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1 Introduction

1.1 Background

Genetic linkage maps are widely used in the biological research community to explore
the underlying DNA of populations. They generally consist of a set of polymorphic
genetic markers spanning the entire genome of a population generated from a specific
cross of parental lines. This exploration may involve the dissection of the linkage map
itself to understand the genetic landscape of the population or, more commonly, it is
used to conduct gene-trait associations such as quantitative trait loci (QTL) analysis
or genomic selection (GS). For QTL analysis, the interpretation of significant genomic
locations is enhanced if the linkage map contains markers that have been assigned and
optimally ordered within chromosomal groups. This can be achieved algorithmically by
using linkage map construction techniques that utilise assumptions of Mendelian genetics.

In the R statistical computing environment (R Development Core Team, 2014) there is
only a handful of packages that can perform linkage map construction. A popular package
is the linkage map construction and QTL analysis package R/qtl (Broman & Wu, 2014).
Since its inception in late 2001 it has grown considerably and incorporates functionality
for a wide set of populations. These include a simple Backcross (BC), Doubled Haploid
(DH), intercrossed F2 (F2) and 4-way crosses. More recently, the authors have added func-
tionality for additional populations generated from advanced Recombinant Inbred Lines
(RIL) as well as populations generated from multiple backcrossing and selfing processes.
The package offers an almost complete set of tools to construct, explore and manipulate
genetic linkage maps for each population. To complement the package the authors have
also publihed a comptrehensive book (Broman & Sen, 2009). A more recent available
addition to the contributed package list in R is R/onemap (Margarido & Mollinari, 2014).
This package provides a suite of tools for genetic linkage map construction for BC, DH
and RIL inbred populations and also has functionality for outcrossing populations.

Both packages contain functions that perform moderately well at clustering markers into
homogeneous linkage groups. Unfortunately, the functions in R/qtl and R/onemap used
to perform optimal marker ordering within linkage groups are tediously slow. In both
packages there are functions that compute initial orders using non-exhaustive methods
such as SERIATION (Buetow & Chakravarti, 1987) and RECORD (Van Os et al., 2005).

As these methods may not return an optimal order, a second stage antiquated brute force
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approach is used that checks all order combinations within a marker window. This is
known throughout the linkage map construction community as “rippling”. For linkage
groups with large numbers of markers and a moderate sized window (eight markers),
rippling can be very computationally cumbersome and also may need to be performed
several times before an optimal order is reached.

In an attempt to circumvent these computational issues the R/ASMap package was devel-
oped (Taylor & Butler, 2014). The package contains linkage map construction functions
that utilise the MSTmap algorithm derived in Wu et al. (2008) and computationally imple-
mented as C++ source code freely available at http://alumni.cs.ucr.edu/~yonghui/
mstmap.html. The algorithm uses the minimum spanning tree of a graph (Cheriton &
Tarjan, 1976) to cluster markers into linkage groups as well as find the optimal marker
order within each linkage group in a very computationally efficient manner. In contrast to
R/qtl and R/onemap, genetic linkage maps are constructed using a one-stage approach.
The algorithm is restricted to linkage map construction with Backcross (BC), Doubled
Haploid (DH) and Recombinant Inbred (RIL) populations. For RIL populations, the level
of self pollination can also be given and consequently the algorithm can handle selfed F2,
F3, ..., Fn populations where n is the level of selfing. Advanced RIL populations are also
allowed as they are treated like a bi-parental for the purpose of linkage map construction.

The R/ASMap package uses an R/qtl format for the structure of its genetic objects. Once
the class of the object is appropriately set, both R/ASMap and R/qtl functions can be
used synergistically to construct, explore and manipulate the object. To complement
the efficient MSTmap linkage map construction functions the R/ASMap package also
contains a function that “pulls” markers of different types from the linkage map and places
them aside. A complementary “push” function also exists to push the markers back to
linkage groups ready for construction or reconstruction. There are also several numerical
and graphical diagnostic tools to efficiently check the quality of the constructed map.
This includes the ability to simultaneously graphically display multiple panel profiles of
linkage map statistics for the set of genotypes used. Additionally, profile marker /interval
statistics can be simultaneously displayed for the entire genome or subsetted to pre-defined
linkage groups. In tandem, these fast graphical diagnostic tools and efficient linkage map
construction assist in providing a rapid turnaround time in linkage map construction and
diagnosis.

The vignette is set out in chapters. The final section of the introduction provides a brief
technical explanation of the components of the MSTmap algorithm. In the second chapter
the functions of R/ASMap are discussed in detail and examples are provided, where
appropriate, using a data set integrated into the package. Chapter 3 contains a completely
worked example of a barley Backcross population including pre-construction diagnostics,
linkage map construction, and post-construction diagnostics using the available R/ASMap
functions. The chapter also discusses how R/ASMap can be used for post construction
linkage map improvement through techniques such as fine mapping or combining linkage
maps. The last chapter presents some additional useful information on aspects of the
MSTmap algorithm learnt through detailed exploration of the linkage map construction
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functions in this package.

1.2 MSTmap

It is important to understand some of the technical features of the MSTmap algorithm as
they are contained in the two linkage map construction functions that are available with
the R/ASMap package.

Following the notation of Wu et al. (2008) consider a Doubled Haploid population of n
individuals genotyped across a set of t markers where each (i, j)th entry of the n x ¢ matrix
M is either an A or a B representing the two parental homozygotes in the population. Let
P ;. be the probability of a recombination event between the markers (m;, my) where 0 <
Pj;, < 0.5. MSTmap uses two possible weight objective functions based on recombination
probabilities between the markers

wp<j7 k) = Pﬂf
Wi (j, k) = = (Pjlog Pji, + (1 — Pj,)log(1 — Pjy)) (1.2)

In general Pjj, is not known and so it is replaced by an estimate, d;;/n where d;;, cor-
responds to the hamming distance between m; and my (the number of non-mathcing
alleles between the two markers). This estimate, dj;/n, is also the maximum likelihood
estimate for Pj;, for the two weight functions defined above.

1.2.1 Clustering

If markers m; and my, belong to two different linkage groups then P, = 0.5 and the
hamming distance between them has the property E(d;;) = n/2. A simple threshold-
ing mechanism to determine whether markers belong to the same linkage group can be
calculated using Hoeffdings inequality,

P(djx < 6) < exp(=2(n/2 = 6)*/n) (1.3)

for 0 < 0.5. For a given P(d;; < 0) = € and n, the equation —2(n/2—4)?/n = log € is solved
to determine an appropriate hamming distance threshold, 6. Wu et al. (2008) indicate
that the choice of € is not crucial when attempting to form linkage groups. However,
the equation that requires solving is highly dependent on the number of individuals in
the population. For example, for a DH populationm, Figure 1.1 shows the profiles of the
—log 10e against the number of individuals in the population for four threshold minimum
cM distances (25,30, 35,40). MSTmap uses a default of ¢ = 0.00001 which would work
universally well for population sizes of n ~ 150t0200. For larger numbers of individuals,
for example 350, the plot indicates an € = 1.0e7!? to 1.0e™® would use a conservative
minimum threshold of 30-35 ¢cM before linking markers between clusters. If the default
e = 0.00001 is given in this instance this threshold is dropped to ~ 45 ¢cM and consequently
distinct clusters of markers will appear linked. For this reason, Figure 1.1 should always
initially be checked before linkage map construction to ensure an appropriate p-value is
given to the MSTmap algorithm.
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Figure 1.1: Negative loglO € versus the number of genotypes in the population for four
threshold cM distances.

To cluster the markers MSTmap uses an edge-weighted undirected complete graph, for
M where the individual markers are vertices and the edges between any two markers
m; and my, is the pairwise hamming distance d;;,. Edges with weights greater than )
are then removed. The remaining connected components allow the marker set M to be
partitioned into r linkage groups, M = [M;,..., M,].

1.2.2 Marker Ordering

For simplicity, consider the n x ¢t matrix of markers M belongs to the same linkage group.
Preceding marker ordering, the markers are “binned” into groups where, within each
group, the pairwise distance between any two markers is zero. The markers within each
group have no recombinations between them and are said to be co-locating at the same
genomic location for the n genotypes used to construct the linkage map. A representative
marker is then chosen from each of the bins and used to form the reduced n x t* marker
set M*.

For the reduced matrix M™, consider the complete set of entries (j,k) € (1,...,t*) for
either weight function (1.1) or (1.2). These complete set of entries can be viewed as the
upper triangle of a symmetric weight matrix W. MSTmap views all these entries as
being connected edges in an undirected graph where the individual markers are vertices.
A marker order for the set M*, also known as a travelling salesman path (T'SP), can be
determined by visiting each marker once and summing the weights from the connected
edges. To find a minimum weight (TSP,,;,), MSTmap uses a minimum spanning tree
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(MST) algorithm (Cheriton & Tarjan, 1976), such as Prims algorithm (Prim, 1957). If
the TSP,,;, is unique then the MST is the correct order for the markers. For cases where
the data contains genotyping errors or lower numbers of individuals the MST may not
be a complete path and contain markers or small sets of markers as individual nodes
connected to the path. In these cases, MSTmap uses the longest path in the MST as the
backbone and employs several efficient local optimization techniques such as K-opt, node-
relocation and block-optimize (see Wu et al., 2008) to improve the current minimum TSP.
By integrating these local optimization techniques into the algorithm, MSTmap provides
users with a true one stage marker ordering algorithm.

One excellent feature of the MSTmap algorithm is the utilisation of an EM type algorithm
for the imputation of missing allele scores that is tightly integrated with the ordering
algorithm for the markers. To achieve this the marker matrix M™ is converted to a
matrix, A, where the entries represent the probabilistic certainty of the allele being A.
For the jth marker and ¢th individual then

1 if M™(i,j) is the A allele
A, ) =4 0 ) ) if M*(i,7) is the B allele (1.4)
(=P 1)) A=Pjj1)
(1=Pjj+1)(A=Pj j+1)+Pj-1,;Pj j+1

if M*(i,j) is missing

where P;;_; and P, are estimated recombination fractions between the (j — 1)th
and jth marker and jth and (j 4+ 1)th marker respectively. The equation on the right
hand side is the posterior probability of the missing value in marker j being the A allele
for genotype ¢ given the current estimate. The ordering algorithm begins by initially
calculating pairwise normalized distances between all markers in M™ and deriving an
initial weight matrix, W. An undirected graph is formed using the markers as vertices
and the upper triangular entries of W as connected edges. An MST of the undirected
graph is then found to establish an initial order for the markers of the linkage group. For
the current order at the (j—1, j, 7+ 1)th markers the E-step of algorithm requires updating
the missing observation at marker j by updating the estimates ijl,j = CZH,J- /n and
P, =dj;ii/nin (1.4). The M-step then re-estimates the pairwise distances between
all markers in M™ where, for the jth and kth marker, is

di =Y AG,5)(1— A(i, k) + A, K)(1 = A(, /) (1.5)

and the weight matrix W is recalculated. An undirected graph is formed with the markers
as vertices and the upper triangular entries of W as connected edges. A new order of
the markers is derived by obtaining an MST of the undirected graph and the algorithm
is repeated to convergence. Although this requires several iterations to converge, the
computational time for the ordering algorithm remains expedient. However, an increase
in the number of missing values will increase computation time.

