Package ‘ASSISTant’

January 20, 2025

Type Package
Title Adaptive Subgroup Selection in Group Sequential Trials

Version 1.4.3
Date 2022-11-30
VignetteBuilder knitr

URL https://github.com/bnaras/ASSISTant

BugReports https://github.com/bnaras/ASSISTant/issues

Description Clinical trial design for subgroup selection in three-stage group
sequential trial as described in Lai, Lavori and Liao (2014,
<doi:10.1016/j.cct.2014.09.001>). Includes facilities for design,
exploration and analysis of such trials. An implementation of
the initial DEFUSE-3 trial is also provided as a vignette.

License GPL (>=2)

Encoding UTF-8

RoxygenNote 7.2.2

Imports R6, mvtnorm, knitr, magrittr, dplyr
Suggests rmarkdown

NeedsCompilation no

Author Tze Leung Lai [ctb],
Philip Lavori [aut],
Olivia Liao [aut],
Balasubramanian Narasimhan [aut, cre],
Ka Wai Tsang [aut]

Maintainer Balasubramanian Narasimhan <naras@stat.Stanford.EDU>
Repository CRAN
Date/Publication 2022-12-02 09:30:09 UTC

https://github.com/bnaras/ASSISTant
https://github.com/bnaras/ASSISTant/issues
https://doi.org/10.1016/j.cct.2014.09.001

2 ASSISTant
Contents
ASSISTant e e 2
ASSISTDesign e 3
ASSISTDesignB 6
ASSISTDesignC e 8
colNamesForStage e 10
computeMeanAndSD Lo 11
computeMHPBoundaries 11
computeMHPBoundaryITT 12
conformParameters e 12
DEFUSE3Design oo e e e e 13
generateDiscreteDatao 16
generateNormalData 17
groupSampleSize L. e e e 18
LLL.SETTINGS o e e s e e s 19
mHPDb . . . e 19
mHPbtilde 20
mHP.c . . . e 21
WIlCOXOno 21
Index 23
ASSISTant Three stage group sequential adaptive design with subgroup selection
Description

ASSISTant is a package that implements a three-stage adaptive clinical trial design with provision
for subgroup selection where the treatment may be effective; see Lai, Lavori and Liao (doi:10.1016/
j-cct.2014.09.001). The main design object is an R6 class that can be instantiated and manipulated
to obtain the operating characteristics. A vignette is provided showing the use of this package
for designing the DEFUSE-3 trial, described in the paper by Lai, Lavori and Liao. The package
contains everything necessary to reproduce the results of the paper.

References

Adaptive Choice of Patient Subgroup for Comparing Two Treatments by Tze Leung Lai and Philip
W. Lavori and Olivia Yueh-Wen Liao. Contemporary Clinical Trials, Vol. 39, No. 2, pp 191-200
(2014, doi:10.1016/j.cct.2014.09.001).

Adaptive design of confirmatory trials: Advances and challenges by Tze Leung Lai and Philip
W. Lavori and Ka Wai Tsang. Contemporary Clinical Trials, Vol. 45, Part A, pp 93-102 (2015,
doi:10.1016/j.cct.2015.06.007).

https://doi.org/10.1016/j.cct.2014.09.001
https://doi.org/10.1016/j.cct.2014.09.001
https://doi.org/10.1016/j.cct.2014.09.001
https://doi.org/10.1016/j.cct.2015.06.007

ASSISTDesign 3

ASSISTDesign A class to encapsulate the adaptive clinical trial design of Lai, Lavori
and Liao

Description

ASSISTDesign objects are used to design, simulate and analyze adaptive group sequential clinical
trial with three stages. For details refer to the paper Adaptive Choice of Patient Subgroup for
Comparing Two Treatments by Tze Leung Lai and Philip W. Lavori and Olivia Yueh-Wen Liao.
Contemporary Clinical Trials, Vol. 39, No. 2, pp 191-200 (2014).

