(params = params,
cal.cbs = cal.cbs,
hardie = allHardie)

ILIC

[1] -9594.976
As with any optimization, we should not be satisfied with the first output we

get. Let’s run it a couple more times, with its own output as a starting point, to
see if it converges:

p.matrix <- c(params, LL)
for (i in 1:2){
params <- pnbd.EstimateParameters(cal.cbs = cal.cbs,
par.start = params,
hardie = allHardie)
LL <- pnbd.cbs.LL(params = params,
cal.cbs = cal.cbs,
hardie = allHardie)
p.matrix.row <- c(params, LL)
p-matrix <- rbind(p.matrix, p.matrix.row)
}
colnames(p.matrix) <- c("r", "alpha", "s", "beta", "LL")
rownames (p.matrix) <- 1:3
round(p.matrix, digits = 3)

r alpha s beta LL
1 0.553 10.58 0.606 11.656 -9594.976
2 0.553 10.58 0.606 11.657 -9594.976
3 0.553 10.58 0.606 11.658 -9594.976

H H HH

This estimation does converge. I am not going to demonstrate it here, but it
is always a good idea to test the estimation function from several starting points.

Now that we have the parameters, the BTYD package provides functions to
interpret them. As we know, r and alpha describe the gamma mixing distribution
of the NBD transaction process. We can see this gamma distribution in figure
2, plotted using pnbd.PlotTransactionRateHeterogeneity(params). We also
know that s and beta describe the gamma mixing distribution of the Pareto (or
gamma exponential) dropout process. We can see this gamma distribution in
figure 3, plotted using pnbd.PlotDropoutRateHeterogeneity (params).

From these, we can already tell something about our customers: they are
more likely to have low values for their individual poisson transaction process
parameters, and more likely to have low values for their individual exponential
dropout process parameters.

3.3 Individual Level Estimations

Now that we have parameters for the population, we can make estimations for
customers on the individual level.

First, we can estimate the number of transactions we expect a newly acquired
customer to make in a given time period. Let’s say, for example, that we are
interested in the number of repeat transactions a newly acquired customer will
make in a time period of one year. Note that we use 52 weeks to represent one
year, not 12 months, 365 days, or 1 year. This is because our parameters were
estimated using weekly data.

Density

Heterogeneity in Transaction Rate
Mean: 0.0523 Var: 0.0049

20
1

15
1

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Transaction Rate

Figure 2: Transaction rate heterogeneity of estimated parameters.

Density

Figure 3:

Heterogeneity in Dropout Rate
Mean: 0.052 Var: 0.0045

20
1

T T T T T T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Dropout Rate

Dropout rate heterogeneity of estimated parameters.

pnbd.Expectation(params = params, t = 52)
[1] 1.473434

We can also obtain expected characteristics for a specific customer, condi-
tional on their purchasing behavior during the calibration period. The first of
these is pnbd.ConditionalExpectedTransactions, which gives the number of
transactions we expect a customer to make in the holdout period. The second is
pnbd.PAlive, which gives the probability that a customer is still alive at the
end of the calibration period. As above, the time periods used depend on which
time period was used to estimate the parameters.

cal.cbs["1516",]

X t.x T.cal
26.00000 30.85714 31.00000

x <- cal.cbs["1516", "x"]
t.x <- cal.cbs["1516", "t.x"]
T.cal <- cal.cbs["1516", "T.cal"]
pnbd.ConditionalExpectedTransactions (params,
T.star = 52,
X,
t.x,
T.cal,
hardie = allHardie)

[1] 25.45647

pnbd.PAlive (params,
X,
t.x,
T.cal,
hardie = allHardie)

[1] 0.997874

There is one more point to note here—using the conditional expectation
function, we can see the “increasing frequency paradox” in action:

avoid overflow in LaTeX code block here:
cet <- "pnbd.ConditionalExpectedTransactions"
for (i in seq(10, 25, 5)){
cond.expectation <- match.fun(cet) (params,
T.star = 52,
x =1i,
t.x = 20,

T.cal = 39,
hardie = allHardie)
cat ("x:",i,"\t Expectation:",cond.expectation, fill = TRUE)

—

10 Expectation: 0.7062289
15 Expectation: 0.1442396
20 Expectation: 0.02250658
25 Expectation: 0.00309267

H H H R
E I

3.4 Plotting/ Goodness-of-fit

We would like to be able to do more than make inferences about individual
customers. The BTYD package provides functions to plot expected customer
behavior against actual customer behavior in the both the calibration and holdout
periods.

The first such function is the obvious starting point: a comparison of actual
and expected frequencies within the calibration period. This is figure 1, which
was generated using the following code:

pnbd.PlotFrequencyInCalibration(params = params,
cal.cbs = cal.cbs,
censor = 7,
hardie = allHardie)

This function obviously needs to be able to generate expected data (from
estimated parameters) and requires the actual data (the calibration period
customer-by-sufficient-statistic). It also requires another number, called the
censor number. The histogram that is plotted is right-censored; after a certain
number, all frequencies are binned together. The number provided as a censor
number determines where the data is cut off.

Unfortunately, the only thing we can tell from comparing calibration period
frequencies is that the fit between our model and the data isn’t awful. We need to
verify that the fit of the model holds into the holdout period. Firstly, however, we
are are going to need to get information for holdout period. dc.ElogToCbsCbt
produces both a calibration period customer-by-sufficient-statistic matrix and a
holdout period customer-by-sufficient-statistic matrix, which could be combined
in order to find the number of transactions each customer made in the holdout
period. However, since we did not use dc.ElogToCbsCbt, I am going to get the
information directly from the event log. Note that I subtract the number of repeat
transactions in the calibration period from the total number of transactions. We
remove the initial transactions first as we are not concerned with them.

