Package ‘BATSS’

January 20, 2025

Title Bayesian Adaptive Trial Simulator Software (BATSS) for
Generalised Linear Models

Version 1.0.0

Description Defines operating characteristics of Bayesian Adaptive Trials considering a gener-
alised linear model response via Monte Carlo simulations of Bayesian GLM fitted via inte-
grated Laplace approximations (INLA).

URL https://batss-dev.github.io/BATSS/

License GPL-2

Encoding UTF-8

Suggests INLA

Imports parallel, methods, stats, grDevices, abind, plyr, rlang,
R.utils, cli

Additional_repositories https://inla.r-inla-download.org/R/testing

RoxygenNote 7.3.1

NeedsCompilation no

Author Dominique-Laurent Couturier [aut, cre]
(<https://orcid.org/0000-0001-5774-5036>),
Liz Ryan [aut] (<https://orcid.org/0000-0001-9367-4204>),
Rainer Puhr [aut],
Thomas Jaki [aut] (<https://orcid.org/0000-0002-1096-188X>),
Stephane Heritier [aut] (<https://orcid.org/0000-0002-3640-079X>)

Maintainer Dominique-Laurent Couturier <dominique.couturier@mrc-bsu.cam.ac.uk>
Repository CRAN
Date/Publication 2024-10-02 16:20:02 UTC

Contents

alloc.balanced
alloc.simple e e e e e
BATSS . . e

https://batss-dev.github.io/BATSS/
https://inla.r-inla-download.org/R/testing
https://orcid.org/0000-0001-5774-5036
https://orcid.org/0000-0001-9367-4204
https://orcid.org/0000-0002-1096-188X
https://orcid.org/0000-0002-3640-079X

2 alloc.balanced
batss.combine 4
batss.glm e 5
effarm.nfofract L 9
effarm.simple L 10
effitrialall oL 10
efftrialany 11
futarm.simple 11
fut.trialall L 12
plotbatss 12
print.batss e 13
RAR.optimal e 14
RAR.trippa e 15
SUMMArY.batss e e e e e e e e 16

Index 17

alloc.balanced Balanced allocation function

Description

alloc.balanced first allocates the largest possible number of units to the different groups given their
exact target probabilities and then assigns randomly the remaining units to the different groups
according to multinomial draws. This method leads to observed allocation probabilities matching
the target ones when m*prob is an integer for each group and to observed allocation probabilities
(on average) closer to the target ones compared to alloc.simple.
Usage
alloc.balanced(m, prob)
Arguments
m the "BATSS’ ingredient 'm’, a scalar corresponding to the number of participants
to be allocated.
prob the "BATSS’ ingredient *prob’, a named vector of allocation ratios or probabil-
ities.
Value
alloc.balanced returns an object of class factor of length 'm’ with levels matching the names of the
vector prob’.

See Also

alloc.simple(), another group allocation function.

alloc.simple 3

Examples

alloc.balanced(100, prob = c(A=.4,B=.6))
table(alloc.balanced(100, prob = c(A=.4,B=.6)))
table(alloc.balanced(100, prob = c(A=.4,B=.6)))

alloc.simple Simple allocation function

Description

alloc.simple independently randomises each unit to a group (i.e., flips a coin for each unit) so that the
observed allocation probabilities may be far from the target ones. This strategy is often considered
to be a poor choice.

Usage

alloc.simple(m, prob)

Arguments
m the "BATSS’ ingredient 'm’, a scalar corresponding to the number of participants
to be allocated.
prob the " BATSS’ ingredient *prob’, a named vector of allocation ratios or probabil-
ities.
Value

alloc.simple returns an object of class factor of length 'm’ with levels matching the names of the
vector prob’.

See Also

alloc.balanced(), another group allocation function.

Examples

alloc.simple(100, prob = c(A=.4,B=.6))
table(alloc.simple(100, prob = c(A=.4,B=.6)))
table(alloc.simple (100, prob = c(A=.4,B=.6)))

BATSS BATSS

Description

BATSS

batss.combine

batss.combine

Combines outputs generated by batss.glm

Description

Combines different evaluations of batss.glm considering the same trial design but different sets of
seeds. This function is useful when the evaluation of Monte Carlo samples generated by different
seeds was split in sets computed by different nodes/cpus. The output of this function is of class
’batss’ meaning that the usual generic functions (print, summary, plot) can be used.

