Package ‘BLCOP’

January 20, 2025
Type Package

Title Black-Litterman and Copula Opinion Pooling Frameworks
Version 0.3.3

Description An implementation of the Black-Litterman Model and Attilio
Meucci's copula opinion pooling framework as described in
Meucci, Attilio (2005) <doi:10.2139/ssrn.848407>,
Meucci, Attilio (2006) <doi:10.2139/ssrn.872577> and
Meucci, Attilio (2008) <doi:10.2139/ssrn.1117574>.

License MIT + file LICENSE
LazyData true

NeedsCompilation no
URL https://github.com/mangothecat/BLCOP

BugReports https://github.com/mangothecat/BLCOP/issues

Imports methods, MASS, quadprog, RUnit (>= 0.4.22), timeSeries,
fBasics, fMultivar, fPortfolio (>= 3011.81), rmarkdown, knitr

Suggests sn, corpcor, mnormt
VignetteBuilder knitr

Author Francisco Gochez [aut],
Richard Chandler-Mant [aut],
Suchen Jin [aut],
Jinjing Xie [aut],
Ava Yang [ctb] (Previous maintainer),
Joe Russell [cre]

Maintainer Joe Russell <jrussell@mango-solutions.com>
Repository CRAN
Date/Publication 2021-01-25 23:00:02 UTC

https://doi.org/10.2139/ssrn.848407
https://doi.org/10.2139/ssrn.872577
https://doi.org/10.2139/ssrn.1117574
https://github.com/mangothecat/BLCOP
https://github.com/mangothecat/BLCOP/issues

2 BLCORP data sets
Contents
BLCOPdatasets 2
BLCOPODHONS o oo e e e e e e e e e 3
BLPosterior e e 4
BLResult-class 4
BLViews-class 5
Build Views e 6
CAPMLISt e 7
ConstruCt VIBWS v o v ot e e e e e e e e e e e e e e 8
COPPOSEETIOr vt ot e e e e e e e e e 10
COPResult-class e 11
COPViews-Class o i e e 12
deleteViews L e 13
densityPlots 14
Distribution class constructorso e 15
distribution-class 16
Estimators e e e 17
EXtractors e e 17
mvdistribution-class 19
optimalPortfolios 19
posteriorEst 21
posteriorFeasibility L 22
Replacer functions 23
runBLCOPTests o e 25
sampleFrom 26
SPSOOREIUrNS o 26
USI3wWTB e 27
Index 28
BLCOP data sets Monthly equity returns
Description
A matrix holding time series of monthly returns (calculated from closing prices) for six stocks. The
returns span the period from Jaunary 1998 through December 2003.
Usage
monthlyReturns
Format

A matrix with 6 columns and 71 rows. The names of the rows hold the dates of each series entry,
and the column names are the names of the six equities from which the return series are taken.

BLCOPOptions 3

Examples

CAPMList(monthlyReturns, marketIndex = sp50@0Returns, riskFree = US13wTB)

BLCOPOptions Global package options

Description

This function can be used to set or get global options for the BLCOP package.

Usage

BLCOPOptions(opt, setting)

Arguments
opt A string with the name of an option
setting The new setting for the option
Details

If setting is omitted, the current setting for opt is returned. If both arguments are omitted, a list
with all of the settings is returned. The following settings may be changed: regFunc:Function used
to perform the regression in CAPMalphas numSimulations:Number of monte-carlo simulations to
perform in copula opinion pooling functions unitTestPath: Path where unit tests are located.

Value

If both arguments omitted, a list. If setting is omitted, value of an individual setting.

Author(s)

Francisco Gochez <fgochez@mango-solutions>

Examples

BLCOPOptions(”"numSimulations™)

4 BLResult-class

BLPosterior BLposterior
Description
BLposterior
Usage
BLPosterior(returns, views, tau = 1, marketIndex, riskFree = NULL,
kappa = 0, covEstimator = "cov")
Arguments
returns A matrix of time series of returns. The columns should correspond to individual
assets.
views An object of class BLViews
tau The "tau" parameter in the Black-Litterman model.
marketIndex A set of returns of a market index.
riskFree A time series of risk-free rates of return. Defaults to 0
kappa if greater than 0, the confidences in each view are replaced. See the online help

for details

covEstimator A string holding the name of the function that should be used to estimate the
variance-covariance matrix. This function should simply return a matrix.

Value

An object of class BLResult

Author(s)
Francisco
BLResult-class Class "BLResult": posterior of a market distribution in the Black-
Litterman sense
Description

This class holds the posterior market mean and variance-covariance matrix calculated from some
prior and set of views. The original views are also returned.

BIL Views-class 5

Objects from the Class

Objects can be created by calls of the form new(”"BLResult”, ...). However, it is intended that
they be created by the function posteriorEst(or wrappers to that function).