Methods

Public methods:

* ASSISTDesign$new()

* ASSISTDesign$getDesignParameters()
e ASSISTDesign$getTrialParameters()
* ASSISTDesign$getBoundaries()

e ASSISTDesign$setBoundaries()

e ASSISTDesign$print()

e ASSISTDesign$computeCriticalValues()
* ASSISTDesign$explore()

* ASSISTDesign$performInterimLook()
* ASSISTDesign$analyze()

* ASSISTDesign$summary()

e ASSISTDesign$clone()

Method new(): Create a new ASSISTDesign instance using the parameters specified.

Usage:

ASSISTDesign$new(
designParameters,
trialParameters,
discreteData = FALSE,
boundaries

)

Arguments:

designParameters parameters of the experimental design. Must contain apropriate distribu-
tions to sample from, if discreteData = TRUE

trialParameters the trial parameters, such as sample size etc.

discreteData a flag indicating that a discrete distribution is to be used for the Rankin scores

boundaries decision boundaries to use for interim looks, a named vector of btilde, b and ¢
values

Returns: anew AssistDesign object

ASSISTDesign

Method getDesignParameters(): return the designParameters field

Usage:
ASSISTDesign$getDesignParameters()

Method getTrialParameters(): return the trialParameters field
Usage:
ASSISTDesign$getTrialParameters()

Method getBoundaries(): return the boundaries field

Usage:
ASSISTDesign$getBoundaries()

Method setBoundaries(): Set the boundaries field
Usage:
ASSISTDesign$setBoundaries(value)

Arguments:

value anamed vector of btilde, b and c values

Method print(): Print details of the design to console

Usage:
ASSISTDesign$print()

Method computeCriticalValues(): Compute the critical boundary values b, b and ¢ for futil-
ity, efficacy and final efficacy decisions. This is time consuming so cache where possible.

Usage:
ASSISTDesign$computeCriticalValues()

Returns: anamed vector of critical values with names btilde, b, and c as in the paper

Method explore(): Explore the design using the specified number of simulations and random
number seed and other parameters.

Usage:
ASSISTDesign$explore(
numberOfSimulations = 5000,
rngSeed = 12345,
trueParameters = self$getDesignParameters(),
recordStats = TRUE,
showProgress = TRUE,
fixedSampleSize = FALSE,
saveRawData = FALSE
)
Arguments:
numberOfSimulations default number of simulations is 5000
rngSeed default seed is 12345

trueParameters the state of nature, by default the value of self$getDesignParameters()
as would be the case for a Type I error calculation. If changed, would yield power.

ASSISTDesign 5

recordStats a boolean flag (default TRUE) to record statistics

showProgress a boolean flag to show progress, default TRUE

fixedSampleSize a bollean flag indicating that patients lost after a futile overall look are not
made up, default FALSE.

saveRawData a flag (default FALSE) to indicate if raw data has to be saved

Returns: alist of results

Method performInterimLook(): Perform an interim look on trial data

Usage:
ASSISTDesign$performInterimLook(
trialData,
stage,
recordStats = FALSE,
fixedSampleSize = FALSE

)

Arguments:

trialData trial data frame

stage the trial stage

recordStats a boolean flag to record all statistics

fixedSampleSize aflag to use a fixed sample size to account for loss to follow up

Returns: the trial history

Method analyze(): Analyze the exploration data from trial

Usage:
ASSISTDesign$analyze(trialExploration)

Arguments:
trialExploration the result of a call to explore() to simulate the design

Returns: Return a list of summary quantities

Method summary(): Print the operating characteristics of the design using the analysis data

Usage:
ASSISTDesign$summary(analysis)

Arguments:
analysis the analysis result from the analyze() call
Method clone(): The objects of this class are cloneable with this method.