Usage

batss.combine(paths, force = FALSE)

Arguments

paths

force

Value

an object of class
structure.

See Also

Vector indicating the paths to the rdata files containing the outputs of the func-
tion batss.glm considering the same trial design but different set of seeds. This
requires the argument ’extended’ of the function batss.glm to be > 0.

a logical with default force=FALSE. Among other checks, batss.glm controls
that the calls of the Monte Carlo trials to be combined are identical and stops if
they are not (Note that this check is not bullet proof: such a check, for exam-
ple, would be able to note that two sets of Monte Carlo trials used a eff.arm
function named the same way and considered the same optional parameters but
would be blind to the fact that they could correspond to two different functions).
force=TRUE forces batss.glm to ignore this check. This could be useful if the
calls differ due to the batss objects to be combined being generated using dif-
ferent versions of batss.glm.

’batss’. Refer to the section *Value’ in batss.glm for details about this object

batss.glm(), the function allowing to simulate Bayesian adaptive trials with GLM endpoint for

different seeds.

batss.glm 5

batss.glm Bayesian adaptive trial simulations for generalised linear models

Description

Simulation of Bayesian adaptive trials with GLM endpoint using Integrated Nested Laplace Ap-
proximation (INLA).

Usage

batss.glm(
model,
var,
var.control = NULL,
family = "gaussian”,
link = "identity",
beta,
which,
alternative = "greater”,
R = 10000,
N,
interim,
probo,
delta.eff =
delta.fut
delta.RAR
eff.arm,
eff.arm.control = NULL,
eff.trial = NULL,
eff.trial.control = NULL,
fut.arm,
fut.arm.control = NULL,
fut.trial = NULL,
fut.trial.control = NULL,

1
o o
D -~
—
+
o]

eff,

1
(S}

RAR = NULL,
RAR.control = NULL,
Ho = TRUE,
computation = "parallel”,
mc.cores = getOption(”"mc.cores”, 3L),
extended = 0,

)

Arguments
model an object of class formula’ indicating a symbolic description of the model to be

fitted (as in the Im and glm functions).

var

var.control

family

link

beta

which

alternative

N

interim

prob@

delta.eff

delta.fut

batss.glm

A list. Each entry corresponds to a variable described under 'model’ and indi-
cates the name of a function allowing to generate variates (like rnorm and rexp,
for example). The list names have to match the variable names unded in 'model’
and its first element should correspond to the model outcome. The grouping
variable corresponding to the target parameters has to be of class *factor’ with
levels corresponding to the names indicated in argument prob@ (see below).

An optional list of control parameters for the functions indicated in ’var’. The
names of the list items need to correspond to the names used in *var’. Each ele-
ment is another list with names of the elements corresponding to the parameter
names of the functions specified in "var’.

A character string indicating the name of the conditional distribution as de-
scribed in the package INLA (check inla.list.models). Default set to *gaussian’.

A character string describing the link function to be used in the model to relate
the outcome to the set of predictors: ’identity’, ’log’, ’logit’, ’probit’, ’robit’,
"cauchit’, "loglog’ and ’cloglog’ are the currently available options. Default set
to “identity’.

A numerical vector of parameter values for the linear predictor. Its length has to
match the number of column of the X matrix induced by the formula indicated
under 'model’ (check model.matrix).

A numerical vector indicating the position of the target beta parameters.

A vector of strings providing the one-sided direction of the alternative hypothe-
sis corresponding to each target parameter indicated under which’ (in the same
order). Possibilities are ’greater’ (default) or ’less’. If the vector is of length 1,
the same direction will be used for all target parameter tests.

a vector of natural numbers to be used as seeds (check set.seed) for the differ-
ent Monte Carlo trials (the vector length will thus correspond to the number of
Monte Carlo trials). When R is a scalar, seeds 1 to R are used, where R corre-
sponds to the number of Monte Carlo trials.

A scalar indicating the maximum sample size.