10

elog <- dc.SplitUpElogForRepeatTrans(elog)$repeat.trans.elog
x.star <- rep(0, nrow(cal.cbs))
cal.cbs <- cbind(cal.cbs, x.star)
elog.custs <- elog$cust
for (i in 1:nrow(cal.cbs)){
current.cust <- rownames(cal.cbs) [i]
tot.cust.trans <- length(which(elog.custs == current.cust))
cal.trans <- cal.cbs[i, "x"]
cal.cbs[i, "x.star"] <- tot.cust.trans - cal.trans

}

round(cal.cbs[1:3,], digits = 3)

X t.x T.cal x.star
1 2 30.429 38.857 1
2 1 1.714 38.857 0
3 0 0.000 38.857 0

Now we can see how well our model does in the holdout period. Figure 4
shows the output produced by the code below. It divides the customers up into
bins according to calibration period frequencies and plots actual and conditional
expected holdout period frequencies for these bins.

T.star <- 39 # length of the holdout period

censor <- 7 # This censor serves the same purpose described above
x.star <- cal.cbs[,"x.star"]

pdf (file = ’pnbdCondExpComp.pdf’)

comp <- pnbd.PlotFreqVsConditionalExpectedFrequency(params,

T.star,
cal.cbs,
x.star,
censor,
hardie = allHardie)
dev.off()
pdf
2
rownames (comp) <- c("act", "exp", "bin")

round(comp, digits = 3)

freq.0 freq.1 freq.2 freq.3 freq.4 freq.5 freq.6 freq.7+
act 0.237 0.697 1.393 1.560 2.532 2.947 3.862 6.359
exp 0.138 0.600 1.196 1.714 2.399 2.907 3.819 6.403
bin 1411.000 439.000 214.000 100.000 62.000 38.000 29.000 64.000

As you can see above, the graph also produces a matrix output. Most

plotting functions in the BTYD package produce output like this. They are often
worth looking at because they contain additional information not presented in

11

Conditional Expectation

© — —— Actual
-- Model

Holdout period transactions
4
|

Calibration period transactions

Figure 4: Actual vs. conditional expected transactions in the holdout period.

the graph—the size of each bin in the graph. In this graph, for example, this
information is important because the bin sizes show that the gap at zero means
a lot more than the precision at 6 or 7 transactions. Despite this, this graph
shows that the model fits the data very well in the holdout period.

Aggregation by calibration period frequency is just one way to do it. BTYD
also provides plotting functions which aggregate by several other measures. The
other one I will demonstrate here is aggregation by time—how well does our
model predict how many transactions will occur in each week?

The first step, once again, is going to be to collect the data we need to
compare the model to. The customer-by-time matrix has already collected the
data for us by time period; so we’ll use that to gather the total transactions per
day. Then we convert the daily tracking data to weekly data.

tot.cbt <- dc.CreateFreqCBT(elog)
...Completed Freq CBT

d.track.data <- rep(0, 7 * 78)

origin <- as.Date("1997-01-01")

for (i in colnames(tot.cbt)){
date.index <- difftime(as.Date(i), origin) + 1
d.track.data[date.index] <- sum(tot.cbt[,i])

}

w.track.data <- rep(0, 78)

for (j in 1:78){

12

w.track.datal[j] <- sum(d.track.datal[(j*7-6):(j*7)]1)

}

Now, we can make a plot comparing the actual number of transactions
to the expected number of transactions on a weekly basis, as shown in figure
5. Note that we set n.periods.final to 78. This is to show that we are
working with weekly data. If our tracking data was daily, we would use 546
here—the function would plot our daily tracking data against expected daily
transactions, instead of plotting our weekly tracking data against expected
weekly transactions. This concept may be a bit tricky, but is explained in the
documentation for pnbd.PlotTrackingInc. The reason there are two numbers
for the total period (T.tot and n.periods.final) is that your customer-by-
sufficient-statistic matrix and your tracking data may be in different time periods.

T.cal <- cal.cbs[,"T.cal"]
T.tot <- 78
n.periods.final <- 78

pdf(file = ’pnbdTrackingInc.pdf’)
inc.tracking <- pnbd.PlotTrackingInc(params = params,
T.cal = T.cal,
T eeE = M,B06,
actual.inc.tracking.data = w.track.data,

n.periods.final = n.periods.final)
dev.off ()

pdf
2

round(inc.tracking[,20:25], digits = 3)

(.11 [,21 [,31 [,4 [,8]1 [,6]
actual 73.000 55.000 70.000 33.000 56.000 99.000
expected 78.308 76.419 74.648 72.983 71.414 69.933

Although figure 5 shows that the model is definitely capturing the trend of
customer purchases over time, it is very messy and may not convince skeptics.
Furthermore, the matrix, of which a sample is shown, does not really convey
much information since purchases can vary so much from one week to the next.
For these reasons, we may need to smooth the data out by cummulating it over
time, as shown in figure 6.

cum.tracking.data <- cumsum(w.track.data)

pdf (file = ’pnbdTrackingCum.pdf’)

cum.tracking <- pnbd.PlotTrackingCum(params = params,
T.cal = T.cal,

13

Tracking Weekly Transactions

— Actual

80
1

Transactions
60

20
1

1 5 9 14 19 24 29 34 39 44 49 54 59 64 69

Week

74

Figure 5: Actual vs. expected incremental purchasing behaviour.

T.tot =T

actual.cu

n.periods
dev.off ()

pdf
2

round (cum.tracking[,20:25], digits = 3)
[,1] [,2] [,3] [,4]

actual 1359.000 1414.000 1484.000 1517.000
expected 1308.856 1385.275 1459.923 1532.906

4 BG/NBD

.tot,
.tracking.data = cum.tracking.data,
.final = n.periods.final)

[,5] [,6]
15673.00 1672.000
1604.32 1674.253

The BG/NBD model, like the Pareto/NBD model, is used for non-contractual
situations in which customers can make purchases at any time. It describes the
rate at which customers make purchases and the rate at which they drop out

with four parameters—allowing for heterogeneity in both. We will walk through
the BG/NBD functions provided by the BTYD package using the CDNOW?

