Package ‘BGmisc’

June 10, 2025

Title An R Package for Extended Behavior Genetics Analysis
Version 1.4.3.1

Description Provides functions for behavior genetics analysis,
including variance component model identification [Hunter et al. (2021) <doi:10.1007/s10519-
021-10055-x>],
calculation of relatedness coefficients using path-tracing methods
[Wright (1922) <doi:10.1086/279872>; McArdle & McDonald (1984) <doi:10.1111/j.2044-
8317.1984.tb00802.x>],
inference of relatedness, pedigree conversion, and simulation of multi-generational family data
[Lyu et al. (2024) <doi:10.1101/2024.12.19.629449>]. For a full overview,
see [Garrison et al. (2024) <doi:10.21105/joss.06203>].

License GPL-3

URL https://github.com/R-Computing-Lab/BGmisc/,
https://r-computing-lab.github.io/BGmisc/

BugReports https://github.com/R-Computing-Lab/BGmisc/issues
Depends R (>=3.5.0)
Imports data.table, igraph, Matrix, stats, stringr, methods

Suggests corrplot, ggpedigree, kinship2, ggplot2, discord, dplyr,
EasyMx, knitr, OpenMx, rmarkdown, testthat (>= 3.0.0),
tidyverse

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
Language en-US
LazyData true
RoxygenNote 7.3.2
NeedsCompilation no

Author S. Mason Garrison [aut, cre] (ORCID:
<https://orcid.org/0000-0002-4804-6003>),
Michael D. Hunter [aut] (ORCID:

https://doi.org/10.1007/s10519-021-10055-x
https://doi.org/10.1007/s10519-021-10055-x
https://doi.org/10.1086/279872
https://doi.org/10.1111/j.2044-8317.1984.tb00802.x
https://doi.org/10.1111/j.2044-8317.1984.tb00802.x
https://doi.org/10.1101/2024.12.19.629449
https://doi.org/10.21105/joss.06203
https://github.com/R-Computing-Lab/BGmisc/
https://r-computing-lab.github.io/BGmisc/
https://github.com/R-Computing-Lab/BGmisc/issues
https://orcid.org/0000-0002-4804-6003

<https://orcid.org/0000-0002-3651-6709>),

Xuanyu Lyu [aut] (ORCID: <https://orcid.org/0000-0002-2841-5529>),

Rachel N. Good [ctb],

Jonathan D. Trattner [aut] (ORCID:
<https://orcid.org/0000-0002-1097-7603>, url:
https://www.jdtrat.com/),

S. Alexandra Burt [aut] (ORCID:
<https://orcid.org/0000-0001-5538-7431>)

Maintainer S. Mason Garrison <garrissm@wfu.edu>
Repository CRAN
Date/Publication 2025-06-10 18:10:02 UTC

Contents

.assignParentValue
computeTranspose v v . . e e e e
JoadOrComputelsChild
.postProcessGedcom.legacy L oL
addParentRow
addPersonToPedo
addRowlessParents
applyTagMappings
ASOIAF e
buildBetweenGenerations
buildWithinGenerations
calcAllGens e e
calcFamilySize
calcFamilySizeByGen
calculateCIS e
calculateH
calculateRelatedness
checkIDs e
checkIDuniqueness e
checkParentIDs
checkParentSex
checkPedigreeNetwork o
checkSex e
checkWithinRowDuplicates,
collapseNames e
com2links e
comp2vech
computeParentAdjacency oL
countPatternRows
createGenDataFrame
determineSex e
dropLink
findBiggest

Contents

https://orcid.org/0000-0002-3651-6709
https://orcid.org/0000-0002-2841-5529
https://orcid.org/0000-0002-1097-7603
https://orcid.org/0000-0001-5538-7431

Contents

Index

3

findOldest e 31
fitComponentModel L 31
hazard L 32
identifyComponentModel 33
inbreeding 34
initializeRecord L. 35
insertEven L e 36
isChildo 36
makelnbreeding 37
makeTwins 38
mapFAMS2parents e e 39
markPotentialChildren L o 39
parseNameLline 40
ped2addo e 41
ped2ce e e e 42
ped2eno 43
ped2com e e e 44
ped2famo e e 46
ped2graph 47
ped2maternal oL L 48
ped2mit 49
ped2paternal e e e 50
postProcessGedcom 51
POMET . . . o e e e e e e 52
processEventLine 53
processParents L. e e e e e 53
readGedcom L 54
readWikifamilytree L o 55
recodeSex e 56
repairIDs . .o L 57
repairParentIDs L 58
TEPATSEX . . . o v i e e e e e e e e e 58
resample L. e e e e e e e 59
royal92 . .o 60
simulatePedigree oL 61
splitindividuals e 62
standardizeColnames 63
summarizeFamilies L 63
summarizeMatrilines L oL 65
summarizePatrilines oL 67
summarizePedigrees L L 68
traceTreePaths L 71
validate_and_convert_matrixo oL 71
vech . . . e 72
73

4 .computeTranspose

.assignParentValue Assign parent values based on component type

Description

Assign parent values based on component type

Usage

.assignParentValue(component)

Arguments
component character. Which component of the pedigree to return. See Details.
.computeTranspose Compute the transpose multiplication for the relatedness matrix
Description

Compute the transpose multiplication for the relatedness matrix

Usage

.computeTranspose(r2, transpose_method = "tcrossprod”, verbose = FALSE)
Arguments

r2 a relatedness matrix

transpose_method
character. The method to use for computing the transpose. Options are "tcrossprod”,
"crossprod", or "star"

verbose logical. If TRUE, print progress through stages of algorithm

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

IoadOrComputelsChild 5

.loadOrComputeIsChild Load or compute the isChild matrix

Description

Load or compute the isChild matrix

Usage

.loadOrComputeIsChild(ped, checkpoint_files, config)

Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

checkpoint_files
A list of checkpoint file paths.
@keywords internal

config A list containing configuration parameters such as ‘resume‘, ‘verbose‘, and
‘saveable”.

.postProcessGedcom. legacy
Post-process GEDCOM Data Frame

Description

Post-process GEDCOM Data Frame

Usage

.postProcessGedcom. legacy(
df _temp,
remove_empty_cols = TRUE,
combine_cols = TRUE,
add_parents = TRUE,
skinny = TRUE,
verbose = FALSE

6 addParentRow

Arguments

df_temp A data frame containing information about individuals.

remove_empty_cols
A logical value indicating whether to remove columns with all missing values.

combine_cols A logical value indicating whether to combine columns with duplicate values.

add_parents A logical value indicating whether to add parents to the data frame.
skinny A logical value indicating whether to return a skinny data frame.
verbose A logical value indicating whether to print messages.

Value

A data frame with processed information.

addParentRow Create a properly formatted parent row for the pedigree

Description

Create a properly formatted parent row for the pedigree

Usage

addParentRow(template_row, new_id, sex, momID = NA, dadID = NA)

Arguments

template_row A single row from ped, used as a template for column structure

new_id The new parent’s ID
sex The new parent’s sex value (e.g., O for female, 1 for male, or "F"/"M")
momID The new parent’s mother ID (default is NA)
dadID The new parent’s father ID (default is NA)
Value

A single-row dataframe for the new parent

addPersonToPed 7
addPersonToPed addPersonToTree A function to add a new person to an existing pedi-
gree data. frame.
Description

addPersonToTree A function to add a new person to an existing pedigree data. frame.

Usage
addPersonToPed(
ped,
name = NULL,
sex = L
momID A,
dadID A,
twinID = NULL,
personID = NULL,
zygosity = NULL
)
Arguments
ped A data. frame representing the existing pedigree.
name Optional. A character string representing the name of the new person. If not
provided, the name will be set to NA.
sex A value representing the sex of the new person.
momID Optional. The ID of the mother of the new person. If not provided, it will be set
to NA.
dadID Optional. The ID of the father of the new person. If not provided, it will be set
to NA.
twinID Optional. The ID of the twin of the new person. If not provided, it will be set to
NA.
personID Optional. The ID of the new person. If not provided, it will be generated as the
maximum existing personlD + 1.
zygosity Optional. A character string indicating the zygosity of the new person. If not
provided, it will be set to NA.
Value

A data. frame with the new person added to the existing pedigree.

8 applyTagMappings

addRowlessParents Add addRowlessParents

Description

This function adds parents who appear in momID or dadID but are missing from ID

Usage

addRowlessParents(ped, verbose, validation_results)

Arguments
ped A dataframe representing the pedigree data with columns ’ID’, ’dadID’, and
’momlID’.
verbose A logical flag indicating whether to print progress and validation messages to

the console.
validation_results
validation results

applyTagMappings Apply Tag Mappings to a Line

Description

Iterates over a list of tag mappings and, if a tag matches the line, updates the record.

Usage

applyTagMappings(line, record, pattern_rows, tag_mappings)

Arguments
line A character string from the GEDCOM file.
record A named list representing the individual’s record.

pattern_rows A list with GEDCOM tag counts.
tag_mappings A list of lists. Each sublist should define: - tag: the GEDCOM tag, - field:
the record field to update, - mode: either "replace" or "append", - extractor:
(optional) a custom extraction function.
Value

A list with the updated record (record) and a logical flag (matched).

ASOIAF 9

ASOIAF A pedigree of ice and fire

Description

A structured dataset of fictional characters derived from the Song of Ice and Fire universe by
George R. R. Martin. The character relationships were partially based on a GEDCOM file pub-
licly posted in the [Westeros.org forum](https://asoiaf.westeros.org/index.php?/topic/88863-all-the-
family-trees/), and were updated based on publicly available summaries from [A Wiki of Ice and
Fire](https://awoiaf.westeros.org/index.php/Main_Page). This dataset was created for educational
and illustrative purposes, such as demonstrating pedigree construction, relationship tracing, and al-
gorithmic logic in family-based data. It includes no narrative content or protected expression from
the original works. No rights to the characters, names, or intellectual property of George R. R.
Martin or HBO are claimed, and the dataset is not intended to represent any real individuals or
families.

Usage

data(ASOIAF)

Format

A data frame with 503 observations

Details

The variables are as follows:

* id: Person identification variable

* momID: ID of the mother

* dadID: ID of the father

* name: Name of the person

* sex: Biological sex

e twinID: ID of the twin, if applicable

* zygosity: Zygosity of the twin, if applicable. mz is monozygotic; dz is dizygotic

10 buildBetweenGenerations

buildBetweenGenerations
Process Generation Connections

Description

This function processes connections between each two generations in a pedigree simulation. It
marks individuals as parents, sons, or daughters based on their generational position and rela-
tionships. The function also handles the assignment of couple IDs, manages single and coupled
individuals, and establishes parent-offspring links across generations.

Usage
buildBetweenGenerations(
df_Fam,
Ngen,
sizeGens,
verbose = FALSE,
marR,
sexR,
kpc,
rd_kpc,
personID = "ID",
momID = "momID",
dadID = "dadID",
code_male = "M",
code_female = "F"
)
Arguments

df_Fam A data frame containing the simulated pedigree information up to the current
generation. Must include columns for family ID, individual ID, generation num-
ber, spouse ID (spID), and sex. This data frame is updated in place to include
flags for parental status (ifparent), son status (ifson), and daughter status (ifdau),
as well as couple IDs.