Usage:
ASSISTDesign$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

See Also

LLL.SETTINGS for an explanation of trial parameters

6 ASSISTDesignB

Examples

Not run:
data(LLL.SETTINGS)
prevalence <- LLL.SETTINGS$prevalences$tablel
scenario <- LLL.SETTINGS$scenarios$Se
designParameters <- list(prevalence = prevalence,
mean = scenario$mean,
sd = scenario$sd)
designA <- ASSISTDesign$new(trialParameters = LLL.SETTINGS$trialParameters,
designParameters = designParameters)
print(designA)
result <- designA$explore(showProgress = interactive())
analysis <- designA$analyze(result)
designA$summary(analysis)

End(Not run)

ASSISTDesignB A fixed sample design to compare against the adaptive clinical trial
design

Description

ASSISTDesignB objects are used to design a trial with certain characteristics provided in the object
instantiation method. This design differs from ASSISTDesign in only how it computes the critical
boundaries, how it performs the interim look, and what quantities are computed in a trial run.

Super class

ASSISTant: :ASSISTDesign -> ASSISTDesignB

Methods

Public methods:
e ASSISTDesignB$computeCriticalValues()
* ASSISTDesignB$explore()
e ASSISTDesignB$analyze()
e ASSISTDesignB$summary ()
¢ ASSISTDesignB$clone()

Method computeCriticalValues(): Compute the critical boundary value c,
Usage:
ASSISTDesignB$computeCriticalValues()

Returns: anamed vector of a single value containing the value for ¢

Method explore(): Explore the design using the specified number of simulations, random
number seed, and further parameters.

ASSISTDesignB

Usage:

ASSISTDesignB$explore(
numberOfSimulations = 100,
rngSeed = 12345,
trueParameters = self$getDesignParameters(),
showProgress = TRUE,
saveRawData = FALSE

)

Arguments:
numberOfSimulations default number of simulations is 100

rngSeed default seed is 12345

trueParameters the state of nature, by default the value of self$getDesignParameters()
as would be the case for a Type I error calculation. If changed, would yield power.

showProgress a boolean flag to show progress, default TRUE
saveRawData a flag (default FALSE) to indicate if raw data has to be saved

Returns: a list of results

Method analyze(): Analyze the exploration data from trial

Usage:
ASSISTDesignB$analyze(trialExploration)

Arguments:
trialExploration the result of a call to explore() to simulate the design

Returns: Return a list of summary quantities

Method summary(): Print the operating characteristics of the design using the analysis data

Usage:
ASSISTDesignB$summary(analysis)

Arguments:

analysis the analysis result from the analyze() call

Method clone(): The objects of this class are cloneable with this method.

Usage:
ASSISTDesignB$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ASSISTDesign which is a superclass of this object

8 ASSISTDesignC

Examples

Not run:
data(LLL.SETTINGS)
prevalence <- LLL.SETTINGS$prevalences$tablel
scenario <- LLL.SETTINGS$scenarios$Se
designParameters <- list(prevalence = prevalence,
mean = scenario$mean,
sd = scenario$sd)
designB <- ASSISTDesignB$new(trialParameters = LLL.SETTINGS$trialParameters,
designParameters = designParameters)
print(designB)
A realistic design uses 5000 simulations or more!
result <- designB$explore(showProgress = interactive())
analysis <- designB$analyze(result)
designB$summary(analysis)

End(Not run)
For full examples, try:
browseURL(system.file("full_doc/ASSISTant.html"”, package="ASSISTant"))

ASSISTDesignC A fixed sample RCT design to compare against the adaptive clinical
trial design of Lai, Lavori and Liao.

Description

ASSISTDesignC objects are used to design a trial with certain characteristics provided in the object
instantiation method. This design differs from ASSISTDesign in only how it computes the critical
boundaries, how it performs the interim look, and what quantities are computed in a trial run.

Super classes

ASSISTant: :ASSISTDesign -> ASSISTant: :ASSISTDesignB -> ASSISTDesignC

Methods

Public methods:

e ASSISTDesignC$computeCriticalValues()
* ASSISTDesignC$explore()

* ASSISTDesignC$analyze()

* ASSISTDesignC$summary ()

e ASSISTDesignC$clone()

Method computeCriticalValues(): Compute the critical boundary values I~), b and ¢ for futil-
ity, efficacy and final efficacy decisions. This is time consuming so cache where possible.