If required, the MSTmap algorithm also detects and removes genotyping errors as well
as integrates this process into the ordering algorithm. The technique involves using a
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weighted average of nearby markers to determine the expected state of the allele. For
individual ¢ and marker j the expected value of the allele is calculated using

LA = S d AR [ S (16)

In this equation the weights are the inverse square of the distance from marker j to its
nearby markers. MSTmap only uses a small set of nearby markers during each iteration
and the observed allele is considered suspicious if |E[A(7, )] — A(i,7)] > 0.75. If an
observation is detected as suspicious it is treated as missing and imputed using the EM
algorithm discussed previously. The removal of the suspicious allele has the effect of
reducing the number of recombinations between the marker containing the suspicious
observation and the neighbouring markers. This has an influential effect on the genetic
distance between markers and the overall length of the linkage group.

The complete algorithm used to initially cluster the markers into linkage groups and
optimally order markers within each linkage group, including imputing missing alleles
and error detection, is known as the MSTmap algorithm.



2 A closer look at R/ASMap functions

This chapter explores the R/ASMap functions in greater depth and shows how they can
be used to efficiently explore, manipulate and construct genetic linkage maps. It will also
showcase the graphical tools that will allow efficient diagnosis of linkage map problems
post construction.

The package contains multiple data sets listed as follows

mapDH : A constructed genetic linkage map for a Doubled Haploid population in the
form of an R/qtl object. The genetic linkage map contains a total of 599 markers
spanning 23 linkage groups genotyped across 218 individuals. The linkage map
contains a small set of co-located markers and a small set of markers with excessive
segregation distortion

mapDHTf : An unconstructed version of mapDH in the form a data frame. The data frame
has dimensions 599 x 218 and the rows (markers) have been randomized.

mapBCu : An unconstructed set of markers for a backcross population in the form of
an R/qtl object. The marker set contains a total of 3023 markers genotyped on 326
individuals. This marker set can be used in conjunction with the detailed process
presented in chapter 3 to construct a genetic linkage map.

mapBC : A constructed linkage map of mapBCu in the form of an R/qtl object. The
linkage map contains a total of 3019 markers genotyped on 300 individuals.

mapF2 : A simulated linkage map for a self-pollinated F2 population consisting of 700
markers spanning 7 linkage groups genotyped across 250 individuals.

Each of these data sets is accessible using commands similar to

R> data(mapDHf, package = "ASMap")
R> data(mapDH, package = "ASMap")
R> data(mapBCu, package = "ASMap")
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2.1 Map construction functions

The R/ASMap package contains two linkage map construction functions that allow users
to fully utilize the MSTmap parameters listed at http://alumni.cs.ucr.edu/~yonghui/
mstmap.html. Some additional information on aspects of the MSTmap algorithm and the
appropriate use of the arguments mvest.bc and detectBadData is given in Chapter 4.

2.1.1 mstmap.data.frame()

The first of these functions allows users to input a data frame of genetic markers ready
for construction. For a more detailed explanation of the arguments users should consult
the help documentation found by typing ?mstmap.data.frame in R.

mstmap.data.frame(object, pop.type = "DH", dist.fun = "kosambi", objective.fun
= "COUNT", p.value = 1e-06, noMap.dist = 15, noMap.size = 0, miss.thresh = 1,
mvest.bc = FALSE, detectBadData = FALSE, as.cross = TRUE, return.imputed
TRUE, trace = FALSE, ...)

The explicit form of the data frame object is borne from the syntax of the marker file
required for using the stand alone MSTmap software. It must have markers in rows and
genotypes in columns. Marker names are required to be in the rownames component of
the object with genotype names residing in the names. Spaces in any of the marker or
genotype names should be avoided but will be replaced with a “-” if found. Each of the
columns of the data frame must be of class "character" (not factors). If converting from
a matrix, this can easily be achieved by using the stringAsFactors = FALSE argument
for any data.frame method.

The available populations that can be passed to pop.type are "BC" Backcross, "DH"
Doubled Haploid, "ARIL" Advanced Recombinant Inbred and "RILn" Recombinant Inbred
with n levels of selfing. The allelic content of the markers in the object must be explicitly
adhered to. For pop.type "BC", "DH" or "ARIL" the two allele types should be represented
as ("A" or "a") and ("B" or "b"). Thus for pop.type = "ARIL" it is assumed the minimal
number of heterozygotes have been set to missing. For non-advanced RIL populations
(pop.type = "RILn") phase unknown heterozygotes should be represented as "X". For
all populations, missing marker scores should be represented as ("U" or "-").

Users need to be aware that the p.value argument plays an important role in determining
the clustering of markers to distinct linkage groups. Section 1.2.1 shows the separation of
marker groups is highly dependent on the the number of individuals in the population. For
this reason, some trial and error may be required to determine an appropriate p.value
for the linkage map being constructed.

Although this function contains arguments that utilize the complete set of available
MSTmap parameters it is less flexible than its sister function mstmap.cross() (see sec-

tion 2.1.2) that uses the flexible structure of an R/qtl "cross" object. For this reason,
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it is recommended that users set as.cross = TRUE to ensure the constructed object is
returned as a R/qtl cross object with an appropriate class structure. For population types
"BC" and "DH" the class of the constructed object is given "bc" and "dh" respectively. For
"RILn" the qtl package conversion function convert2bcsft is used to ensure the class of
the object is assigned "bcsft" with arguments F.gen = n and BC.gen = 0. For "ARIL"
populations the constructed object is given the class "riself". The correct assignation
of these classes ensures the objects can be used synergistically with the suite of functions
available in the R/qtl package as well as other functions in the R/ASMap package.

The R/ASMap package contains an unconstructed Doubled Haploid marker set mapDHf
with 599 markers genotyped across 218 individuals. The marker set is formatted correctly
for input into the mstmap.data.frame() function.

R> testd <- mstmap (mapDHf, dist.fun = "kosambi", trace = TRUE, as.cross = TRUE)
R> nmar (testd)

L1 L2 L3 14 15 L6 L7y L8 L9 L10 Li11 Li12 L13 Li4 Li15 L16 L17 L18 L19 L20
56 54 35 41 4 37 6 30 40 27 37 13 15 10 21 6 32 33 33 41
L21 L22 L23 L24

R> chrlen(testd)

L1 L2 L3 L4 L5 L6 L7
142.806369 181.935011 97.376797 115.405242 21.660902 108.162200 13.256931
L8 L9 L10 L11 L12 L13 L14
133.885978 153.235513 98.705941 145.839837 60.441336 72.211612 81.224002
L15 L16 L17 L18 L19 L20 L21
98.211685  8.738474 109.472813 60.913640 134.491476 103.954898 18.019891
L22 L23 L24

7.801089  7.810474 19.196583

As as.cross = TRUE the usual functions available in the R/qtl package are available for
use on the returned object.

2.1.2 mstmap.cross()

The second linkage map construction function allows users to input an unconstructed or
constructed linkage map in the form of an R/qtl cross object. See ?mstmap.cross for a
more detailed description.

mstmap.cross(object, chr, id "Genotype", bychr = TRUE, suffix = "numeric",
anchor = FALSE, dist.fun = "kosambi", objective.fun = "COUNT", p.value = 1le-06,
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noMap.dist = 15, noMap.size = 0, miss.thresh = 1, mvest.bc = FALSE,
detectBadData = FALSE, return.imputed = FALSE, trace = FALSE, ...)

The cross object needs to inherit from one of the allowable classes available in the
R/qtl package, namely "bc","dh","riself","bcsft" where "be" is a Backcross "dh"
is Doubled Haploid, "riself" is an advanced Recombinant Inbred and "bcsft" is a
Backcross/Self.

It is important to understand how these classes are encoded into the object for the specific
populations. If read.cross() is used to read in any bi-parental populations it will be
given the class "bc". Doubled Haploid populations can be changed to "dh" just by
changing the class. For the purpose of linkage map construction, both classes "bc" and
"dh" will produce equivalent results. For non-advanced Recombinant Inbred populations
markers are required to be fully informative (i.e. contain 3 distinct allele types such as AA,
BB for parental homozygotes and AB for phase unknown heterozygotes) and the use of
read.cross () will result in the cross object being given a class "£2". The level of selfing
is required to be encoded into the object by applying one of the two conversion functions
available in the R/qtl package. For a population that has been generated by selfing n
times, the conversion function convertbcsft can be used by setting the arguments F. gen
= n and BC.gen = 0. This will attach a class "bcsft" to the object. Populations that
are genuine advanced RILs can be converted using the convert2riself function. This
function will replace any remaining heterozygosity, if it exists, with missing values and
attach the class "riself" to the object.

Similar to the mstmap.data.frame() function, users need to be aware that the p.value
argument is highly dependent on the number of individuals in the population and may
require some trial and error to ascertain an appropriate value. After construction the
cross object is returned with an identical class structure as the inputted object. All R/qtl
and R/ASMap package functions can be used synergistically with this object.

Examples

The constructed linkage map mapDH available in the R/ASMap package will be used to
showcase the flexibility of this function. Before attempting re-construction, some prelim-
inary output of mapDH is presented.

R> nmar (mapDH)

1A 1B1 1B2 1D 2A 2B 2D1 2D2 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D
41 5 33 10 40 35 8 13 37 30 6 30 32 6 54 56 6 27 41 15
7TA 7B 7D
33 37 4

R> pull.map (mapDH) [[4]]

10
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1D.m.1 1D.m.2 1D.m.3 1D.m.4 1D.m.5 1D.m.6 1D.m.7 1D.m.8
0.000000 2.285816 2.742698 2.742698 21.465574 25.652893 57.200980 58.104090
1D.m.9 1D.m.10
58.568087 81.061896
attr(,"class")
[1] "A"

The output shows that there are 23 groups that have been appropriately been assigned
linkage group or chromosome names. The markers within each linkage group have been
named according to the order of the markers.

Example 1: Completely construct or reconstruct a linkage map.

To completely re-construct this map set the argument bychr = FALSE. This will bulk the
genetic data from all linkage groups, re-cluster the markers into groups and then optimally
order the markers within each linkage group. This linkage map is small so these two tasks
happen almost instantaneously.

R> mapDHa <- mstmap(mapDH, bychr = FALSE, dist.fun = "kosambi", trace = TRUE)
R> nmar (mapDHa)

r.i1L.i0L.11 L.12 L.13 L.14 L.156 L.16 L.17 L.18 L.19 L.2 L.20 L.21 L.22 L.23
41 30 6 9 21 32 6 54 56 6 27 5 41 15 33 37
L.24 L.3 L.4 L.5 L.6 L.7 L.8 L.9
4 33 10 40 35 8 13 37

R> pull.map(mapDHa) [[4]]

4A.m.9 4A.m.7 4A.m.8 4A.m.6 4A.m.5 4A.m.3 4A.m.4 4A.m.2
0.000000 1.835687 1.835687 2.294415 2.753144 3.670678 4.129406 6.424595
4A.m. 1
7.801089
attr(,"class")
[1] IIAII

The reconstructed map contains 24 linkage groups with the extra linkage group coming
from a minor split in 4A. As the linkage map is constructed from scratch, it assumed that
former linkage group names are no longer required. A standard “L.” prefix is provided
for the new linkage group names. This example also indicates that MSTmap by default
does not respect the inputted marker order.

Example 2: Optimally order markers within linkage groups of an established map.

11
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It may be necessary to only perform marker ordering within already established linkage
groups. This can be achieved by setting bychr = TRUE. In some cases it also be preferable
to ensure the marker orders of the linkage groups are respected and this can be achieved
by setting anchor = TRUE.