Slots

views: Object of class "BLViews". These are the original views used to calculate this posterior
tau: Object of class "numeric”. The value of "tau" used

priorMean: Object of class "numeric”: prior vector of market means

priorCovar: Object of class "matrix”: prior of the variance-covariance

posteriorMean: Object of class "numeric"”: posterior mean

posteriorCovar: Object of class "matrix": posterior variance-covariance

kappa: Object of class "logical”: logical flag indicating whether or not confidences-in-views
were ignored.

Methods

denityPlots signature(result = "BLResult"): Plots the marginal distributions of the asset re-
turns under the prior and posterior distributions

show signature(object = "BLResult"): Displays the contents of a result

optimalPortfolios.fPort signature(result = "BLResult"): Generates optimal prior and poste-
rior portfolios using fPortfolio package routines

Author(s)

Francisco Gochez

BLViews-class Class "BLViews" (Black-Litterman views)

Description

An object that holds a set of analyst views, in the Black-Litterman sense, on a set of assets

Objects from the Class

Objects can be created by calls of the form new("BLViews", ...) or with the BLViews function.

Slots

P: Object of class "matrix”. The "pick" matrix
qv: Object of class "numeric”. Means of the views
confidences: Object of class "numeric”. Holds the confidence in each of the individual views

assets: Object of class "character”: Name of the asset "universe" to which these views apply

6 Build Views

Methods

deleteViews signature(views = "BLViews"”, viewsToDel = "numeric"): Deletes a vector of views
from the object, where the vector entries correspond to rows of the pick matrix

show signature(object = "BLViews"): Prints views in a user-friendly manner

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

Build Views Create or add to a BLViews object

Description

BLViews and COPViews are "constructors" for BLViews and COPViews objects respectively. addBLViews
and addCOPViews allow one to easily add more views to a pre-existing views objects. newPMatrix
is a utility function for creating pick matrices.

Usage

addBLViews(pickMatrix, q, confidences, views)
addCOPViews(pickMatrix, viewDist, confidences, views)
BLViews(P, g, confidences, assetNames)
COPViews(pickMatrix, viewDist, confidences, assetNames)
newPMatrix(assetNames, numViews, defaultValue = 0)

Arguments
P "Pick" matrix with columns named after assets to which views correspond
pickMatrix "Pick" matrix with columns named after assets to which views correspond
q "q" vector of views
confidences Vector of confidences in views. Note that confidences are recipricols of standard
deviations
viewDist A list of marginal distributions of the views
views A BLViews object
assetNames Names of the assets in the universe
numViews Number of views in the pick matrix

defaultValue Default value to use to fill the new pick matrix

Value

A BLViews or COPViews class object as appropriate. newPMatrix creates a matrix.

CAPMList 7

Author(s)

Francisco Gochez

See Also

createBLViews, updateBLViews

Examples

#i## example from T. M. Idzorek's paper "A STEP-BY-STEP GUIDE TO THE
BLACK-LITTERMAN MODEL"
Not run:
pick <- newPMatrix(letters[1:8], 3)
pick[1,7] <=1
pick[2,1] <- -1
pick[2,2] <- 1
pick[3, 3:6] <- c(0.9, -0.9, .1, -.1)
confidences <- 1 / c(0.00709, 0.000141, ©.000866)
myViews <- BLViews(pick, g = c(0.0525, 0.0025, 0.02), confidences, letters[1:8])
myViews

Modified COP example from Meucci's "Beyond Black-Litterman: Views on
non-normal markets”

dispersion <- c¢(.376,.253,.360,.333,.360,.600,.397,.396,.578,.775) / 1000

sigma <- BLCOP:::.symmetricMatrix(dispersion, dim = 4)

caps <- rep(1/4, 4)

mu <- 2.5 x sigma

dim(mu) <- NULL

marketDistribution <- mvdistribution(”"mt”, mean = mu, S = sigma, df =5)

pick <- newPMatrix(c("”SP", "FTSE", "CAC", "DAX"), 1)

pick[1,4] <- 1

vdist <- list(distribution("unif”, min = -0.02, max = 0))

views <- COPViews(pick, vdist, 0.2, c("SP", "FTSE", "CAC", "DAX"))

End(Not run)

CAPMList Compute CAPM alphas for a set of assets

Description

CAPMList is a helper function that computes the "alphas" and "betas" in the sense of the CAPM for
series of asset returns. It is meant to be used for computing "prior" means for the Black-Litterman
model.

Usage

CAPMList(returns, marketIndex, riskFree = NULL, regFunc = BLCOPOptions("regFunc"),
coeffExtractFunc = NULL, ...)

8 Construct views

Arguments
returns A matrix or data.frame of asset returns, with different columns corresponding to
different assets
marketIndex A time series of returns for some market index (e.g. SP500)
riskFree Risk-free rate of return
regFunc The name of the function to used to regress the asset return series against the
market index. This is set in the BLCOP options, and is 1m by default.
coeffExtractFunc
A function that extracts the intercept (alpha) and coefficient of the market index
(beta) from the results of a call to the regression function. It should return a
vector containing these two elements.
Additional arguments to the regression function
Details

coeffExtractFun is needed because some regression functions such as gls from the nlme package
don’t return their results in the same format as 1m does. If it is not supplied, a default that works
with 1m results is used.