Ngen Number of generations. An integer >= 2 that determines how many genera-
tions the simulated pedigree will have. The first generation is always a fertilized
couple. The last generation has no mated individuals.

sizeGens A numeric vector containing the sizes of each generation within the pedigree.

verbose logical If TRUE, message progress through stages of algorithm

marR Mating rate. A numeric value ranging from O to 1 which determines the pro-

portion of mated (fertilized) couples in the pedigree within each generation. For
instance, marR = 0.5 suggests 50 percent of the offspring in a specific generation
will be mated and have their offspring.

buildWithinGenerations 11

sexR Sex ratio of offspring. A numeric value ranging from O to 1 that determines the
proportion of males in all offspring in this pedigree. For instance, 0.4 means 40
percent of the offspring will be male.

kpc Number of kids per couple. An integer >= 2 that determines how many kids each
fertilized mated couple will have in the pedigree. Default value is 3. Returns an
error when kpc equals 1.

rd_kpc logical. If TRUE, the number of kids per mate will be randomly generated from
a poisson distribution with mean kpc. If FALSE, the number of kids per mate
will be fixed at kpc.

personlD character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

code_male The value to use for males. Default is "M"

code_female The value to use for females. Default is "F"

Details

The function iterates through each generation, starting from the second, to establish connections
based on mating and parentage. For the first generation, it sets the parental status directly. For
subsequent generations, it calculates the number of couples, the expected number of offspring,
and assigns offspring to parents. It handles gender-based assignments for sons and daughters, and
deals with the nuances of single individuals and couple formation. The function relies on external
functions ‘assignCouplelds‘ and ‘adjustKidsPerCouple‘ to handle specific tasks related to couple
ID assignment and offspring number adjustments, respectively.

Value

The function updates the ‘df_Fam*® data frame in place, adding or modifying columns related to
parental and offspring status, as well as assigning unique couple IDs. It does not return a value
explicitly.

buildWithinGenerations
Process Generations for Pedigree Simulation

Description

This function iterates through generations in a pedigree simulation, assigning IDs, creating data
frames, determining sexes, and managing pairing within each generation.

12 buildWithinGenerations

Usage

buildWithinGenerations(
sizeGens,
marR,
sexR,
Ngen,
verbose = FALSE,
personID = "ID",

momID = "momID",
dadID = "dadID",
code_male = "M",
code_female = "F"
)
Arguments

sizeGens A numeric vector containing the sizes of each generation within the pedigree.

marR Mating rate. A numeric value ranging from 0 to 1 which determines the pro-
portion of mated (fertilized) couples in the pedigree within each generation. For
instance, marR = 0.5 suggests 50 percent of the offspring in a specific generation
will be mated and have their offspring.

sexR Sex ratio of offspring. A numeric value ranging from O to 1 that determines the
proportion of males in all offspring in this pedigree. For instance, 0.4 means 40
percent of the offspring will be male.

Ngen Number of generations. An integer >= 2 that determines how many genera-
tions the simulated pedigree will have. The first generation is always a fertilized
couple. The last generation has no mated individuals.

verbose logical If TRUE, message progress through stages of algorithm

personlD character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

dadID character. Name of the column in ped for the father ID variable

code_male The value to use for males. Default is "M"

code_female The value to use for females. Default is "F"

Value

A data frame representing the simulated pedigree, including columns for family ID (‘fam*),

calcAllGens 13

calcAllGens calcAllGens A function to calculate the number of individuals in each
generation. This is a supporting function for simulatePedigree.

Description

calcAllGens A function to calculate the number of individuals in each generation. This is a sup-
porting function for simulatePedigree.

Usage
calcAllGens(kpc, Ngen, marR)

allGens(kpc, Ngen, marR)

Arguments

kpc Number of kids per couple (integer >= 2).

Ngen Number of generations (integer >= 1).

marR Mating rate (numeric value ranging from O to 1).
Value

Returns a vector containing the number of individuals in every generation.

calcFamilySize calcFamilySize A function to calculate the total number of individuals
in a pedigree given parameters. This is a supporting function for func-
tion simulatePedigree

Description

calcFamilySize A function to calculate the total number of individuals in a pedigree given parame-
ters. This is a supporting function for function simulatePedigree

Usage
calcFamilySize(kpc, Ngen, marR)

famSizeCal(kpc, Ngen, marR)

Arguments
kpc Number of kids per couple (integer >= 2).
Ngen Number of generations (integer >= 1).

marR Mating rate (numeric value ranging from O to 1).

14 calculateClIs

Value

Returns a numeric value indicating the total pedigree size.

calcFamilySizeByGen calcFamilySizeByGen An internal supporting function for
simulatePedigree.

Description

calcFamilySizeByGen An internal supporting function for simulatePedigree.

Usage
calcFamilySizeByGen(kpc, Ngen, marR)

sizeAllGens(kpc, Ngen, marR)

Arguments

kpc Number of kids per couple (integer >= 2).

Ngen Number of generations (integer >= 1).

marR Mating rate (numeric value ranging from 0O to 1).
Value

Returns a vector including the number of individuals in every generation.

calculateCIs Calculate Confidence Intervals for Correlation Coefficients

Description

This function calculates confidence intervals for correlation coefficients using different methods.

Usage
calculateCIs(
tbl,
rho_var,
se_var,
doubleentered = FALSE,
method = "raykov",

adjust_base = 1,
design_effect_m = NULL,
design_effect_rho = NULL,

calculateCls 15

design_effect_m_col = NULL,
design_effect_rho_col = NULL,
conf_level = 0.95

)
Arguments
tbl A data frame or tibble containing the correlation coefficient and standard error
variables.
rho_var The name of the column in tb1 that contains the correlation coefficients.
se_var The name of the column in tb1 that contains the standard errors.

doubleentered Logical. If TRUE, the function assumes that the correlation coefficients are
double-entered, which adjusts the standard errors accordingly. Default is FALSE.

method The method to use for calculating the confidence intervals. Options are "raykov",
"fisherz", "doubleenteredconserv", or "doubleentered".

adjust_base A numeric value to adjust the standard errors. Default is 1.

design_effect_m
A numeric value for the design effect related to the mean. Default is NULL.

design_effect_rho
A numeric value for the design effect related to the correlation. Default is NULL.

design_effect_m_col
A character string specifying the column name for the design effect related to
the mean. Default is NULL.

design_effect_rho_col
A character string specifying the column name for the design effect related to
the correlation. Default is NULL.

conf_level The confidence level for the intervals. Default is 0.95.

Value

A modified version of tbl with additional columns for the confidence intervals and related statistics.
Everything uses adjusted standard errors, including confidence intervals, z-tests, and p-values.

Examples

tbl <- data.frame(rho = c(0.5, 0.7, 0.3), se = c(0.1, 0.2, 0.05))

n n

calculateCIs(tbl, rho_var = "rho", se_var = "se", method = "raykov")

16 calculateRelatedness

calculateH Falconer’s Formula

Description

Use Falconer’s formula to solve for H using the observed correlations for two groups of any two
levels of relatednesses.

Usage

calculateH(r1, r2, obsR1, obsR2)

Arguments
ri Relatedness coefficient of the first group.
r2 Relatedness coefficient of the second group.
obsR1 Observed correlation between members of the first group.
obsR2 Observed correlation between members of the second group.
Details

This generalization of Falconer’s formula provides a method to calculate heritability by using the
observed correlations for two groups of any two relatednesses. This function solves for H using the
formula:

obsR1 — obsR2

rl —r2

H? =

where rl and r2 are the relatedness coefficients for the first and second group, respectively, and
obsR1 and obsR2 are the observed correlations.

Value

Heritability estimates (‘heritability_estimates®).

calculateRelatedness Calculate Relatedness Coefficient

Description

This function calculates the relatedness coefficient between two individuals based on their shared
ancestry, as described by Wright (1922).

calculateRelatedness

Usage

calculateRelatedness(

generations = 2,
path = NULL,

full = TRUE,
maternal = FALSE,
empirical = FALSE,
segregating = TRUE,
total_a = 6800 * 1e+06,
total_m = 16500,
weight_a = 1,
weight_m = 1,
denom_m = FALSE,

17

)

related_coef(...)

Arguments

generations Number of generations back of common ancestors the pair share.

path Traditional method to count common ancestry, which is twice the number of
generations removed from common ancestors. If not provided, it is calculated
as 2*generations.

full Logical. Indicates if the kin share both parents at the common ancestor’s gener-
ation. Default is TRUE.

maternal Logical. Indicates if the maternal lineage should be considered in the calcula-
tion.

empirical Logical. Adjusts the coefficient based on empirical data, using the total number
of nucleotides and other parameters.

segregating Logical. Adjusts for segregating genes.

total_a Numeric. Represents the total size of the autosomal genome in terms of nu-
cleotides, used in empirical adjustment. Default is 6800*1000000.

total_m Numeric. Represents the total size of the mitochondrial genome in terms of
nucleotides, used in empirical adjustment. Default is 16500.

weight_a Numeric. Represents the weight of phenotypic influence from additive genetic
variance, used in empirical adjustment.

weight_m Numeric. Represents the weight of phenotypic influence from mitochondrial
effects, used in empirical adjustment.

denom_m Logical. Indicates if ‘total_m‘ and ‘weight_m‘ should be included in the de-

nominator of the empirical adjustment calculation.

Further named arguments that may be passed to another function.

18 checkIDs

Details

The relatedness coefficient between two people (b & c) is defined in relation to their common
ancestors: rp. = . (%)"Jr" 1+ fa)

Value

Relatedness Coefficient (‘coef*): A measure of the genetic relationship between two individuals.

Examples

Not run:

For full siblings, the relatedness coefficient is expected to be 0.5:
calculateRelatedness(generations = 1, full = TRUE)

For half siblings, the relatedness coefficient is expected to be 0.25:
calculateRelatedness(generations = 1, full = FALSE)

End(Not run)

checkIDs Validates and Optionally Repairs Unique IDs in a Pedigree Dataframe

Description

This function takes a pedigree object and performs two main tasks: 1. Checks for the uniqueness of
individual IDs. 2. Optionally repairs non-unique IDs based on a specified logic.

Usage

checkIDs(ped, verbose = FALSE, repair = FALSE)

Arguments
ped A dataframe representing the pedigree data with columns ‘ID‘, ‘dadID‘, and
‘momID*.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
repair A logical flag indicating whether to attempt repairs on non-unique IDs.
Value

Depending on ‘repair* value, either returns a list containing validation results or a repaired dataframe

Examples

Not run:
ped <- data.frame(ID = c(1, 2, 2, 3), dadID = c(NA, 1, 1, 2), momID = c(NA, NA, 2, 2))
checkIDs(ped, verbose = TRUE, repair = FALSE)

End(Not run)

checkIDuniqueness 19

checkIDuniqueness Check for duplicated individual IDs

Description

This function checks for duplicated individual IDs in a pedigree.