R> mapDHb <- mstmap (mapDH, bychr = TRUE, dist.fun = "kosambi", anchor = TRUE,
trace = TRUE)
R> nmar (mapDHb)

1A 1B1 1B2 1D 2A 2B 2D1 2D2 3A 3B 3D 4A.1 4A.2 4B 4D 5A
41 5 33 10 40 35 8 13 37 30 6 9 21 32 6 54
5B 5D 6A 6B 6D T7A 7B 7D
56 6 27 41 15 33 37 4

This map is identical to mapDH with the exception that chromosome 4A has been split into
two linkage groups. As bychr = TRUE the function understands the origin of the linkage
group was 4A and consequently uses it as a prefix in the naming of the two new linkage
groups.

Example 3: Optimally order markers within linkage groups of an established map
without breaking linkage groups.

The splitting of the linkage groups in the last example only occurred due to choice of
default p.value = 1e-06 set in the function. A slight change to this p.value will ensure
that 4A remains linked during the algorithm.

R> mapDHc <- mstmap(mapDH, bychr = TRUE, dist.fun = "kosambi', anchor = TRUE,
trace = TRUE, p.value = le-04)
R> nmar (mapDHc)

1A 1B1 1B2 1D 2A 2B 2D1 2D2 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D
41 5 33 10 40 35 8 13 37 30 6 30 32 6 54 56 6 27 41 15
7TA 7B 7D
33 37 4

An identical result can be achieved by setting p.value = 2 or any number greater than 1.
Doing this instructs the MSTmap algorithm to not split linkage groups regardless of how
weak the linkages are between markers within any group. Users should be aware that if
this latter method is used then linkage groups that contain groups of markers separated by
a substantial distance (i.e. very weak linkages) may suffer from local orientation problems.

Example 4: Reconstruct map within predefined linkage groups of an established
map.

12
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There may only be a need to reconstruct a predefined set of linkage groups. By setting
the chr argument and bychr = FALSE users can determine which linkage groups require
the complete reconstruction using MSTmap.

R> mapDHd <- mstmap (mapDH, chr = names(mapDH$geno) [1:3], bychr = FALSE, dist.fun =
"kosambi", trace = TRUE, p.value = 1e-04)
R> nmar (mapDHd)

1D 2A 2B 2D1 2D2 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D T7A 7B 7D
10 40 35 8 13 37 30 6 30 32 6 54 656 6 27 41 15 33 37 4
L.1L.2L.3

41 5 33

Again, the algorithm assumes that the original linkage group names are no longer neces-
sary and defines new ones. An obvious extension of this example is to set bychr = TRUE
and then the algorithm will order markers within the predefined linkage groups stipulated
by chr. Similar to the previous example, an appropriate choice of p.value will ensure
that linkage groups remain unbroken.

2.2 Pulling and pushing markers

Often in linkage map construction, some pruning of the markers occurs before initial
construction. This may be the removal of markers with a proportion of missing values
higher than some desired threshold as well as markers that are significantly distorted from
their expected Mendelian segregation patterns. Often the removal is permanent and the
possible importance of some of these markers is overlooked. A preferable system would be
to identify and place the problematic markers aside with the intention of checking their
usefulness at a later stage of the construction process.

The R/ASMap package contains two functions that allow you to do this. The first is
the function pullCross() which provide users with a mechanism to “pull” markers of
certain types from a linkage map and place them aside. The complementary function
pushCross () then allows users to “push” markers back into the linkage map at any stage
of the construction process. These can be seen as helper functions for more efficient
construction of linkage maps (see ?pullCross and ?pushCross for complete details).

pullCross(object, chr, type = c("co.located", "seg.distortion", "missing"),
pars = NULL, replace = FALSE, ...)

pushCross(object, chr, type = c("co.located", "seg.distortion", "missing",
"unlinked"), unlinked.chr = NULL, pars = NULL, replace = FALSE, ...)

pp-init(seg.thresh = 0.05, seg.ratio = NULL, miss.thresh = 0.1, max.rf = 0.25,
min.lod = 3)

13



2.2 Pulling and pushing markers

In the current version of the package, the helper functions share three types of markers that
can be “pulled/pushed” from linkage maps. These include markers that are co-located
with other markers, markers that have some defined segregation distortion and markers
with a defined proportion of missing values. If the argument type is "seg.distortion" or
"missing" then the initialization function pp.init is used to determine the appropriate
threshold parameter setting (seg.thresh, seg.ratio, miss.thresh) that will be used to
pull/push markers from the linkage map. Users can set their own parameters by setting
the pars argument (see examples below). For each of the different types, pullCross()
will pull markers from the map and place them in separate elements of the cross object.
Within the elements, vital information is kept that can be accessed by pushCross() to
push the markers back at a later stage of linkage map construction.

The function pushCross() also contains another marker type called "unlinked" which,
in conjunction with the argument unlinked.chr, allows users to push markers from
an unlinked linkage group in the geno element of the object into established linkage
groups. This mechanism becomes vital, for example, when pushing new markers into an
established linkage map. An example of this is presented in section 3.4.3.

Again, the constructed linkage map mapDH will be used to showcase the power of
pullCross() and pushCross(). Markers are pulled from the map that are co-located
with other markers, have significant segregation distortion with a p-value less than 0.02
and have a missing value proportion greater than 0.03.

R> mapDHs <- pullCross(mapDH, type = "co.located")

R> mapDHs <- pullCross(mapDHs, type = "seg.distortion", pars = list(seg.thresh =
0.02))

R> mapDHs <- pullCross(mapDHs, type = "missing", pars = list(miss.thresh = 0.03))

R> names (mapDHs)

[1] "geno" "pheno" "co.located" "seg.distortion"
[5] "missing"

R> names (mapDHs$co.located)

[1] "table" "data"

The cross object now contains three new elements named by the marker types that are
pulled from the map. In each of the elements there are two elements, a table of information
for the markers that are pulled and the actual marker data in genotype by marker format
(i.e. exactly the same as the data contained in the linkage groups themselves).

R> mapDHs$seg.distortion$table
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2.2 Pulling and pushing markers

mark chr pos negloglOP missing AA AB
1 1A.m.34 1A 77.35004 1.830929 0.000000000 0.5825688 0.4174312
2 1A.m.37 1A 91.14416 1.830929 0.000000000 0.5825688 0.4174312
3 3B.m.15 3B 64.19254 1.997307 0.000000000 0.5871560 0.4128440
4 3B.m.16 3B 64.65088 2.170970 0.000000000 0.5917431 0.4082569
5 3B.m.17 3B 65.10962 1.872327 0.027522936 0.5849057 0.4150943
6 3B.m.18 3B 65.10962 1.997307 0.000000000 0.5871560 0.4128440
7 3B.m.19 3B 65.56831 1.830929 0.000000000 0.5825688 0.4174312
8 3B.m.20 3B 66.48546 1.830929 0.000000000 0.5825688 0.4174312
9 6D.m.12 6D 60.69446 1.756872 0.004587156 0.4193548 0.5806452
10 7B.m.6 7B 23.03041 1.769873 0.013761468 0.4186047 0.5813953

The table element of each of the marker types "missing" and "seg.distortion" consists
of a summary of positional information as well as information from geno.table() in the
R/qtl package.

R> head (mapDHs$co.located$table)

bins chr mark
1 1B1 1B1.m.4
1 1B1 1B1.m.5
2 1D 1D.m.3
1D 1D.m.4
2B 2B.m.31
2B 2B.m.32

D O W N
w w N

The table element for the marker type "co.located" contains information on the markers
that are co-located and the group or bin they belong to. In each group the first marker
is the reference marker that remains in the linkage map and the remaining markers are
pulled from the map and placed aside.

Suppose now the map is undergone a construction or re-construction process so that the
linkage groups are artificially renamed. To do this we will re-run MSTmap with bychr =
FALSE.

R> mapDHs <- mstmap(mapDHs, bychr = FALSE, dist.fun = "kosambi", trace = TRUE,
anchor = TRUE)
R> nmar (mapDHs)

r.iL.i0rL.11L.12 L.13 L.14 L.156 L.16 L.17 L.18 L.19 L.2 L.20 L.21 L.22 L.23
38 23 5 8§ 21 32 6 52 55 5 27 4 41 13 32 34
L.24 L.3 L.4 L.5 L.6 L.7 L.8 L.9
3 31 9 37 34 7 13 35
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2.2 Pulling and pushing markers

The markers can now be pushed back into the linkage map using pushCross(). The
complete set of co.located markers are pushed back as well as markers that have significant
segregation distortion with p-values greater than 0.001 and markers that have a missing
value proportion less than 0.05.

R> mapDHs <- pushCross(mapDHs, type = "co.located")

R> mapDHs <- pushCross(mapDHs, type = "seg.distortion", pars = list(seg.thresh =
0.001))

R> mapDHs <- pushCross(mapDHs, type = "missing", pars = list(miss.thresh = 0.05))

R> names (mapDHs)

[1] ”geno" ”pheno"

With the above parameter settings all markers from each marker type are pushed back
into the map and the marker type elements are removed from the object.

R> pull.map (mapDHs) [[4]]

4A.m.1 4A.m.2 4A.m.4 4A.m.3 4A.m.5 4A.m.6 4A.m.7 4A.m.8
0.000000 1.376494 3.671683 4.130412 5.047946 5.506674 5.965403 5.965403
4A.m.9
7.801089
attr(,"class")
[1] "A"

R> pull.map(mapDHs) [[21]]

2B.m.1 2B.m.2 2B.m.3 2B.m.4 2B.m.5 2B.m.6 2B.m.7 2B.m.8
0.000000 2.779284 25.847324 26.306053 31.833042 41.112443 49.445632 51.281319
2B.m.9 2B.m.10 2B.m. 11 2B.m.12 2B.m.13 2B.m.14 2B.m.15 2B.m.16
51.740047 52.198776 61.004291 61.921825 63.757512 65.134006 65.592735 66.051463
2B.m.17 2B.m.18 2B.m.19 2B.m.20 2B.m.21 2B.m.22 2B.m.23 2B.m.24
66.510191 67.427726 68.345260 69.721754 70.180483 71.556977 72.933472 73.392200
2B.m.25 2B.m.26 2B.m.27 2B.m.28 2B.m.29 2B.m.30 2B.m.31 2B.m.32
75.227887 75.686615 76.604149 77.521684 77.980412 78.439141 78.897869 78.897869
2B.m.34 2B.m.33 2B.m.35
80.274363 80.733092 97.376797
attr(,"class")
[1] "AII

For co-located markers the reference marker for each group is used as a guide to place the
set of co-locating markers back into the linkage map adjacent to the reference marker. For
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2.3 Improved heat map

example, the co-locating marker 1D.m.4 on 1D appears adjacent to its reference marker
1D.m.3. Markers from the "seg.distortion" and "missing" elements are pushed back
to the end of the linkage groups ready for the map to be re-constructed by chromosome.
For example the distorted marker 6D.m.12 is pushed to the end of 6D. A final run of
MSTmap within each linkage group will produce the desired map with all markers in
their optimal position.

