Java™ Portlet Specification

Version 2.0

Send comments about this document to: jsr-286-comments@jcp.org

10

January 25, 2008

15 Stefan Hepper (sthepper@de.ibm.com)

10

15

20

25

30

Java (TM) Portlet Specification ("Specification") Version: 2.0
Status: Final, Specification Lead: IBM Corp.

Copyright 2008 IBM Corp. All rights reserved.

IBM Corporation (the “Spec Lead”), for the JSR 286 specification (the “Specification”),
hereby grants permission to copy and display the Specification, in any medium without
fee or royalty, provided that you include the following on ALL copies, or portions
thereof, that you make:

1. A link or URL to the Specification at this location:

http://www.jcp.org/en/jsr/detail 71d=286

2. The copyright notice as shown herein.

The Spec Lead commits to grant a perpetual, non-exclusive, worldwide, non sub-
licensable, non-transferable, fully paid up license, under royalty-free and other reasonable
and non-discriminatory terms and conditions, to certain of their respective patent claims
that the Spec Lead deems necessary to implement required portions of the Specification,
provided a reciprocal license is granted.

THE SPECIFICATION IS PROVIDED "AS IS," AND THE SPEC LEAD AND ANY
OTHER AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-
INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE SPECIFICATION
ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF
SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS. THE SPEC LEAD AND ANY
OTHER AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
ANY USE OF THE SPECIFICATION OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the Spec Lead or any other Authors may NOT be used in
any manner, including advertising or publicity pertaining to the Specification or its

Java™ Portlet Specification, version 2.0 (2008-01-11) 2

contents without specific, written prior permission. Title to copyright in the Specification
will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Java™ Portlet Specification, version 2.0 (2008-01-11) 3

10

15

20

25

30

35

Contents

Java™ POrtlet SPECIFICAtION.veveeeeeeeeeeeeeeeeeeeee e s s es e seees 1
PLT.T PrEface ..oueieiieiiieiie ettt ettt ettt et ettt esieeeabeesaeeens 13
PLT.1.1 Additional SOUICES.....cc.eevuirieriieieeiiesieeieete ettt sttt 13
PLT.1.2 Who Should Read This Specification...........ccoceeverienieiienienennienieneeieneene 13
PLT.1.3 API REferenCe.coouviiiiiiiiiiiieicee e 14
PLT.1.4 Other Java™ Platform Specifications..........ccceervverienerrieneenenieniereeieneenne 14
PLT.1.5 Other Important REferences.coccuvieriiiiriieeriieeciie et 14
PLT.1.6 TerminolO@Yc.ceiouieiiiieiieiieeieeite ettt ettt 15
PLT.1.7 Providing Feedbackccccoeviiiiiieiiieiieieeceeeeee et 15
PLT.1.8 Acknowledgements V 2.0.........coceeiiriiniiiiinieniiieeeceeeeeere e 15
PLT.1.9 Acknowledgements V 1.0.......ccccoovuiiiiiieiieniieiieeieeeie et 16
PLT.2 OVEIVIEW ...eutiiiiiieiie ettt ettt ettt ettt ettt e et e it e e bt e s steeabeesabeenseesneeenbeesneeans 17
PLT.2.1 What is @ POrtal?.......cc.coocoiiiiniiiiiiiieiecceeceseee sttt 17
PLT.2.2 What 1S @ POTISt?ooiiiiiieie e 17
PLT.2.3 What is a Portlet CONtainer?cccoeouerueerierieniieieeiesieeie et 17
PLT.2.4 AN EXAMPLE ...oooiiiiiiiiiieiee ettt e s 18
PLT.2.5 COMPAUDIIILY ..ecuvieiiiieiiieiieciieeieeeee ettt ettt et e e essae e eeaee e 18
PLT.2.6 Major changes introduced with V 2.0.........ccoooiiiiiiiiiiiiieeeeeee 18
PLT.2.6.1 Clarifications that may make V1.0 Portlets Non-compliant.................... 19
PLT.2.6.2 Changes to the Programming Modelcccccooiniininiiniiiiniinieee. 19
PLT.2.6.3 List of all Changes in the Specification.............cceecveeeiienieeciienienieennns 20
PLT.2.6.4 List of all API changes..........cccooiiiiiiiiiiiiiccee e 24
PLT.2.7 Relationship with Java 2 Platform, Standard and Enterprise Edition............. 27
PLT.3 Relationship with the Servlet Specification..........cccccecerieveriiniieniniincneciene 29
PLT.3.1 Bridging from Portlets to ServIets/JSPScccveviiviieiiiciieiecieeee e 31
PLT.3.2 Using Servlet Application Lifecycle Events..........cccceoevvininiiiiniinicncnnne 31
PLT.3.3 Relationship Between the Servlet Container and the Portlet Container......... 32
PLT.4 POTtIet CONCEPLS....eeoviiiiriiiriieieeiteeitete ettt ettt sttt ettt s sae e 33
PLT 4.1 POTIEES ..ottt ettt 33
PLT.4.2 Embedding Portlets as Elements of a Portal Page...........cccocoeiiiininninenn 33
PLT.4.2.1 Portal Page Creationcc.eeevieeeiieeniiieeeiieeeiee et 34
PLT.4.2.2 Portal Page Request SEqUENCE........cccovueriirieniiiiiiniieccneceeeeeeeeee 35
PLT.4.3 Portlets and Web Frameworks.........ccccoveeiirieniniienieniieieceieeecee e 35
PLT.5 The Portlet Interface and Additional Life Cycle Interfaces.........cccccocervveniennnnnens 37
PLT.5.1 Number of Portlet INStanCesccceveeruieiiiiereeienieieeieeeie e 37
PLT.5.2 Portlet Life CyCle.......oouiiiiiriiiiiiiiiiieeesteeeeteeeese et 37
PLT.5.2.1 Loading and INStantiationccceceeeieeiiienieeniieeieenie e eiee e esieeevens 38