2Provided with the BTYD package and available at brucehardie.com. For more details, see
the documentation of the cdnowSummary data included in the package.

14

http://www.brucehardie.com

Tracking Cumulative Transactions

2000 3000 4000
1 1 1

Cumulative Transactions

1000
1

/ ! — Actual
o ---- Model
LA R RN RN RN R RN RN R RN RN R AR IR RN R AR R RN AR AR AR RRR AR
1 5 9 14 19 24 29 34 39 44 49 54 59 64 69 74

Week

Figure 6: Actual vs. expected cumulative purchasing behaviour.

dataset. As shown by figure 7, the BG/NBD model describes this dataset quite
well.

4.1 Data Preparation

The data required to estimate BG/NBD model parameters is surprisingly little.
The customer-by-customer approach of the model is retained, but we need only
three pieces of information for every person: how many transactions they made
in the calibration period (frequency), the time of their last transaction (recency),
and the total time for which they were observed. This is the same as what is
needed for the Pareto/NBD model. Indeed, if you have read the data preparation
section for the Pareto/NBD model, you can safely skip over this section and
move to the section on Parameter Estimation.

A customer-by-sufficient-statistic matrix, as used by the BTYD package, is
simply a matrix with a row for every customer and a column for each of the
above-mentioned statistics.

You may find yourself with the data available as an event log. This is a data
structure which contains a row for every transaction, with a customer identifier,
date of purchase, and (optionally) the amount of the transaction. dc.ReadLines
is a function to convert an event log in a comma-delimited file to an data frame in
R—you could use another function such as read.csv or read.table if desired,
but dc.ReadLines simplifies things by only reading the data you require and
giving the output appropriate column names. In the example below, we create
an event log from the file “cdnowElog.csv”, which has customer IDs in the second

15

Frequency of Repeat Transactions

— Actual
—— Model

800 1000 1200 1400
1 1

Customers

400
1

o

] ||\ III

o III [S pe— |
0 1 2 3 4 5 6 7+

Calibration period transactions

Figure 7: Calibration period fit of BG/NBD model to CDNOW dataset.

column, dates in the third column and sales numbers in the fifth column.

cdnowElog <- system.file("data/cdnowElog.csv", package = "BTYD")
elog <- dc.ReadLines(cdnowElog, cust.idx = 2,

date.idx = 3, sales.idx = 5)
elog[1:3,]

cust date sales
1 1 19970101 29.33
2 1 19970118 29.73
3 1 19970802 14.96

Note the formatting of the dates in the output above. dc.Readlines saves
dates as characters, exactly as they appeared in the original comma-delimited
file. For many of the data-conversion functions in BTYD, however, dates need
to be compared to each other—and unless your years/months/days happen to
be in the right order, you probably want them to be sorted chronologically and
not alphabetically. Therefore, we convert the dates in the event log to R Date
objects:

elog$date <- as.Date(elog$date, "%Y/m%d");
elog[1:3,]

cust date sales

16

1 1 1997-01-01 29.33
2 1 1997-01-18 29.73
3 1 1997-08-02 14.96

Our event log now has dates in the right format, but a bit more cleaning
needs to be done. Transaction-flow models, such as the BG/NBD, is concerned
with inter-purchase time. Since our timing information is only accurate to the
day, we should merge all transactions that occurred on the same day. For this,
we use dc.MergeTransactionsOnSameDate. This function returns an event log
with only one transaction per customer per day, with the total sum of their
spending for that day as the sales number.

elog <- dc.MergeTransactionsOnSameDate (elog) ;

To validate that the model works, we need to divide the data up into a
calibration period and a holdout period. This is relatively simple with either an
event log or a customer-by-time matrix, which we are going to create soon. I
am going to use 30 September 1997 as the cutoff date, as this point (39 weeks)
divides the dataset in half. The reason for doing this split now will become
evident when we are building a customer-by-sufficient-statistic matrix from the
customer-by-time matrix—it requires a last transaction date, and we want to
make sure that last transaction date is the last date in the calibration period
and not in the total period.

end.of.cal.period <- as.Date("1997-09-30")
elog.cal <- eloglwhich(elog$date <= end.of.cal.period),]

The final cleanup step is a very important one. In the calibration period,
the BG/NBD model is generally concerned with repeat transactions—that is,
the first transaction is ignored. This is convenient for firms using the model
in practice, since it is easier to keep track of all customers who have made
at least one transaction (as opposed to trying to account for those who have
not made any transactions at all). The one problem with simply getting rid
of customers’ first transactions is the following: We have to keep track of a
“time zero” as a point of reference for recency and total time observed. For this
reason, we use dc.SplitUpElogForRepeatTrans, which returns a filtered event
log ($repeat.trans.elog) as well as saving important information about each
customer ($cust.data).

split.data <- dc.SplitUpElogForRepeatTrans(elog.cal);
clean.elog <- split.data$repeat.trans.elog;

The next step is to create a customer-by-time matrix. This is simply a matrix
with a row for each customer and a column for each date. There are several
different options for creating these matrices:

17

- Frequency—each matrix entry will contain the number of transactions
made by that customer on that day. Use dc.CreateFreqCBT. If you have
already used dc.MergeTransactionsOnSameDate, this will simply be a
reach customer-by-time matrix.

- Reach—each matrix entry will contain a 1 if the customer made any
transactions on that day, and 0 otherwise. Use dc.CreateReachCBT.