R> mapDHs <- mstmap (mapDHs, bychr = TRUE, dist.fun = "kosambi', trace = TRUE,
anchor = TRUE, p.value = 2)

2.3 Improved heat map

A visual diagnostic that is very useful for checking how well a linkage map is constructed
is a heat map that combines the estimates of the pairwise recombination fraction (RF)
between markers as well as LOD scores reflecting the the strength of linkage between each
pair. Let the estimate of RF between marker ¢ and j be r;; then the LOD score is a test
of no linkage (r;; = 0.5). Higher LOD scores indicate that the hypothesis of no linkage is
rejected and the strength of the connection between the pair of markers is strong.

In R/qtl users can plot the heat map of pairwise linkage between markers using plot.rf ().
The plot.rf () version of mapDH is given in Figure 2.1. In this plot strong pairwise linkages
between markers are represented as “hot” or red areas and weak pairwise linkages between
markers are displayed as “cold” or blue areas.

Unfortunately the plot contains some inadequacies that are mostly pointed out in the doc-
umentation (see ?plot.rf). “Recombination fractions are transformed by -4(log2(r)+1)
to make them on the same sort of scale as LOD scores. Values of LOD or the transformed
recombination fraction that are above 12 are set to 12.” This transformation and the arbi-
trary threshold induce multiple restrictions on the visualization of the heat map. Firstly,
the LOD score is highly dependent on the number of individuals in the population and
the upper limit of 12 may be a vastly inadequate representation of the pairwise linkage
between some markers. In Figure 2.1 this latter inadequacy is displayed as red or hot
areas of linkage between markers that should otherwise be cooler colours. Additionally,
the actual estimated recombination fractions are not displayed in the upper triangle of
the heat map and colour legends matching the numerical LOD and RF’s are not present.
From a visual standpoint, it is well known the rainbow colour spectrum is perceptually
inadequate for representing diverging numerical data.

R/ASMap contains an improved version of the heat map called heatMap() that rectifies
the numerical and visual issues of the qtl heat map.

heatMap (x, chr, mark, what = c("both", "lod", "rf"), Ilmax = 12, rmin = 0,
markDiagonal = FALSE, color = rev(rainbow(256, start = 0, end = 2/3)), ...)
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2.3 Improved heat map

Pairwise recombination fractiens and LOD scores

1A 1B1 1B2 1D 2A 2B 2DID2  3A 3B 3D 4A 48 4D BA 58 5D 6A 6B 6D T7A 7B 7D

Markers

Figure 2.1: Heat map of the constructed linkage map mapDH using plot.rf ().

The function independently plots the LOD score on the bottom triangle of the heatmap as
well as the actual estimated recombination fractions on the upper triangle. The function
also releases the arbitrary threshold on the LOD score and recombination fractions by
providing a user defined 1lmax and rmin argument that is adjustable to suit the popula-
tion size and any requirements of the plot required. For example, Figure 2.2 shows the
heatMap () equivalent of plot.rf() for the linkage map mapDH made with the call

R> heatMap (mapDH, lmax = 50)

The instantly visual difference between the figures is the chosen colour palette. R/ASMap
uses a diverging colour palette "Spectral" from the default color palettes of RColor-
Brewer. The palette softens the plot and provides a gentle dinstinction between strongly
linked and weakly linked markers. The plot also includes a legend for the LOD score
and recombination fractions on either side of Figure 2.2. As the estimated recombination
fractions are being freely plotted without transformation, the complete scale is included in
the heat map. This scale also includes estimated recombination fractions that are above
the theoretical threshold of 0.5. By increasing this scale beyond 0.5, potential regions
where markers out of phase with other markers can be recognised. The key to obtain-
ing an “accurate” heat map is to match the heat of the LOD scores to the heat of the
estimated recombination fractions and setting lmax = 50 achieves this goal. Similar to
plot.rf(), the heatMap() function allows subsetting of the linkage map by chr. In ad-
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2.4 Genotype and marker/interval profiling
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2.4 Genotype and marker/interval profiling

To provide a complete system for efficient linkage map construction and diagnosis the
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Figure 2.2: Heat map of the constructed linkage map mapDH using heatMap ().

R/ASMap package contains functions that calculate linkage map statistics across the
markers for every genotype as well as across the markers/intervals of the genome. These
statistics can then be profiled across simultaneous R/lattice panels for quick diagnosis of
linkage map attributes.

statGen(cross, chr, bychr = TRUE, stat.type = c("xo", "dxo", "miss"),

"Genotype")
profileGen(cross, chr, bychr = TRUE, stat.type = c("xo", "dxo", "miss"), id
"Genotype", xo.lambda = NULL, ...)

statMark(cross, chr, stat.type = c("marker", "interval"), map.function
"kosambi")
profileMark(cross, chr, stat.type = "marker", use.dist = TRUE, map.function =

"kosambi", crit.val = NULL, display.markers = FALSE, mark.line = FALSE,

)

The statGen() and profileGen() are functions for calculation and profiling of the

statistics for the genotypes across the chosen marker set defined by chr.
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2.4 Genotype and marker/interval profiling

profileGen() actually calls statGen() to obtain the statistics for profiling and also re-
turns the statistics invisibly after plotting. Setting bychr = TRUE will also ensure that
the genotype profiles are plotted individually for each linkage groups given chr. The
current statistics that can be calculated for each genotype include

e "xo" : number of crossovers
e "dxo" : number of double crossovers

e "miss" : number of missing values

The two statistics "xo" and "dxo" are obviously only useful for constructed linkage maps.
However, from my experience, they represent the most vital two statistics for determining
a linkage maps quality. Inflated crossover or double crossover rates of any genotypes indi-
cate a lack of adherence to Mendelian genetics. For example, it can be quickly calculated
for a Doubled Haploid wheat population of size 100, one recombination is approximately
1cM. Consequently, under Mendelian genetics, a chromosome of length 200 ¢cM would
expect to have 200 random crossovers with each genotype having an expected recombina-
tion rate of 2. Wheat is a hexaploid, so for excellent coverage over the whole genome the
expected recombination rate of any genotype is ~42. This number will obviously be re-
duced if the coverage of the genome is incomplete. Significant recombination rates can be
checked by manually inputting a median recombination rate in the argument xo.lambda
of profileGen(). As an example, the genotype profiles of the mapDH can be displayed
using the command below and the resultant plot is given in Figure 2.3.

R> profileGen(mapDH, bychr = FALSE, stat.type = c("xo", "dxo", "miss"), id =
"Genotype", xo.lambda = 25, layout = c(1, 3), lty = 2)

The plot neatly displays, the number of missing values, double crossovers and crossovers
for each genotype in the order represented in mapDH. The plot was aesthetically enhanced
by including graphical arguments layout = c(1,3) and 1ty = 2 which are passed to
the high level lattice function xyplot(). Plotting these statistics simultaneously allows
the users to quickly recognize genotypes that may be problematic and worth further
investigation. For example, in Figure 2.3 the line DH218 was identified as having an
inflated recombination rate and removing it may improve the quality of the linkage map.

The statMark() and profileMark() functions are commands for the calculation and
profiling of statistics associated with the markers or intervals of the linkage map.
profileMark() calls statMark() and graphically profiles user given statistics and will
also return them invisibly after plotting. The current marker statistics that can be
profiled are

e "seg.dist": -logl0 p-value from a test of segregation distortion
e "miss": proportion of missing values

e "prop": allele proportions
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Figure 2.3: Genotype profiles of missing values, double recombinations and recombinations for
mapDH.

e "dxo": number of double crossovers
The current interval statistics that can be profiled are

e "erf": estimated recombination fractions

e "lod": LOD score for the test of no linkage
e "dist": interval map distance

e "mrf": map recombination fraction

e "recomb": number of recombinations.

The function allows any or all of the statistics to be plotted simultaneously on a multi-
panel lattice display. This includes combinations of marker and interval statistics. There
is a chr argument to subset the linkage map to user defined linkage groups. If crit.val
= "bonf" then markers that have significant segregation distortion greater than the fam-
ily wide alpha level of 0.05/no.of. markers will be annotated in marker panels. Similarly,
intervals that have a significantly weak linkage from a test of the recombination fraction of
r = 0.5 will also be annotated in the interval panels. Similar to profileGen(), graphical
arguments can be used in profileMark() and are passed to the high level lattice function
xyplot (). A plot of the segregation distortion, double crossovers, estimated recombina-
tion fractions and LOD scores for the whole genome of mapDH is given in Figure 2.4 and
created with the command

R> profileMark (mapDH, stat.type = c("seg.dist", "dxo", "erf", "lod"), id =
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Figure 2.4: Marker and interval profiles of segregation distortion, double crossovers, estimated
recombination fractions and LOD scores for mapDH.

"Genotype", layout = c(1, 4), type = "1")

All linkage groups are highlighted in a different colours to ensure they can be identified
clearly. The lattice panels ensure that marker and interval statistics are seamlessly plotted
together so problematic regions or markers can be identified efficiently. In this command,
the layout = c(1,4) and type = "1" arguments are passed directly to the high level
xyplot () lattice function to ensure a more aesthetically pleasing graphic.

2.5 Miscellaneous additional R/qtl functions

2.5.1 Genetic clones

In my experience, the assumptions of how the individuals of the population are genetically
related is rarely checked throughout the construction process. Too often unconstructed or
constructed linkage maps contain individuals that are far too closely related beyond the
simple assumptions of the population. For example, in a DH population, the assumption
of independence would indicate that any two individuals will, by chance, share half of
their alleles. Any pairs of individuals that significantly breach this assumption should be
deemed suspicious and queried.

The R/ASMap package contains a function for the detection and reporting of the related-
ness between individuals as well as a function for forming consensus genotypes if genuine
clones are found.
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2.5 Miscellaneous additional R/qtl functions

R> genClones(object, chr, tol = 0.9, id = "Genotype")
R> fixClones(object, gc, id = "Genotype", consensus = TRUE)

The genClones() function uses the power of comparegeno() from the R/qtl package
to perform the relatedness calculations. It then provides a numerical breakdown of the
relatedness between pairs of individuals that share a proportion of alleles greater than
tol. This breakdown also includes the clonal group the pairs of individuals belong to.
The complete set of statistics allows users to make an informed decision about the con-
nectedness of the pairs of individuals. For example, using the constructed map mapDH the
list of clones can be found using

R> gc <- genClones(mapDH, tol = 0.9)
R> gc$cgd

G1 G2 coef match diff na.both na.one group

1 DH40 DH24 1 597 0 0 2 1
2 DH59 DH53 1 597 0 0 2 2
3 DH65 DH6E0 1 598 0 0 1 3
4 DH143 DH139 1 597 0 0 2 4
5 DH186 DH169 1 595 0 0 4 5

The reported information shows five pairs of clones that are, with the exception of missing
values, identical.

If clones are found then fixClones() can be used to form consensus genotypes for each
of the clonal groups. By default it will intelligently collapse the allelic information of the
clones within each group (see Table 2.1) to obtain a single consensus genotype. Setting
consensus = FALSE will choose a genotype with the smallest proportion of missing values
as the representative genotype for the clonal group. In both cases genotypes names are
given an elongated name containing all genotype names of the clonal group separated by
an underscore.