Java™ Portlet Specification, version 2.0 (2008-01-11) 5

10

15

20

25

30

35

40

45

PLT.5.2.2 INItIAIIZATION ... seeeeeeeeeeenennnes 38

PLT.5.2.3 ENd Of SETVICE....coiuiiiiiiiiiiiie ettt 39
PLT.5.3 Portlet Customization Levels.........ccccoeviieiiieniieiiinieeie e 39
PLT.5.3.1 Portlet Definition and Portlet Entityccccevviiiieiiiiniiiiecie e 40
PLT.5.3.2 Portlet WINAOWcccviiiiiiiiieiieiie ettt e 40
PLT.5.4 Request Handlng.........ccoviiiiiiieiiiecieeee et 43
PLT.5.4.1 Action REQUEST.....c..eeiuiieiieiieeiieciie ettt ettt ens 46
PLT.5.4.2 EVent REQUESTccooiuiiiiiieiiiee ettt e e e aee e 46
PLT.5.4.3 Render REqUESEcccuiiiiiiiieiieieeieee ettt 47
PLT.5.4.4 Resource REQUESL........ccoviuiiiiiiiiiiieieiiiee ettt e e e 48
PLT.5.4.5 GeneriCPOTtIEtcoouiiiiieiiieieeeeeee et 48
PLT.5.4.6 Multithreading Issues During Request Handling..............cccoeeevveennnnnnnee. 50
PLT.5.4.7 Exceptions During Request Handling............ccoocoeevivieiiiniiiininniiiiiee, 50
PLT.5.4.8 Thread Safetyccocviiieiieiiie ettt 51
PLT.0 POrtlet Contig.....cccuiiiieiiieiieeie ettt ettt ettt et e esabeeseeennaens 53
PLT.6.1 Initialization Parameterscoooueeiiiiiiiiiienieeieeeee e 53
PLT.6.2 Portlet Resource Bundlecoocueeiiiiiiiiiieiiieieceeeece e 53
PLT.6.3 Default Event NameSPpaCe........ccccuveecivieeiiieieiieeeiieeeieeeereeesereeesveeevee e e 54
PLT.6.4 Public Render Parameter Namesc.ceceerieeniienieeniieeieeniee e 54
PLT.6.5 Publishing Event QNaAMES.........cccceeiiiieiiieeiieeeiieeciee e e 54
PLT.6.6 Processing Event QNAMES..........cccueeriieriieniieniieiieeie et eiee e s 55
PLT.6.7 Supported LOCalescccveeeiiiiieiiieeiie ettt 55
PLT.6.8 Supported Container Runtime Options...........cceeeveerieeiiienieeniienieeiiesie e 55
PLT.7 POTtIet URLS ...cuiiiieiieieeie ettt sttt seeeae e 57
PLT.7.1 POrtlet URLS ...cccuiiiiieiiieiiecie ettt ettt s ae e 57
PLT.7.1.1 Bas€URL INterface.cccueiiuiiiiieiieiiieie ettt 58
PLT.7.1.2 Including a Portlet Mode or a Window Stateccccceceeveeieniencnnennen. 59
PLT.7.1.3 Portlet URL SECUIILY ...cccuveiiiuiieiiiieeiiie ettt 60
PLT.7.2 Portlet URL JIStENETSeeeeiiiiieiiieeiieeeiee et 60
PLT.7.2.1 PortletURLGenerationListener Interface...........cccccceevieriieniencieennennnnn, 60
PLT.7.2.2 Registering Portlet URL LiSteners..........ccccovveverieneenienicnienenieneceennen 61
PLT.8 POTtIet MOAEScoueetieiiieiieiieie ettt sttt et 63
PLT.8.1 VIEW POrtlet MOEeeeviiieeiiieeiieeeee et 63
PLT.8.2 EDIT Portlet MOAecccueiiuiiiiiiiiieiiecieeeece e s 63
PLT.8.3 HELP POrtlet MOdEeeeiiiieeiiieciie ettt 64
PLT.8.4 Custom Portlet MOAESccceovuiiiiiiiieiiieiiecieeieeete e 64
PLT.8.5 GenericPortlet Render Handling..........c.ccocuevieniniiniininiiniiiceeeee 65
PLT.8.6 Defining Portlet Modes SUPPOTIt.......c.ccovieviieriieniieiieeiieeee et 65
PLT.8.7 Setting next possible Portlet Modesccceeveriiriinieiinicniiicciceceee 66
PLT.9 WINAOW SEALES ...cveiiienieeiieiieie ettt sttt ettt sttt ettt et seeenaeenne s 67
PLT.9.1 NORMAL WINdOW State.........ccceivieriiiieeiieeeiieeetieeeieeeereeeeeveeeeireeeesneeseaee e 67
PLT.9.2 MAXIMIZED WindOW State........cccccuieriieiiieriieeiieniieeieenieereeseeeseeseveeneennns 67
PLT.9.3 MINIMIZED Window State........ccccoieriiiiiiiieeiiie e 67
PLT.9.4 Custom WINAOW States..........coceiriiriiiniiiiienieeieeie ettt 67
PLT.9.5 Defining Window State SUPPOTIt.........ccceeiirieririienieniieieneenieeieeeeie e 68
PLT.10 POTtIEt CONEXLeetieiieiietieieeiiesicete ettt ettt sttt et sttt et s seeeneesneens 71