Usage

checkIDuniqueness(ped, verbose = FALSE)

Arguments
ped A dataframe representing the pedigree data with columns ‘ID‘, ‘dadID°, and
‘momID*.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
Value

A list containing the results of the check

checkParentIDs Validates and Optionally Repairs Parent IDs in a Pedigree Dataframe

Description

This function takes a pedigree object and performs two main tasks: 1. Checks for the validity of
parent IDs, specifically looking for instances where only one parent ID is missing. 2. Optionally
repairs the missing parent IDs based on a specified logic.

Usage

checkParentIDs(
ped,
verbose = FALSE,
repair = FALSE,
repairsex = repair,
addphantoms = repair,
parentswithoutrow = repair

20 checkParentSex

Arguments
ped A dataframe representing the pedigree data with columns ’ID’, ’dadID’, and
’momlID’.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
repair A logical flag indicating whether to attempt repairs on missing parent IDs.
repairsex A logical flag indicating whether to attempt repairs on sex of the parents
addphantoms A logical flag indicating whether to add phantom parents for missing parent IDs.
parentswithoutrow
A logical flag indicating whether to add parents without a row in the pedigree.
Value

Depending on the value of ‘repair®, either a list containing validation results or a repaired dataframe
is returned.

Examples

Not run:
ped <- data.frame(ID = 1:4, dadID = c(NA, 1, 1, 2), momID = c(NA, NA, 2, 2))
checkParentIDs(ped, verbose = TRUE, repair = FALSE)

End(Not run)

checkParentSex Check Parental Role Sex Consistency

Description

Validates sex coding consistency for a given parental role (momID or dadID).

Usage
checkParentSex(ped, parent_col, sex_col = "sex"”, verbose = FALSE)
Arguments
ped Pedigree dataframe.
parent_col The column name for parent IDs ("momID" or "dadID").
sex_col The column name for sex coding. Default is "sex".
verbose Logical, whether to print messages.
Value

A list containing role, unique sex codes, modal sex, inconsistent parents, and linked children.

checkPedigreeNetwork 21

checkPedigreeNetwork Validate Pedigree Network Structure

Description

Checks for structural issues in pedigree networks, including: - Individuals with more than two
parents. - Presence of cyclic parent-child relationships.

Usage

checkPedigreeNetwork(
ped,
personID = "ID",
momID = "momID",
dadID = "dadID",
verbose = FALSE

)
Arguments
ped Dataframe representing the pedigree.
personID Character. Column name for individual IDs.
momID Character. Column name for maternal IDs.
dadID Character. Column name for paternal IDs.
verbose Logical. If TRUE, print informative messages.
Value

List containing detailed validation results.

Examples

Not run:
results <- checkPedigreeNetwork(ped,
personID = "ID",
momID = "momID"”, dadID = "dadID", verbose = TRUE

)

End(Not run)

22 checkSex

checkSex Validates and Optionally Repairs Sex Coding in a Pedigree Dataframe

Description

This function checks and optionally modifies the coding of the biological ’sex’ variable in a pedigree
dataset. It serves two primary purposes: 1. Recodes the ’sex’ variable based on specified codes for
males and females, if provided. 2. Identifies and optionally repairs inconsistencies in sex coding
that could break the algorithm for constructing genetic pedigrees.

Usage

checkSex(
ped,
code_male = NULL,
code_female = NULL,
verbose = FALSE,
repair = FALSE,

momID = "momID",
dadID = "dadID”
)
Arguments
ped A dataframe representing the pedigree data with a ’sex’ column.
code_male The current code used to represent males in the ’sex’ column.
code_female The current code used to represent females in the ’sex’ column. If both are
NULL, no recoding is performed.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
repair A logical flag indicating whether to attempt repairs on the sex coding.
momID The column name for maternal IDs. Default is "momID".
dadID The column name for paternal IDs. Default is "dadID".
Details

The validation process identifies: - The unique sex codes present in the dataset. - Whether indi-
viduals listed as fathers or mothers have inconsistent sex codes. - Instances where an individual’s
recorded sex does not align with their parental role.

If ‘repair = TRUE', the function standardizes sex coding by: - Assigning individuals listed as fathers
the most common male code in the dataset. - Assigning individuals listed as mothers the most
common female code.

This function uses the terms 'male’ and ’female’ in a biological context, referring to chromosomal
and other biologically-based characteristics necessary for constructing genetic pedigrees. The bio-
logical aspect of sex used in genetic analysis (genotype) is distinct from the broader, richer concept
of gender identity (phenotype).

checkWithinRowDuplicates 23

We recognize the importance of using language and methodologies that affirm and respect the full
spectrum of gender identities. The developers of this package express unequivocal support for folx
in the transgender and LGBTQ+ communities.

Value

Depending on the value of ‘repair®, either a list containing validation results or a repaired dataframe
is returned.

Examples

Not run:
ped <- data.frame(ID = c(1, 2, 3), sex = c("M", "F", "M"))
checkSex(ped, code_male = "M", verbose = TRUE, repair = FALSE)

End(Not run)

checkWithinRowDuplicates
Check for within-row duplicates (self-parents, same mom/dad)

Description

This function checks for within-row duplicates in a pedigree.

Usage

checkWithinRowDuplicates(ped, verbose = FALSE)

Arguments
ped A dataframe representing the pedigree data with columns ‘ID‘, ‘dadID°, and
‘momlID*.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
Value

A list containing the results of the check

24 com?2links

collapseNames collapse Names

Description

This function combines the ‘name_given‘ and ‘name_given_pieces‘ columns in a data frame.

Usage

collapseNames(verbose, df_temp)

Arguments
verbose A logical value indicating whether to print messages.
df _temp A data frame containing the columns to be combined.
Value

A data frame with the combined columns.

com2links Convert Sparse Relationship Matrices to Kinship Links

Description

This function processes one or more sparse relationship components (additive, mitochondrial, and
common nuclear) and converts them into kinship link pairs. The resulting related pairs are either
returned as a data frame or written to disk in CSV format.

Usage

com2links(
rel_pairs_file = "dataRelatedPairs.csv"”,
ad_ped_matrix = NULL,
mit_ped_matrix = mt_ped_matrix,
mt_ped_matrix = NULL,
cn_ped_matrix = NULL,
write_buffer_size = 1000,
update_rate = 1000,
gc = TRUE,
writetodisk = TRUE,
verbose = FALSE,
legacy = FALSE,
outcome_name = "data",
drop_upper_triangular = TRUE,

comp2vech 25

include_all_links_1ped = FALSE,

Arguments

rel_pairs_file File path to write related pairs to (CSV format).

ad_ped_matrix Matrix of additive genetic relatedness coefficients.

mit_ped_matrix Matrix of mitochondrial relatedness coefficients. Alias: mt_ped_matrix.
mt_ped_matrix Matrix of mitochondrial relatedness coefficients.

cn_ped_matrix Matrix of common nuclear relatedness coefficients.
write_buffer_size
Number of related pairs to write to disk at a time.

update_rate Numeric. Frequency (in iterations) at which progress messages are printed.

gc Logical. If TRUE, performs garbage collection via gc to free memory.

writetodisk Logical. If TRUE, writes the related pairs to disk; if FALSE, returns a data
frame.

verbose Logical. If TRUE, prints progress messages.

legacy Logical. If TRUE, uses the legacy branch of the function.

outcome_name Character string representing the outcome name (used in file naming).
drop_upper_triangular

Logical. If TRUE, drops the upper triangular portion of the matrix.
include_all_links_1ped

Logical. If TRUE, includes all links in the output. (Default is true when only

one ped is provided)

Additional arguments to be passed to com21links

Value

A data frame of related pairs if writetodisk is FALSE; otherwise, writes the results to disk.

comp2vech comp2vech Turn a variance component relatedness matrix into its
half-vectorization

Description

comp2vech Turn a variance component relatedness matrix into its half-vectorization

Usage

comp2vech(x, include.zeros = FALSE)

26 computeParentAdjacency

Arguments
X Relatedness component matrix (can be a matrix, list, or object that inherits from
’Matrix’).
include.zeros logical. Whether to include all-zero rows. Default is FALSE.

Details

This function is a wrapper around the vech function, extending it to allow for blockwise matrices
and specific classes. It facilitates the conversion of a variance component relatedness matrix into a
half-vectorized form.

Value

The half-vectorization of the relatedness component matrix.

Examples

comp2vech(list(matrix(c(1, .5, .5, 1), 2, 2), matrix(1, 2, 2)))

computeParentAdjacency
Compute Parent Adjacency Matrix with Multiple Approaches

Description

Compute Parent Adjacency Matrix with Multiple Approaches

Usage

computeParentAdjacency(
ped,
component,
adjacency_method = "direct”,
saveable,
resume,
save_path,
verbose = FALSE,
lastComputed = 0,
checkpoint_files,
update_rate,
parList,
lens,
save_rate_parlist,
adjBeta_method = NULL,
config,

countPatternRows 27

Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
component character. Which component of the pedigree to return. See Details.

adjacency_method
character. The method to use for computing the adjacency matrix. Options are

"loop", "indexed", direct or beta

saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint

save_path character. The path to save the checkpoint files

verbose logical. If TRUE, print progress through stages of algorithm

lastComputed the last computed index

checkpoint_files
a list of checkpoint files

update_rate the rate at which to update the progress
parList a list of parent-child relationships
lens a vector of the lengths of the parent-child relationships

save_rate_parlist
numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

adjBeta_method numeric The method to use for computing the building the adjacency_method
matrix when using the "beta" build

config a configuration list that passes parameters to the function

additional arguments to be passed to ped2com

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

countPatternRows Count GEDCOM Pattern Rows

Description

Counts the number of lines in a file (passed as a data frame with column "X1") that match various
GEDCOM patterns.

Usage

countPatternRows(file)

28 createGenDataFrame

Arguments

file A data frame with a column X1 containing GEDCOM lines.

Value

A list with counts of specific GEDCOM tag occurrences.

createGenDataFrame Create Data Frame for Generation

Description

This function creates a data frame for a specific generation within the simulated pedigree. It ini-
tializes the data frame with default values for family ID, individual ID, generation number, paternal
ID, maternal ID, spouse ID, and sex. All individuals are initially set with NA for paternal, maternal,
spouse IDs, and sex, awaiting further assignment.

Usage

createGenDataFrame(sizeGens, genIndex, idGen)

Arguments
sizeGens A numeric vector containing the sizes of each generation within the pedigree.
genIndex An integer representing the current generation index for which the data frame is
being created.
idGen A numeric vector containing the ID numbers to be assigned to individuals in the
current generation.
Value

A data frame representing the initial structure for the individuals in the specified generation before
any relationships (parental, spousal) are defined. The columns include family ID (‘fam*), individual
ID (‘id*), generation number (‘gen‘), father’s ID (‘pat‘), mother’s ID (‘mat‘), spouse’s ID (‘spID‘),
and sex (‘sex‘), with NA values for paternal, maternal, and spouse IDs, and sex.