R> mapDHg <- fixClones(mapDH, gc$cgd, consensus = TRUE)
R> levels (mapDHg$pheno[[1]]) [grep("_", levels(mapDHg$pheno[[1]]))]

[1] "DH139_DH143" "DH169_DH186" "DH24_DH40" "DH53_DH59" "DH60_DH65"

2.5.2 Breaking and merging linkage groups

During the linkage map construction process there may be a requirement to break or
merge linkage groups. R/ASMap provides two functions to achieve this.
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Table 2.1: Consensus genotype outcomes for 3 clones across 8 markers in a DH population.
Genotype M1 M2 M3 M4 M5 M6 M7 MS

Gl AA BB AA BB AA BB NA AA
G2 AA BB NA NA NA NA NA BB
G3 AA BB AA BB NA NA NA AA
Cons. AA BB AA BB AA BB NA NA

NULL, suffix = "numeric", sep = ".")
NULL, gap = 5)

breakCross (cross, split
mergeCross (cross, merge

The breakCross () function allows users to break linkage groups in a variety ways. The
split argument takes a list with elements named by the linkage group names that require
splitting and containing the markers that immediately proceed where the splits are to be
made. For example, a split of the linkage group 3B and 6A linkage map mapDH after the
seventh and fifteenth marker respectively can be easily made using

R> mapDHbl <- breakCross(mapDH, split = 1list(°3B~ = "3B.m.7", “6A~ = "6A.m.15"))
R> nmar (mapDHb1)

1A 1B1 1B2 1D 2A 2B 2D1 2D2 3A 3B.1 3B.2 3b 4A 4B 4D b5A
41 5 33 10 40 35 8 13 37 7 23 6 30 32 6 54
5B 5D 6A.1 6A.2 6B 6D T7A 7B 7D
56 6 15 12 41 15 33 37 4

The split argument is flexible and can handle multiple linkage groups as well as multiple
markers within linkage groups. The default use of the suffix argument produces a
numerical suffix attachment to the original linkage groups being split with a separated by
sep. Users can also provide their own complete names for the new split linkage groups
by explicitly naming them in the suffix argument.

R> mapDHb2 <- breakCross(mapDH, split = 1list(°3B" = "3B.m.7"), suffix = list( 3B~
= C(”3B1 n’ 113B2II)))
R> nmar (mapDHb2)

1A 1B1 1B2 1D 2A 2B 2D1 2D2 3A 3B1 3B2 3D 4A 4B 4D 5A 5B 5D 6A 6B
41 5 33 10 40 35 8 13 37 7 23 6 30 32 6 54 56 6 27 41
6D 7A 7B 7D
16 33 37 4

The mergeCross () function provides a method for merging linkage groups. Its argument
merge requires a list with elements named by the proposed linkage group names required
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and containing the linkage groups to be merged. For the linkage map mapDHb1 containing
split linkage groups 3B and 6A created by a call to breakCross () the call to mergeCross ()
would be

R> mapDHm <- mergeCross(mapDHbl, merge = list(°3B~ = c("3B.1", "3B.2"), “6A" =
c("6A. 1", "6A.2")))
R> nmar (mapDHm)

1A 1B1 1B2 1D 2A 2B 2D1 2D2 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D
41 5 33 10 40 35 8 13 37 30 6 30 32 6 54 56 6 27 41 15
7TA 7B 7D
33 37 4

It should be noted that this function places an artificial genetic distance gap between
the merged linkage groups set by the gap argument. Accurate distance estimation would
require a separate map estimation procedure after the merging has taken place.

2.5.3 Rapid genetic distance estimation

The linkage map estimation function in R/qtl called est.map() can be invoked individu-
ally or can be applied through read.cross() when setting the argument estimate.map
= TRUE. The function applies the multi-locus hidden Markov model technology of Lander
& Green (1987) to perform its calculations. Unfortunately this technology is computa-
tionally cumbersome if there are many markers on a linkage group and becomes more so
if there are many missing allele calls and genotyping errors present.

R/ASMap contains a small map estimation function that circumvents this computational
burden.

quickEst (object, chr, map.function = "kosambi", ...)

The function makes use of another function in R/qtl called argmax.geno (). This function
is also a multi-locus hidden Markov algorithm that uses the observed markers present in a
linkage group to impute pseudo-markers at any chosen cM genetic distance. In this case,
we only require a reconstruction or imputation at the markers themselves. For the most
accurate imputation to occur there needs to be an estimate of genetic distance already
in place. To obtain an initial estimate of distance est.rf () is called within each linkage
group defined by chr and recombination fractions are converted to genetic distances based
on map.function. Unlike est.map() the quickEst() function lives up to its namesake
by providing the quickest genetic distance calculations for large linkage maps.

R> mapl <- est.map(mapDH, map.function = "kosambi')
R> mapl <- subset(mapl, chr = names (nmar (map1))[6:15])
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Figure 2.5: Comparison of mapDH using est.map and quickEst.

R> map2 <- quickEst(mapDH, map.function = "kosambi")
R> map2 <- subset (map2, chr = names (nmar (map2))[6:15])
R> plot.map(mapl, map2)

The linkage map mapDH was re-estimated using est.map() and quickEst() and a com-
parison of the resulting maps are given in Figure 2.5. The graphic indicates that there
negligible changes in marker placement and overall linkage group distances between the
two linkage maps.

2.5.4 Subsetting in R/ASMap

The functions pullCross() and pushCross() described in section 2.2 are used to create
and manipulate extra list elements "co.located", "seg.distortion" and "missing"
associated with different marker types. Each element contains a data element consisting
of a marker matrix equivalent in row dimension to the marker elements of the linkage
map they were pulled from. Unfortunately, these list elements are not recognized by the
native R/qtl functions. If the R/qtl function subset.cross() is used to subset the object
to a reduced number of individuals then the data component of each of these elements
will not be subsetted accordingly. In addition, the statistics in the table component of
the elements "seg.distortion" and "missing" will be incorrect for the newly subsetted
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2.5 Miscellaneous additional R/qtl functions

linkage map.

The subsetCross() function available in the R/ASMap package contains identical func-
tionality to subset.cross but also ensures the data components of the extra list el-
ements "co.located", "seg.distortion" and "missing" are subsetted to match the
linkage map. In addition, for elements "seg.distortion" and "missing" it also up-
dates the table components to reflect the newly subsetted map. This update ensures that
pushCross () uses the most accurate information when deciding which markers to push
back into the linkage map.

Using the default seg.thresh = 0.05 for the linkage map mapDH, distorted markers are
pulled from the map

R> mapDH.s <- pullCross(mapDH, type = '"seg.distortion")
R> mapDH.s <- subsetCross(mapDH.s, ind = 3:218)
R> dim(mapDH.s$seg.distortion$data) [1]

[1] 216

In this example the use of subsetCross() ensures that the data component of the
"seg.distortion" element is the same dimension as the map. The table element is
also updated to ensure the statistics are correct for the reduced subset of lines.

2.5.5 Combining maps

Over the period of time that I have been involved in linkage map construction there has
been many occasions where I have required a function that could merge R/qtl cross ob-
jects together in an intelligent manner. For example, the merging of two linkage maps
from the same population that were independently built with markers from two differ-
ent platforms. This idea was the motivation behind the combineMap() function in the
R/ASMap package. The aim of the function was to merge linkage maps based on map
information, readying the combined linkage groups for reconstruction through an efficient
linkage map construction process such as mstmap.cross().

combineMap(..., id = "Genotype", keep.all = TRUE)

The function takes an unlimited number of maps through the ... argument. The linkage
maps must all have the same cross class structure and contain the same genotype identifier
id. At the current stage of writing this vignette the function required unique maker names
across all linkage maps. This is expected to be relaxed at a later date so linkage maps that
share markers, such as nested association mapping populations, can be merged effectively.

The merging of the maps happens intelligently using several components of the map.
Firstly the linkage maps are merged based on commonality between the genotypes. If
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keep.all = TRUE the new combined linkage map is “padded out” with missing values
where genotypes are not shared. If keep.all= FALSE the combined map is reduced to
genotypes that are shared among all linkage maps. Secondly, if linkage group names are
shared between maps then the markers from the shared linkage groups are merged. To
exemplify its use a duplicate of mapDH is made and 10 linkage group names have been
altered, with the marker names inside each of the linkage groups also altered to ensure
they are unique.

R> mapDH1 <- mapDH

R> names (mapDH1$geno) [5:14] <- paste("L", 1:10, sep = "")
R> mapDH1$geno <- lapply(mapDH1$geno, function(el) { names(el$map) <-
dimnames (el$data) [[2]] <- paste(names(el$map), "A", sep = "") el })

R> mapDHc <- combineMap (mapDH, mapDH1)
R> nmar (mapDHc)

1A 1B1 1B2 1D 2A 2B 2D1 2D2 3A 3B 3D 4A 4B 4D 5A 5B 5D 6A 6B 6D
82 10 66 20 40 35 8 13 37 30 6 30 32 6 108 112 12 54 82 30
7TA 7B 7D L1 L2 L3 14 L5 L6 L7 L8 L9 L10
66 74 8 40 35 8 13 37 30 6 30 32 6

The resulting combined map includes a combined marker set for the linkage groups that
shared the same name and distinct linkage groups for unshared names. Again, note the
function only merges the linkage maps and does not reconstruct the final combined linkage
map.

The advantages of this function may not be obvious at a first glance. If an attempt
is made to completely reconstruct the super set of linkage maps, rather than combine
them first, the identification of linkage groups is lost. This function serves to preserve
the important identity of linkage groups. More examples of its use in common map
construction procedures will be explored in section chapter 3.4 of the next chapter.
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3 Worked example

This chapter involves the complete linkage map construction process for a barley Backcross
population that contains 3024 markers genotyped on 326 individuals in an unconstructed
marker set formatted as an R/qtl object with class "bc". The data is available from the
R/ASMap package by typing

data(mapBCu, package = "ASMap")

3.1 Pre-construction

The construction of a linkage map does not usually just involve applying a construction
algorithm to a supplied set of genetic marker data. It is always prudent to go through
a pre-construction checklist to ensure that the best quality genotypes/markers are being
used to construct the linkage map.

A non-exhaustive ordered checklist for an unconstructed marker set could be

1. Check missing allele scores across markers for each genotype as well as across geno-
types for each marker. Markers or genotypes with a high proportion of missing
information could indicate problems with the physical genotyping.

2. Check for genetic clones or individuals that have a high proportion of matching
allelic information between them.

3. Check markers for excessive segregation distortion. Highly distorted markers may
not map to unique locations.

4. Check markers for switched alleles. These markers will not cluster or link well with
other markers during the construction process and it is therefore preferred to repair
their alignment before proceeding.

5. Check for co-locating markers. For large linkage maps it would be more computa-

tionally efficient from a construction standpoint to temporarily omit markers that
are co-located with other markers.
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3.1 Pre-construction
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Figure 3.1: Plot of the missing allele scores for the unconstructed map mapBCu

R/qtl provides a very simple graphical tool for checking the structure of missing allele
score across the genotypes and the markers.

R> plot.missing(mapBCu)

Figure 3.1 shows the resulting plot for this command. The darkest lines on the plot
indicate there are some genotypes with large amounts of missing data. This could indicate
poor physical genotyping of these lines and they should be removed before proceeding.
The plot also reveals the markers have a large number of typed allele values across the
range of genotypes. The R/ASMap function statGen() can be used to identify the
genotypes with a certain number of missing values. These genotypes are then omitted
using the usual functions available in R/qtl.