Java™ Portlet Specification, version 2.0 (2008-01-11) 6

10

15

20

25

30

35

40

45

PLT.10.1 Scope of the Portlet CONteXt.........cocieeiierieiiieiieeieeie et 71

PLT.10.2 Portlet Context functionality..........cccceeeveeeiiieeniiieeniie et 71
PLT.10.3 Relationship with the Servlet Context..........ccoeeveeiiieriiiiiienieeieerie e 71
PLT.10.3.1 Correspondence between ServletContext and PortletContext methods. 72
PLT.10.4 Portlet Container RUNtime OPtioNnsScceeeveeruienieeriienieeiieeieesieesve e 72
PLT.10.4.1 Runtime Option javax.portlet.escapeXml..........cccccveercrieerreeenieeesnreenne. 72
PLT.10.4.2 Runtime Option javax.portlet.renderHeaderscccceveeveivieniennenee. 73
PLT.10.4.3 Runtime Option javax.portlet.servletDefaultSessionScope................... 74
PLT.10.4.4 Runtime Option javax.portlet.actionScopedRequestAttributes............. 74
PLT.11 POrtlet REQUESES ...vvieeiiieiiiieciie ettt ettt e et e st e e eeaaeeennae s 79
PLT.11.1 PortletRequest INterface...........cocveeiierieeiieieeieeieceee e 79
PLT.11.1.1 Request Parameters.........c..eeeeeuiiieeiiiiieeeeiiiee et e e e 79
PLT.11.1.2 Public Render Parameters.........c.ccoveevuerienienienienieieeieseeeeeseeeeee 82
PLT.11.1.3 Extra Request Parameterscooocveeeeriiiieeeniiiee e 85
PLT.11.1.4 Request AttriDULES.cccuierieeiieiieeiieeie ettt ens 85
PLT.11.1.5 Request PrOPEItiescccueieeiiiiiiieeiiie ettt 88
PLT.11.1.6 Request Context Path...........cccoociiiiiiiiiiiniiiiicccee e 89
PLT.11.1.7 Security AttrTDULESccveeeiiieeiiieeiiee et eeite e e svee e evre e e e 89
PLT.11.1.8 Response Content TYPES......cccvueeerureerriiieriiiieniieeniieenreeesireesieeesneee s 89
PLT.11.1.9 InternationaliZationcooueeriiiiieniiiiienie et 90
PLT.11.1.10 POrtlet MOdecceevuiiiieiiiniiiieiieeeeeeeee et 90
PLT.T1.1.11 WIndOW State........ccceevieiiieierieeieeiesieeie ettt 91
PLT.11.1.12 Access to the Portlet Window IDccceviriiniiniiiiiiineieeee, 91
PLT.11.2 ClientDataRequest INterface..........cceeevueeeeiieeeiiieeciie et 91
PLT.11.2.1 Retrieving Uploaded Datacccoeviieiiiniiiieeiieie e 91
PLT.11.3 ActionRequest INteTfacecceeeiiieeiiiiiciieececcee e 92
PLT.11.4 ResourceRequest INterfacecoceeviieiiieniiiiiiinieeieceee e 92
PLT.11.5 EventRequest INterface...........cccuveviiiiniiiiiiieeiiecieeeeeee e 92
PLT.11.6 RenderRequest Interface...........cccueeuieiiiiiiieiiieieeieee e 92
PLT.11.7 Lifetime of the Request ODJECtSeevvieriieiiieiieeiieie e 92
PLT.12 POTtlet RESPOMNSESeetieiiiieiieiiieiie ettt ettt et eas 93
PLT.12.1 PortletResponse INterfacecceevvieeiieriieiiieiieeieeie ettt 93
PLT.12.1.1 ReSPONSE PrOPETti€sc..eeruiiiiieiiiieiieeiie ettt 93
PLT.12.1.2 Encoding Of URLScccocoiiiiiieiiieiiecie ettt e 94
PLT.12.1.3 NamMESPACIIZ .. .eeuvieiiieniieeiieeieesiieeteeeiee et estte et e seeesteesseeeabeesseesaseesaeeens 94
PLT.12.1.4 Setting COOKIESuveeeuiiieiiieiiieeeiieeeieeeeiteerteeeereeetaeesaaeesseeesnseeenees 95
PLT.12.2 StateAwareResponse Interfaceccceeeveverieneniiniincniniieececee 95
PLT.12.2.1 Render Parameterscccoveeruerriinieniieieeiesieeieeee e 95
PLT.12.2.2 Portlet Modes and Window State Changes............cccceevvereenernienecnnennne. 96
PLT.12.2.3 Publishing EVENLSccceeviiiiiieiiieiieeie ettt 96
PLT.12.3 ActionResponse Interface...........cceeouieiiiiiiieniiiiieieeeeeeee e 96
PLT.12.3.1 REAITECHIONSeeuiiiieiieiieeiiesieeie ettt 96
PLT.12.4 EventResponse INterfacecccceevuieriiiiieiiieieeieee e 98
PLT.12.5 MimeResponse INterfaceccceeevvvieeiiiiiiiiiieniieeciieceeeee e 98
PLT.12.5.1 COontent TYPe....ceocueeriiriieiieiieenieeteeeee ettt 99
PLT.12.5.2 Output Stream and Writer ODJECtS........cccveerriieiierieeiiienie e e 99

Java™ Portlet Specification, version 2.0 (2008-01-11) 7

10

15

20

25

30

35

40

45

PLT.12.5.3 Access to Response Headers..........cccocceevvienieeiieniienieeniieeieeie e 100