A list of parameters related to interim analyses. Currently, only "recruited’ is
available. It consists in a vector of integers indicating the number of completed
observations at each look, last excluded, in increasing order.

A named vector with initial allocation probabilities. Names need to correspond
to the levels of the grouping variable. If RAR = NULL, these probabilities/ratios
will be used throughout (fixed allocation probabilities).

A vector (of length equal to the number of looks (i.e., number of interims + 1))
of clinically meaningful treatment effect values (on the linear predictor scale)
to be used to define the efficacy-related posterior probabilities for each target
parameter at each look. If a scalar is provided, the same value is used at each
look. The default is delta.eff = 0.

A vector (of length equal to the number of looks (i.e., number of interims + 1))
of clinically meaningful treatment effect values (on the linear predictor scale)
to be used to define the futility-related posterior probabilities for each target
parameter at each look. If a scalar is provided, the same value is used at each
look. The default is delta.fut = delta.eff.

batss.glm

delt

eff.

eff.

eff.

eff.

fut.

fut.

fut.

fut.

RAR

RAR.
Ho

a.RAR

arm

arm.control

trial

A vector (of length equal to the number of looks (i.e., number of interims + 1)) of
clinically meaningful treatment effect values (on the linear predictor scale) to be
used to define the RAR-related posterior probabilities for each target parameter
at each look. If a scalar is provided, the same value is used at each interim
analysis. The default is delta.RAR = 0. Note that, when a vector is provided, its
last value is ignored as no randomisation is made at the last look.

A function defining if efficacy has been achieved at a given look given the in-
formation available at that stage a given target parameter. The output of this
function must be a logical (of length 1). Arguments of this function will typi-
cally consider 'BATSS’ ingredients. Check eff.arm.simple and eff.arm.infofract
for examples.

An optional list of parameters for the function indicated in "eff.arm’.

A function defining if the trial can be stopped for efficacy given the output of
the function indicated in "eff.arm’. The output of this function must be a log-
ical of length one. Arguments of this function will typically only consider the
"BATSS’ ingredient eff. target. Check eff.trial.all and eff.trial.any for exam-
ples. When eff.trial = NULL (default), the trial stops for efficacy when all
target parameters are found to be effective (like in eff.trial.all).

trial.control

arm

arm.control

trial

An optional list of parameters for the function indicated in "eff. trial’.

A function defining if futility has been achieved at a given look given the in-
formation available at that stage for each target parameter. The output of this
function must be a logical (of length 1). Arguments of this function will typi-
cally consider "BATSS’ ingredients. Check fut.arm.simple to see an example of
such a function.

An optional list of parameters for the function indicated in *fut.arm’.

A function defining if the trial can be stopped for futility given the output of the
function indicated in *fut.arm’. The output of this function must be a logical of
length one. Arguments of this function will typically only consider the "BATSS’
ingredient fut.target. Check fut.trial.all for an example of such a function.
When fut.trial =NULL (default), the trial stops for futility when all target
parameters are found to be futile (like in fut.trial.all).

trial.control

control

An optional list of parameters for the function indicated in *fut. trial’.

A function defining the response-adaptive randomisation probabilities of each
group - reference group included - with the same group names and ordering as
used in ’prob@’. Arguments of this function will typically consider "BATSS’
ingredients. Check RAR.trippa and RAR.optimal for examples. If RAR = NULL
(default), the probabilities/ratios indicated under prob® will be used throughout
(fixed allocation probabilities).

An optional list of control parameters for the function provided in 'RAR’.

A logical indicating whether the simulation should also consider the case with
all target parameters set to O to check the probability of rejecting the hypothesis
that the target parameter value is equal to O individually (pairwise type I error)
or globally (family-wise error rate). Default set to HO=TRUE.

batss.glm

computation A character string indicating how the computation should be performed. Pos-
sibilities are ’parallel’ or ’sequential’ with default computation="parallel”
meaning that the computation is split between mc. cores.

mc.cores An integer indicating the number of CPUs to be used when computation="parallel”

(Default to 3 if no global 'mc. cores’ global option is available via getOption).

extended an integer indicating the type of results to be returned. 0 (default) provides sum-
mary statistics, 1 adds the results of each Monte Carlo trial and 2 additionally
returns each Monte Carlo dataset. batss.combine requires extended > 0 as the
function needs to merge results of different sets of seeds.