- Spend—each matrix entry will contain the amount spent by that customer
on that day. Use dc.CreateSpendCBT. You can set whether to use to-
tal spend for each day or average spend for each day by changing the
is.avg.spend parameter. In most cases, leaving is.avg.spend as FALSE
is appropriate.

freq.cbt <- dc.CreateFreqCBT(clean.elog);
freq.cbt[1:3,1:5]

date

cust 1997-01-08 1997-01-09 1997-01-10 1997-01-11 1997-01-12
1 0 0 0 0 0
2 0 0 0 0 0
6 0 0 0 1 0

There are two things to note from the output above:

1. Customers 3, 4, and 5 appear to be missing, and in fact they are. They
did not make any repeat transactions and were removed when we used
dc.SplitUpElogForRepeatTrans. Do not worry though—we will get them
back into the data when we use dc.MergeCustomers (soon).

2. The columns start on January 8—this is because we removed all the first
transactions (and nobody made 2 transactions withing the first week).

We have a small problem now—since we have deleted all the first transactions,
the frequency customer-by-time matrix does not have any of the customers who
made zero repeat transactions. These customers are still important; in fact, in
most datasets, more customers make zero repeat transactions than any other
number. Solving the problem is reasonably simple: we create a customer-by-time
matrix using all transactions, and then merge the filtered CBT with this total
CBT (using data from the filtered CBT and customer IDs from the total CBT).

tot.cbt <- dc.CreateFreqCBT(elog)
cal.cbt <- dc.MergeCustomers(tot.cbt, freq.cbt)

From the calibration period customer-by-time matrix (and a bit of addi-
tional information we saved earlier), we can finally create the customer-by-
sufficient-statistic matrix described earlier. The function we are going to use

18

is dc.BuildCBSFromCBTAndDates, which requires a customer-by-time matrix,
starting and ending dates for each customer, and the time of the end of the
calibration period. It also requires a time period to use—in this case, we are
choosing to use weeks. If we chose days instead, for example, the recency
and total time observed columns in the customer-by-sufficient-statistic matrix
would have gone up to 273 instead of 39, but it would be the same data in
the end. This function could also be used for the holdout period by setting
cbt.is.during.cal.period to FALSE. There are slight differences when this
function is used for the holdout period—it requires different input dates (simply
the start and end of the holdout period) and does not return a recency (which
has little value in the holdout period).

birth.periods <- split.data$cust.data$birth.per
last.dates <- split.data$cust.data$last.date
cal.cbs.dates <- data.frame(birth.periods, last.dates,
end.of.cal.period)
cal.cbs <- dc.BuildCBSFromCBTAndDates(cal.cbt, cal.cbs.dates,
per="week")

You’ll be glad to hear that, for the process described above, the package
contains a single function to do everything for you: dc.ElogToCbsCbt. However,
it is good to be aware of the process above, as you might want to make small
changes for different situations—for example, you may not want to remove
customers’ initial transactions, or your data may be available as a customer-by-
time matrix and not as an event log. For most standard situations, however,
dc.ElogToCbsCbt will do. Reading about its parameters and output in the
package documentation will help you to understand the function well enough to
use it for most purposes.

4.2 Parameter Estimation

Now that we have the data in the correct format, we can estimate model pa-
rameters. To estimate parameters, we use bgnbd.EstimateParameters, which
requires a calibration period customer-by-sufficient-statistic matrix and (op-
tionally) starting parameters. (1,3,1,3) is used as default starting parameters
if none are provided as these values tend to provide good convergence across
data sets. The function which is maximized is bgnbd.cbs.LL, which returns the
log-likelihood of a given set of parameters for a customer-by-sufficient-statistic
matrix. Below, we start with relatively uninformative starting values:

params <- bgnbd.EstimateParameters(cal.cbs);
params

pl p2 p3 p4
0.2425982 4.4136842 0.7929899 2.4261667

19

LL <- bgnbd.cbs.LL(params, cal.cbs);
IL]L

[1] -9582.429

As with any optimization, we should not be satisfied with the first output we
get. Let’s run it a couple more times, with its own output as a starting point, to
see if it converges:

p-matrix <- c(params, LL);

for (i in 1:2){

params <- bgnbd.EstimateParameters(cal.cbs, params);
LL <- bgnbd.cbs.LL(params, cal.cbs);

p.-matrix.row <- c(params, LL);

p-matrix <- rbind(p.matrix, p.matrix.row);

}

colnames(p.matrix) <- c("r", "alpha", "a", "b", "LL");
rownames (p.matrix) <- 1:3;

p.-matrix;

r alpha a b LL

1 0.2425982 4.413684 0.7929899 2.426167 -9582.429

2 0.2425965 4.413685 0.7929888 2.426166 -9582.429

3 0.2425967 4.413659 0.7929869 2.426164 -9582.429

This estimation does converge. I am not going to demonstrate it here, but it
is always a good idea to test the estimation function from several starting points.

Now that we have the parameters, the BTYD package provides functions to
interpret them. As we know, r and alpha describe the gamma mixing distribution
of the NBD transaction process. We can see this gamma distribution in figure 8,
plotted using bgnbd.PlotTransactionRateHeterogeneity(params). We also
know that a and b describe the beta mixing distribution of the beta geometric
dropout probabilities. We can see this beta distribution in figure 9, plotted using
bgnbd.PlotDropoutHeterogeneity (params).

From these, we can already tell something about our customers: they are
more likely to have low values for their individual poisson transaction process
parameters, and more likely to have low values for their individual geometric
dropout probability parameters.

4.3 Individual Level Estimations

Now that we have parameters for the population, we can make estimations for
customers on the individual level.

First, we can estimate the number of transactions we expect a newly acquired
customer to make in a given time period. Let’s say, for example, that we are
interested in the number of repeat transactions a newly acquired customer will

20

Heterogeneity in Transaction Rate
Mean: 0.055 Var: 0.0125

15 20
1

Density
10

0.0 0.1 0.2 0.3 0.4 0.5

Transaction Rate

Figure 8: Transaction rate heterogeneity of estimated parameters.