PLT.12.5.4 Setting Markup Head Elementsccccvieriiiieniiiiniieciee e 100
PLT.12.5.5 BUETINGtiiiiiiiieiiecee ettt 101
PLT.12.5.6 Predefined MimeResponse Properties.........cccouveevveeerieeeciieeeciieesieeens 102
PLT.12.6 RenderResponse INterfacecoecueevuiieiieniiiiiieieeieeee e 103
PLT.12.6.1 POTtlet Titleeeieieieiieieeieeie et 103
PLT.12.6.2 Next possible portlet modes..........ccceevieriierieniiieiieeieeie e 103
PLT.12.7 ResourceResponse INterface..........ccueevuiieeiieeciieeiie e 104
PLT.12.7.1 Setting the Response Character Setccccuevevierieriiieniieniieieeieenee. 104
PLT.12.8 Lifetime of Response ObJeCtS.......cccvieriiieriieeiiieeriieeieeeseee e evee e 104
PLT.13 RESOUICE SETVINZ ...uvieiuiieiieiiieeiieniieettesite et eeiteebeeseteeteesseeesbeessaesnseesseeenseensnas 105
PLT.13.1 ResourceServingPortlet Interfacecccccvveeviieeciieeiiiecieecee e 105
PLT.13.2 Access to Render Parameters, Portlet Mode, and Window State................ 106
PLT.13.3 Access to Request and Response Headers..........ccccueeeevieecieeiniieciieecien, 106
PLT.13.4 Getting the HTTP Method.........ccoceviiiiiiiiiiniiiieeeeeeeeeeeeee 107
PLT.13.5 Access to the Resource ID..........ccocciiiiiiiiiiiiiiiieceee e 107
PLT.13.6 ReSOUIce URLS......ccceiiiiiiiiiiiiiecniceitertcee et 107
PLT.13.7 Caching of RESOUICEScccviiiiiiiiiiiieciieeeite et 108
PLT.13.8 Generic Portlet SUPPOTTcccviiiiiiiiieiiecieeieeee et 109
PLT.14 Serving Fragments through Portletsccccoveviiieeiiiieiiieeee e 110
PLT.14.1 Serving Fragments via serveResource Methodc.cccceviiniininnnnnnne. 110
PLT.15 Coordination between POrtletS.........cccuveeriiieiieeeiiieeiee e 113
PLT.15.1 Public Render Parameters...........cccevouevierieeienieniieieiienieeieseeseeieee e 113
PLT.15.2 Portlet EVENLS....cocueiiiiiiiiiiee e 114
PLT.15.2.1 EventPortlet INterfaceccocueveevieriiiniiniiiieieceeeeeceecee e 114
PLT.15.2.2 ReceiVING EVENLSooviiiiiiiicieeeeeee et 114
PLT.15.2.3 Sending EVentsc..cccccviiiiiiiniiiiiicnecceececeeeeee e 115
PLT.15.2.4 Event declarationcocceceeienienieeienieeie e 117
PLT.15.2.5 EVENt PIOCESSINEveeiuiieiiiesiieeiieeiieeitesiteeieesiteeieesieeebeesiteeseesneesaeeas 118
PLT.15.2.6 Exceptions during event proCesSingccveeveerveerveerreesveerveenvennnens 119
PLT.15.2.7 GenericPortlet SUPPOTLcoueriirierieriiinieeieeteeieceeeereeee et 120
PLT.15.3 Predefined Container EVENtScccoeoieiieiiinienieieeeeeieeeeeee e 121
PLT.16 POrtal CONtEXtccvieeiiiieiiieeiieeeieeeeieeeetee et e e e e e aaeeesaeeeseeesnsaeesabeeeenns 123
PLT.16.1 Support for Markup Head Elements............ccccecvvevieeiiienieiiiienieciiecieeiens 123
PLT.17 Portlet PreferencCescocviiiiiiiciie ettt 125
PLT.17.1 PortletPreferences Interface...........ccceveeriieienieniniienieeceeceeeeee 125
PLT.17.2 Preference Attributes SCOPES......cceevuirieriieieriinieeienitesieete e 126
PLT.17.3 Preference Attributes definition............ceceevuerieneniienienieienieeeeseeeene 127
PLT.17.3.1 Localizing Preference Attributesccccoeveeviiienieniiienieiiieieeieeee, 127
PLT.17.4 Validating Preference valuesc.ccceevvvieriiiniieniieeieceece e 128
PLT .18 SESSIONS.....uiiiiiiieiiiieiiieeeieeeeteeesteeesreeestreeessseeesseessseessseesssseesnsesesseeenssesensses 131
PLT.18.1 Creating @ SESSI0M.cccuuieriiieeriieeeiieenieeesieeesreeesreeeneseeesnseesnnseesnsseesnsseenns 131
PLT.18.2 SESSION SCOPE ..cuveemveriiiniieiieitenieente ettt ettt sttt et sttt et s s enae e 131
PLT.18.3 Binding Attributes int0 @ SESSIONcc.eeevreruieriieriieeieenieeieesieeereeseneeseens 132
PLT.18.4 Relationship with the Web Application HttpSessionc.ccceceveeveenenne. 133
PLT.18.4.1 HttpSession Method Mappingccceeeveeviienieenieenieeniieereeeeeveeees 133