Usage:

ASSISTDesignC 9

ASSISTDesignC$computeCriticalValues()

Returns: anamed list containing the critical value cAlpha

Method explore(): Explore the design using the specified number of simulations and random
number seed and other parameters.
Usage:
ASSISTDesignC$explore(
numberOfSimulations = 5000,
rngSeed = 12345,
trueParameters = self$getDesignParameters(),
showProgress = TRUE,
saveRawData = FALSE

)

Arguments:
numberOfSimulations default number of simulations is 5000
rngSeed default seed is 12345

trueParameters the state of nature, by default the value of self$getDesignParameters()
as would be the case for a Type I error calculation. If changed, would yield power.

showProgress a boolean flag to show progress, default TRUE
saveRawData a flag (default FALSE) to indicate if raw data has to be saved

Returns: alist of results

Method analyze(): Analyze the design given the trialExploration data

Usage:
ASSISTDesignC$analyze(trialExploration)

Arguments:
trialExploration the results from a call to explore() to simulate the design

Returns: anamed list of rejections

Method summary(): Print the operating characteristics of the design using the analysis data

Usage:
ASSISTDesignC$summary(analysis)

Arguments:

analysis the analysis result from the analyze() call

Returns: no value, just print

Method clone(): The objects of this class are cloneable with this method.

Usage:
ASSISTDesignC$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

10 colNamesForStage

See Also

ASSISTDesignB which is a superclass of this object

Examples

data(LLL.SETTINGS)
prevalence <- LLL.SETTINGS$prevalences$tablel
scenario <- LLL.SETTINGS$scenarios$Se
designParameters <- list(prevalence = prevalence,
mean = scenario$mean,
sd = scenario$sd)
A realistic design uses 5000 simulations or more!
designC <- ASSISTDesignC$new(trialParameters = LLL.SETTINGS$trialParameters,
designParameters = designParameters)
print(designC)
result <- designC$explore(numberOfSimulations = 100, showProgress = interactive())
analysis <- designC$analyze(result)
designC$summary(analysis)
For full examples, try:
browseURL(system.file("full_doc/ASSISTant.html”, package="ASSISTant"))

colNamesForStage Return a vector of column names for statistics for a given stage

Description

Return a vector of column names for statistics for a given stage

Usage

colNamesForStage(stage, J)

Arguments
stage the trial stage (1 to 3 inclusive).
J the number of subgroups
Value

a character vector of the column names

computeMeanAndSD 11

computeMeanAndSD Compute the mean and sd of a discrete Rankin distribution

Description

Compute the mean and sd of a discrete Rankin distribution

Usage
computeMeanAndSD(probVec = rep(1, 7L), support = @L:6L)

Arguments
probVec a probability vector of length equal to length of support, default is uniform
support a vector of support values (default 0:6 for Rankin Scores)

Value

a named vector of mean and sd

computeMHPBoundaries Compute the three modified Haybittle-Peto boundaries

Description

Compute the three modified Haybittle-Peto boundaries

Usage
computeMHPBoundaries(prevalence, N, alpha, beta, eps, futilityOnly = FALSE)

Arguments
prevalence the vector of prevalences between 0 and 1 summing to 1. J, the number of
groups, is implicitly the length of this vector and should be at least 2.
N a three-vector of total sample size at each stage
alpha the type I error
beta the type II error
eps the fraction (between 0 and 1) of the type 1 error to spend in the interim stages
1 and 2
futilityOnly alogical value indicating only the futility boundary is to be computed; default
FALSE
Value

a named vector of three values containing b, b, ¢

12 conformParameters

computeMHPBoundaryITT Compute the three modified Haybittle-Peto boundaries and effect size

Description

Compute the three modified Haybittle-Peto boundaries and effect size

Usage

computeMHPBoundaryITT(prevalence, alpha)

Arguments
prevalence the vector of prevalences between 0 and 1 summing to 1. .J, the number of
groups, is implicitly the length of this vector and should be at least 2.
alpha the type I error
Value

a named vector of a single value containing the value for ¢

conformParameters Conform designParameters so that weights are turned in to probabili-
ties, the null and control distributions are proper matrices etc.