Heterogeneity in Dropout Probability
Mean: 0.2463 Var: 0.044

Density

0.0 0.2 0.4 0.6 0.8

Dropout Probability p

Figure 9: Dropout probability heterogeneity of estimated parameters.

21

make in a time period of one year. Note that we use 52 weeks to represent one
year, not 12 months, 365 days, or 1 year. This is because our parameters were
estimated using weekly data.

bgnbd.Expectation(params, t=52);

p3
1.444004

We can also obtain expected characteristics for a specific customer, condi-
tional on their purchasing behavior during the calibration period. The first of
these is bgnbd.ConditionalExpectedTransactions, which gives the number
of transactions we expect a customer to make in the holdout period. The second
is bgnbd.PAlive, which gives the probability that a customer is still alive at the
end of the calibration period. As above, the time periods used depend on which
time period was used to estimate the parameters.

cal.cbs["1516",]

X t.x T.cal
26.00000 30.85714 31.00000

x <- cal.cbs["1516", "x"]

t.x <- cal.cbs["1516", "t.x"]

T.cal <- cal.cbs["1516", "T.cal"]

bgnbd.ConditionalExpectedTransactions(params, T.star = 52,
x, t.x, T.cal)

p3
25.75659

bgnbd.PAlive(params, x, t.x, T.cal)

p3
0.9688523

There is one more point to note here—using the conditional expectation
function, we can see the “increasing frequency paradox” in action:

for (i in seq(10, 25, 5)){
cond.expectation <- bgnbd.ConditionalExpectedTransactions(
params, T.star = 52, x = 1,
t.x = 20, T.cal = 39)
cat ("x:",i,"\t Expectation:",cond.expectation, fill = TRUE)

}

x: 10 Expectation: 0.3474606

22

x: 15 Expectation: 0.04283391
x: 20 Expectation: 0.004158973
x: 25 Expectation: 0.0003583685

4.4 Plotting/ Goodness-of-fit

We would like to be able to do more than make inferences about individual
customers. The BTYD package provides functions to plot expected customer
behavior against actual customer behaviour in the both the calibration and
holdout periods.

The first such function is the obvious starting point: a comparison of actual
and expected frequencies within the calibration period. This is figure 7, which
was generated using the following code:

bgnbd.PlotFrequencyInCalibration(params, cal.cbs, 7)

This function obviously needs to be able to generate expected data (from
estimated parameters) and requires the actual data (the calibration period
customer-by-sufficient-statistic). It also requires another number, called the
censor number. The histogram that is plotted is right-censored; after a certain
number, all frequencies are binned together. The number provided as a censor
number determines where the data is cut off.

Unfortunately, the only thing we can tell from comparing calibration period
frequencies is that the fit between our model and the data isn’t awful. We need to
verify that the fit of the model holds into the holdout period. Firstly, however, we
are are going to need to get information for holdout period. dc.ElogToCbsCbt
produces both a calibration period customer-by-sufficient-statistic matrix and a
holdout period customer-by-sufficient-statistic matrix, which could be combined
in order to find the number of transactions each customer made in the holdout
period. However, since we did not use dc.ElogToCbsCbt, I am going to get the
information directly from the event log. Note that I subtract the number of repeat
transactions in the calibration period from the total number of transactions. We
remove the initial transactions first as we are not concerned with them.

elog <- dc.SplitUpElogForRepeatTrans(elog)$repeat.trans.elog;
x.star <- rep(0, nrow(cal.cbs));
cal.cbs <- cbind(cal.cbs, x.star);
elog.custs <- elog$cust;
for (i in 1:nrow(cal.cbs)){
current.cust <- rownames(cal.cbs) [i]
tot.cust.trans <- length(which(elog.custs == current.cust))
cal.trans <- cal.cbs[i, "x"]
cal.cbs[i, "x.star"] <- tot.cust.trans - cal.trans

}

cal.cbs[1:3,]

23

X t.x T.cal x.star
1 2 30.428571 38.85714 1
2 1 1.714286 38.85714 0
3 0 0.000000 38.85714 0

Now we can see how well our model does in the holdout period. Figure 10
shows the output produced by the code below. It divides the customers up into
bins according to calibration period frequencies and plots actual and conditional
expected holdout period frequencies for these bins.

T.star <- 39
censor <- 7
x.star <- cal.cbs[,"x.star"]

pdf (file = ’bgnbdCondExpComp.pdf’)
comp <- bgnbd.PlotFreqVsConditionalExpectedFrequency(params, T.star,
cal.cbs, x.star, censor)

dev.off ()

pdf

2

rownames (comp) <- c("act", "exp", "bin")

comp

freq.0 freq.1 freq.2 freq.3 freq.4 freq.5
act 0.2367116 0.6970387 1.3925623 1.560000 2.532258 2.947368
exp 0.2250893 0.5231364 1.044126 1.520256 2.163824 2.653789
bin 1411.0000000 439.0000000 214.000000 100.000000 62.000000 38.000000
freq.6 freq.7+

act 3.862069 6.359375

exp 3.503957 6.157036

bin 29.000000 64.000000

As you can see above, the graph also produces a matrix output. Most
plotting functions in the BTYD package produce output like this. They are often
worth looking at because they contain additional information not presented in
the graph—the size of each bin in the graph. In this graph, for example, this
information is important because the bin sizes show that the gap at zero means
a lot more than the precision at 6 or 7 transactions. Despite this, this graph
shows that the model fits the data very well in the holdout period.

Aggregation by calibration period frequency is just one way to do it. BTYD
also provides plotting functions which aggregate by several other measures. The
other one I will demonstrate here is aggregation by time—how well does our
model predict how many transactions will occur in each week?

The first step, once again, is going to be to collect the data we need to
compare the model to. The customer-by-time matrix has already collected the
data for us by time period; so we’ll use that to gather the total transactions per
day. Then we convert the daily tracking data to weekly data.