Java™ Portlet Specification, version 2.0 (2008-01-11) 8

10

15

20

25

30

35

40

45

PLT.18.5 Writing to the Portlet SeSSI0Ncccceviiiiieriieiieiecieeee e 134

PLT.18.5.1 Process action and process event phase..........ccceeeeveeerveeerveeenveesinneenns 134
PLT.18.5.2 Rendering Phase.........cccveruieriieniieeiieiieeieeieeeteeiee e sveeiee e 134
PLT.18.6 Reserved HttpSession Attribute Names..........cccceeeeveeerieeeiieesiieeeieeeieeenns 135
PLT.18.7 SeSSI0N TIMEOULSecutiriieuiiriiiriieieiiiesieeie ettt 135
PLT.18.8 Last Accessed TImescceevuiiiiiiiiiiiieiiieiee ettt 135
PLT.18.9 Important SesSion SEMANTICScerueeeruieriieriieniieeieereeerieesieeereesereeseesneens 135
PLT.19 Dispatching Requests to Servlets and JSPScccoeovvieviiiieciiiccieceeeeee e 137
PLT.19.1 Obtaining a PortletRequestDispatcher............ccccoevvieriiiinieniiienieeieeieeiee 137
PLT.19.1.1 Query Strings in Request Dispatcher Pathsccccceveiieniiiennnns 138
PLT.19.2 Using a Request DispatCher..........cocveiiiiiieiiiiiieieceeeeceeiee e 138
PLT.19.3 The Include Method............coiiiiiiiiiiiice e 138
PLT.19.3.1 Included Request Parameters............ccceevveeeiienieeieenieeiieeieeiee e 139
PLT.19.3.2 Included Request Attributes........ccccveeevvieeiiiieeiieeeee e 139
PLT.19.3.3 Request and Response Objects for Included Servlets/JSPs from within
the Action and Event processing Methods...........coooveeciiieiieeeiiiceiecee e 140
PLT.19.3.4 Request and Response Objects for Included Servlets/JSPs from within
the Render Method.........coouiiiiiiiii e 142
PLT.19.3.5 Request and Response Objects for Included Servlets/JSPs from within
the ServeResource Methodoocuiiiiiiiiiiiiie e 144
PLT.19.3.6 Comparison of the different Request Dispatcher Includes.................. 145
PLT.19.3.7 Error HandIiNgc.coeviiiiiiiieiieceeeee e 148
PLT.19.3.8 Path and Query Information in Included / Forwarded Servlets........... 148
PLT.19.4 The forward Method...........coocuiiiiiiiiiiiiieeeee e 149
PLT.19.4.1 QUETY StrINE.....ceiiieiiieeiieiiesie et eeie ettt site st seeeeebeeseeenbeeseesneeas 149
PLT.19.4.2 Forwarded Request Parametersccccccvveeeiieeeieeeniie e 149
PLT.19.4.3 Request and Response Objects for Forwarded Servlets/JSPs from within
the Action and Event processing Methods...........cccceeevieriieciiiniieiiienie e 150
PLT.19.4.4 Request and Response Objects for Forwarded Servlets/JSPs from within
the Render Method.........coouoviiiiiiiiiecee e e 152
PLT.19.4.5 Request and Response Objects for Forwarded Servlets/JSPs from within
the ServeResource Methodcocuovieiiiiiiieiicsee e 153
PLT.19.4.6 Comparison of the different Request Dispatcher Forwards................. 155
PLT.19.5 Servlet filters and Request Dispatching............ccoecvvevviieniieniiienieeieeieeine 158
PLT.19.6 Changing the Default Behavior for Included / Forwarded Session Scope . 159
PLT.20 POTtlet FAltercoueeiiiieiieieeee et 160
PLT.20.1 What is a portlet filter?ccoceviiiiniiiiiiiececeececeeeee 160
PLT.20.2 Main CONCEPLSeeevvieeirieeiiieeiieeeiteeeieeesteeesreeesseeenaseeesaseesnsseesseeesseeenns 160
PLT.20.2.1 Filter LfeCyCle......ooiuiiiiieiiieieeiieee e 161
PLT.20.2.2 Wrapping Requests and ReSponsesccceeevveeeriieeniieinieeenieeeiens 162
PLT.20.2.3 Filter ENVITONMENt.....cccueeitiiiiiiiieiiieiieeeeiee e 162
PLT.20.2.4 Configuration of Filters in a Portlet Application..............ccoeeveenrennne.. 163
PLT.20.2.5 Defining the Target Lifecycle Method for a Portlet Filter................... 164
PLT.21 User INfOormation.........c.ccoceeierieiiieienieeie sttt 166
PLT.21.1 Defining User AttriDULES.coeevuirieriiiieieniecieeieseeeetese e 166
PLT.21.2 Accessing USer AtIIDULESccvveriieiiienieeiiienieeieeeieeiee e ereeseneeveeseneens 167

Java™ Portlet Specification, version 2.0 (2008-01-11) 9

5

10

15

20

25

30

35

40

45

PLT.21.3 Important Note on User Informationcoceeeevenienieienicnennenieneenne. 167

PLT.22 CaChING ..cutviieiiieeiee ettt ettt et e et e e e e e e e e e enbaeesnseeennnes 169
PLT.22.1 EXpiration CaCRecccuieuiiiiiiiiecieeiiecie ettt ens 169
PLT.22.2 Validation Cacheccc.ooiuiiiiiiiiiiiieee e 170

PLT.23 Portlet APPLICALIONS ...c..eeiuiieiieeiieiieeie ettt ettt 173
PLT.23.1 Relationship with Web Applications...........cccccveeeeiieeiiieeiieeeieeceee e 173
PLT.23.2 Relationship to PortletConteXt..........cociervierieniieiieiieeiee e 173
PLT.23.3 Elements of a Portlet Application............cccveeeiieeriiieeniieeiee e 173
PLT.23.4 DIirectOry SIIUCTUIEccvieiieriieeiieiieeiieeteeieeeiteeteesreeteesaaeesseeseneenseesnsaens 173
PLT.23.5 Portlet Application Classloader...........ccceeevuieeeiieeiiieeiieeieeceeecee e 174
PLT.23.6 Portlet Application Archive File..........ccoccvieiiiniiiiniiiiiiiieciieeeeeeeee 174
PLT.23.7 Portlet Application Deployment DesScriptorccceeeveeevieeeeveerieeeernieenns 174
PLT.23.8 Replacing a Portlet Application............ceccveeviieeiienieiiiieieeieeiee e 174
PLT.23.9 Error Handlingoooouiiiiiiiieiiece ettt 174
PLT.23.10 Portlet Application ENvIronment............cccevvereenienienienenieneeneeeeneenes 174

PLT.24 SECUIILYeeutieiieiieteeiie sttt ettt sttt ettt ettt et e e st et e eneesseenseenseeneenees 175
PLT.24.1 INtrOAUCLION.cotiiiiiiiiiieie ettt ettt 175
PLT.24.2 ROIES ..ceeetieiieeieeeeee ettt sttt ettt e et e aeeneas 175
PLT.24.3 ProgrammatiC SECUIILYcccuterieriieriienieeriienieeiie et esieeeteesieesseensnesnneens 175
PLT.24.4 Specifying Security CONSIrAINEScccuveervireeririeeeiieeniieerreeesveeesiveeesaeeens 176
PLT.24.5 Propagation of Security Identity in EJB™ Calls..........cccoooovvrrrrrrerrrnnn. 177