Examples

sizeGens <- c(3, 5, 4) # Example sizes for 3 generations
genIndex <- 2 # Creating data frame for the 2nd generation
idGen <- 101:105 # Example IDs for the 2nd generation
df_Ngen <- createGenDataFrame(sizeGens, genIndex, idGen)
print(df_Ngen)

determineSex 29

determineSex Determine Sex of Offspring

Description

This internal function assigns sexes to the offspring in a generation based on the specified sex ratio.

Usage
determineSex(idGen, sexR, code_male = "M", code_female = "F")
Arguments
idGen Vector of IDs for the generation.
sexR Numeric value indicating the sex ratio (proportion of males).
code_male The value to use for males. Default is "M"
code_female The value to use for females. Default is "F"
Value

Vector of sexes ("M" for male, "F" for female) for the offspring.

dropLink dropLink A function to drop a person from his/her parents in the simu-
lated pedigree data.frame. The person can be dropped by specifying
his/her ID or by specifying the generation which the randomly to-be-
dropped person is in. The function can separate one pedigree into
two pedigrees. Separating into small pieces should be done by run-
ning the function multiple times. This is a supplementary function for
simulatePedigree.

Description

dropLink A function to drop a person from his/her parents in the simulated pedigree data. frame.
The person can be dropped by specifying his/her ID or by specifying the generation which the
randomly to-be-dropped person is in. The function can separate one pedigree into two pedigrees.
Separating into small pieces should be done by running the function multiple times. This is a
supplementary function for simulatePedigree.

30 findBiggest

Usage
dropLink(
ped,
ID_drop = NA_integer_,
gen_drop = 2,
sex_drop = NA_character_,
n_drop = 1
)
Arguments
ped a pedigree simulated from simulatePedigree function or the same format
ID_drop the ID of the person to be dropped from his/her parents.
gen_drop the generation in which the randomly dropped person is. Will work if ‘ID_drop°
is not specified.
sex_drop the biological sex of the randomly dropped person.
n_drop the number of times the mutation happens.
Value

a pedigree with the dropped person’s ‘dadID‘ and ‘momlID°‘ set to NA.

findBiggest This function finds the biggest families in a pedigree. It is supposed to
be used internally by the summarize_pedigree function.

Description

This function finds the biggest families in a pedigree. It is supposed to be used internally by the
summarize_pedigree function.

Usage

findBiggest(foo_summary_dt, nbiggest, n_foo)

Arguments

foo_summary_dt A data.table containing the summary statistics.

nbiggest Integer. Number of largest lineages to return (sorted by count).
n_foo An integer specifying the number of individuals in the summary.
Value

a data.table containing the biggest families in the pedigree.

findOldest 31

findOldest This function finds the oldest families in a pedigree. It is supposed to
be used internally by the summarize_pedigree function.

Description

This function finds the oldest families in a pedigree. It is supposed to be used internally by the
summarize_pedigree function.

Usage

findOldest(foo_summary_dt, byr, noldest, n_foo)

Arguments

foo_summary_dt A data.table containing the summary statistics.

byr Character. Optional column name for birth year. Used to determine the oldest
lineages.
noldest Integer. Number of oldest lineages to return (sorted by birth year).
n_foo An integer specifying the number of individuals in the summary.
Value

a data.table containing the oldest families in the pedigree.

fitComponentModel fitComponentModel Fit the estimated variance components of a model
to covariance data

Description

fitComponentModel Fit the estimated variance components of a model to covariance data

Usage
fitComponentModel (covmat, ...)
Arguments
covmat The covariance matrix of the raw data, which may be blockwise.

Comma-separated relatedness component matrices representing the variance com-
ponents of the model.

32 hazard

Details

This function fits the estimated variance components of a model to given covariance data. The rank
of the component matrices is checked to ensure that the variance components are all identified.
Warnings are issued if there are inconsistencies.

Value

A regression (linear model fitted with 1m). The coefficients of the regression represent the estimated
variance components.

Examples

Not run:

install.packages("OpenMX")

data(twinData, package = "OpenMx")

sellVars <- c("ht1"”, "ht2")

mzData <- subset(twinData, zyg %in% c(1), c(selVars, "zyg"))
dzData <- subset(twinData, zyg %in% c(3), c(selVars, "zyg"))

fitComponentModel (

covmat = list(cov(mzDatal, selVars], use = "pair"), cov(dzData[, selVars], use = "pair")),
A = list(matrix(1, nrow = 2, ncol = 2), matrix(c(1, 0.5, 0.5, 1), nrow = 2, ncol = 2)),
C = list(matrix(1, nrow = 2, ncol = 2), matrix(1, nrow = 2, ncol = 2)),
E = list(diag(1, nrow = 2), diag(l, nrow = 2))

)

End(Not run)

hazard Simulated pedigree with two extended families and an age-related haz-
ard

Description

A dataset simulated to have an age-related hazard. There are two extended families that are sampled
from the same population.

Usage

data(hazard)

Format

A data frame with 43 rows and 14 variables

identifyComponentModel 33

Details

The variables are as follows:

e FamID: ID of the extended family

* ID: Person identification variable

¢ sex: Sex of the ID: 1 is female; O is male

* dadID: ID of the father

* momID: ID of the mother

» affected: logical. Whether the person is affected or not

* DA1: Binary variable signifying the meaninglessness of life
* DA2: Binary variable signifying the fundamental unknowability of existence
* birthYr: Birth year for person

* onsetYr: Year of onset for person

* deathYr: Death year for person

* available: logical. Whether

* Gen: Generation of the person

* proband: logical. Whether the person is a proband or not

identifyComponentModel
identifyComponentModel Determine if a variance components model

is identified

Description

identifyComponentModel Determine if a variance components model is identified

Usage
identifyComponentModel(..., verbose = TRUE)
Arguments
Comma-separated relatedness component matrices representing the variance com-
ponents of the model.
verbose logical. If FALSE, suppresses messages about identification; TRUE by default.
Details

This function checks the identification status of a given variance components model by examining
the rank of the concatenated matrices of the components. If any components are not identified, their
names are returned in the output.

34

Value

inbreeding

A list of length 2 containing:

identified: TRUE if the model is identified, FALSE otherwise.

nidp: A vector of non-identified parameters, specifying the names of components that are not
simultaneously identified.

Examples

identifyComponentModel (A = list(matrix(1, 2, 2)), C = list(matrix(1, 2, 2)), E = diag(1, 2))

inbreeding Artificial pedigree data on eight families with inbreeding

Description

A dataset created purely from imagination that includes several types of inbreeding. Different kinds
of inbreeding occur in each extended family.

Usage

data(inbreeding)

Format

A data frame (and ped object) with 134 rows and 7 variables

Details

The types of inbreeding are as follows:

Extended Family 1: Sister wives - Children with the same father and different mothers who
are sisters.

Extended Family 2: Full siblings have children.
Extended Family 3: Half siblings have children.
Extended Family 4: First cousins have children.
Extended Family 5: Father has child with his daughter.

Extended Family 6: Half sister wives - Children with the same father and different mothers
who are half sisters.

Extended Family 7: Uncle-niece and Aunt-nephew have children.

Extended Family 8: A father-son pairs has children with a corresponding mother-daughter
pair.

initializeRecord 35

Although not all of the above structures are technically inbreeding, they aim to test pedigree dia-
gramming and path tracing algorithms. This dataset is not intended to represent any real individuals
or families.

The variables are as follows:

* ID: Person identification variable

¢ sex: Sex of the ID: 1 is female; O is male
* dadID: ID of the father

* momID: ID of the mother

* FamID: ID of the extended family

* Gen: Generation of the person

e proband: Always FALSE

initializeRecord Initialize an Empty Individual Record

Description

Creates a named list with all GEDCOM fields set to NA.

Usage

initializeRecord(all_var_names)

Arguments

all_var_names A character vector of variable names.

Value

A named list representing an empty individual record.

36 isChild

insertEven evenlnsert A function to insert m elements evenly into a length n vector.

Description

evenlnsert A function to insert m elements evenly into a length n vector.

Usage

insertEven(m, n, verbose = FALSE)

evenInsert(m, n, verbose = FALSE)

Arguments
m A numeric vector of length less than or equal to n. The elements to be inserted.
n A numeric vector. The vector into which the elements of m will be inserted.
verbose logical If TRUE, prints additional information. Default is FALSE.

Details

The function takes two vectors, m and n, and inserts the elements of m evenly into n. If the length of
m is greater than the length of n, the vectors are swapped, and the insertion proceeds. The resulting
vector is a combination of m and n, with the elements of m evenly distributed within n.

Value

Returns a numeric vector with the elements of m evenly inserted into n.

See Also

SimPed for the main function that uses this supporting function.

isChild Determine isChild Status, isChild is the ’S’ matrix from RAM

Description

Determine isChild Status, isChild is the ’S’ matrix from RAM

Usage
isChild(isChild_method, ped)

makelnbreeding 37

Arguments

isChild_method method to determine isChild status

ped pedigree data frame

Value

isChild ’S’ matrix

makeInbreeding makelnbreeding A function to create inbred mates in the simulated
pedigree data.frame. Inbred mates can be created by specify-
ing their IDs or the generation the inbred mate should be created.
When specifying the generation, inbreeding between siblings or Ist
cousin needs to be specified. This is a supplementary function for
simulatePedigree.

Description

makelnbreeding A function to create inbred mates in the simulated pedigree data.frame. Inbred
mates can be created by specifying their IDs or the generation the inbred mate should be created.
When specifying the generation, inbreeding between siblings or 1st cousin needs to be specified.
This is a supplementary function for simulatePedigree.

Usage

makeInbreeding(
ped,
ID_matel = NA_integer_,
ID_mate2 = NA_integer_,
verbose = FALSE,
gen_inbred = 2,
type_inbred = "sib"

)
Arguments

ped A data. frame in the same format as the output of simulatePedigree.

ID_matel A vector of ID of the first mate. If not provided, the function will randomly
select two individuals from the second generation.

ID_mate2 A vector of ID of the second mate.

verbose logical. If TRUE, print progress through stages of algorithm

gen_inbred A vector of generation of the twin to be imputed.

type_inbred A character vector indicating the type of inbreeding. "sib" for sibling inbreeding

and "cousin" for cousin inbreeding.

38 makeTwins

Details

This function creates inbred mates in the simulated pedigree data. frame. This function’s purpose
is to evaluate the effect of inbreeding on model fitting and parameter estimation. In case it needs to
be said, we do not condone inbreeding in real life. But we recognize that it is a common practice in
some fields to create inbred strains for research purposes.

Value

Returns a data. frame with some inbred mates.

makeTwins makeTwins A function to impute twins in the simulated pedigree
data.frame. Twins can be imputed by specifying their IDs or by spec-
ifying the generation the twin should be imputed. This is a supplemen-
tary function for simulatePedigree.