Description
Conform designParameters so that weights are turned in to probabilities, the null and control distri-
butions are proper matrices etc.

Usage

conformParameters(plist, discreteData = FALSE)

Arguments

plist the parameter list

discreteData flag if data is discrete

Value

the modified parameter list

DEFUSE3Design

13

DEFUSE3Design The DEFUSE3 design

Description

DEFUSE3Design is a slight variant of the the adaptive clinical trial design of Lai, Lavori and Liao.
Simulation is used to compute the expected maximum sample size and the boundary for early futility

is adjusted to account as well.

Super class

ASSISTant: :ASSISTDesign -> DEFUSE3Design

Methods

Public methods:

* DEFUSE3Design$getOriginalBoundaries()
e DEFUSE3Design$new()

* DEFUSE3Design$adjustCriticalValues()
e DEFUSE3Design$explore()

e DEFUSE3Design$performInterimLook()

e DEFUSE3Design$clone()

Method getOriginalBoundaries(): Return the original boundaries for the design
Usage:
DEFUSE3Design$getOriginalBoundaries()

Returns: anamed vector of values for b, btilde and ¢

Method new(): Create a DEFUSE3Design object

Usage:

DEFUSE3Design$new(
designParameters,
trialParameters,
discreteData = FALSE,
numberOfSimulations = 5000,
rngSeed = 54321,
showProgress = TRUE,
trueParameters = NULL,
boundaries

)

Arguments:

designParameters parameters of the experimental design. Must contain apropriate distribu-

tions to sample from, if discreteData = TRUE
trialParameters the trial parameters, such as sample size etc.

14

DEFUSE3Design

discreteData a flag indicating that a discrete distribution is to be used for the Rankin scores

numberOfSimulations the number of simulations to use, default 5000

rngSeed the random number generator seed

showProgress a boolean flag to show progress (default TRUE)

trueParameters alist of true parameter values reflecting the state of nature

boundaries decision boundaries to use for interim looks, a named vector of btilde, b and ¢
values

Returns: anew AssistDesign object

Method adjustCriticalValues(): Adjust critical values to account for sample size loss due
to futility

Usage:

DEFUSE3Design$adjustCriticalValues(numberOfSimulations, rngSeed, showProgress)

Arguments:

numberOfSimulations the number of simulations to use
rngSeed the random number generator seed
showProgress a boolean flag for showing progress

Returns: the adjusted boundaries

Method explore(): Explore the design using the specified number of simulations and random
number seed and other parameters.
Usage:
DEFUSE3Design$explore(
numberOfSimulations = 5000,
rngSeed = 12345,
trueParameters = self$getDesignParameters(),
recordStats = TRUE,
showProgress = TRUE,
saveRawData = FALSE

)

Arguments:

numberOfSimulations default number of simulations is 5000
rngSeed default seed is 12345

trueParameters the state of nature, by default the value of self$getDesignParameters()
as would be the case for a Type I error calculation. If changed, would yield power.

recordStats a boolean flag (default TRUE) to record statistics
showProgress a boolean flag to show progress, default TRUE
saveRawData a flag (default FALSE) to indicate if raw data has to be saved

Returns: alist of results

Method performInterimLook(): Perform an interim look for futility

Usage:
DEFUSE3Design$performInterimLook(trialData, stage, recordStats = FALSE)

DEFUSE3Design

Arguments:

trialData trial data frame

stage the trial stage

recordStats a boolean flag to record all statistics

Returns: the trial history

Method clone(): The objects of this class are cloneable with this method.