PLT.25 Packaging and Deployment DeScriptorcc.ceevuiieeiuiieriiieeniieenieeeevee e 179
PLT.25.1 Portlet and Web Application Deployment Descriptor...........cccceeeveeruvennnnn. 179
PLT.25.2 PACKAZING......cciiiieiiieeiieeiie ettt s tte e teeesiveeeaeeeeaeeesaeesnssaesnsaeesssaeenns 180

PLT.25.2.1 Example Directory Structurecccecceeeveeriieeiieeniieeieeriieeieeeee e 180
PLT.25.2.2 Version Information............cccoeiiiiiiiiiiiiiiiieiiceeee e 180
PLT.25.3 Portlet Deployment Descriptor Elementscccccevviiiiiniiiiiinniienieeiee 180
PLT.25.4 Rules for processing the Portlet Deployment Descriptorc.cccveeuneeen. 181
PLT.25.5 Portlet Deployment DeSCIiPtor........ceeuieriiiiiieniieiiesie e 181
PLT.25.6 Pictures of the structure of a Deployment Descriptorcccceeeveeeviennnnn. 216
PLT.25.7 Uniqueness of Deployment Descriptor Values...........cccceecveneevcricneenennne. 220
PLT.25.8 LOCAIZATION ...ttt st 220
PLT.25.8.1 Localization of Deployment Descriptor Valuesc..ccccceceereeuennnene 220
PLT.25.8.2 Locales Supported by the Portlet...........ccoevvevciiivieniiieiieeiieiecieee, 221
PLT.25.9 Deployment Descriptor EXamplecccoooiiiiiiiiiiiiiieniieieeceeeeie 221
PLT.25.10 Resource BUundlescc.cocevieriiiiinieiiieienieieeeseeeeee e 222
PLT.25.11 Resource Bundle Example..........cccoeiiiiiiiiiiiiieiieeceeceeee e 225

PLT.26 Portlet Tag LiDIary......ccccccuiiiieeiieiieeie ettt seae e e ssne e 229
PLT.26.1 defineODbIEcts Ta.......ecveeuiriiniiiiirienieeieeeere ettt 229
PLT.26.2 aCtiONURL TaE ...eeeoiiiieiiiieiiiecieece ettt e s 231
PLT.26.3 1enderURL Tag.......ccccuiiiiiiiiiiniinieeieeecteeeeneete ettt 232
PLT.26.4 1€SOUrCEURL TaG......cieiiiiieiiieeiiieeeeeee ettt 234
PLT.26.5 NameSPace Tag.....cccueeriuiiiiiiiiiiieeiee ettt et 236
PLT.26.6 param Tagcccueeeiiieeiiieeiieeeie ettt esieeesteeeve e e eaaeesaaeesbeeesnneeens 236
PLT.26.7 PrOPerty TaZ.......ceeeiiiiiiiiiiie ettt st et st 237
PLT.26.8 Changing the Default Behavior for escapeXml.........cccccceviriiniininniennenne. 237

Java™ Portlet Specification, version 2.0 (2008-01-11) 10

10

15

PLT.27 Leveraging JAXB for Event payloads..........ccccoecvieviiiiiiniiniiciecieeeeeee, 239

PLT.28 Technology Compatibility Kit Requirements............cccceeveeeeveeeiiieniieenreeenne 240
PLT.28.1 TCK Test COMPONENLSccuvvieriieeriiieeiiieeiieeesiteeeieeeeieeesieeesieeesseeesineeenns 240
PLT.28.2 TCK REQUITEIMENTS ...cccuvvieeiiiieeiieeiiieesieeesieeesiveeeieeeeeeeessaeessseeessseeensseeenns 241

PLT.28.2.1 Declarative configuration of the portal page for a TCK test 241
PLT.28.2.2 Programmatic configuration of the portal page for a test.................... 243
PLT.28.2.3 Test Portlets CONtENt...........cecuieriieeiiieiieeieerie ettt 244
PLT.28.2.4 Test Cases that Require User Identity..........cccoceeevvieeiieenciieeeiieeieens 244

PLT.A Custom Portlet MOdES.coverueiiiriiniiieiiesieeieeese et 245

PLT.B Markup Fragmentscccueeiiiieiiieeiiie ettt e e e e snvee e e e 249

PLT.C CSS Style DefiNItionscceevieriieriienieeiiieeieeiieeieesiee e esieeereesseesseesseeenseenenes 251

PLT.D User Information Attribute Namescccooueeieeriiiiiiniieieneeeesieeee e 259

PLT.E Deployment Descriptor Version 1.0.........cccccoevieriiiniiiiiienieeieecie e 262

PLT.F TCK ASSEITIONSeeetiieuiieiieeiieitieeteesite et e site et e site st e sieeeabeesseesabeesaeesnbeenseesaneas 272

Java™ Portlet Specification, version 2.0 (2008-01-11) 11

10

15

20

25

30

PLT.1

Preface

This document is the Java'" Portlet Specification, v2.0. The standard for the Java™
Portlet API is described here.

PLT.1.1 Additional Sources

The specification is intended to be a complete and clear explanation of Java portlets, but
if questions remain the following may be consulted:

e A reference implementation (RI) has been made available which provides a
behavioral benchmark for this specification. Where the specification leaves
implementation of a particular feature open to interpretation, implementators may
use the reference implementation as a model of how to carry out the intention of
the specification

e A Technology Compatibility Kit (TCK) has been provided for assessing whether
implementations meet the compatibility requirements of the Java'™ Portlet API
standard. The test results have normative value for resolving questions about
whether an implementation is standard

e If further clarification is required, the working group for the Java'™ Portlet API
under the Java Community Process should be consulted, and is the final arbiter of
such issues

Comments and feedback are welcomed, and will be used to improve future versions.