Value

A data. frame with one column for the "alphas" and another for the "betas"

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

Examples

library(MASS)
CAPMList(monthlyReturns, marketIndex = sp500Returns, riskFree = US13wTB, regFunc = "rlm")

Construct views Create or add to a view object using a graphical interface

Description

These helper functions allow one to easily create or add to an object of class BLViews or COPViews
through the use of R’s built-in data editor.

Usage

createBLViews(allAssets, numAssetViews = 1, assetSubset = NULL,
mode = c("editor”, "Window"))
updateBLViews(views, includeNullViews = FALSE, numNewViews = @, assets = NULL)
createCOPViews (allAssets, numAssetViews = 1, assetSubset = NULL,
mode = c("editor”, "Window"))

Construct views 9

Arguments

allAssets A character vector holding the names of all of the assets in one’s "universe"

numAssetViews The number of views to form. Should be less than or equal to the total number
of assets

assetSubset A character vector of assets that is a subset of al1Assets. Views will be formed
only on this subset. By default, assetSubset = allAssets

mode Mode of GUI. Currently unused

views Object of class BLViews

assets Set of assets to form or modify views on. If NULL, will use the full set of assets
includeNullViews

When updating views, should the 0 columns of the pick matrix be included?

numNewViews In updateViews, this is the number of new views to add

Details

createCOPViews does not allow one to specify the distributions of the views at the moment. Such a
feature may be added later through another GUI. At the moment the object returned by this function
has its distribution set to a default. updateViews allows one to modify pre-existing views

Value

An object of class BLViews or COPViews that holds all of the views created.

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

See Also

addBLViews, addCOPViews, COPViews, BLViews

Examples

Not run:
views <- createBLViews(colnames(monthlyReturns), 2)

End(Not run)

10 COPPosterior

COPPosterior Calculate the posterior distribution of the market using copula opinion
pooling

Description

COPPosteior uses Attilio Meucci’s copula opinion pooling method to incorporate an analyst’s sub-
jective views with a prior "official" market distribution. Both the views and the market may have
an arbitrary distribution as long as it can be sampled in R. Calculations are done with monte-carlo
simulation, and the object returned will hold samples drawn from the market posterior distribution.

Usage

COPPosterior(marketDist, views, numSimulations = BLCOPOptions("numSimulations”))

Arguments
marketDist An object of class mvdistribution which describes the prior "official" distribution
of the market.
views An object of class COPViews which describe the subjective views on the market

distribution

numSimulations The number of monte carlo samples to draw during calculations. Each asset in
one’s universe will have numSimulations samples from the posterior.

Value

An object of class COPResult.

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

References
Attilio Meucci, "Beyond Black-Litterman: Views on Non-normal Markets". See also Attilio Meucci,
"Beyond Black-Litterman in Practice: a Five-Step Recipe to Input Views on non-Normal Markets."
See Also

BLPosterior

COPResult-class 11

Examples

Not run:

An example based on one found in "Beyond Black-Litterman:Views on Non-normal Markets"”
dispersion <- c(.376,.253,.360,.333,.360,.600,.397,.396,.578,.775) / 1000
sigma <- BLCOP:::.symmetricMatrix(dispersion, dim = 4)
caps <- rep(1/4, 4)
mu <- 2.5 * sigma
dim(mu) <- NULL
marketDistribution <- mvdistribution(”"mt”, mean = mu, S = sigma, df = 5)

pick <- matrix(@, ncol = 4, nrow =1, dimnames = list(NULL, c("SP", "FTSE", "CAC", "DAX")))
pick[1,4] <- 1
vdist <- list(distribution("unif”, min = -0.02, max = 0))

views <- COPViews(pick, vdist, 0.2, c("SP", "FTSE"”, "CAC", "DAX"))
posterior <- COPPosterior(marketDistribution, views)

End(Not run)

COPResult-class Class "COPResult"

Description

A class that holds the posterior distribution produced with the COP framework

Objects from the Class

Objects can be created by calls of the form new("COPResult”, ...). In general however they are
created by the function COPPosterior

Slots

views: Object of class "COPViews". These are the views that led to the result
marketDist: Object of class "mvdistribution”. Prior distribution of the market

posteriorSims: Object of class "matrix”. Matrices holding the simulations of the posteriors with
a column for each asset.