Description

makeTwins A function to impute twins in the simulated pedigree data.frame. Twins can be im-
puted by specifying their IDs or by specifying the generation the twin should be imputed. This is a
supplementary function for simulatePedigree.

Usage

makeTwins(
ped,
ID_twinl = NA_integer_,
ID_twin2 = NA_integer_,
gen_twin = 2,
verbose = FALSE,
zygosity = "MzZ"

)
Arguments
ped A data. frame in the same format as the output of simulatePedigree.
ID_twin1 A vector of ID of the first twin.
ID_twin2 A vector of ID of the second twin.
gen_twin A vector of generation of the twin to be imputed.
verbose logical. If TRUE, print progress through stages of algorithm
zygosity A character string indicating the zygosity of the twins. Default is "MZ" for
monozygotic twins.
Value

Returns a data. frame with MZ twins information added as a new column.

mapFAMS2parents 39

mapFAMS2parents Create a Mapping from Family IDs to Parent IDs

Description

This function scans the data frame and creates a mapping of family IDs to the corresponding parent
IDs.

Usage

mapFAMS2parents(df_temp)

Arguments

df_temp A data frame produced by readGedcom().

Value

A list mapping family IDs to parent information.

markPotentialChildren Mark and Assign children

Description

This subfunction marks individuals in a generation as potential sons, daughters, or parents based
on their relationships and assigns unique couple IDs. It processes the assignment of roles and
relationships within and between generations in a pedigree simulation.

Usage

markPotentialChildren(
df_Ngen,
i,
Ngen,
sizeGens,
CoupleF,
code_male = "M",
code_female = "F"

40 parseNameLine

Arguments
df_Ngen A data frame for the current generation being processed. It must include columns
for individual IDs (‘id‘), spouse IDs (‘spID‘), sex (‘sex ‘), and any previously as-
signed roles (‘ifparent’, ‘ifson‘, ‘ifdau®).
i Integer, the index of the current generation being processed.
Ngen Integer, the total number of generations in the simulation.
sizeGens Numeric vector, containing the size (number of individuals) of each generation.
CoupleF Integer, IT MIGHT BE the number of couples in the current generation.
code_male The value to use for males. Default is "M"
code_female The value to use for females. Default is "F"
Value

Modifies ‘df_Ngen* in place by updating or adding columns related to individual roles (‘ifparent®,
‘ifson’, ‘ifdau‘) and couple IDs (‘coupleld‘). The updated data frame is also returned for integration
into the larger pedigree data frame (‘df_Fam*).

parseNamelLine Parse a Full Name Line

Description

Extracts full name information from a GEDCOM "NAME" line and updates the record accordingly.

Usage

parseNameLine(line, record)

Arguments
line A character string containing the name line.
record A named list representing the individual’s record.
Value

The updated record with parsed name information.

ped2add 41

ped2add Take a pedigree and turn it into an additive genetics relatedness matrix

Description

Take a pedigree and turn it into an additive genetics relatedness matrix

Usage

ped2add(
ped,
max.gen = 25,
sparse = TRUE,
verbose = FALSE,
gc = FALSE,
flatten.diag = FALSE,
standardize.colnames = TRUE,
transpose_method = "tcrossprod”,
adjacency_method = "direct”,
saveable = FALSE,
resume = FALSE,
save_rate = 5,
save_rate_gen = save_rate,
save_rate_parlist = 1e+05 * save_rate,

save_path = "checkpoint/",
)
Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

max.gen the maximum number of generations to compute (e.g., only up to 4th degree
relatives). The default is 25. However it can be set to infinity. ‘Inf® uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package

verbose logical. If TRUE, print progress through stages of algorithm

gc logical. If TRUE, do frequent garbage collection via gc to save memory

flatten.diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with
ones
standardize.colnames
logical. If TRUE, standardize the column names of the pedigree dataset
transpose_method
character. The method to use for computing the transpose. Options are "tcrossprod”,
"crossprod", or "star"

42 ped2ce

adjacency_method
character. The method to use for computing the adjacency matrix. Options are

non

"loop", "indexed", direct or beta

saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint
save_rate numeric. The rate at which to save the intermediate results

save_rate_gen numeric. The rate at which to save the intermediate results by generation. If
NULL, defaults to save_rate

save_rate_parlist

numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

save_path character. The path to save the checkpoint files

additional arguments to be passed to ped2com

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2ce Take a pedigree and turn it into an extended environmental relatedness
matrix

Description

Take a pedigree and turn it into an extended environmental relatedness matrix

Usage
ped2ce(ped, ...)

Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
additional arguments to be passed to ped2com
Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2cn 43

ped2cn Take a pedigree and turn it into a common nuclear environmental re-
latedness matrix

Description

Take a pedigree and turn it into a common nuclear environmental relatedness matrix

Usage

ped2cn(
ped,
max.gen = 25,
sparse = TRUE,
verbose = FALSE,
gc = FALSE,
flatten.diag = FALSE,
standardize.colnames = TRUE,
transpose_method = "tcrossprod”,
saveable = FALSE,
resume = FALSE,
save_rate = 5,
adjacency_method = "direct”,
save_rate_gen = save_rate,
save_rate_parlist = 1000 x save_rate,

save_path = "checkpoint/",
)
Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

max.gen the maximum number of generations to compute (e.g., only up to 4th degree
relatives). The default is 25. However it can be set to infinity. ‘Inf* uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package

verbose logical. If TRUE, print progress through stages of algorithm

gc logical. If TRUE, do frequent garbage collection via gc to save memory

flatten.diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with
ones
standardize.colnames
logical. If TRUE, standardize the column names of the pedigree dataset
transpose_method
character. The method to use for computing the transpose. Options are "tcrossprod”,
"crossprod", or "star"

44

ped2com
saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint
save_rate numeric. The rate at which to save the intermediate results

adjacency_method
character. The method to use for computing the adjacency matrix. Options are

"loop", "indexed", direct or beta

save_rate_gen numeric. The rate at which to save the intermediate results by generation. If
NULL, defaults to save_rate

save_rate_parlist
numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

save_path character. The path to save the checkpoint files

additional arguments to be passed to ped2com

Details

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2com Take a pedigree and turn it into a relatedness matrix

Description

Take a pedigree and turn it into a relatedness matrix

Usage

ped2com(
ped,
component,
max.gen = 25,
sparse = TRUE,
verbose = FALSE,
gc = FALSE,
flatten.diag = FALSE,
standardize.colnames = TRUE,

transpose_method = "tcrossprod”,
adjacency_method = "direct”,
isChild_method = "classic”,

saveable = FALSE,

resume = FALSE,

save_rate = 5,
save_rate_gen = save_rate,

ped2com 45

save_rate_parlist = 1e+05 * save_rate,
update_rate = 100,

save_path = "checkpoint/",
adjBeta_method = NULL,

)
Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

component character. Which component of the pedigree to return. See Details.

max.gen the maximum number of generations to compute (e.g., only up to 4th degree
relatives). The default is 25. However it can be set to infinity. ‘Inf‘ uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package

verbose logical. If TRUE, print progress through stages of algorithm

gc logical. If TRUE, do frequent garbage collection via gc to save memory

flatten.diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with
ones

standardize.colnames
logical. If TRUE, standardize the column names of the pedigree dataset

transpose_method
character. The method to use for computing the transpose. Options are "tcrossprod",
"crossprod", or "star"

adjacency_method
character. The method to use for computing the adjacency matrix. Options are

"non:

"loop", "indexed", direct or beta

isChild_method character. The method to use for computing the isChild matrix. Options are
"classic" or "partialparent"”

saveable logical. If TRUE, save the intermediate results to disk
resume logical. If TRUE, resume from a checkpoint
save_rate numeric. The rate at which to save the intermediate results

save_rate_gen numeric. The rate at which to save the intermediate results by generation. If
NULL, defaults to save_rate

save_rate_parlist

numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

update_rate numeric. The rate at which to print progress
save_path character. The path to save the checkpoint files

adjBeta_method numeric The method to use for computing the building the adjacency_method
matrix when using the "beta" build

additional arguments to be passed to ped2com

46

Details

ped2tam

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2fam

Segment Pedigree into Extended Families

Description

This function adds an extended family ID variable to a pedigree by segmenting that dataset into
independent extended families using the weakly connected components algorithm.

Usage

ped2fam(
ped,

personID = "ID",

momID
dadID
famID

Arguments

ped
personlD
momID
dadID
famID

Details

"momID",
"dadID",
"famID",

a pedigree dataset. Needs ID, momID, and dadID columns

character. Name of the column in ped for the person ID variable

character. Name of the column in ped for the mother ID variable

character. Name of the column in ped for the father ID variable

character. Name of the column to be created in ped for the family ID variable

additional arguments to be passed to ped2com

The general idea of this function is to use person ID, mother ID, and father ID to create an extended
family ID such that everyone with the same family ID is in the same (perhaps very extended)
pedigree. That is, a pair of people with the same family ID have at least one traceable relation of
any length to one another.

This function works by turning the pedigree into a mathematical graph using the igraph package.
Once in graph form, the function uses weakly connected components to search for all possible
relationship paths that could connect anyone in the data to anyone else in the data.

Value

A pedigree dataset with one additional column for the newly created extended family ID

ped2graph

47

ped2graph

Turn a pedigree into a graph

Description

Turn a pedigree into a graph

Usage

ped2graph(

ped,

personID = "ID",
momID = "momID",
dadID = "dadID",
directed = TRUE,

adjacent = c("parents”, "mothers”, "fathers"),
)
Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
personlD character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
directed Logical scalar. Default is TRUE. Indicates whether or not to create a directed
graph.
adjacent Character. Relationship that defines adjacency in the graph: parents, mothers,
or fathers
additional arguments to be passed to ped2com
Details

The general idea of this function is to represent a pedigree as a graph using the igraph package.

Once in graph form, several common pedigree tasks become much simpler.

The adjacent argument allows for different kinds of graph structures. When using parents for
adjacency, the graph shows all parent-child relationships. When using mother for adjacency, the
graph only shows mother-child relationships. Similarly when using father for adjacency, only
father-child relationships appear in the graph. Construct extended families from the parent graph,
maternal lines from the mothers graph, and paternal lines from the fathers graph.

Value

A graph

48 ped2maternal

ped2maternal Add a maternal line ID variable to a pedigree

Description

Add a maternal line ID variable to a pedigree

Usage

ped2maternal (
ped,
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID"”,

Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
personlD character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
matID Character. Maternal line ID variable to be created and added to the pedigree
additional arguments to be passed to ped2com
Details

Under various scenarios it is useful to know which people in a pedigree belong to the same maternal
lines. This function first turns a pedigree into a graph where adjacency is defined by mother-child
relationships. Subsequently, the weakly connected components algorithm finds all the separate
maternal lines and gives them an ID variable.