PLT.1.2 Who Should Read This Specification

The intended audience for this specification includes the following groups:

e Portal server vendors that want to provide portlet containers that conform to this
standard

e Authoring tool developers that want to support web applications that conform to
this specification

e Experienced portlet authors who want to understand the underlying mechanisms
of portlet technology

We emphasize that this specification is not a user’s guide for portlet developers and is not
intended to be used as such.

Java™ Portlet Specification, version 2.0 (2008-01-11) 13

10

15

20

25

30

35

PLT.1.3 API Reference

An accompanying javadoc™, includes the full specifications of classes, interfaces, and

method signatures.

PLT.1.4 Other Java™ Platform Specifications

The following Java API specifications are referenced throughout this specification:

Java 2 Platform, Enterprise Edition, v1.4 (J2EE™)
Java Servlet™, v2 .4

JavaServer Pages™, v2.0 (JSP™)

The Java™ Architecture for XML Binding (JAXB) 2.0

These specifications may be found at the Java 2 Platform Enterprise Edition website:
http://java.sun.com/j2ee/.

PLT.1.5 Other Important References

The following Internet specifications provide information relevant to the development

and implementation of the Portlet API and standard portlet engines:

RFC 1630 Uniform Resource Identifiers (URI)

RFC 1766 Tags for the Identification of Languages

RFC 1738 Uniform Resource Locators (URL)

RFC 2396 Uniform Resource Identifiers (URI): Generic Syntax
RFC 1808 Relative Uniform Resource Locators

RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

RFC 2045 MIME Part One: Format of Internet Message Bodies
RFC 2046 MIME Part Two: Media Types

RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text
RFC 2048 MIME Part Four: Registration Procedures

RFC 2049 MIME Part Five: Conformance Criteria and Examples
RFC 2109 HTTP State Management Mechanism

RFC 2145 Use and Interpretation of HTTP Version Numbers
RFC 2616 Hypertext Transfer Protocol (HTTP/1.1)

RFC 2617 HTTP Authentication: Basic and Digest Authentication
ISO 639 Code for the representation of names of languages

ISO 3166 Code (Country) list

OASIS Web Services for Remote Portlets (WSRP)

CC/PP Processing, JSR 188

W3C: Composite Capability/Preference Profiles (CC/PP): Structure and
Vocabularies

Java™ Portlet Specification, version 2.0 (2008-01-11)

14

10

15

20

25

30

Online versions of these RFC and ISO documents are at:

e http://www.rfc-editor.org/
e http://www.ics.uci.edu/pub/ietf/http/related/is0639.txt

http://www.iso.org/iso/en/prods-services/iso3166ma/index.html
o 1

The World Wide Web Consortium (http://www.w3.org/) is a definitive source of
HTTP related information affecting this specification and its implementations.

The WSRP Specification can be found in the OASIS web site
(http://www.oasis—open.org/)

The Extensible Markup Language (XML) is used for the specification of the Deployment
Descriptors described in Chapter 13 of this specification. More information about XML
can be found at the following websites:

http://java.sun.com/xml
http://www.xml.org/

PLT.1.6 Terminology
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL in this document are to be
interpreted as described in [RFC2119].

PLT.1.7 Providing Feedback

We welcome any and all feedback about this specification. Please e-mail your comments
to jsr-286-comments@jcp.org.

Please note that due to the volume of feedback that we receive, you will not normally

receive a reply from an engineer. However, each and every comment is read, evaluated,
and archived by the specification team.

PLT.1.8 Acknowledgements V 2.0

The Portlet Specification V2.0 was the result of the work of JSR286 Expert Group,

Subbu Allamaraju, Wesley Budziwojski, Bob Butler, Siddharth Chaudhary(Vignette),
Padmanabh Dabke,

David H. DeWolf, Torsten Dettborn, Craig Doremus, Ate Douma, Jorge Ferrer (Liferay,
LLC), Michael Freedman (Oracle), Kevin Frender (BEA Systems), Slava Frid, Deepak

Java™ Portlet Specification, version 2.0 (2008-01-11) 15

10

15

20

25

Gothe(Sun Microsystems, Inc.), Vishal Goenka (SunGard Higher Education), Stefan
Hepper (IBM Corp.), Martin Holzner (Novell, Inc.), Danny Machak (TIBCO Software
Inc.), Kito D. Mann, Benjamin Mestrallet (eXo Platform SARL), Stephen Millidge, Jason
Novotny, Punit Pandey, Ilya Rybak (SAP AG), Charles Severance, Hani Suleiman, David
Sean Taylor (Apache Software Foundation), Julien Viet(JBoss, Inc.), James Ward
(Adobe Systems Inc.), Carsten Ziegeler (Day).

We want to give special thanks to (as members of the Expert Group) Subbu Allamaraju,
Wesley Budziwojski, Craig Doremus, Ate Douma, Michael Freedman, Kevin Frender for
their major contributions to this specification.

Finally we would like to thank Torsten Dettborn (University of Jena) who led the TCK
and RI efforts

PLT.1.9 Acknowledgements V 1.0

The Portlet Specification V1.0 was the result of the work of JSR168 Expert Group,
Subbu Allamaraju (BEA), Chris Braun (Novell), Don Chapman (SAS), Michael
Freedman (Oracle), Laurent Guiraud (SAP), Randal Hanford (Boeing), Andre Kramer
(Citrix), Axel Kratel (Borland), Danny Machak (TIBCO), Kris Meukens (EDS), Wes
Mitchell (Broadvision), Takao Mohri (Fujitsu), Dean Moses (Vignette), Andrew Rickard
(ATG), William Seiger (Sybase), David Sean Taylor (Apache), Stefan Hepper (IBM) and
Alejandro Abdelnur (Sun).