Usage:
DEFUSE3Design$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

See Also

ASSISTDesign which is a superclass of this object

Examples

trialParameters <- list(N = c(200, 340, 476), typelError = 0.025,
eps = 1/2, type2Error = 0.1)
designParameters <- list(

nul® = list(prevalence = rep(1/6, 6), mean = matrix(@, 2, 6),
sd = matrix(1, 2, 6)),

altl = list(prevalence = rep(1/6, 6), mean = rbind(rep(@, 6),
c(0.5, 0.4, 0.3, 0, 0, 0)),
sd = matrix(1, 2, 6)),

alt2 = list(prevalence = rep(1/6, 6), mean = rbind(rep(@, 6),
c(0.5, 0.5, 0, @, 9, 9)),
sd = matrix (1,2, 6)),

alt3 = list(prevalence = rep(1/6, 6), mean = rbind(rep(@, 6), rep(0.36, 6)),
sd = matrix(1,2, 6)),

alt4 = list(prevalence = rep(1/6, 6), mean = rbind(rep(@, 6), rep(0.30, 6)),
sd = matrix(1,2, 6)),

alt5 = list(prevalence = rep(1/6, 6), mean = rbind(rep(@, 6),
c(0.4, 0.3, 0.2, 0, 0, 0)),
sd = matrix(1,2, 6)),

alt6 = list(prevalence = rep(1/6, 6), mean = rbind(rep(@, 6),
c(0.5, 0.5, 0.3, 0.3, 0.1, 0.1)),
sd = matrix(1,2, 6)))

Not run:

A realistic design uses 5000 simulations or more!

defuse3 <- DEFUSE3Design$new(trialParameters = trialParameters,
numberOfSimulations = 25,
designParameters = designParameters$nulo,
showProgress = FALSE)

print(defuse3)

result <- defuse3$explore(showProgress = interactive())

analysis <- defuse3$analyze(result)

print(defuse3$summary(analysis))

16

End(Not run)

generateDiscreteData

For full examples, try:
browseURL(system.file("full_doc/defuse3.html”, package="ASSISTant"))

generateDiscreteData A data generation function using a discrete distribution for Rankin

score rather than a normal distribution

Description

A data generation function using a discrete distribution for Rankin score rather than a normal dis-

tribution

Usage

generateDiscreteData(prevalence, N, support = QL:6L, ctlDist, trtDist)

Arguments

prevalence
N

support
ctlDist

trtDist

Value

a vector of group prevalences (length denoted by J below)
the sample size to generate
the support values of the discrete distribution (length K), default 0:6

a probability vector of length K denoting the Rankin score distribution for con-
trol.

an K x J probability matrix with each column is the Rankin distribution for the
associated group

a three-column data frame of subGroup, trt (0 or 1), and score

Examples

Simulate data from a discrete distribution for the Rankin scores,
which are typically ordinal integers from @ to 6 in the following

simulations.

So we define a few scenarios.

library(ASSISTant)

null.uniform <- rep(1, 7L) ## uniform on 7 support points

hourglass <- c(1, 2, 2, 1, 2, 2, 1)

inverted.hourglass <- c(2, 1, 1, 2, 1, 1, 2)

bottom.heavy <- c(2, 2, 2, 1, 1, 1, 1)

bottom.heavier <- c¢(3, 3, 2, 2, 1, 1, 1)

top.heavy <- c(1, 1, 1, 1, 2, 2, 2)

top.heavier <- c(1, 1, 1, 2, 2, 3, 3)

ctlDist <- null.uniform

trtDist <- cbind(null.uniform, null.uniform, hourglass, hourglass) ## 4 groups

generateNormalData 17

generateDiscreteData(prevalence = rep(1, 4), N = 10, ctlDist = ctlDist,
trtDist = trtDist) ## default support is 0:6

trtDist <- cbind(bottom.heavy, bottom.heavy, top.heavy, top.heavy)

generateDiscreteData(prevalence = rep(1, 4), N = 10, ctlDist = ctlDist,
trtDist = trtDist)

support <- c(-2, -1, @, 1, 2) ## Support of distribution

top.loaded <- c(1, 1, 1, 3, 3) ## Top is heavier

ctl.dist <- c(1, 1, 1, 1, 1) ## null on 5 support points

trt.dist <- cbind(ctl.dist, ctl.dist, top.loaded) ## 3 groups

generateDiscreteData(prevalence = rep(1, 3), N = 10, support = support,
ctlDist = ctl.dist, trtDist = trt.dist)

ctl.dist can also be a matrix with different nulls for each subgroup

uniform <- rep(1, 5)

bot.loaded <- c(3, 3, 1, 1, 1)

ctl.dist <- matrix(c(uniform, bot.loaded, top.loaded), nrow = 5)

generateDiscreteData(prevalence = rep(1, 3), N = 10, support = support,
ctlDist = ctl.dist, trtDist = trt.dist)

generateNormalData A data generation function along the lines of what was used in the Lai,
Lavori, Liao paper. score rather than a normal distribution