See Also

[ped2fam()] for creating extended family IDs, and [ped2paternal()] for creating paternal line IDs

ped2mit 49

ped2mit Take a pedigree and turn it into a mitochondrial relatedness matrix

Description

Take a pedigree and turn it into a mitochondrial relatedness matrix

Usage

ped2mit(
ped,
max.gen = 25,
sparse = TRUE,
verbose = FALSE,
gc = FALSE,
flatten.diag = FALSE,
standardize.colnames = TRUE,
transpose_method = "tcrossprod”,
adjacency_method = "direct”,
saveable = FALSE,
resume = FALSE,
save_rate = 5,
save_rate_gen = save_rate,
save_rate_parlist = 1e+05 * save_rate,

save_path = "checkpoint/",
)
Arguments

ped a pedigree dataset. Needs ID, momID, and dadID columns

max.gen the maximum number of generations to compute (e.g., only up to 4th degree
relatives). The default is 25. However it can be set to infinity. ‘Inf® uses as many
generations as there are in the data.

sparse logical. If TRUE, use and return sparse matrices from Matrix package

verbose logical. If TRUE, print progress through stages of algorithm

gc logical. If TRUE, do frequent garbage collection via gc to save memory

flatten.diag logical. If TRUE, overwrite the diagonal of the final relatedness matrix with
ones
standardize.colnames
logical. If TRUE, standardize the column names of the pedigree dataset
transpose_method
character. The method to use for computing the transpose. Options are "tcrossprod”,
"crossprod", or "star"

50

ped2paternal

adjacency_method

saveable
resume

save_rat

e

character. The method to use for computing the adjacency matrix. Options are

non

"loop", "indexed", direct or beta

logical. If TRUE, save the intermediate results to disk
logical. If TRUE, resume from a checkpoint

numeric. The rate at which to save the intermediate results

save_rate_gen numeric. The rate at which to save the intermediate results by generation. If

NULL, defaults to save_rate

save_rate_parlist

save_pat

Details

h

numeric. The rate at which to save the intermediate results by parent list. If
NULL, defaults to save_rate*1000

character. The path to save the checkpoint files
additional arguments to be passed to ped2com

The algorithms and methodologies used in this function are further discussed and exemplified in
the vignette titled "examplePedigreeFunctions". For more advanced scenarios and detailed expla-
nations, consult this vignette.

ped2paternal Add a paternal line ID variable to a pedigree

Description

Add a paternal line ID variable to a pedigree

Usage
ped2paternal (
ped,
personID = "ID",
momID = "momID",
dadID = "dadID",
patID = "patID”,
)
Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
personlD character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
patID Character. Paternal line ID variable to be created and added to the pedigree

additional arguments to be passed to ped2com

postProcessGedcom 51

Details

Under various scenarios it is useful to know which people in a pedigree belong to the same paternal
lines. This function first turns a pedigree into a graph where adjacency is defined by father-child
relationships. Subsequently, the weakly connected components algorithm finds all the separate
paternal lines and gives them an ID variable.

See Also

[ped2fam()] for creating extended family IDs, and [ped2maternal()] for creating maternal line IDs

postProcessGedcom Post-process GEDCOM Data Frame

Description

This function optionally adds parent information, combines duplicate columns, and removes empty
columns from the GEDCOM data frame.

Usage

postProcessGedcom(
df_temp,
remove_empty_cols = TRUE,
combine_cols = TRUE,
add_parents = TRUE,
skinny = TRUE,
verbose = FALSE

Arguments

df_temp A data frame produced by readGedcom().
remove_empty_cols
Logical indicating whether to remove columns that are entirely missing.

combine_cols Logical indicating whether to combine columns with duplicate values.

add_parents Logical indicating whether to add parent information.

skinny Logical indicating whether to slim down the data frame.

verbose Logical indicating whether to print progress messages.
Value

The post-processed data frame.

52 potter

potter Fictional pedigree data on a wizarding family

Description

A dataset created for educational and illustrative use, containing a fictional pedigree modeled after
characters from the Harry Potter series. This data is structured for use in software demonstrations
involving pedigree diagrams, inheritance structures, and kinship modeling. This dataset is not in-
tended to represent any real individuals or families. It includes no narrative content or protected
expression from the original works and is provided solely for educational purposes. This dataset is
not endorsed by or affiliated with the creators or copyright holders of the Harry Potter series.

Usage

data(potter)

Format

A data frame (and ped object) with 36 rows and 8 variables

Details

The variables are as follows:

¢ personlID: Person identification variable
» famID: Family identification variable

* name: Name of the person

* gen: Generation of the person

* momID: ID of the mother

* dadID: ID of the father

* spouselID: ID of the spouse

¢ sex: Sex of the ID: 1 is male; O is female
e twinID: ID of the twin, if applicable

* zygosity: Zygosity of the twin, if applicable. mz is monozygotic; dz is dizygotic

IDs in the 100s momIDs and dadIDs are for people not in the dataset.

processEventLine 53

processEventLine Process Event Lines (Birth or Death)

Description

Extracts event details (e.g., date, place, cause, latitude, longitude) from a block of GEDCOM lines.
For "birth": expect DATE on line i+1, PLAC on i+2, LATI on i+4, LONG on i+5. For "death":
expect DATE on line i+1, PLAC on i+2, CAUS on i+3, LATI on i+4, LONG on i+5.

Usage

processEventLine(event, block, i, record, pattern_rows)

Arguments
event A character string indicating the event type ("birth" or "death").
block A character vector of GEDCOM lines.
i The current line index where the event tag is found.
record A named list representing the individual’s record.

pattern_rows A list with counts of GEDCOM tag occurrences.

Value

The updated record with parsed event information.#

processParents Process Parents Information from GEDCOM Data

Description

Adds parent IDs to the individuals based on family relationship data.

Usage

processParents(df_temp, datasource)

Arguments

df _temp A data frame produced by readGedcom().

datasource Character string indicating the data source ("gedcom" or "wiki").
Value

The updated data frame with parent IDs added.

54

readGedcom

readGedcom Read a GEDCOM File

Description

This function reads a GEDCOM file and parses it into a structured data frame of individuals.

Usage

readGedcom(
file_path,
verbose = FALSE,
add_parents = TRUE,
remove_empty_cols =
combine_cols = TRUE,
skinny = FALSE,
update_rate = 1000,
post_process = TRUE,

)

readGed(

file_path,

verbose = FALSE,
add_parents = TRUE,
remove_empty_cols =
combine_cols = TRUE,
skinny = FALSE,
update_rate = 1000,
post_process = TRUE,

)

readgedcom(
file_path,
verbose = FALSE,
add_parents = TRUE,
remove_empty_cols =
combine_cols = TRUE,
skinny = FALSE,
update_rate = 1000,
post_process = TRUE,

Arguments

file_path The path to the GEDCOM file.

TRUE,

TRUE,

TRUE,

readWikifamilytree 55

verbose A logical value indicating whether to print messages.

add_parents A logical value indicating whether to add parents to the data frame.

remove_empty_cols
A logical value indicating whether to remove columns with all missing values.

combine_cols A logical value indicating whether to combine columns with duplicate values.
skinny A logical value indicating whether to return a skinny data frame.
update_rate numeric. The rate at which to print progress

post_process A logical value indicating whether to post-process the data frame.

Additional arguments to be passed to the function.

Value

A data frame containing information about individuals, with the following potential columns: -
‘id*: ID of the individual - ‘momID*: ID of the individual’s mother - ‘dadID‘: ID of the individual’s
father - ‘sex‘: Sex of the individual - ‘name‘: Full name of the individual - ‘name_given‘: First
name of the individual - ‘name_surn‘: Last name of the individual - ‘name_marriedsurn‘: Married
name of the individual - ‘name_nick‘: Nickname of the individual - ‘name_npfx‘: Name prefix -
‘name_nsfx‘: Name suffix - ‘birth_date‘: Birth date of the individual - ‘birth_lat‘: Latitude of the
birthplace - ‘birth_long*: Longitude of the birthplace - ‘birth_place‘: Birthplace of the individual -
‘death_caus‘: Cause of death - ‘death_date‘: Death date of the individual - ‘death_lat‘: Latitude of
the place of death - ‘death_long‘: Longitude of the place of death - ‘death_place*: Place of death of
the individual - ‘attribute_caste‘: Caste of the individual - ‘attribute_children‘: Number of children
of the individual - ‘attribute_description‘: Description of the individual - ‘attribute_education*:
Education of the individual - ‘attribute_idnumber*: Identification number of the individual - ‘at-
tribute_marriages‘: Number of marriages of the individual - ‘attribute_nationality‘: Nationality of
the individual - ‘attribute_occupation‘: Occupation of the individual - ‘attribute_property‘: Prop-
erty owned by the individual - “attribute_religion‘: Religion of the individual - ‘attribute_residence*:
Residence of the individual - ‘attribute_ssn‘: Social security number of the individual - ‘attribute_title‘:
Title of the individual - ‘FAMC*: ID(s) of the family where the individual is a child - ‘FAMS‘: ID(s)
of the family where the individual is a spouse

readWikifamilytree Read Wiki Family Tree

Description

Read Wiki Family Tree

Usage

readWikifamilytree(text = NULL, verbose = FALSE, file_path = NULL, ...)

56 recodeSex

Arguments
text A character string containing the text of a family tree in wiki format.
verbose A logical value indicating whether to print messages.
file_path The path to the file containing the family tree.
Additional arguments (not used).
Value

A list containing the summary, members, structure, and relationships of the family tree.

recodeSex Recodes Sex Variable in a Pedigree Dataframe

Description

This function serves as is primarily used internally, by plotting functions etc. It sets the ‘repair‘ flag
to TRUE automatically and forwards any additional parameters to ‘checkSex ‘.

Usage

recodeSex(
ped,
verbose = FALSE,
code_male = NULL,
code_na = NULL,
code_female = NULL,

recode_male = "M",
recode_female = "F",
recode_na = NA_character_
)
Arguments
ped A dataframe representing the pedigree data with a ’sex’ column.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
code_male The current code used to represent males in the ’sex’” column.
code_na The current value used for missing values.
code_female The current code used to represent females in the ’sex’ column. If both are
NULL, no recoding is performed.
recode_male The value to use for males. Default is "M"

recode_female The value to use for females. Default is "F"

recode_na The value to use for missing values. Default is NA_character_

repairlDs 57

Details

The validation process identifies: - The unique sex codes present in the dataset. - Whether indi-
viduals listed as fathers or mothers have inconsistent sex codes. - Instances where an individual’s
recorded sex does not align with their parental role.

If ‘repair = TRUE', the function standardizes sex coding by: - Assigning individuals listed as fathers
the most common male code in the dataset. - Assigning individuals listed as mothers the most
common female code.

This function uses the terms 'male’ and ’female’ in a biological context, referring to chromosomal
and other biologically-based characteristics necessary for constructing genetic pedigrees. The bio-
logical aspect of sex used in genetic analysis (genotype) is distinct from the broader, richer concept
of gender identity (phenotype).

We recognize the importance of using language and methodologies that affirm and respect the full
spectrum of gender identities. The developers of this package express unequivocal support for folx
in the transgender and LGBTQ+ communities.