Methods

densityPlots signature(result = "COPResult"): Generates density plots of the marginal prior
and posterior distributions of each asset.
show signature(result = "COPResult"): Displays basic information about the posterior results

optimalPortfolios.fPort signature(result = "COPResult"): Generates optimal prior and pos-
terior portfolios using fPortfolio package routines

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

12 COPViews-class

See Also

COPPosterior, BLResult-class

COPViews-class Class "COPViews" (copula opinion pooling views)

Description

An object that holds a set of analyst views, in the copula opinion pooling sense, on a set of assets

Objects from the Class

Objects can be created by calls of the form new("”COPViews", ...) or with the COPViews function.

Slots

pick: Object of class "matrix"”. The pick matrix
viewDist: Object of class "1ist". List of probability distributions of the views
confidences: Object of class "numeric”.

assets: Object of class "character”. Name of the asset "universe" to which these views apply.

Methods

deleteViews signature(views = "COPViews"”, viewsToDel = "numeric"”): Deletes a vector of
views from the object, where the vector entries correspond to rows of the pick matrix

show signature(object = "COPViews"): Prints views in a user-friendly manner

Author(s)

Francisco Gochez <fgochez@mango-solutions.com>

See Also

BLViews, COPViews, addCOPViews, createCOPViews

Examples

showClass("COPViews")

delete Views

13

deleteViews Delete individual views from view objects

Description

A generic function that allows one to delete individual views from objects of class BLViews or
COPViews. The inputs are a view object and a numeric vector of views to delete, where the entires

of the vector map to rows of the pick matrix.

Usage

deleteViews(views, viewsToDel)

Arguments

views An object of class BLViews or COPViews

viewsToDel A numeric vector of views to delete, as described above
Value

The original object with the indicated views deleted

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

See Also

BLViews-class, COPViews-class

Examples

stocks <- colnames(monthlyReturns)

pick <- matrix(@, ncol = 6, nrow = 2, dimnames = list(NULL, stocks))
pick[1,"IBM"] <- 1

pick[1, "DELL"] <- 0.04

pick[2, "C"] <- 1

pick[2, "JPM"] <- 0.6

confidences <- 1 / c(0.7, 0.1)

views <- BLViews(P = pick, q = c(0.1,0.1) , confidences = confidences,stocks)

deleteViews(views, 1)

14 densityPlots

densityPlots Density plots of prior and posterior distributions

Description

This generic function generates density plots of the marginal posterior and prior distributions of a
set of assets in an object of class BLResult or COPResult for comparative purposes.

Usage
densityPlots(result, assetsSel = NULL, numSimulations = BLCOPOptions("numSimulations”),
)
Arguments
result Object of class
assetsSel A numeric vector of assets to plot

numSimulations For COPResult class objects, the number of simulations to use for the market
posterior distribution

Additional arguments passed to plot

Details

For COPResults objects, density kernel estimates from the samples are used

Value

None

Author(s)

Francisco Gochez, <fgochez@mango-solutions>

Examples
Not run:
dispersion <- c¢(.376,.253,.360,.333,.360,.600,.397,.396,.578,.775) / 1000
sigma <- BLCOP:::.symmetricMatrix(dispersion, dim = 4)

caps <- rep(1/4, 4)
mu <- 2.5 * sigma
dim(mu) <- NULL
marketDistribution <- mvdistribution(”"mt”, mean = mu, S = sigma, df =5)
pick <- matrix(@, ncol = 4, nrow =1, dimnames = list(NULL, c("SP", "FTSE", "CAC", "DAX")))
pick[1,4] <- 1
vdist <- list(distribution("unif”, min = -0.02, max = 0))

views <- COPViews(pick, vdist, 0.2, c("SP", "FTSE”, "CAC", "DAX"))
posterior <- COPPosterior(marketDistribution, views)

Distribution class constructors 15

densityPlots(posterior, 4)

End(Not run)

Distribution class constructors
Constructors for distribution and mvdistribution class objects

Description

These functions create objects of class distribution and mvdistribution

Usage
mvdistribution(RName, ...)
distribution(RName, ...)
Arguments
RName A string holding the R suffix corresponding to the distribution, e.g. "pois" for
the Poisson distribution
Additional parameters that parametrize the distribution
Details

In general any distribution with a corresponding sampling function can be used. This function

"n.n

should have the name given in RName but preceded with an "r", e.g. rnorm for the normal distribu-
tion. When the constructors are called, they check that the given sampling function exists and that
it takes the arguments that were passed in the

Value

An object of class distribution or mvdistribution.

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

See Also

sampleFrom

16 distribution-class

Examples
Not run:
create a uniform distribution object and sample from it
myUnif <- distribution("unif”, min = -0.1, max = 0.1)

hist(sampleFrom(myUnif, 1000))
mvNormal <- mvdistribution(”mnorm”, mean = c(1, 5), varcov = diag(c(2, 0.1)))
x <- sampleFrom(mvNormal, 1000)

plot(x[,1] ~ x[,21)

End(Not run)

distribution-class Class "distribution"”

Description

A class that describes univariate distributions

Objects from the Class
Objects can be created by calls of the form new("distribution”, ...). Thereis also a constructor
which is also named distribution.