Description

A data generation function along the lines of what was used in the Lai, Lavori, Liao paper. score
rather than a normal distribution

Usage

generateNormalData(prevalence, N, mean, sd)

Arguments
prevalence a vector of group prevalences (length denoted by J below)
N the sample size to generate
mean a 2 x J matrix of means under the null (first row) and alternative for each group
sd a 2 x J matrix of standard deviations under the null (first row) and alternative for
each group
Value

a three-column data frame of subGroup, trt (0 or 1), and score

18 groupSampleSize

groupSampleSize Compute the sample size for any group at a stage assuming a nested
structure as in the paper.

Description

In the three stage design under consideration, the groups are nested with assumed prevalences and
fixed total sample size at each stage. This function returns the sample size for a specified group
at a given stage, where the futility stage for the overall group test may be specified along with the
chosen subgroup.

Usage

groupSampleSize(
prevalence,
N,
stage,
group,
HIFutileAtStage = NA,
chosenGroup = NA

)
Arguments

prevalence the vector of prevalence, will be normalized if not already so. The length of this
vector implicitly indicates the number of groups J.

N an integer vector of length 3 indicating total sample size at each of the three
stages

stage the stage of the trial

group the group whose sample size is desired

HJFutileAtStage

is the stage at which overall futility occured. Default NA indicating it did not
occur. Also ignored if stage is 1.

chosenGroup the selected group if HJFutility AtStage is not NA. Ignored if stage is 1.

Value

the sample size for group

LLL.SETTINGS 19

LLL.SETTINGS

Design and trial settings used in the Lai, Lavori, Liao paper simula-
tions

Description

A list of design and trial design settings used for analysis and simulations in the Lai, Lavori, Liao
paper displayed in Tables 1 and 2. The elements of the list are the following

trialParameters N the sample size at each of three interim looks, the last being the final one; The
length of this also determines the number of interim looks

typelError the overall type I error
eps the fraction of type I error spent at each interim look

type2Error the type II error desired

scenarios A list of the 10 settings used in the simulations named S0, S1, ..., S10@ as in the paper,
each with three elements

mean a2 x J matrix of means, the first row for the null setting, the second for the alternative
sd a2 x J matrix of standard deviations, the first row for the null setting, the second for the
alternative

prevalences A list of two elements with prevalence vectors used in the paper; the lengths of these
vectors implicitly define the number of groups.

tablel a vector of equal prevalences for six groups used in table 1

table2 a vector of prevalences used in table 2 of the paper

References

Adaptive Choice of Patient Subgroup for Comparing Two Treatments by Tze Leung Lai and Philip

W. Lavori and Olivia Yueh-Wen Liao. Contemporary Clinical Trials, Vol. 39, No. 2, pp 191-200
(2014, doi:10.1016/j.cct.2014.09.001).

mHP . b

Compute the efficacy boundary (modified Haybittle-Peto) for the first
two stages

Description

Compute the efficacy boundary (modified Haybittle-Peto) for the first two stages

Usage

mHP.b(prevalence, N, cov.J, mu.prime, Sigma.prime, alpha, btilde, theta)

https://doi.org/10.1016/j.cct.2014.09.001

20

Arguments

prevalence

N
cov.J

mu.prime

Sigma.prime

mHP.btilde

the vector of prevalences between 0 and 1 summing to 1. J, the number of
groups, is implicitly the length of this vector and should be at least 2.