24

Conditional Expectation

~ 4 — Actual
-- Model

Holdout period transactions

Calibration period transactions

Figure 10: Actual vs. conditional expected transactions in the holdout period.

tot.cbt <- dc.CreateFreqCBT(elog)

...Completed Freq CBT

d.track.data <- rep(0, 7 * 78)

origin <- as.Date("1997-01-01")

for (i in colnames(tot.cbt)){
date.index <- difftime(as.Date(i), origin) + 1;
d.track.datal[date.index] <- sum(tot.cbt[,il);

}

w.track.data <- rep(0, 78)

for (j in 1:78){
w.track.data[j] <- sum(d.track.datal[(j*7-6):(j*7)])

}

Now, we can make a plot comparing the actual number of transactions
to the expected number of transactions on a weekly basis, as shown in figure
11. Note that we set n.periods.final to 78. This is to show that we are
working with weekly data. If our tracking data was daily, we would use 546
here—the function would plot our daily tracking data against expected daily
transactions, instead of plotting our weekly tracking data against expected
weekly transactions. This concept may be a bit tricky, but is explained in the
documentation for bgnbd.PlotTrackingInc. The reason there are two numbers
for the total period (T.tot and n.periods.final) is that your customer-by-

25

Tracking Weekly Transactions

— Actual

80
1

Transactions
60
|

20
1

TTTTTTT T T I T I T I T I T IO T I I T I T I T I T I T I I ITTTTITTTTTT
1 5 9 14 19 24 29 34 39 44 49 54 59 64 69 74

Week

Figure 11: Actual vs. expected incremental purchasing behaviour.

sufficient-statistic matrix and your tracking data may be in different time periods.

T.cal <- cal.cbs[,"T.cal"]

T.tot <- 78

n.periods.final <- 78

pdf (file = ’bgnbdTrackingInc.pdf’)

inc.tracking <- bgnbd.PlotTrackingInc(params,
T.cal,
T.tot,
w.track.data,
n.periods.final,

allHardie)
dev.off ()
pdf
2
inc.tracking[,20:25]
[,1] [,2] [,3] [,4] [,5] [,6]

actual 73.00000 55.00000 70.00000 33.00000 56.00000 99.00000
expected 76.86531 74.88843 73.04554 71.32166 69.70412 68.18213

Although figure 11 shows that the model is definitely capturing the trend of
customer purchases over time, it is very messy and may not convince skeptics.

26

Tracking Cumulative Transactions

2000 3000 4000
1 1 1

Cumulative Transactions

1000
1

: — Actual
o 4 | ---- Model

TTTTTTT T T T I T I T I T I T I T I I T I T I T I T I T I I ITTTTITTTTTT
1 5 9 14 19 24 29 34 39 44 49 54 59 64 69 74

Week

Figure 12: Actual vs. expected cumulative purchasing behaviour.

Furthermore, the matrix, of which a sample is shown, does not really convey
much information since purchases can vary so much from one week to the next.
For these reasons, we may need to smooth the data out by cumulating it over
time, as shown in Figure 12.

cum.tracking.data <- cumsum(w.track.data)

pdf (file = ’bgnbdTrackingCum.pdf’)

cum.tracking <- bgnbd.PlotTrackingCum(params,
T.cal,
T.tot,
cum.tracking.data,
n.periods.final,

allHardie)
dev.off ()
pdf
2
cum. tracking[,20:25]
[,1] [,2] [,3] [,4] [,5] [,6]

actual 1359.000 1414.000 1484.000 1517.000 1573.000 1672.0
expected 1312.458 1387.346 1460.392 1531.713 1601.418 1669.6

27

Frequency of Repeat Transactions

— Actual
—— Model

0 1 2 3 4 5 6

Calibration period transactions

Customers
1500 2000 2500 3000 3500
| | | |

1000
1

500
1

Figure 13: Calibration period fit of BG/BB model to the donations dataset.

5 BG/BB

The BG/BB model is also used for non-contractual settings. In many regards,
it is very similar to the Pareto/NBD model—it also uses four parameters to
describe a purchasing process and a dropout process. The difference between the
models is that the BG/BB is used to describe situations in which customers have
discrete transaction opportunities, rather than being able to make transactions
at any time. For this section, we will be using donation data presented in Fader
et. al. (2010). Figure 13 shows that this model also fits the right type of data
well.

5.1 Data Preparation

Luckily, preparing data to be used by the BTYD package BG/BB functions is
going to be very easy if you understood how to set up the data for the Pareto/NBD
package. The BG/BB model uses exactly the same data as the Pareto/NBD
model, but since it is discrete we can go one step further and create a recency-
frequency matrix from our customer-by-sufficient-statistic matrix. We are able
to do this because the data is discrete—a recency-frequency matrix consists of a
row for every possible calibration period recency/frequency combination, and
contains the total number of customers which had that particular combination
of recency and frequency. While this is not strictly necessary, it greatly reduces
the amount of space required to store the data and makes parameter estimation
much faster—for the donation data, for example, there is a reduction from 11,104

28

rows (number of customers) down to 22.