R> sg <- statGen(mapBCu, bychr = FALSE, stat.type = "miss")
R> mapBC1 <- subset(mapBCu, ind = sg$miss < 1600)

From a map construction point of view, highly related individuals can enhance segregation
distortion of markers. It is therefore wise to determine a course of action such as removal
of individuals or the creation of consensus genotypes before proceeding with any further
pre-construction diagnostics. The R/ASMap function genClones() discussed in section
2.5.1 can be used to identify and report genetic clones.
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3.1 Pre-construction

R> gc <- genClones(mapBC1, tol = 0.95)

R> gc$cgd

G1 G2  coef match diff na.both na.one group
1 BCO45 BCO39 0.9919 1466 12 97 1448 1
2 BC052 BCO39 1.0000 2423 0 98 502 1
3 BC168 BCO39 1.0000 2572 0 47 404 1
4 BCO52 BCO45 0.9899 1476 15 94 1438 1
5 BC168 BC045 0.9872 1620 21 44 1338 1
6 BC168 BC052 1.0000 2577 0 36 410 1
7 BCO67 BCO60 1.0000 2759 0 8 256 2
8 BC135 BC086 1.0000 2743 0 17 263 3
9 BC099 BC093 1.0000 2737 0 19 267 4
10 BC120 BC117 1.0000 2699 0 22 302 5
11 BC129 BC126 1.0000 2678 0 35 310 6
12 BC204 BC138 1.0000 2691 0 6 326 7
13 BC147 BC141 0.9996 2753 1 22 247 8
14 BC193 BC144 1.0000 2771 0 7 245 9
15 BC162 BC161 1.0000 2686 0 20 317 10
16 BC205 BC190 1.0000 2886 0 7 130 11
17 BC286 BC285 1.0000 2920 0 1 102 12
18 BC325 BC314 1.0000 2911 0 4 108 13

The table shows 13 groups of genotypes that share a proportion of their alleles greater
than 0.95. The supplied additional statistics show that the first group contains three pairs
of genotypes that had matched pairs of alleles from 1620 markers or less. These pairs also
1400 markers where an allele was present for one genotype and missing for another. Based
on this, there is not enough evidence to suspect these pairs may be clones and they are
removed from the table. The fixClones() function can then be used to form consensus
genotypes for the remaining groups of clones in the table.

R> cgd <- gc$cgd[-c(1, 4, 5), ]
R> mapBC2 <- fixClones(mapBC1, cgd, consensus = TRUE)
R> levels(mapBC2$pheno[[1]]) [grep("_", levels(mapBC2$pheno[[1]1]))]

[1] "BC039_BC0O52_BC168" "BCO60_BCO67"

"BCO86_BC135"

[4] "BC0O93_BC0O99" "BC117_BC120" "BC126_BC129"
[7] "BC138_BC204" "BC141_BC147" "BC144_BC193"
[10] "BC161_BC162" "BC190_BC205" "BC285_BC286"
[13] "BC314_BC325"

R> profileMark(mapBC2, stat.type = c("seg.dist", "prop", "miss"), crit.val =
"bonf", layout = c(1, 4), type = "1", cex = 0.5)
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3.1 Pre-construction
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Figure 3.2: For individual markers, the negative logl0 p-value for the test of segregation
distortion, the proportion of each contributing allele and the proportion of missing values.

At this juncture it is wise to check the segregation distortion statistics of the markers.
Segregation distortion is phenomenon where the observed allelic frequencies at a specific
locus deviate from expected allelic frequencies due to Mendelian genetics. It is well known
that this distortion can occur from physical laboratorial processes or it may also occur in
local genomic regions from underlying biological and genetic mechanisms (Lyttle, 1991).

The level of segregation distortion, the allelic proportions and the missing value proportion
across the genome can be graphically represented using the marker profiling function
profileMark() and the result is displayed in Figure 3.2.

Setting crit.val = "bonf" annotates the markers that have a p-value for the test of
segregation distortion lower than the family wide bonferroni adjusted alpha level of
0.05/no.of.markers on each of the figures in each panel. Additional plotting parameters
layout = c(1,4), type="p" and cex = 0.5 are passed to the high level lattice plot-
ting function xyplot () to provide a more aesthetically pleasing plot. The plot indicates
there are numerous markers that are considered to be significantly distorted with three
highly distorted markers. The plot also indicates that the missing value proportion of the
markers does not exceed 20%.

The highly distorted markers can easily be dropped using

R> mm <- statMark(mapBC2, stat.type = "marker")$marker$AB

32



3.2 MSTmap construction

R> mapBC3 <- drop.markers (mapBC2, c(markernames(mapBC2) [mm > 0.98],
markernames (mapBC2) [mm < 0.2]))

Without a constructed map it is impossible to determine the origin of the segregation
distortion. However, the blind use of distorted markers may also create linkage map
construction problems. It may be more sensible to place the distorted markers aside and
construct the map with less problematic markers. Once the linkage map is constructed the
more problematic markers can be introduced to determine whether they have a useful or
deleterious effect on the map. The R/ASMap functions pullCross() and pushCross()
are designed to take advantage of this scenario. To showcase their use in this example, they
are also used to pull markers with 10-20% missing values as well as co-located markers.

R> mapBC3 <- pullCross(mapBC3, type

R> mapBC3 <- pullCross(mapBC3, type
"bonf"))

R> mapBC3 <- pullCross(mapBC3, type

R> names (mapBC3)

"missing", pars = list(miss.thresh = 0.1))
"seg.distortion", pars = list(seg.thresh =

"co.located")

[1] "geno" "pheno" "missing" "seg.distortion"
[5] "co.located"

R> sum(ncol (mapBC3$missing$data), ncol (mapBC3$seg.dist$data),
ncol (mapBC3$co.located$data))

[1] 847

A total of 847 markers are removed and placed aside in their respective elements and the
map is now constructed with the remaining 2173 markers.

3.2 MSTmap construction

The curated genetic marker data in mapBC3 can now be constructed using the
mstmap.cross function available in R/ASMap.

R> mapBC4 <- mstmap (mapBC3, bychr = FALSE, trace = TRUE, dist.fun = "kosambi",
p.value = le-12)
R> chrlen(mapBC4)

L.1 L.2 L.3 L.4 L.5 L.6 L.7
304.910957 266.240647 78.982131 252.281760 33.226962 233.485952 153.315888
L.8 L.9

106.290403 6.657526
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3.2 MSTmap construction
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Figure 3.3: Heat map of the constructed linkage map mapBC4.

By setting bychr = FALSE the complete set of marker data from mapBC3 is bulked and
constructed from scratch. This construction involves the clustering of markers to linkage
groups and then the optimal ordering of markers within each linkage group. An initial
check of Figure 1.1, indicates for a population size of 309 the p.value should be set
to 1e-12 to ensure a 30cM threshold when clustering markers to linkage groups. The
newly constructed linkage map contains 9 linkage groups each containing markers that
are optimally ordered. The performance of the MSTmap construction can be checked
by plotting the heat map of pairwise recombination fractions between markers and their
pairwise LOD score of linkage using the R/ASMap function heatMap ()

R> heatMap (mapBC4, lmax = 70)

As discussed in section 2.3, an aesthetic heat map is attained when the heat on the upper
triangle of the plot used for the pairwise estimated recombination fractions matches the
heat of the pairwise LOD scores. Figure 3.3 displays the heat map and shows this was
achieved by setting lmax = 70. The heat map also shows consistent heat across the
markers within linkage groups indicating strong linkage between nearby markers. The
linkage groups appear to be very distinctly clustered.

Although the heat map is indicating the construction process was successful it does not
highlight subtle problems that may be existing in the constructed linkage map. As stated
in section 2.4 one of the key quality characteristics of a well constructed linkage map
is an appropriate recombination rate of the the genotypes. For this barley Backcross
population each line is considered to be independent with an expected recombination
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Figure 3.4: For individual genotypes, the number of recombinations, double recombinations
and missing values for mapBC4

rate of 14 across the genome. The current linkage map contains linkage groups that
exceed the theoretical cutoff of 200cM indicating there may be genotypes with inflated
recombination rates. This can easily be ascertained from the profileGen() function
available in R/ASMap.

R> pg <- profileGen(mapBC4, bychr = FALSE, stat.type = c("xo0", "dxo", "miss"), id
= "Genotype", xo.lambda = 14, layout = c(1, 3), 1lty = 2, cex = 0.7)

Figure 3.4 show the number of recombinations, double recombination and missing values
for each of 309 genotypes. The plot also annotates the genotypes that have recombination
rates significantly above the expected recombination rate of 14. A total of seven lines
have recombination rates above 20 and the plots also show that these lines have excessive
missing values. To ensure the extra list elements "co.located", "seg.distortion" and
"missing" of the object are subsetted and updated appropriately, the offending genotypes
are removed using the R/ASMap function subsetCross(). The linkage map is then be
reconstructed.

R> mapBC5 <- subsetCross(mapBC4, ind = !pg$xo.lambda)

R> mapBC6 <- mstmap(mapBC5, bychr = TRUE, dist.fun = "kosambi", trace = TRUE,
p.value = le-12)

R> chrlen (mapBC6)
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3.3 Pushing back markers

L.1 L.2 L.3 L.4 L.5 L.6 L.7
229.578103 223.170605 65.806120 214.380402 27.297642 191.060846 140.114968
L.8 L.9

88.6870563  4.875885

Users can check the recombination rates of the remaining genotypes in the re-constructed
map are now within respectable limits. As a result the lengths of the linkage groups have
dropped dramatically.

It is also useful to graphically display statistics of the markers and intervals of the current
constructed linkage map. For example, Figure 3.5 shows the marker profiles of the -log10
p-value for the test of segregation distortion, the allele proportions and the number of
double crossovers. It also displays the interval profile of the number of recombinations
occurring between adjacent markers. This plot reveals many things that are useful for
the next phase of the construction process.

R> profileMark (mapBC6, stat.type = c("seg.dist", "prop", "dxo", "recomb"), layout
= c(1, 5), type = "1")

The plot instantly reveals the success of the map construction process with no more than
one double crossover being found at any marker and very few being found in total. The
plot also reveals the extent of the biological distortion that can occur within a linkage
group. A close look at the segregation distortion and allele proportion plots shows the
linkage group L.3 and the short linkage group L.5 have profiles that could be joined if
the linkage groups were merged. In addition, L..8 and L.9 also have profiles that could be
joined if the linkage groups were combined. This will be discussed in more detail in the
next section.

3.3 Pushing back markers

In this section the markers that were originally placed aside in the pre-construction of the
linkage map will be pushed back into the constructed linkage map and the map carefully
re-diagnosed. To begin the 515 external markers that have between 10% and 20% missing
values residing in the list element "missing" are pushed back in using pushCross()

R> mapBC6 <- pushCross(mapBC6, type = "missing", pars = list(miss.thresh = 0.22,
max.rf = 0.3))

The parameter miss.thresh = 0.22 is used to ensure that all markers with a threshold
less 0.22 are pushed back into the linkage map. Note, this pushing mechanism is not
re-constructing the map and only assigns the markers to the most suitable linkage group.
At this point it is worth re-plotting the heatmap to check whether the push has been
successful. In this vignette we will confine the graphic to linkage groups L.3, 1.5, L.8 and
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Figure 3.5: Marker profiles of the -loglQ p-value for the test of segregation distortion, allele
proportions and the number of double of crossovers as well as the interval profile of the number
of recombinations between adjacent markers in mapBC6b.

L.9 to determine whether the extra markers have provided useful additional information
about the possible merging of the groups. The resulting heat map is given in Figure 3.6.