Additional arguments to control fitting in inla.

Value

The function batss.glm returns an S3 object of class ’batss’ with available print/summary/plot func-
tions

* beta - A data frame providing information related to the beta parameter vector, like parameter
names and values, for example.

* look - A data frame providing information related to looks, like sample size of a given interim
(m) and cumulative sample size at a given interim (n), for example.

* par - A list providing different information, like the used seeds (seed) and the groups (group),
for example.

* HI - A list providing trial results under the alternative, like the estimates per target parameter
when the corresponding arm was stopped (estimate), the efficacy and futility probabilites per
target parameter and overall (target, efficacy and futility), the sample size per group and trial
(sample), the probabilities associated to each combination of efficacy and futility per group
(scenario), the detailed results per trial (trial), for example.

* HO - A list providing trial results under the global null hypothesis (same structure as H1).
e call - The matched call.
* type - The type of " BATSS’ analysis (only "glm’ is currently available).

See Also

summary.batss and plot.batss for detailed summaries and plots, and batss.combine to combine dif-
ferent evaluations of batss.glm considering the same trial design but different sets of seeds (useful
for cluster computation).

Examples

Example:
* Gaussian conditional distribution with sigma = 5
* 3 groups with group means 'C' =1 (ref), 'T1' =2, 'T2' = 3,
where higher means correspond to better outcomes
5 interim analyses occurring when n = 100, 120, 140, 160, and 180
fixed and equal allocation probabilities per arm (i.e., no RAR)
max sample size = 200
efficacy stop per arm when the prob of the corresponding parameter

R E E R

¥ % % X%

eff.arm.infofract 9
being greater than @ is greater than 0.975 (?eff.arm.simple)
x futility stop per arm when the prob of the corresponding parameter
being greater than @ is smaller than 0.05 (?fut.arm.simple)
x trial stop once all arms have stopped (?eff.trial.all and ?fut.trial.all)
or the max sample size was reached
sim = batss.glm(model =y ~ group,
var list(y = rnorm,

var.control
beta

which
alternative

R

N

interim

prob@

eff.arm
eff.arm.control
fut.arm
fut.arm.control
computation

HO

mc.cores

group = alloc.balanced),
list(y = list(sd = 5)),
c(1, 1, 2),
c(2:3),
"greater”,
20,
200,
list(recruited = seq(100, 180, 20)),
c(C=1/3, T1 =1/3, T2 = 1/3),
eff.arm.simple,

= list(b = 0.975),

fut.arm.simple,

= list(b = 0.05),

"parallel”,
TRUE,
2)# better: parallel::detectCores()-1

eff.arm.infofract

information-fraction based arm efficacy stop

Description

allows stopping an arm for efficacy at a given look when the probability of the corresponding target
parameter being greater or smaller (depending on the argument 'alternative' of batss.glm) than
delta.eff is greater than a function of the information fraction at that look.

Usage

eff.arm.infofract(posterior, b, n, N, p)

Arguments

posterior the "BATSS’ ingredient ’posterior’ corresponding, in this context, to the (pos-
terior) probability of the target parameter being greater or smaller (depending
on the argument 'alternative' of batss.glm) than *delta.eff’.

b a tuning parameter (to be defined in eff.arm.control).

n the "BATSS’ ingredient 'n’ corresponding to the vector of number of recruited
participants per arm including the control group.

N the "BATSS’ ingredient **N’ corresponding to the maximum (planned) sample

size.

p a tuning parameter (to be defined in eff.arm.control).

10 eff.trial.all

Value

eff.arm.infofract returns a logical constant.

eff.arm.simple Simple arm efficacy stop

Description

allows stopping an arm for efficacy at a given look when the probability of the corresponding target
parameter being greater or smaller (depending on the argument 'alternative' of batss.glm) than
delta.eff is greater than a fixed value b.