Since I don’t have access to the original event log for the donation data,
I am going to demonstrate the data preparation process with simulated data
(included in the package):

simElog <- system.file("data/discreteSimElog.csv",
package = "BTYD")

elog <- dc.ReadLines(simElog, cust.idx = 1, date.idx = 2)

elog[1:3,]

cust date
1 1 1970-01-01
2 1 1975-01-01
3 1 1977-01-01

elog$date <- as.Date(elog$date, "%Y-%m-7%d")

max (elog$date) ;
[1] "1983-01-01"
min(elog$date) ;
[1] "1970-01-01"

let’s make the calibration period end somewhere in—-between
T.cal <- as.Date("1977-01-01")

simData <- dc.ElogToCbsCbt(elog, per="year", T.cal)
cal.cbs <- simDatacalcbs

freq<- cal.cbs[,"x"]

rec <- cal.cbs[,"t.x"]

trans.opp <- 7 # transaction opportunities

cal.rf.matrix <- dc.MakeRFmatrixCal(freq, rec, trans.opp)
cal.rf.matrix[1:5,]

x t.x n.cal custs
[1,] 0 0 7 2900
[2,] 1 1 7 933
[3,] 1 2 7 218
[4,] 2 2 7 489
[6,] 1 S 7 95

29

5.2 Parameter Estimation

Estimating BG/BB parameters is very similar to estimating Pareto/NBD param-
eters. The same rules apply—we use bgbb.EstimateParameters, which also
uses (1,1,1,1) as default starting parameters. Once again, we should run the
estimation several times with its own output as starting parameters, to make
sure that our estimation converges. One should also test the estimation from
different starting points, but I am not going to do that here.

data(donationsSummary) ;

rf.matrix <- donationsSummary$rf.matrix

params <- bgbb.EstimateParameters(rf.matrix);

LL <- bgbb.rf.matrix.LL(params, rf.matrix);

p.matrix <- c(params, LL);

for (i in 1:2){

params <- bgbb.EstimateParameters(rf.matrix, params);
LL <- bgbb.rf.matrix.LL(params, rf.matrix);
p.matrix.row <- c(params, LL);

p.matrix <- rbind(p.matrix, p.matrix.row);

}

colnames(p.matrix) <- c("alpha", "beta", "gamma", "delta", "LL");
rownames (p.matrix) <- 1:3;

p.matrix;

alpha beta gamma delta L
1 1.203507 0.7497667 0.6567568 2.783887 -33225.58
2 1.203533 0.7497272 0.6567788 2.783812 -33225.58
3 1.203528 0.7497260 0.6567808 2.783796 -33225.58

The parameter estimation converges very quickly. It is much easier, and faster,
to estimate BG/BB parameters than it is to estimate Pareto/NBD parameters,
because there are fewer calculations involved.

We can interpret these parameters by plotting the mixing distributions. Alpha
and beta describe the beta mixing distribution of the beta-Bernoulli transaction
process. We can see the beta distribution with parameters alpha and beta in
figure 14, plotted using bgbb.PlotTransactionRateHeterogeneity (params).
Gamma and Delta describe the beta mixing distribution of the beta-geometric
dropout process. We can see the beta distribution with parameters gamma and
delta in figure 15, plotted using bgbb.PlotDropoutHeterogeneity (params).
The story told by these plots describes the type of customers most firms would
want—their transaction parameters are more likely to be high, and their dropout
parameters are more likely to be low.

5.3 Individual Level Estimations

We can estimate the number of transactions we expect a newly acquired customer
to make in a given time period, just as with the Pareto/NBD model. For

30

Density

Heterogeneity in Transaction Rate
Mean: 0.6162 Var: 0.0801

25
1

15
1

1.0

0.0
1

0.0 0.2 0.4 0.6 0.8 1.0

Transaction Rate

Figure 14: Transaction rate heterogeneity of estimated parameters.

Density

Figure 15:

Heterogeneity in Dropout Rate
Mean: 0.1909 Var: 0.0348

0.0 0.2 0.4 0.6 0.8 1.0

Dropout rate

Dropout rate heterogeneity of estimated parameters.

31

this example, let’s say we are interested in estimating the number of repeat
transactions we expect a newly-acquired customer to make in a period of 10
years. The same rules that we used for Pareto/NBD functions also apply to
BG/BB functions: since we used years to estimate the parameters, we stick to
years to represent time periods.

bgbb.Expectation(params, n=10);

[1] 3.179805

But we want to be able to say something about our existing customers, not
just about a hypothetical customer to be acquired in the future. Once again, we
use conditional expectations for a holdout period of 10 years. I am going to do
this for 2 customers: A, who made 0 transactions in the calibration period; and
B, who made 4 transactions in the calibration period, with the last transaction
occuring in the 5th year.

n.cal = 6

n.star = 10

x =0

t.x =0

bgbb.ConditionalExpectedTransactions(params, n.cal,
n.star, x, t.x)

[1] 0.1302169

x =

t.x =5

bgbb.ConditionalExpectedTransactions(params, n.cal,
n.star, x, t.x)

s

[1] 3.627858
As expected, B’s conditional expectation is much higher than A’s. The point

I am trying to make, however, is that there are 3464 A’s in this dataset and only
284 B’s—you should never ignore the zeroes in these models.

5.4 Plotting/ Goodness-of-fit

Figure 1, is the first plot to test the goodness-of-fit: a simple calibration period
histogram.

bgbb.PlotFrequencyInCalibration(params, rf.matrix)

32

As with the equivalent Pareto/NBD plot, keep in mind that this plot is only
useful for an initial verification that the fit of the BG/BB model is not terrible.

The next step is to see how well the model performs in the holdout period.
When we used dc.ElogToCbsCbt earlier, we ignored a lot of the data it generated.
It is easy to get the holdout period frequencies from that data:

holdout.cbs <- simData$holdout$cbs
x.star <- holdout.cbs[,"x.star"]

At this point, we can switch from simulated data to the real discrete data
(donation data) provided with the package. The holdout period frequencies
for the donations data is included in the package. Using this information,
we can generate figure 16, which compares actual and conditional expected
transactions in the holdout period. It bins customers according to calibration
period frequencies.