Slots

RName: Object of class "character”. This is the R "suffix" of the distirbution.

parameters: Object of class "numeric”. A named numeric vector that holds the parameters of the
distribution

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

See Also

distribution, mvdistribution, mvdistribution

Examples

showClass("distribution”)

Estimators 17

Estimators Get prior and posterior estimators stored in package scope

Description

These functions are not intended to be called directly by the user but exist to allow third party
optimizer routines to access prior and posterior estimators calculated as part of the portfolio opti-

misation.
Usage
getPriorEstim(x, spec=NULL, ...)
getPosteriorEstim(x, spec=NULL, ...)
Arguments
X multivariate time series
spec optional portfolio specification
additional arguments
Value

A list with 2 elements:

mu estimate of mean
Sigma estimate of covariance
Author(s)

Richard Chandler-Mant <rchandler-mant@mango-solutions.com>

Extractors Extract various fields of view or posterior objects

Description

A collection of functions to extract several fields of BLViews, COPViews, COPPosterior and BLPos-
terior objects.

18 Extractors

Usage

assetSet(views)

viewMatrix(views, dropZeroColumns = TRUE)
PMatrix(views)

confidences(views)
posteriorMeanCov(posterior)
posteriorSimulations(posterior)
numSimulations(posterior)
priorViews(posterior)

Arguments
views An object of class BLViews or COPViews
posterior An object of class BLPosterior (posteriorMeanCov) or COPPosterior (posteri-
orSimulations, priorViews) , as appropriate
dropZeroColumns
Logical flag. If TRUE, columns of "view matrix" which only have zeros are
dropped
Value
assetSet The names of the assets in the view object’s universe
confidences The set of confidences in each view.
PMatrix The ’*pick’ matrix
viewMatrix The pick matrix augmented with the q vector of the BL. model
posteriorMeanCov
The posterior mean and covariance (in a list) of a BLPosterior object
posteriorSimulations

Matrix of posterior distribution simulations held in a COPPosterior object

numSimulations Number of simulations in posterior COP distribution

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

Examples

pick <- matrix(@, ncol = 4, nrow =1, dimnames = list(NULL, c("SP", "FTSE", "CAC", "DAX")))
pick[1,4] <- 1

vdist <- list(distribution("unif”, min = -0.02, max = 0))

views <- COPViews(pick, vdist, 0.2, c("SP", "FTSE"”, "CAC", "DAX"))

assetSet(views)

confidences(views)

PMatrix(views)

mvdistribution-class 19

'

mvdistribution-class Class "mvdistribution’

Description

A class that describes multivariate distributions

Objects from the Class

Objects can be created by calls of the form new("distribution”, ...). Thereis also a constructor
which is also named mvdistribution.

Slots

RName: Object of class "character”. This is the R "suffix" of the distirbution.

parameters: A named list of parameters that characterize the distribution

Author(s)

Francisco Gochez <fgochez@mango-solutions.com>

See Also

distribution, mvdistribution, distribution-class

Examples

showClass("mvdistribution”)

optimalPortfolios Calculates optimal portfolios under prior and posterior distributions

Description

These are wrapper functions that calculate optimal portfolios under the prior and posterior return
distributions. optimalPortfolios works with a user-supplied optimization function, though sim-
ple Markowitz minimum-risk optimization is done with solve.QP from quadprog if none is sup-
plied. optimalPortfolios.fPort is a generic utility function which calculates optimal portfolios
using routines from the fPortfolio package.

Usage

optimalPortfolios(result, optimizer = .optimalWeights.simpleMV, ..., doPlot = TRUE,
beside = TRUE)
optimalPortfolios.fPort(result, spec = NULL, constraints = "LongOnly”,
optimizer = "minriskPortfolio”, inputData = NULL,
numSimulations = BLCOPOptions(”"numSimulations”))

20 optimalPortfolios

Arguments
result An object of class BLResult
optimizer For optimalPortfolios, An optimization function. It should take as arguments

a vector of means and a variance-covariance matrix, and should return a vector of
optimal weights. For optimalPortfolios, the name of a fPortfolio function
that performs portfolio optimization

spec Object of class fPORTFOLIOSPEC. If NULL, will use a basic mean-variance spec
for Black-Litterman results, and a basic CVaR spec for COP results

inputData Time series data (any form that can be coerced into a timeSeries object)
constraints String of constraints that may be passed into fPortfolio optimization routines

numSimulations For COP results only - the number of posterior simulations to use in the opti-
mization (large numbers here will likely cause the routine to fail)

Additional arguments to the optimization function
doPlot A logical flag. Should barplots of the optimal portfolio weights be produced?
beside A logical flag. If a barplot is generated, should the bars appear side-by side? If

FALSE, differences of weights will be plotted instead.
Details
By default, optimizer is a simple function that performs Markowitz optimization via solve.QP. In
addition to a mean and variance, it takes an optional constraints parameter that if supplied should
hold a named list with all of the parameters that solve.QP takes.
Value
optimalPortfolios will return a list with the following items:

priorPFolioWeights

The optimal weights under the prior distribution
postPFolioWeights

The optimal weights under the posterior distribution

optimalPortfolios.fPort will return a similar list with 2 elements of class fPORTFOLIO.