Usage

eff.arm.simple(posterior, b)

Arguments
posterior the "BATSS’ ingredient ’posterior’ corresponding, in this context, to the (pos-
terior) probability of the target parameter being greater or smaller (depending
on the argument 'alternative' of batss.glm) than ’delta.eff’.
b the cut-off value used to declare efficacy (to be defined in eff.arm.control).
Value

eff.arm.simple returns a logical constant.

eff.trial.all trial efficacy stop

Description
allows stopping the trial for efficacy if all target parameters reached efficacy at the look of interest
or before.

Usage
eff.trial.all(eff.target)

Arguments

eff.target the "BATSS’ ingredient ’eff.target’ corresponding to a logical vector of the
same length as argument which (i.e., the number of target parameters) indicating
if efficacy was reached for each target parameter at that stage or at a previous
stage.

eff.trial. any 11

Value

eff.trial.all returns a logical constant.

eff.trial.any trial efficacy stop

Description
allows stopping the trial for efficacy if at least one target parameter reached efficacy at the look of
interest.

Usage
eff.trial.any(eff.target)

Arguments
eff.target the " BATSS’ ingredient ’eff.target’ corresponding to a logical vector of the
same length as argument which (i.e., the number of target parameters) indicating
if efficacy was reached for each target parameter at that stage or at a previous
stage.
Value

eff.trial.any returns a logical constant.

fut.arm.simple arm futility stop

Description

allows stopping an arm for futility when the probability of the corresponding target parameter being
greater or smaller (depending on the argument 'alternative' of batss.glm) than *delta.fut’ is
smaller than a fixed value ’b’

Usage

fut.arm.simple(posterior, b)

Arguments

posterior the "BATSS’ ingredient ’posterior’ corresponding, in this context, to the (pos-
terior) probability of the target parameter being greater or smaller (depending
on the argument 'alternative' of batss.glm) than *delta. fut’.

b the cut-off value used to declare futility (to be defined in fut.arm.control).

12 plot.batss

Value

fut.arm.simple returns a logical constant.

fut.trial.all trial futility stop

Description
allows stopping the trial for efficacy if all active treatment reached futility at the look of interest or
before.

Usage

fut.trial.all(fut.target)

Arguments
fut.target the "BATSS’ ingredient *fut.target’ corresponding to a logical vector of the
same length as argument which (i.e., the number of target parameters) indicating
if futility was declared for each target parameter at that stage or at a previous
stage.
Value

fut.trial.all returns a logical constant.

plot.batss Plot function for 'BATSS’ outputs

Description

Plot for objects of class ’batss’

Usage
S3 method for class 'batss'
plot(
X,
type = "size",
hypothesis = "H1",
title = TRUE,

legend = TRUE,
col = c("#008B0040", "#8B3A3A40", "#8B897040", "#FF990075", "blue"),

print.batss 13

Arguments

X An object of class "batss’ (i.e., output of the function batss.glm).

type A character string indicating the type of plot with options ’size’ (default) to
display the total and per group sample size observed in the Monte Carlo trials,
and ’estimates’ to display the Monte Carlo trial target estimates as a function of
the sample size.

hypothesis A character string indicating which alternative hypothesis to use for analyses
considering both "HO" and "H1", with options "H1" (default) and "HO".

title Either a logical indicating if a title should be added or a string (of class character)
indicating the title to be added. If title equals TRUE (default), the title "Under
"H1” or ’Under "HO’ (depending on the argument hypothesis) is added to the
outer margin of the plot. No outer margin space is added if title = FALSE.

legend a logical (with default set to TRUE) indicating if, when "type = estimates’, a
legend should be added at the bottom of the plot.

col a vector of length 5 specifiying the colour respectively assigned to i/ efficacy, ii/
futility, iii/ neither or iv/ both when color-coding trials when type = "estimates”.
The 5th colour is used for lines. Default to c("#8B897040","#008B0040","#8B3A3A40","#FF990075","b
where the 2 last digits of the long hexadecimal strings of colours 1 to 4 specify
the level of transluency. Refer to the Section ’colour specification’ in par for de-
tails. If the length of col equals 1, the same colour is used for all cases. When
type = "size", the 3rd and 5th colours of the vector col are used to display
boxplots and lines.

Additional arguments affecting the plot produced, like ylim and ylab.

Value

Generates graphical displays of results for objects of class batss’.