Value

A modified version of the input data.frame ped, containing an additional or modified ’sex_recode’
column where the ’sex’ values are recoded according to code_male. NA values in the "sex’ column
are preserved.

repairlIDs Repair Missing IDs

Description

This function repairs missing IDs in a pedigree.

Usage

repairIDs(ped, verbose = FALSE)

Arguments
ped A dataframe representing the pedigree data with columns ‘ID‘, ‘dadID°, and
‘momlID*.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
Value

A corrected pedigree

58

repairSex
repairParentIDs Repair Parent IDs
Description
This function repairs parent IDs in a pedigree.
Usage
repairParentIDs(ped, verbose = FALSE)
Arguments
ped A dataframe representing the pedigree data with columns ’ID’, ’dadID’, and
’momlID’.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
Value

A corrected pedigree

repairSex Repairs Sex Coding in a Pedigree Dataframe

Description

This function serves as a wrapper around ‘checkSex‘ to specifically handle the repair of the sex
coding in a pedigree dataframe.

Usage

repairSex(ped, verbose = FALSE, code_male = NULL, code_female = NULL)

Arguments
ped A dataframe representing the pedigree data with a ’sex’ column.
verbose A logical flag indicating whether to print progress and validation messages to
the console.
code_male The current code used to represent males in the ’sex’” column.
code_female The current code used to represent females in the ’sex’ column. If both are

NULL, no recoding is performed.

resample 59

Details

The validation process identifies: - The unique sex codes present in the dataset. - Whether indi-
viduals listed as fathers or mothers have inconsistent sex codes. - Instances where an individual’s
recorded sex does not align with their parental role.

If ‘repair = TRUE', the function standardizes sex coding by: - Assigning individuals listed as fathers
the most common male code in the dataset. - Assigning individuals listed as mothers the most
common female code.

This function uses the terms 'male’ and ’female’ in a biological context, referring to chromosomal
and other biologically-based characteristics necessary for constructing genetic pedigrees. The bio-
logical aspect of sex used in genetic analysis (genotype) is distinct from the broader, richer concept
of gender identity (phenotype).

We recognize the importance of using language and methodologies that affirm and respect the full
spectrum of gender identities. The developers of this package express unequivocal support for folx
in the transgender and LGBTQ+ communities.

Value

A modified version of the input data.frame ped, containing an additional or modified ’sex_recode’
column where the ’sex’ values are recoded according to code_male. NA values in the ’sex’ column
are preserved.

See Also

checkSex

Examples

Not run:
ped <- data.frame(ID = c(1, 2, 3), sex = c("M", "F", "M"))
repairSex(ped, code_male = "M", verbose = TRUE)

End(Not run)

resample Resample Elements of a Vector

Description
This function performs resampling of the elements in a vector ‘x‘. It randomly shuffles the elements
of ‘x‘ and returns a vector of the resampled elements. If ‘x‘ is empty, it returns ‘NA_integer_°.
Usage

resample(x, ...)

60 royal92

Arguments
X A vector containing the elements to be resampled. If ‘x* is empty, the function
will return ‘NA_integer_°.
Additional arguments passed to ‘sample.int‘, such as ‘size‘ for the number of
items to sample and ‘replace’ indicating whether sampling should be with re-
placement.
Value

A vector of resampled elements from ‘x‘. If ‘x‘ is empty, returns ‘NA_integer_°‘. The length and
type of the returned vector depend on the input vector ‘x‘ and the additional arguments provided

I

via ...

royal92 Royal pedigree data from 1992

Description

A dataset created by Denis Reid from the Royal Families of Europe.

Usage

data(royal92)

Format

A data frame with 3110 observations

Details

The variables are as follows: id,momID,dadID,name,sex,birth_date,death_date,attribute_title

* id: Person identification variable
* momID: ID of the mother

* dadID: ID of the father

* name: Name of the person

* sex: Biological sex

* birth_date: Date of birth

* death_date: Date of death

* attribute_title: Title of the person

simulatePedigree

61

simulatePedigree Simulate Pedigrees This function simulates "balanced" pedigrees
based on a group of parameters: 1) k - Kids per couple; 2) G - Number
of generations; 3) p - Proportion of males in offspring; 4) r - Mating
rate.
Description

Simulate Pedigrees This function simulates "balanced" pedigrees based on a group of parameters:
1) k - Kids per couple; 2) G - Number of generations; 3) p - Proportion of males in offspring; 4) r -

Mating rate.

Usage
simulatePedigree(
kpc = 3,
Ngen = 4,
sexR = 0.5,
marR = 2/3,
rd_kpc = FALSE,

balancedSex = TRUE,
balancedMar = TRUE,
verbose = FALSE,
personID = "ID",

momID = "momID",
dadID = "dadID",
spouselID = "spouselD”,
code_male = "M",
code_female = "F"

)

SimPed(...)

Arguments

kpc Number of kids per couple. An integer >= 2 that determines how many kids each
fertilized mated couple will have in the pedigree. Default value is 3. Returns an
error when kpc equals 1.

Ngen Number of generations. An integer >= 2 that determines how many genera-
tions the simulated pedigree will have. The first generation is always a fertilized
couple. The last generation has no mated individuals.

sexR Sex ratio of offspring. A numeric value ranging from O to 1 that determines the
proportion of males in all offspring in this pedigree. For instance, 0.4 means 40
percent of the offspring will be male.

marR Mating rate. A numeric value ranging from O to 1 which determines the pro-

portion of mated (fertilized) couples in the pedigree within each generation. For

62

rd_kpc

balancedSex
balancedMar
verbose
personlD
momID

dadID

spouselD

code_male

code_female

Value

splitIndividuals

instance, marR = (.5 suggests 50 percent of the offspring in a specific generation
will be mated and have their offspring.

logical. If TRUE, the number of kids per mate will be randomly generated from
a poisson distribution with mean kpc. If FALSE, the number of kids per mate
will be fixed at kpc.

Not fully developed yet. Always TRUE in the current version.
Not fully developed yet. Always TRUE in the current version.
logical If TRUE, message progress through stages of algorithm
character. Name of the column in ped for the person ID variable
character. Name of the column in ped for the mother ID variable
character. Name of the column in ped for the father ID variable

The name of the column that will contain the spouse ID in the output data frame.
Default is "spID".

The value to use for males. Default is "M"
The value to use for females. Default is "F"

Additional arguments to be passed to other functions.

A data. frame with each row representing a simulated individual. The columns are as follows:

» fam: The family id of each simulated individual. It is *fam1’ in a single simulated pedigree.

* ID: The unique personal ID of each simulated individual. The first digit is the fam id; the
fourth digit is the generation the individual is in; the following digits represent the order of the
individual within his/her pedigree. For example, 100411 suggests this individual has a family
id of 1, is in the 4th generation, and is the 11th individual in the 4th generation.

* gen: The generation the simulated individual is in.
¢ dadID: Personal ID of the individual’s father.

e momlID: Personal ID of the individual’s mother.

¢ spID: Personal ID of the individual’s mate.

* sex: Biological sex of the individual. F - female; M - male.

splitIndividuals

Split GEDCOM Lines into Individual Blocks

Description

This function partitions the GEDCOM file (as a vector of lines) into a list of blocks, where each
block corresponds to a single individual starting with an "@ INDI" line.

Usage

splitIndividuals(lines, verbose = FALSE)

standardizeColnames 63

Arguments
lines A character vector of lines from the GEDCOM file.
verbose Logical indicating whether to output progress messages.
Value

A list of character vectors, each representing one individual.

standardizeColnames Standardize Column Names in a Dataframe (Internal)

Description

This internal function standardizes the column names of a given dataframe. It utilizes regular ex-
pressions and the ‘tolower()‘ function to match column names against a list of predefined standard
names. The approach is case-insensitive and allows for flexible matching of column names.

Usage

standardizeColnames(df, verbose = FALSE)

Arguments
df A dataframe whose column names need to be standardized.
verbose A logical indicating whether to print progress messages.
Value

A dataframe with standardized column names.

summarizeFamilies Summarize the families in a pedigree

Description

Summarize the families in a pedigree

64 summarizeFamilies

Usage

summarizeFamilies(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID"”,
patID = "patID",
byr = NULL,
founder_sort_var = NULL,
include_founder = FALSE,
nbiggest = 5,
noldest = 5,
skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE

)

summariseFamilies(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID"”,
patID = "patID”,
byr = NULL,
founder_sort_var = NULL,
include_founder = FALSE,
nbiggest = 5,
noldest = 5,
skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE

)
Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
famID character. Name of the column to be created in ped for the family ID variable
personID character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
matID Character. Maternal line ID variable to be created and added to the pedigree

patID Character. Paternal line ID variable to be created and added to the pedigree

summarizeMatrilines

65

byr Character. Optional column name for birth year. Used to determine the oldest
lineages.

founder_sort_var

Character. Column used to determine the founder of each lineage. Defaults to
‘byr* (if available) or ‘personID*‘ otherwise.

include_founder

Logical. If “TRUE, includes the founder (originating member) of each lineage
in the output.

nbiggest Integer. Number of largest lineages to return (sorted by count).
noldest Integer. Number of oldest lineages to return (sorted by birth year).
skip_var Character vector. Variables to exclude from summary calculations.

five_num_summary

Logical. If ‘TRUE’, includes the first quartile (Q1) and third quartile (Q3) in

addition to the minimum, median, and maximum values.

verbose Logical, if TRUE, print progress messages.

See Also

[summarizePedigrees ()]

summarizeMatrilines

Summarize the maternal lines in a pedigree

Description

Summarize the maternal lines in a pedigree

Usage

summarizeMatrilines(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID"”,
patID = "patID",
byr = NULL,
include_founder =
founder_sort_var =
nbiggest = 5,
noldest = 5,
skip_var = NULL,
five_num_summary =
verbose = FALSE

FALSE,
NULL,

FALSE,

66 summarizeMatrilines

)

summariseMatrilines(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID",
patID = "patID”,
byr = NULL,
include_founder = FALSE,
founder_sort_var = NULL,
nbiggest = 5,
noldest = 5,
skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE

)
Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
famID character. Name of the column to be created in ped for the family ID variable
personID character. Name of the column in ped for the person ID variable
momID character. Name of the column in ped for the mother ID variable
dadID character. Name of the column in ped for the father ID variable
matID Character. Maternal line ID variable to be created and added to the pedigree
patID Character. Paternal line ID variable to be created and added to the pedigree
byr Character. Optional column name for birth year. Used to determine the oldest

lineages.

include_founder
Logical. If “TRUE, includes the founder (originating member) of each lineage
in the output.

founder_sort_var
Character. Column used to determine the founder of each lineage. Defaults to
‘byr* (if available) or ‘personID* otherwise.

nbiggest Integer. Number of largest lineages to return (sorted by count).
noldest Integer. Number of oldest lineages to return (sorted by birth year).
skip_var Character vector. Variables to exclude from summary calculations.

five_num_summary

Logical. If ‘TRUE", includes the first quartile (Q1) and third quartile (Q3) in
addition to the minimum, median, and maximum values.

verbose Logical, if TRUE, print progress messages.

summarizePatrilines

See Also

[summarizePedigrees ()]

summarizePatrilines Summarize the paternal lines in a pedigree

Description

Summarize the paternal lines in a pedigree

Usage

summarizePatrilines(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID"”,
patID = "patID”,
byr = NULL,
founder_sort_var = NULL,
include_founder = FALSE,
nbiggest = 5,
noldest = 5,
skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE

)

summarisePatrilines(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID",
patID = "patID",
byr = NULL,
founder_sort_var = NULL,
include_founder = FALSE,
nbiggest = 5,
noldest = 5,
skip_var = NULL,
five_num_summary = FALSE,
verbose = FALSE

68

Arguments

ped
famID
personlD
momID
dadID
matID
patID

byr

summarizePedigrees

a pedigree dataset. Needs ID, momID, and dadID columns

character. Name of the column to be created in ped for the family ID variable
character. Name of the column in ped for the person ID variable

character. Name of the column in ped for the mother ID variable

character. Name of the column in ped for the father ID variable

Character. Maternal line ID variable to be created and added to the pedigree
Character. Paternal line ID variable to be created and added to the pedigree

Character. Optional column name for birth year. Used to determine the oldest
lineages.

founder_sort_var

include_founder

nbiggest
noldest

skip_var

Character. Column used to determine the founder of each lineage. Defaults to
‘byr* (if available) or ‘personID* otherwise.