33

Conditional Expectation

v 4 — Actual
- Model

Holdout period transactions

Calibration period transactions

Figure 16: Actual vs. conditional expected transactions in the holdout period,

binned by calibration period frequency.

n.star <- 5 # length of the holdout period

x.star <- donationsSummary$x.star

pdf (file = ’bgbbCondExpComp.pdf’)

comp <- bgbb.PlotFreqVsConditionalExpectedFrequency(params, n.star,
rf.matrix, x.star)

dev.off()

pdf

2

rownames (comp) <- c("act", "exp", "bin")

comp

freq.0 freq.1 freq.2 freq.3 freq.4 freq.5
act 1.743649e-01 0.4328031 0.8125874 1.389862 2.061776 2.642521
exp 7.286318e-02 0.3248841 0.7089417 1.333666 2.031203 2.784482
bin 3.464000e+03 1823.0000000 1430.0000000 1085.000000 1036.000000 1063.000000
freq.6

act 3.534497

exp 3.752500

bin 1203.000000

Since the BG/BB model uses discrete data, we can also bin customers by
recency. Figure 17 shows the fit of holdout period frequencies, with customers

binned in this manner.

34

Conditional Expected Transactions by Recency

~ 4 — Actual
- Model

Holdout period transactions
2
|

Calibration period recency

Figure 17: Actual vs. conditional expected transactions in the holdout period,

binned by calibration period recency.

pdf (file = ’bgbbCondExpCompRec.pdf’)
comp <- bgbb.PlotRecVsConditionalExpectedFrequency(params, n.star,
rf.matrix, x.star)

dev.off ()

pdf

2

rownames (comp) <- c("act", "exp", "bin")

comp

rec.0 rec.1 rec.2 rec.3 rec.4 rec.b5
act 1.743649e-01 0.2181485 0.3898876 0.4872521 0.8088685 1.652289
exp 7.286318e-02 0.0856939 0.1798423 0.4041111 0.8510811 1.726323
bin 3.464000e+03 1091.0000000 890.0000000 706.0000000 654.0000000 1136.000000
rec.6

act 2.946886

exp 3.027190

bin 3163.000000

Another plotting function provided by the BTYD package is the tracking
function—Dbinning the data according to which time period transactions occurred
in. Since we do not have the granular data available, we once again cannot get
the required data from the event log; however, the process will be exactly the
same as described in section 3.4. The annual transaction data is provided by

35

Tracking Incremental Transactions

6000
1

— Actual
--- Model

4000 5000
1

Transactions
3000
|

2000
1

1000
1

0
L

T T T T T T T T T T T
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Time

Figure 18: Actual vs. expected incremental purchasing behaviour.

the package.

inc.track.data <- donationsSummary$annual.trans

n.cal <- 6

xtickmarks <- 1996:2006

pdf (file = ’bgbbTrackinglInc.pdf’)

inc.tracking <- bgbb.PlotTrackingInc(params, rf.matrix,
inc.track.data,
xticklab = xtickmarks)

dev.off ()

pdf
2

rownames (inc.tracking) <- c("act", "exp")
inc.tracking

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
act 5652.000 4674.000 4019.000 3552.000 3555.000 3163.000 3110.000 2938.000
exp 5535.833 4717.059 4147.621 3724.665 3395.888 3131.647 2913.778 2730.482
[,9] [,10] [,11]
act 2703.000 2573.000 1936.000
exp 2573.731 2437.854 2318.727

H OH H H HH

Figure 18 shows remarkable fit, but we can smooth it out for a cleaner graph

36

Tracking Cumulative Transactions

Cumulative Transactions
20000 30000 40000
| | |

10000
1

| — Actual
© | --- Model

T T T T T T T T T T T
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Time

Figure 19: Actual vs. expected cumulative purchasing behaviour.

by making it cumulative (as shown in figure 19).

cum.track.data <- cumsum(inc.track.data)

pdf (file = ’bgbbTrackingCum.pdf’)

cum.tracking <- bgbb.PlotTrackingCum(params, rf.matrix, cum.track.data,
xticklab = xtickmarks)

dev.off ()

pdf
2

rownames (cum. tracking) <- c("act", "exp")
cum.tracking

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
act 5652.000 10326.00 14345.00 17897.00 21452.00 24615.00 27725.00 30663.00
exp 5535.833 10252.89 14400.51 18125.18 21521.07 24652.71 27566.49 30296.97
[,9] [,10] [,11]
act 33366.0 35939.00 37875.00
exp 32870.7 35308.56 37627.29

H O H H HH

6 Further analysis

The package functionality I highlighted above is just a starting point for working
with these models. There are additional tools, such as functions for discounted

37

expected residual transactions (the present value of the remaining transactions
we expect a customer to make) and an implementation of the gamma-gamma
spend model, which may come in useful for customer analysis. Hopefully you
now have an idea of how to start working with the BTYD package - from here,
you should be able to use the package’s additional functions, and may even want
to implement some of your own. Enjoy!

38

References

Fader, Peter S., and Bruce G.S. Hardie. “A Note on Deriving the Pareto/NBD
Model and Related Expressions.” November. 2005. Web.
<http://www.brucehardie.com/notes/008/>

Fader, Peter S., Bruce G.S. Hardie, and Jen Shang. “Customer-Base Analysis
in a Discrete-Time Noncontractual Setting.” Marketing Science, 29(6), pp.
1086-1108. 2010. INFORMS.

<http://www.brucehardie.com/papers/020/>

Fader, Peter S., Hardie, Bruce G.S., and Lee, Ka Lok. ““Counting Your Cus-
tomers” the Easy Way: An Alternative to the Pareto/NBD Model.” Marketing
Science, 24(2), pp. 275-284. 2005. INFORMS.
<http://brucehardie.com/papers/018/>

39

http://www.brucehardie.com/notes/008/
http://www.brucehardie.com/papers/020/
http://brucehardie.com/papers/018/

	Version 2.4.3 Overview
	Introduction
	Pareto/NBD
	Data Preparation
	Parameter Estimation
	Individual Level Estimations
	Plotting/ Goodness-of-fit

	BG/NBD
	Data Preparation
	Parameter Estimation
	Individual Level Estimations
	Plotting/ Goodness-of-fit

	BG/BB
	Data Preparation
	Parameter Estimation
	Individual Level Estimations
	Plotting/ Goodness-of-fit

	Further analysis