Note

Itis expected that optimalPortfolios will be deprecated in future releases in favour of optimalPortfolios. fPort.

Author(s)

Francisco Gochez <fgochez@mango-solutions.com>

References

Wauertz, D., Chalabi, Y., Chen W., Ellis A. (2009); Portfolio Optimization with R/Rmetrics, Rmet-
rics eBook, Rmetrics Association and Finance Online, Zurich.

posteriorEst 21

Examples

Not run:
entries <- c(0.001005,0.001328,-0.000579,-0.000675,0.000121,0.000128,

-0.000445, -0.000437, 0.001328,0.007277,-0.001307,-0.000610,
-0.002237,-0.000989,0.001442,-0.001535, -0.000579,-0.001307,
0.059852,0.027588,0.063497,0.023036,0.032967,0.048039,-0.000675,
-0.000610,0.027588,0.029609,0.026572,0.021465,0.020697,0.029854,
0.000121,-0.002237,0.063497,0.026572,0.102488,0.042744,0.039943,
0.065994 ,0.000128,-0.000989,0.023036,0.021465,0.042744,0.032056,
0.019881,0.032235 ,-0.000445,0.001442,0.032967,0.020697,0.039943,
0.019881,0.028355,0.035064 ,-0.000437,-0.001535,0.048039,0.029854,
0.065994,0.032235,0.035064,0.079958)

varcov <- matrix(entries, ncol = 8, nrow = 8)

mu <- c(0.08, 0.67,6.41, 4.08, 7.43, 3.70, 4.80, 6.60) / 100

pick <- matrix(@, ncol = 8, nrow = 3, dimnames = list(NULL, letters[1:81))
pick[1,7] <=1

pick[2,1] <- -1; pick[2,2] <- 1

pick[3, 3:6] <- c(0.9, -0.9, .1, -.1)

confidences <- 1 / c(0.00709, 0.000141, 0.000866)

views <- BLViews(pick, c(0.0525, 0.0025, 0.02), confidences, letters[1:8])
posterior <- posteriorEst(views, tau = ©.025, mu, varcov)
optimalPortfolios(posterior, doPlot = TRUE)

optimalPortfolios.fPort(posterior, optimizer = "tangencyPortfolio")

An example based on one found in "Beyond Black-Litterman:Views on Non-normal Markets"”
dispersion <- c(.376,.253,.360,.333,.360,.600,.397,.396,.578,.775) / 1000
sigma <- BLCOP:::.symmetricMatrix(dispersion, dim = 4)
caps <- rep(1/4, 4)
mu <- 2.5 * sigma
dim(mu) <- NULL
marketDistribution <- mvdistribution(”"mt”, mean = mu, S = sigma, df =5)

pick <- matrix(@, ncol = 4, nrow =1, dimnames = list(NULL, c("SP", "FTSE", "CAC", "DAX")))
pick[1,4] <- 1
vdist <- list(distribution("unif”, min = -0.02, max = 0))

views <- COPViews(pick, vdist, 0.2, c("SP", "FTSE"”, "CAC", "DAX"))
posterior <- COPPosterior(marketDistribution, views)

optimalPortfolios.fPort(myPosterior, spec = NULL, optimizer = "minriskPortfolio”,
inputData = NULL, numSimulations = 100)

End(Not run)

posteriorEst This function performs the "core" calculation of the Black-Litterman
model.

22 posteriorFeasibility

Description

This function performs the "core" calculation of the Black-Litterman model.

Usage

posteriorEst(views, mu, tau = 0.5, sigma, kappa = 0)

Arguments
views An object of class BLViews
mu A vector of mean equilibrium returns
tau The "tau" parameter in the Black-Litterman model.
sigma The variance-covariance matrix of the returns of the assets
kappa if greater than 0, the confidences in each view are replaced. See the online help
for details
Value

An object of class BLResult holding the updated Black-Litterman posterior

Author(s)

Francisco

posteriorFeasibility Calculate the "feasibility" of the (Black-Litterman) posterior mean

Description
Attilio Meucci and Gianluca Fusai have suggested using the Mahalanobis distance to assess the

feasibility of a set of Black-Litterman views. This function calculates this distance, along with a

n_n

"feasibility" measure based on this distance and the sensitivity of the measure to changes in the "q
vector.

Usage

posteriorFeasibility(result)

Arguments

result An object of class BLResult

Replacer functions 23

Details

The feasibility measure proposed by Meucci and Fusai (see the references below) is 1 - F(m),
where m is the Mahalanobis distance from from the prior mean calculated with respect to the prior
distribution. F is the chi-squared CDF of n-degrees of freedom, where n is the number assets in
one’s universe. It should be noted that in Meucci and Fusai’s paper, a version of Black-Litterman is
used in which the tau parameter is always set to 1.