R> heatMap (mapBC6, chr = c("L.3", "L.5", "L.8", "L.9"), lmax = 70)

It is clear from the heat map that there are genuine linkages between L.3 and L.5 as well
as L.8 and L.9. These two sets of linkage groups can be merged using mergeCross()
and the linkage group names are renamed to form the optimal 7 linkage groups that are
required for the barley genome.

R> mapBC6 <- mergeCross(mapBC6, merge = 1list(L.3 = c("L.3", "L.5"), L.8 = c("L.8",
"L.9")))

R> names (mapBC6$geno) <- paste("L.", 1:7, sep = "")

R> mapBC7 <- mstmap (mapBC6, bychr = TRUE, trace = TRUE, dist.fun = "kosambi",
p.value = 2)

R> chrlen (mapBC7)
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Figure 3.6: Heat map of the constructed linkage map mapBC6.

L.1 L.2 L.3 L.4 L.5 L.6 L.7
242.4104 233.1945 162.6205 224.1773 201.1503 147.7669 159.5308

As the optimal number of linkage groups have been identified the re-construction of the
map is performed by linkage group only through setting the p.value = 2. At this point
there is no need to anchor the map during construction as orientation of linkage groups
has not been formally identified. The linkage group lengths of L.1, 1.2 and L.4 are
slightly elevated indicating excessive recombination across these groups. The reason for
this inflation is quickly understood by checking the profile of the genotypes again using
profileGen()

R> pgl <- profileGen(mapBC7, bychr = FALSE, stat.type = c("xo", "dxo", "miss"),
= "Genotype", xo.lambda = 14, layout = c(1, 3), lty = 2, cex = 0.7)

Figure 3.7 shows the genotype profiles for the 302 barley lines. The introduction of the
markers with missing value proportions between 10% and 20% into the linkage map has
highlighted two more problematic lines that have a high proportion of missing values
across the genome. Again, these should be removed using subsetCross() and the map
reconstructed.

R> mapBC8 <- subsetCross (mapBC7, ind = !pgl$xo.lambda)

R> mapBC9 <- mstmap (mapBC8, bychr = TRUE, dist.fun = "kosambi", trace = TRUE,
p.value = 2)

R> chrlen(mapBC9)
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Figure 3.7: For individual genotypes, the number of recombinations, double recombinations
and missing values for mapBC7.

L.1 L.2 L.3 L.4 L.5 L.6 L.7
225.7900 223.3063 157.0592 206.4801 194.3003 145.7554 149.2467

The removal of these two lines will not have a deleterious effect on the number of link-
age groups and therefore the linkage map should be reconstructed by linkage group only.
The length of most linkage groups has now been appreciably reduced. Figure 3.8 dis-
plays the segregation distortion and allele proportion profiles for the markers from using
profileMark() again.

R> profileMark (mapBC9, stat.type = c("seg.dist", "prop", "dxo", "recomb"), layout
= c(1, 5), type = "1")

The plot indicates a spike of segregation distortion on L.2 that does not appear to be
biological and should be removed. The plot also indicates the significant distortion regions
on L.3, .6 and L.7 indicating some of the markers with missing value proportions between
10% and 20% pushed back into the linkage map also had some degree of segregation
distortion. The marker positions on the x-axis of the plot suggests these regions are
sparse. The 295 external markers in the list element "seg.distortion" may hold the
key to this sparsity and are pushed back to determine their effect on the linkage map.

R> dm <- markernames (mapBC9, "L.2") [statMark(mapBC9, chr = "L.2", stat.type =
"marker") $marker$negloglOP > 6]
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Figure 3.8: Marker profiles of the -logl0 p-value for the test of segregation distortion, allele

proportions for mapBC9

R> mapBC10 <- drop.markers(mapBC9, dm)

R> mapBC11 <- pushCross(mapBC10, type = "seg.distortion", pars = list(seg.ratio

"70:30"))

R> mapBC12 <- mstmap(mapBC11, bychr = TRUE, trace = TRUE, dist.fun = "kosambi",

p.value = 2)

R> round(chrlen(mapBC12) - chrlen(mapBC9), 5)

L.1 L.2

0.20398 1.11431 0.60228 -0.92150 0.86448 -0.25043 -6.29943

L.4 L.5

R> nmar (mapBC12) - nmar (mapBC10)

L.1L.2L.3L.4L.5L.6L.7
0 1 156 0 0 86 52

After checking the table element of the "seg.distortion" element, a 70:30 distortion
ratio was chosen to ensure all the markers were pushed back into the linkage map. After
the pushing was complete, the linkage map was reconstructed and linkage group lengths
only changed negligibly from the previous version of the map with distorted markers
removed. This suggests the extra markers have been inserted successfully with nearly all

distorted markers being pushed into L.3, L.6 and L.7.
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3.4 Post-construction linkage map development

Table 3.1: Table of statistics for the final linkage map, mapBC
L.1 L.2 L.3 L4 L.5 L.6 L.7  Total Ave.

No. of markers 681 593 335 679 233 279 219 3019 431
Lengths 2259 2244 157.6 205.5 195.1 1455 1429 1297.2 185.3
Ave. interval 0.33 0.39 048 0.31 0.84 0.53 0.66 0.51

To finalise the map the 39 co-locating markers residing in the "co.located" list element
of the object are pushed back into the linkage map and placed adjacent to the markers
they were co-located with. Note that all external co-located markers have an immediate
linkage group assignation.

R> mapBC <- pushCross(mapBC12, type = "co.located")
R> names (mapBC)

[1] “geno" ”pheno”

A check of the final structure of the object shows the extra list elements have been
removed and only the "pheno" and "geno" list elements remain. Users can graphically
plot the genotypes and marker/interval profiles to diagnostically assess the final linkage
map. These plots have been omitted from this report for brevity. The final linkage map
has statistics given in Table 3.1.

3.4 Post-construction linkage map development

After a linkage map is constructed it is very common to attempt linkage map development
through the insertion of additional markers. This may be a simple fine mapping exercise where
the linkage group is known in advance for an additional set of markers or it may be a more
complex tasks such as the insertion of markers from an older linkage map into a newly constructed
map. The procedure to successfully achieve either of these can be problematic. For example,
there may need to be external manipulation, such as removal of non-concurrent genotypes,
before the additional set of markers is inserted into the map. Additionally, in some cases, the
linkage map may need to be partially or completely reconstructed. An unfortunate result of this
reconstruction process is the possible loss of known linkage group identities.

R/ASMap provides functionality to insert additional markers into an established linkage map
without losing important linkage group identification. The methods applied in this section
assume the additional markers, as well as the constructed linkage map, are R/qtl cross objects
of the same class. The methods are best described by presenting several examples that mimic
common post-construction linkage map development tasks. In these examples additional markers
will be obtained by randomly selecting markers from the final linkage map, mapBC.

R> set.seed(123)
R> addl <- drop.markers(mapBC, markernames(mapBC) [sample(1:3019, 2700, replace =
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FALSE)])
R> mapBCs <- drop.markers (mapBC, markernames (addl))
R> add3 <- add2 <- add1
R> add2 <- subset(add2, chr = "L.1")
R> add3$geno[[1]]$data <- pull.geno(addl)
R> add3$geno[[1]]$map <- 1:ncol(add3$geno[[1]]$data)
R> names(add3$geno[[1]]$map) <- markernames (add1l)
R> names (add3$geno) [1] <- "ALL"
R> add3 <- subset(add3, chr = "ALL")

3.4.1 Combining two linkage maps of the same population

Many populations that are currently being researched have been genotyped on multiple plat-
forms and separate maps constructed for one or both of the populations. For example, a linkage
map may have been constructed from markers genotyped on the new Illumina 90K SNP (Sin-
gle Nucleotide Polymorphism) array but the population may also have a legacy linkage map
constructed from markers stemming from SSRs (Single Sequence Repeats) or DaRT's (Diversity
Array Technology). The addl R/qtl object mimics an older map of mapBC with 319 markers
spanning the seven linkage groups. As the linkage groups are known between maps there is only
a requirement to combine the maps in a sensible manner and reconstruct. This can be done
efficiently in R/ASMap without external manipulation and loss of linkage group information.

R> addl <- subset(addl, ind = 2:300)
R> fulll <- combineMap(mapBCs, addl, keep.all
R> fulll <- mstmap(fulll, bychr = TRUE, trace

TRUE)
TRUE, anchor = TRUE, p.value = 2)

This example is a classic use of the R/ASMap function combineMap () described in section 2.5.5.
The two maps are first merged on their matching genotypes and, as the first genotype in add1
has been removed, there are missing cells placed in the first genotype of mapBCs for the markers
in addl. The combineMap() function also understands that both linkage maps share common
linkage group names and places the markers from shared linkage groups together. The map is
then reconstructed by linkage group using p.value = 2 in the mstmap.cross() call, ensuring
the important identity of linkage groups are retained. In addition, setting anchor = TRUE will
ensure that the orientation of the larger linkage map mapBCs is preserved.

3.4.2 Fine mapping

In marker assisted selection breeding programmes it is common to increase the density of markers
in a specific genomic region of a linkage group for the purpose of more accurately identifying the
position of quantitative trait loci (QTL). This is known as fine mapping. For example, the add2
object contains only markers from the L.1 linkage group of mapBCs. When the linkage group
for the additional markers is known in advance and matches a linkage group in the constructed
map, the insertion of the new markers is very similar to the previous section.

R> add2 <- subset(add2, ind = 2:300)
R> full2 <- combineMap(mapBCs, add2, keep.all = TRUE)
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R> full2 <- mstmap(full2, chr = "L.1", bychr = TRUE, trace = TRUE, anchor = TRUE,
p.value = 2)

Again, the removal of the first genotype of add2 will cause missing values to be added in the
first genotype of full2 for the markers that were in add2. The mstmap.cross() call is also
similar to the previous section with the exception that only the first linkage group L.1 needs
optimal ordering.

3.4.3 Unknown linkage groups

There may be occasions when the linkage group identification of the additional markers is not
known in advance. For example, an incomplete set of markers was used to construct the map
or a secondary set of markers is available that come from an unconstructed linkage map. These
additional markers can be pushed into a constructed linkage map efficiently using the functions
available in R/ASMap. In this example the add3 R/qtl object consists of one linkage group
called ALL that contains all the markers that spanned the seven linkage groups in addi.

R> add3 <- subset(add3, ind = 2:300)

R> full3 <- combineMap(mapBCs, add3, keep.all = TRUE)

R> full3 <- pushCross(full3, type = "unlinked", unlinked.chr = "ALL")

R> full3 <- mstmap(full3, bychr = TRUE, trace TRUE, anchor TRUE, p.value = 2)

Again, combineMap() is used to merge the linkage maps to avoid the hassle of having to man-
ually match the dimensions of the marker sets. The R/ASMap function pushCross() can
then be used to push the additional markers into the constructed linkage map. By choosing
the marker type argument type = "unlinked" and providing the unlinked.chr = "ALL" the
function recognises that the markers require pushing back into the remaining linkage groups of
full3. Again, the mstmap.cross() call only requires optimal ordering of the markers within
linkage groups.
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4 Aspects of the MSTmap algorithm

This chapter presents miscellaneous additional information associated within the MSTmap al-
gorithm and the arguments supplied to the R/ASMap functions mstmap.data.frame() and
mstmap.cross().