See Also

batss.glm(), the function generating S3 objects of class ’batss’.

print.batss Print function for BATSS outputs

Description

Print method function for objects of class *batss’ (i.e., output of the function batss.glm).

Usage

S3 method for class 'batss'
print(x, ...)

14 RAR.optimal

Arguments
X An object of class "batss’.
Additional arguments affecting the print produced.
Value

Prints information for objects of class ’batss’.

See Also

batss.glm(), the function generating S3 objects of class ’batss’.

RAR.optimal "Optimal’ control allocation

Description

technically not response adaptive but keeps allocation ratio to control at the square root of active
intervention arms

Usage

RAR.optimal(active)

Arguments
active the "BATSS’ ingredient "active’ corresponding to a logical vector of the same
length and order as 'prob@' (i.e., number of arms initially included in the study
including the reference group)) and indicating if each arm is active at the look
of interest.
Value

RAR.optimal returns a vector of probabilities with length of active.

RAR:.trippa

15

RAR. trippa

RAR of Trippa et al. (2012)

Description

define the group allocation probabilities based on the response adaptive randomisation rule of Trippa

etal. (2012)

Usage

RAR. trippa(posterior, n, N, ref, active, gamma, eta, nu)

Arguments

posterior

ref

active

gamma
eta

nu

Value

the "BATSS’ ingredient ’posterior’ corresponding, in this context, to the (pos-
terior) probability of the active target parameters being greater or smaller (de-
pending on the argument 'alternative' of batss.glm) than *delta.RAR’.

the "BATSS’ ingredient 'n’ corresponding to the vector of number of recruited
participants per arm including the control group at the look of interest.

the "BATSS’ ingredient **N’ corresponding to the maximum (planned) sample
size.

the "BATSS’ ingredient 'ref’ corresponding to a logical vector of the same
length and order as 'prob@' (i.e., number of arms initially included in the study
including the reference group)) and indicating which group is the reference one.

the "BATSS’ ingredient active’ corresponding to a logical vector of the same
length and order as 'prob@' (i.e., number of arms initially included in the study
including the reference group)) and indicating if each arm is active at the look
of interest.

a scaling factor (to be defined in RAR.arm.control).
a scaling factor (to be defined in RAR.arm.control).

a scaling factor (to be defined in RAR.arm.control).

RAR trippa returns a vector of probabilities with length of active.

16 summary.batss

summary.batss Summary function for 'BATSS’ outputs

Description

Summary method function for objects of class *batss’.

Usage
S3 method for class 'batss'
summary(object, full = FALSE, ...)
Arguments
object An object of class "batss’ (i.e., output of the function batss.glm).
full A logical indicating if a standard (full = FALSE, default) or extended output

(full = TRUE) should be returned.

Additional arguments affecting the summary produced.

Value

Prints a summary for objects of class "batss’.

See Also

batss.glm(), the function generating S3 objects of class "batss’.

Index

alloc.balanced, 2, 2 rexp, 6
alloc.balanced(), 3 rnorm, 6
alloc.simple, 2, 3,3

alloc.simple(), 2 set.seed, 6

summary.batss, 8, 16
BATSS, 3
batss.combine, 4, 8
batss.glm, 4,5,8-11,13,15, 16
batss.glm(), 4, 13, 14, 16

call, 4
character, 13

eff.arm.infofract, 7,9, 10
eff.arm.simple, 7, 10, 10
eff.trial.all, 7, 10, 11
eff.trial.any, 7, 11,11

factor, 2, 3,6
formula, 5
fut.arm.simple, 7, 11, 12
fut.trial.all, 7, 12,12

getOption, 8
glm, 5

identical, 4
inla, §
inla.list.models, 6

Im, 5
logical, 4,7, 10-15

model.matrix, 6
par, 13
plot.batss, 8, 12
print.batss, 13

RAR.optimal, 7, 14, 14
RAR.trippa, 7, 15, 15

17

	alloc.balanced
	alloc.simple
	BATSS
	batss.combine
	batss.glm
	eff.arm.infofract
	eff.arm.simple
	eff.trial.all
	eff.trial.any
	fut.arm.simple
	fut.trial.all
	plot.batss
	print.batss
	RAR.optimal
	RAR.trippa
	summary.batss
	Index