Value

mahalDist Mahalonobis distance of posterior mean vector from prior mean

mahalDistProb 1 - F(mahalDist), where F is the CDF of the Chi-squared distribution with n =
\#assets degrees of freedom

sensitivities Derivatives of mahalDistProb with respect to the elements of the "q" vector in
the set of views. Not yet implemented

Warning
It is not clear that the results produced by this routine are entirely sensible, though the calculation
is very straightforward and seems to match the one discussed in the source paper. Use with caution.

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

References

Fusai, Gianluca and Meucci, Attilio. "Assessing Views", 2002. http://www.symmys.com/AttilioMeucci/Research/PublFinan

Examples

pickMatrix <- matrix(c(rep(1/2, 2), -1, rep(@, 3)), nrow = 1, ncol = 6)
views <- BLViews(P = pickMatrix, q = 0.08,confidences = 100,
assetNames = colnames(monthlyReturns))
marketPosterior <- BLPosterior(monthlyReturns, views, marketIndex = sp5@@Returns,
riskFree = US13wTB)
posteriorFeasibility(marketPosterior)

Replacer functions Various functions for modifying fields of view objects

Description

These functions allow for direct replacement of fields of view objects such as the pick matrix and
vector of confidences.

24 Replacer functions

Usage

PMatrix(views) <- value
confidences(views) <- value
gv(views) <- value

Arguments
views An object of class BLViews or COPViews, except in the case of qv<- which
applies only to BLViews
value A vector in confidences<- and qv<- or a matrix in PMatrix<-.
Value

The object is modified directly

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

Examples

example from Thomas M. Idzorek's paper "A STEP-BY-STEP GUIDE TO THE BLACK-LITTERMAN MODEL"

x <- c(0.001005,0.001328,-0.000579,-0.000675,0.000121,0.000128,-0.000445,-0.000437 ,
0.001328,0.007277,-0.001307,-0.000610,-0.002237,-0.000989,0.001442,-0.001535 ,
-0.000579,-0.001307,0.059852,0.027588,0.063497,0.023036,0.032967,0.048039
-0.000675,-0.000610,0.027588,0.029609,0.026572,0.021465,0.020697,0.029854 ,
0.000121,-0.002237,0.063497,0.026572,0.102488,0.042744,0.039943,0.065994 ,
0.000128,-0.000989,0.023036,0.021465,0.042744,0.032056,0.019881,0.032235 ,
-0.000445,0.001442,0.032967,0.020697,0.039943,0.019881,0.028355,0.035064
-0.000437,-0.001535,0.048039,0.029854,0.065994,0.032235,0.035064,0.079958)

varCov <- matrix(x, ncol
mu <- c(0.08, 0.67,6.41,
pick <- matrix(@, ncol =
pick[1,7] <- 1

pick[2,1] <- -1; pick[2,2] <- 1

pick[3, 3:6] <- c(0.9, -0.9, .1, -.1)

confidences <- 1 / c(0.000709, 0.000141, 0.000866)

myViews <- BLViews(pick, c(0.0525, 0.0025, 0.02), confidences, letters[1:8])
myPosterior <- posteriorEst(myViews, tau = ©.025, mu, varCov)

myPosterior

increase confidences

confidences(myViews) <- 1 / c(0.0001, 0.0001, 0.0005)

myPosterior2 <- posteriorEst(myViews, tau = ©.025, mu, varCov)

myPosterior2

8, nrow = 8)
.08, 7.43, 3.70, 4.80, 6.60) / 100
, nrow = 3, dimnames = list(NULL, letters[1:81))

o ol

runBLCOPTests 25

runBLCOPTests Execute the BLCOP unit tests

Description

Uses the RUnit package to execute a series of unit tests.

Usage

runBLCOPTests(testPath = BLCOPOptions("unitTestPath"), protocolFile = "BLCOPTests.html”,
writeProtocol = FALSE)

Arguments

testPath Location of the unit tests.

protocolFile Name of the html report file generated by the RUnit function printHTMLProto-
col

writeProtocol Logical flag. Should the above html report be produced?

Value

The summary of an object returned by RUnit’s runTestSuite

Warning

These unit tests are in need of additional test cases, and should not be regarded as exhaustive in
their current state.

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

Examples

Not run:
runBLCOPTests ()

End(Not run)

26 spS00Returns

sampleFrom Sample from a distribution object

Description
Generates samples from a distribution held by an object of class distribution ormvdistribution.
Intended mainly for internal use.

Usage

sampleFrom(dstn, n = 1)

Arguments
dstn an object of class distribution or mvdistribution.
n Number of samples to generate

Value

A vector or matrix of samples.