4.1 MSTmap and distance calculations

After close scrutiny and experience with the MSTmap algorithm it appears there may be cir-
cumstances where the algorithm produces inflated genetic distances. This is especially prevalent
when the linkage map being constructed contains genotypes with many missing values. In these
cases the constructed linkage map is likely to contain runs of missing values for these genotypes.
For example, this phenomenon can be seen in Figure 4.1 (the dark lines) for the initial con-
structed linkage map mapBC4 of the previous chapter. Seven of these genotypes were eventually
removed for having excess recombinations across the genome but their missing value structure
has also contributed substantially to the inflated distances of the linkage groups.

R> plot.missing(mapBC4)

This problem is easier to explain by presenting various outputs of the linkage map mapBC4.
Firstly, the map is reconstructed but with return.imputed = TRUE added to the call to ensure
the imputed marker probability matrix for the linkage groups is added to the returned cross
object.

R> mapBC4i <- mstmap(mapBC3, bychr = FALSE, trace = TRUE, dist.fun = "kosambi",
p.value = le-12, return.imputed = TRUE)
R> mapBC4i$geno[[1]]1$map[1:14]

mark246 mark986 mark1452 mark2266 mark391 mark426 mark670 mark1220
0.0000000 0.0000000 0.0000000 0.0000000 0.7641466 0.7641466 0.7641466 0.7641466
mark1789 mark2193 mark2269 mark2382 mark2579 mark2934
0.7641466 0.7641466 0.7641466 0.7641466 0.7641466 0.7641466

R> mapBC4i$imputed.geno[[1]]$map[1:5]
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Figure 4.1: Plot of the missing allele scores for the constructed map mapBC4

mark246 mark391 mark284 mark157 mark1990
0.0000000 0.7641466 1.5507414 2.3555151 3.4031908

To exemplify the problem the markers on L.1 are used. The first 14 markers of L.1 contain the
first two co-locating sets of markers and have been calculated to be 0.76 cM apart. The imputed
map for L.1 is a reduced version of the linkage map from L.1 that contains all unique markers
and one member from each co-locating set. Markers mark246 and mark391 have been chosen
as the members for the first two co-locating sets. It can be quickly calculated how many pairs
of alleles are observed between the two markers and how many observed recombinations there
were across these pairs.

R> len <- apply(mapBC4$geno[[1]]$datal, c(1, 5)], 1, function(el)
length(el[!is.na(el)]))
R> length(len[len > 1])

[1] 281

R> bca <- apply(mapBC4i$geno[[1]]$datal, c(1, 5)], 1, function(el) { el <-
el[!is.na(el)] sum(abs(diff(el))) })
R> bcal[bca > 0]

BCO0O4
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One genuine recombination from 281 observed pairs creates a 0.35 ¢cM distance between the
markers, falling short of 0.76 cM. The reason behind this shortfall becomes clear when the
imputed marker probability data is printed for the first five markers of the seven genotypes with
excessive missing values

R> mapBC4i$imputed.geno[[1]]$data[pg$xo.lambda, 1:5]

mark246 mark391 mark284 mark157 mark1990
BCO09 1.000000e+00 1.000000000 1.000000000 1.00000000 1.000000000
BCO13 1.026860e-03 0.000000000 0.002317796 0.00000000 0.003386561
BC032 1.000000e+00 0.735586234 0.672130843 0.60287457 0.639670176
BCO61 5.363308e-01 0.552323021 0.539409197 0.54183522 1.000000000
BC0O69 0.000000e+00 0.008689148 0.000000000 0.02198752 0.035294621
BCO77 3.478224e-07 0.000000000 0.000000000 0.00000000 0.000000000
BC0O85 9.095952e-01 0.955278155 1.000000000 0.90765213 0.881923903

Genotype BC061 has an extended set of missing values across the first four co-located sets of
markers. Using the distance formula in the M-step of the EM algorithm given in (1.5), the
estimates of probability for the two missing allele scores in the first two markers for BC061 adds
another 1/2 a recombination or 0.15 cM distance between the markers. Genotype BC061 will
add a similar distance between the second and third marker set and the third and fourth marker
sets due the imputed probabilities being close to 0.5 for the run of missing values across the four
co-located sets. If there are multiple runs of missing values for genotypes, these small distances
accumulate quickly and linkage group lengths appear inflated.

There are two solutions to this problem. The obvious first solution is to remove the genotypes
regardless off their usefulness in the genetic map. The second less obvious solution is to use the
R/ASMap function quickEst () to re-estimate the genetic distances (see section 2.5.3). As the
function imputes the missing values in the linkage map with actual allele calls it circumvents
the uncertain probabilities that MSTmap uses to form its genetic distances.

R> mapBC4e <- quickEst(mapBC4)
R> chrlen(mapBC4)

L.1 L.2 L.3 L.4 L.5 L.6 L.7
304.910957 266.240647 78.982131 252.281760 33.226962 233.485952 153.315888
L.8 L.9

106.290403 6.657526

R> chrlen(mapBC4e)

L.1 L.2 L.3 L.4 L.5 L.6 L.7
213.056491 201.340804 63.404825 187.741586 26.574889 189.370258 132.623157
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L.8 L.9
77.211705 2.912879

The difference in the lengths of the linkage groups for the two linkage maps is dramatic with an
80+ cM reduction in L.1 and 60+ cM reductions in L.2 and L.4.

In summary, if a linkage map is constructed with genotypes containing many missing values
then the missing value structure of the constructed object should be checked. If runs of missing
values are detected then the lengths of linkage groups are most likely inflated and estimation of
genetic distances should be checked using quickEst ().

4.2 Use of the argument mvest.bc

The inflated distances caused by excessive missing values across the marker set for a subset of
genotypes can be further exacerbated by an injudicious use of the argument mvest.bc in the
R/ASMap construction functions mstmap.data.frame() and mstmap.cross().

To understand how this is possible, there is a requirement to understand how the MSTmap
algorithm determines co-segregating or co-locating markers. In the initial stages of the algorithm
two markers are deemed co-located if the pairwise distance is zero with this calculation occurring
only from pairs of alleles that are observed in both markers. For each co-locating set a marker is
chosen as the representative marker and the remaining markers in the set are placed aside with a
knowledge of their direct link to the representative marker. The linkage map is then constructed
with only the representative markers. This scenario is equivalent to setting mvest.bc = FALSE.

If mvest.bc = TRUE then missing allele calls contained in each marker are estimated to have
probability 0.5 of being an A allele before clustering of the markers has occurred. This has
an obvious advantage of involving the complete set of genotypes when calculating pairwise
information between markers. However, for any two markers where there is some proportion of
unobserved allele pairs, the pairwise distance between the markers becomes non-zero and they
are deemed to be not co-located. This results in a larger set of markers being involved in the
linkage map construction with the original missing allele calls being continually imputed as part
of the marker ordering algorithm (see section 1.2.2). For situations where there is an increased
number of missing values across a set of markers for a subset of genotypes, the cumulative
distances between adjacent markers quickly increases.

To illustrate this problem, the barley backcross marker set mapBC3 is constructed using the
function mstmap.cross() with the argument mvest.bc = TRUE.

R> mapBC4a <- mstmap(mapBC3, bychr = FALSE, trace = TRUE, dist.fun = "kosambi',
p.value = le-12, mvest.bc = TRUE)
R> nmar (mapBC4)

L.1L.2L.3L.4L.5L.6L.7L.8L.9
574 473 75 551 32 188 160 110 10
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The clustering algorithm produces an identical number of linkage groups with the same markers
within each linkage group. However, the number of uniquely located markers within each linkage
group increases dramatically between mapBC4 and mapBC4a. This increase in the number of
uniquely located markers also increases the length of each linkage group.

R> sapply(mapBC4a$geno, function(el) length(unique(round(el$map, 4)))) -
sapply (mapBC4$geno, function(el) length(unique(round(el$map, 4))))

L.1L.2L.3L.4L.5L.6L.7L.8L.9
384 208 44 305 14 97 62 49 4

R> chrlen(mapBC4a)

L.1 L.2 L.3 L.4 L.5 L.6 L.7
498.063994 340.716640 96.513164 356.269346 41.016980 275.675999 164.254019
L.8 L.9

123.280455 6.952472

Again, the solution to this problem is to use the efficient distance estimation function quickEst ()
to provide an estimate of the genetic distances of the markers in each of the linkage groups.

R> mapBC4b <- quickEst (mapBC4a)
R> chrlen(mapBC4b)

L.1 L.2 L.3 L.4 L.5 L.6 L.7 L.8

207.88659 199.40969 62.42760 184.52014 25.92514 187.42973 132.71937 75.91499
L.9
2.58925

4.3 Use of the argument detectBadData

The last two sections discussed constructed linkage map scenarios where the genetic distance
calculations became inflated due to an excessive number of missing values being present for a
subset of genotypes in the marker set. If this situation is not present and the linkage group
distances are inflated then it is most likely caused by an increased recombination rate in some
or all of the genotypes. This is easily checked using the appropriate call to statGen() or
profileGen() after an initial linkage map is constructed. If there is an increased recombination
rate in a small subset of genotypes they can be removed before further linkage map construction.
If there appears to be a general inflation in the recombination rate across a large set or all of the
genotypes then there may be genotyping errors that have occurred in the physical process used
to obtain the allele calls for the markers. Consequently, reduction of the linkage group lengths
becomes more problematic.
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To circumvent this issue, the construction functions mstmap.data.frame () and mstmap.cross()
in the R/ASMap package contain an argument called detectBadData that, if set to TRUE,
instructs MSTmap to detect suspiciously called alleles (see equation 1.6 of section 1.2.2 for more
details). If suspicious allele calls are found they are set to missing and imputed using the EM
algorithm detailed in section 1.2.2. This creates a reduction in the number of recombinations
between adjacent markers. The consequence of this is a possibly dramatic reduction in the
distances between adjacent markers and overall linkage group lengths.

To exemplify the use of detectBadData, simulated genotyping errors are added to the final
barley backcross linkage map mapBC by randomly switching singular allele calls in the data for
each linkage group.

R> mapBCd <- mapBC

R> mapBCd$geno <- lapply(mapBCd$geno, function(el) { ns <- sample(1:ncol(el$data),

ncol (el$data)/2, replace = TRUE) ns <- cbind(sample(1:nrow(el$data),
ncol(el$data)/2, replace = TRUE), ns) el$datalns] <- abs(l - el$datalns])
el$datalel$data == 0] <- 2 el })

R> mapBCd <- quickEst (mapBCd)

R> chrlen(mapBCd)

L.1 L.2 L.3 L.4 L.5 L.6 L.7
281.8210 267.0753 171.9688 252.7070 216.8915 157.7318 153.2963

The function quickEst() will not ignore the genotyping errors that have been added to the
data and linkage groups will appear inflated.

R> mapBCda <- mstmap(mapBCd, bychr TRUE, trace = TRUE, dist.fun = "kosambi",

p.value = le-12, detectBadData = TRUE)
R> chrlen(mapBCda)
L.1 L.2 L.3 L.4 L.5 L.6 L.7

227.1167 220.7915 150.1100 209.0600 187.1651 144.1092 140.4516

A judicious use of the detectBadData = TRUE in the mstmap.cross() call instructs the algo-
rithm to detect and ignore these errors during the marker ordering algorithm of MSTmap. This
deflates the linkage group distances to similar lengths as the linkage groups lengths of the final
linkage map mapBC.
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