a three-vector of total sample size at each stage
the 3 x 3 covariance matrix for Z_J at each of the three stages

a list of J mean vectors, each of length J — 1 representing the conditional means
of all the other Z; given Z;. This mean does not account for the conditioned
value of Z; and so has to be multiplied by that during use!

a list of J covariance matrices, each J — 1 by J — 1 representing the conditional
covariances all the other Z; given Z;

alpha the amount of type I error to spend
btilde the futility boundary
theta the effect size on the probability scale
mHP.btilde Compute the futility boundary (modified Haybittle-Peto) for the first
two stages
Description

The futility boundary bis computed by solving (under the alternative)

Usage

mHP.btilde(beta, cov.J)

Arguments

beta

cov.J

Details

the type II error

the 3 x 3 covariance matrix

P(Z} <borZ2 <b)=¢p

where the superscripts denote the stage and e is the fraction of the type I error («) spent and f3 is the
type II error. We make use of the joint normal density of Z; (the overall group) at each of the three
stages and the fact that the Z;is merely a translation of Z;. So here the calculation is based on a
mean of zero and has to be translated during use!

mHP.c 21

mHP. ¢ Compute the efficacy boundary (modified Haybittle-Peto) for the final
(third) stage

Description

Compute the efficacy boundary (modified Haybittle-Peto) for the final (third) stage

Usage

mHP.c(prevalence, N, cov.J, mu.prime, Sigma.prime, alpha, btilde, b, theta)

Arguments
prevalence the vector of prevalences between 0 and 1 summing to 1. .J, the number of
groups, is implicitly the length of this vector and should be at least 2.
N a three-vector of total sample size at each stage
cov.J the 3 x 3 covariance matrix for Z_J at each of the three stages
mu.prime a list of J mean vectors, each of length J — 1 representing the conditional means
of all the other Z; given Z;. This mean does not account for the conditioned
value of Z; and so has to be multiplied by that during use!
Sigma.prime a list of .J covariance matrices, each J — 1 by J — 1 representing the conditional
covariances all the other Z; given Z;
alpha the amount of type I error to spend
btilde the futility boundary
b the efficacy boundary for the first two stages
theta the effect size on the probability scale
wilcoxon Compute the standardized Wilcoxon test statistic for two samples
Description

We compute the standardized Wilcoxon test statistic with mean O and and standard deviation 1 for
samples = and y. The R function stats: :wilcox. test() returns the statistic

Usage

wilcoxon(x, y, theta = @)

22 wilcoxon

Arguments
X a sample numeric vector
y a sample numeric vector
theta a value > 0 but < 1/2.
Details

U= R - Lm; D

where R; are the ranks of the first sample = of size m. We compute

(U—-mn(1/2+0))
Vmn(m+n+1)/12

where 6 is the alternative hypothesis shift on the probability scale, i.e. P(X >Y) =1/2+ 6.

Value

the standardized Wilcoxon statistic

Index

x data
LLL.SETTINGS, 19

ASSISTant, 2
ASSISTant::ASSISTDesign, 6,8, 13
ASSISTant: :ASSISTDesignB, 8
ASSISTDesign, 3

ASSISTDesignB, 6
ASSISTDesignC, 8

colNamesForStage, 10
computeMeanAndsD, 11
computeMHPBoundaries, 11
computeMHPBoundaryITT, 12
conformParameters, 12

DEFUSE3Design, 13

generateDiscreteData, 16
generateNormalData, 17
groupSampleSize, 18

LLL.SETTINGS, 19

mHP . b, 19
mHP.btilde, 20
mHP.c, 21

stats::wilcox.test(), 2/

wilcoxon, 21

23

	ASSISTant
	ASSISTDesign
	ASSISTDesignB
	ASSISTDesignC
	colNamesForStage
	computeMeanAndSD
	computeMHPBoundaries
	computeMHPBoundaryITT
	conformParameters
	DEFUSE3Design
	generateDiscreteData
	generateNormalData
	groupSampleSize
	LLL.SETTINGS
	mHP.b
	mHP.btilde
	mHP.c
	wilcoxon
	Index