Logical. If “TRUE®, includes the founder (originating member) of each lineage
in the output.

Integer. Number of largest lineages to return (sorted by count).
Integer. Number of oldest lineages to return (sorted by birth year).

Character vector. Variables to exclude from summary calculations.

five_num_summary

verbose

See Also

Logical. If ‘TRUE", includes the first quartile (Q1) and third quartile (Q3) in

addition to the minimum, median, and maximum values.

Logical, if TRUE, print progress messages.

[summarizePedigrees ()]

summarizePedigrees Summarize Pedigree Data

Description

This function summarizes pedigree data, by computing key summary statistics for all numeric vari-
ables and identifying the originating member (founder) for each family, maternal, and paternal

lineage.

summarizePedigrees 69

Usage

summarizePedigrees(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID"”,
patID = "patID”,
type = c("fathers"”, "mothers"”, "families”),
byr = NULL,
include_founder = FALSE,
founder_sort_var = NULL,
nbiggest = 5,
noldest = nbiggest,
skip_var = NULL,
five_num_summary = FALSE,
network_checks = FALSE,
verbose = FALSE

)

summarisePedigrees(
ped,
famID = "famID",
personID = "ID",
momID = "momID",
dadID = "dadID",
matID = "matID",
patID = "patID",
type = c("fathers”, "mothers”, "families"),
byr = NULL,
include_founder = FALSE,
founder_sort_var = NULL,
nbiggest = 5,
noldest = nbiggest,
skip_var = NULL,
five_num_summary = FALSE,
network_checks = FALSE,
verbose = FALSE

)
Arguments
ped a pedigree dataset. Needs ID, momID, and dadID columns
famID character. Name of the column to be created in ped for the family ID variable
personlD character. Name of the column in ped for the person ID variable

momID character. Name of the column in ped for the mother ID variable

70

summarizePedigrees
dadID character. Name of the column in ped for the father ID variable
matID Character. Maternal line ID variable to be created and added to the pedigree
patID Character. Paternal line ID variable to be created and added to the pedigree
type Character vector. Specifies which summaries to compute. Options: ‘"fathers"*,
“"mothers"‘, ‘"families"‘. Default includes all three.
byr Character. Optional column name for birth year. Used to determine the oldest
lineages.

include_founder
Logical. If “TRUE, includes the founder (originating member) of each lineage
in the output.

founder_sort_var
Character. Column used to determine the founder of each lineage. Defaults to
‘byr* (if available) or ‘personID* otherwise.

nbiggest Integer. Number of largest lineages to return (sorted by count).
noldest Integer. Number of oldest lineages to return (sorted by birth year).
skip_var Character vector. Variables to exclude from summary calculations.

five_num_summary
Logical. If ‘TRUE®, includes the first quartile (Q1) and third quartile (Q3) in
addition to the minimum, median, and maximum values.

network_checks Logical. If “TRUE‘, performs network checks on the pedigree data.

verbose Logical, if TRUE, print progress messages.

Details

The function calculates standard descriptive statistics, including the count of individuals in each
lineage, means, medians, minimum and maximum values, and standard deviations. Additionally,
if “five_num_summary = TRUE®, the function includes the first and third quartiles (Q1, Q3) to
provide a more detailed distributional summary. Users can also specify variables to exclude from
the analysis via ‘skip_var®.

Beyond summary statistics, the function identifies the founding member of each lineage based on
the specified sorting variable (‘founder_sort_var*), defaulting to birth year (‘byr‘) when available
or ‘personID‘ otherwise. Users can retrieve the largest and oldest lineages by setting ‘nbiggest‘ and
‘noldest*, respectively.

Value

A data.frame (or list) containing summary statistics for family, maternal, and paternal lines, as well
as the 5 oldest and biggest lines.

traceTreePaths 71

traceTreePaths Trace paths between individuals in a family tree grid

Description

Trace paths between individuals in a family tree grid

Usage

traceTreePaths(tree_long, deduplicate = TRUE)

Arguments

tree_long A data.frame with columns: Row, Column, Value, id

deduplicate Logical, if TRUE, will remove duplicate paths

Value

A data.frame with columns: from_id, to_id, direction, path_length, intermediates

validate_and_convert_matrix
validate_and_convert_matrix

Description

This function validates and converts a matrix to a specific format.

Usage

validate_and_convert_matrix(
mat,
name,
ensure_symmetric = FALSE,
force_binary = FALSE

)

Arguments
mat The matrix to be validated and converted.
name The name of the matrix for error messages.

ensure_symmetric
Logical indicating whether to ensure the matrix is symmetric.

force_binary Logical indicating whether to force the matrix to be binary.

72 vech

Value

The validated and converted matrix.

vech vech Create the half-vectorization of a matrix

Description

vech Create the half-vectorization of a matrix

Usage

vech(x)

Arguments

X a matrix, the half-vectorization of which is desired

Details
This function returns the vectorized form of the lower triangle of a matrix, including the diagonal.
The upper triangle is ignored with no checking that the provided matrix is symmetric.

Value

A vector containing the lower triangle of the matrix, including the diagonal.

Examples

vech(matrix(c(1, 0.5, 0.5, 1), nrow = 2, ncol = 2))

Index

+ datasets

ASOIAF, 9

hazard, 32

inbreeding, 34

potter, 52

royal92, 60
.assignParentValue, 4
.computeTranspose, 4
.loadOrComputeIsChild, 5
.postProcessGedcom. legacy, 5

addParentRow, 6
addPersonToPed, 7
addRowlessParents, 8
allGens (calcAllGens), 13
applyTagMappings, 8
ASOIAF, 9

buildBetweenGenerations, 10
buildWithinGenerations, 11

calcAllGens, 13
calcFamilySize, 13
calcFamilySizeByGen, 14
calculateCIs, 14
calculateH, 16
calculateRelatedness, 16
checkIDs, 18
checkIDuniqueness, 19
checkParentIDs, 19
checkParentSex, 20
checkPedigreeNetwork, 21
checkSex, 22, 59
checkWithinRowDuplicates, 23
collapseNames, 24
com2links, 24, 25
comp2vech, 25
computeParentAdjacency, 26
countPatternRows, 27
createGenDataFrame, 28

73

determineSex, 29
dropLink, 29

evenlnsert (insertEven), 36

famSizeCal (calcFamilySize), 13
findBiggest, 30

findOldest, 31
fitComponentModel, 31

gc, 25,41,43,45,49
hazard, 32

identifyComponentModel, 33
inbreeding, 34
initializeRecord, 35
insertEven, 36

isChild, 36

makeInbreeding, 37
makeTwins, 38
mapFAMS2parents, 39
markPotentialChildren, 39

parseNamelLine, 40
ped2add, 41

ped2ce, 42

ped2cn, 43
ped2com, 27, 42, 44, 44, 45-48, 50
ped2fam, 46
ped2graph, 47
ped2maternal, 48
ped2mit, 49

ped2mt (ped2mit), 49
ped2paternal, 50
postProcessGedcom, 51
potter, 52
processEventLine, 53
processParents, 53

74 INDEX

readGed (readGedcom), 54
readGedcom, 54

readgedcom (readGedcom), 54
readWikifamilytree, 55
recodeSex, 56

related_coef (calculateRelatedness), 16
repairlDs, 57
repairParentIDs, 58
repairSex, 58

resample, 59

royal92, 60

SimPed, 36
SimPed (simulatePedigree), 61
simulatePedigree, 61
sizeAllGens (calcFamilySizeByGen), 14
splitIndividuals, 62
standardizeColnames, 63
summariseFamilies (summarizeFamilies),
63
summariseMatrilines
(summarizeMatrilines), 65
summarisePatrilines
(summarizePatrilines), 67
summarisePedigrees
(summarizePedigrees), 68
summarizeFamilies, 63
summarizeMatrilines, 65
summarizePatrilines, 67
summarizePedigrees, 68

traceTreePaths, 71

validate_and_convert_matrix, 71
vech, 72

	.assignParentValue
	.computeTranspose
	.loadOrComputeIsChild
	.postProcessGedcom.legacy
	addParentRow
	addPersonToPed
	addRowlessParents
	applyTagMappings
	ASOIAF
	buildBetweenGenerations
	buildWithinGenerations
	calcAllGens
	calcFamilySize
	calcFamilySizeByGen
	calculateCIs
	calculateH
	calculateRelatedness
	checkIDs
	checkIDuniqueness
	checkParentIDs
	checkParentSex
	checkPedigreeNetwork
	checkSex
	checkWithinRowDuplicates
	collapseNames
	com2links
	comp2vech
	computeParentAdjacency
	countPatternRows
	createGenDataFrame
	determineSex
	dropLink
	findBiggest
	findOldest
	fitComponentModel
	hazard
	identifyComponentModel
	inbreeding
	initializeRecord
	insertEven
	isChild
	makeInbreeding
	makeTwins
	mapFAMS2parents
	markPotentialChildren
	parseNameLine
	ped2add
	ped2ce
	ped2cn
	ped2com
	ped2fam
	ped2graph
	ped2maternal
	ped2mit
	ped2paternal
	postProcessGedcom
	potter
	processEventLine
	processParents
	readGedcom
	readWikifamilytree
	recodeSex
	repairIDs
	repairParentIDs
	repairSex
	resample
	royal92
	simulatePedigree
	splitIndividuals
	standardizeColnames
	summarizeFamilies
	summarizeMatrilines
	summarizePatrilines
	summarizePedigrees
	traceTreePaths
	validate_and_convert_matrix
	vech
	Index