Author(s)

Francisco Gochez <fgochez @mango-solutions.com>

Examples

x <- distribution("pois”, lambda = 5)
hist(sampleFrom(x, 1000), col = "blue", prob = TRUE)

sp500Returns S\&P500 Returns

Description

Monthly returns of the S&P 500 index for the period 2/2/1998 through 1/12/2003

Usage

sp5@0Returns

Format

A matrix with 1 column and 71 rows.

US13wTB 27

Examples

ts.plot(sp500Returns)

US13wTB Risk free rate of return

Description
The monthly rate of return of the US 13 week Treasury Bill for the period 30/1/1998 through
30/11/2003.

Usage
US13wTB

Format

A one-column matrix with 71 rows.

Examples

ts.plot(US13wTB)

Index

* 1O
Construct views, 8

* classes
BLResult-class, 4
BLViews-class, 5
COPResult-class, 11
COPViews-class, 12
distribution-class, 16
mvdistribution-class, 19

x datagen
Build Views, 6

+ datasets
BLCOP data sets,?2
sp500Returns, 26
US13wTB, 27

* debugging
runBLCOPTests, 25

x distribution
Distribution class constructors, 15
sampleFrom, 26

* hplot
densityPlots, 14

* manip
Build Views, 6
deleteViews, 13
Replacer functions, 23

+ math
CAPMList, 7
COPPosterior, 10
posteriorFeasibility, 22

+* methods
Estimators, 17

* misc
BLCOPOptions, 3
runBLCOPTests, 25

+ utilities
CAPMList, 7
Extractors, 17
optimalPortfolios, 19

28

Replacer functions, 23
sampleFrom, 26

addBLViews, 9

addBLViews (Build Views), 6
addCOPViews, 9, 12
addCOPViews (Build Views), 6
assetSet (Extractors), 17

BLCOP data sets, 2
BLCOPOptions, 3
BLPosterior, 4, 10
BLResult-class, 4
BLViews, 9, 12

BLViews (Build Views), 6
BLViews-class, 5

Build Views, 6

CAPMList, 7

confidences (Extractors), 17
confidences<- (Replacer functions), 23
Construct views, 8
COPPosterior, 10, 11, 12
COPResult-class, 11

COPViews, 9, 12

COPViews (Build Views), 6
COPViews-class, 12
createBLViews, 7

createBLViews (Construct views), 8
createCOPViews, /2

createCOPViews (Construct views), 8

deleteViews, 13
deleteViews,BLViews-method
(BLViews-class), 5
deleteViews,COPViews-method
(COPViews-class), 12
densityPlots, 14
densityPlots,BLResult-method
(BLResult-class), 4

INDEX

densityPlots,COPResult-method
(COPResult-class), 11

densityPlots.BLResult (BLResult-class),
4

densityPlots.COPResult
(COPResult-class), 11

distribution, 16, 19

distribution (Distribution class
constructors), 15

Distribution class constructors, 15

distribution-class, 16

Estimators, 17
Extractors, 17

getPosteriorEstim (Estimators), 17
getPriorEstim (Estimators), 17

monthlyReturns (BLCOP data sets), 2
mvdistribution, 16, 19
mvdistribution (Distribution class
constructors), 15
mvdistribution-class, 19

newPMatrix (Build Views), 6
numSimulations (Extractors), 17

optimalPortfolios, 19

optimalPortfolios.fPort,BLResult-method

(BLResult-class), 4

optimalPortfolios.fPort,COPResult-method

(COPResult-class), 11
optimalPortfolios.fPort.BL

(BLResult-class), 4
optimalPortfolios.fPort.COP

(COPResult-class), 11

PMatrix (Extractors), 17

PMatrix<- (Replacer functions), 23
posteriorEst, 21
posteriorFeasibility, 22
posteriorMeanCov (Extractors), 17
posteriorSimulations (Extractors), 17
priorViews (Extractors), 17

gv<- (Replacer functions), 23

Replacer functions, 23
runBLCOPTests, 25

sampleFrom, 15, 26

29

show,BLResult-method (BLResult-class), 4

show,BLViews-method (BLViews-class), 5

show, COPResult-method
(COPResult-class), 11

show, COPViews-method (COPViews-class),
12

show.COPResult (COPResult-class), 11

sp50@0Returns, 26

updateBLViews, 7
updateBLViews (Construct views), 8
US13wTB, 27

viewMatrix (Extractors), 17

	BLCOP data sets
	BLCOPOptions
	BLPosterior
	BLResult-class
	BLViews-class
	Build Views
	CAPMList
	Construct views
	COPPosterior
	COPResult-class
	COPViews-class
	deleteViews
	densityPlots
	Distribution class constructors
	distribution-class
	Estimators
	Extractors
	mvdistribution-class
	optimalPortfolios
	posteriorEst
	posteriorFeasibility
	Replacer functions
	runBLCOPTests
	sampleFrom
	sp500Returns
	US13wTB
	Index