We want to give special thanks to (as members of the Expert Group) Subbu Allamaraju,
Henning Blohm, Chris Braun, Don Chapman, Adrian Fletcher, Michael Freedman,
Laurent Guiraud, Andre Kramer, Danny Machak, Wes Mitchell, Takao Mohri, Dean
Moses, Peter Petersen, Andrew Rickard and David Sean Taylor for their contributions.

We would like to thank OASIS WSRP Technical Committee, JSR127 Java Server Faces
Expert Group and JSR154 Servlet Specification Expert Group for their cooperation.

We would also like to thank all the people who have sent us feedback during the
Community Review and Public Review stages.

Finally we would like to thank Maneesha Jain (Sun) and Stephan Hesmer (IBM) who led
the TCK and RI efforts.

Java™ Portlet Specification, version 2.0 (2008-01-11) 16

10

15

20

25

30

PEAPLT.2

Overview

PLTAAPLT.2.1 What is a Portal?

A portal is a web based application that —commonly- provides personalization, single
stgn—onauthentication, content aggregation from different sources and hosts the
presentation layer of Infermatien-information Systemssystems. Aggregation is the action
of integrating content from different sources within a web page. A portal may have
sophisticated personalization features to provide customized content to users. Portal
pages may have different set of portlets creating content for different users.

PLETA2PLT.2.2 What is a Portlet?

A portlet is aJava—technology based—web—compeonent;—an application that provides a

specific piece of content (information or service) to be included as part of a portal page. It
is managed by a portlet container, that processes requests and generates dynamic content.
Portlets are used by portals as pluggable user interface components that provide a
presentation layer to Infermatien-information Systemssystems.

The content generated by a portlet is also called a fragment. A fragment is a piece of
markup (e.g. HTML, XHTML, WML) adhering to certain rules and can be aggregated
with other fragments to form a complete document. The content of a portlet is normally
aggregated with the content of other portlets to form the portal page. The lifecycle of a
portlet is managed by the portlet container.

Web clients interact with portlets via a request/response paradigm implemented by the
portal. Normally, users interact with content produced by portlets, for example by
following links or submitting forms, resulting in portlet actions being received by the
portal, which are forwarded by it to the portlets targeted by the user's interactions.

The content generated by a portlet may vary from one user to another depending on the
user configuration for the portlet.

This specification will deal with Portlets as Java technology based web components.

PLETA3PLT.2.3 What is a Portlet Container?

A portlet container runs portlets and provides them with the required runtime
environment. A portlet container contains portlets and manages their lifecycle. It also

Java™ Portlet Specification, version 2.0 (2008-01-11) 17

10

15

20

25

30

provides persistent storage for portlet preferences. A portlet container receives requests
from the portal to execute requests on the portlets hosted by it.

A portlet container is not responsible for aggregating the content produced by the
portlets. It is the responsibility of the portal to handle the aggregation.

A portal and a portlet container can be built together as a single component of an
application suite or as two separate components of a portal application.

PETA14PL.T.2.4 An Example

The following is a typical sequence of events, initiated when users access their portal
page:

e A client (e.g., a web browser) after being authenticated makes an HTTP request to
the portal

e The request is received by the portal

e The portal determines if the request contains an action targeted to any of the
portlets associated with the portal page

e [If there is an action targeted to a portlet, the portal requests the portlet container to
invoke the portlet to process the action

e A portal invokes portlets, through the portlet container, to obtain content
fragments that can be included in the resulting portal page

e The portal aggregates the output of the portlets in the portal page and sends the
portal page back to the client

PLT.2.5 Compatibility

The Java Portlet Specification V 2.0 does not break binary compatibility with V 1.0. This
means that all portlets written against the V 1.0 specification can run unchanged. Portlet
V2.0 containers must support deploying JSR 168 portlets and the JSR 168 deployment

descriptor. i

The only exceptions to this rule are:

® RenderResponse.setContentType is no longer required before calling getWriter
or getOutputstream. Calling getWriter or getOutputstream without previously
setting the content type results no longer in an IllegalStateException in V 2.0.

® getProtocol for included servlets / JSPs no longer returns null, but
‘HTTP/1.1’ in V2.0.

PLT.2.6 Major changes introduced with V 2.0

The major new features of version 2.0 include:

Java™ Portlet Specification, version 2.0 (2008-01-11) 18

10

15

20

25

30

35

e FEvents — enabling a portlet to send and receive events and perform state changes
or send further events as a result of processing an event.

e Public render parameters — allowing portlets to share parameters with other
portlets.

e Resource serving — provides the ability for a portlet to serve a resource.-

e Portlet filter — allowing on--the--fly transformations of information in both the
request to and the response from a portlet-.

PLT.2.6.1 Clarifications that may make V1.0 Portlets Non-
compliant

Depending on the implementation of the portlet of a specific runtime behavior of a portlet
container the following clarifications may lead to different results when executing a
portlet in either a JSR 168 or a JSR 286 container:

e XML escaping of portlet URLs produced via the portlet tag library.

V 2.0 clarifies that the default is all portlet URLs are XML escaped. The default
can be changed with the new attribute escapexML. JSR 168 portlets depending on
the fact that portlet URLs created via the tag library are not XML escaped can
change the default to non-escaped via the portlet container runtime option
javax.portlet.escapexXml (see PLT.26.7)

e Defining multiple values for the same parameter name in the Portlet param tag.

V 2.0 clarifies that if the same name of a parameter occurs more than once within
an actionURL, renderURL Or resourceURL the values must be delivered as
parameter value array with the values in the order of the declaration within the
URL tag. Portlets assuming that the last occurrence wins and replaces the
previous set values will behave differently in V2.0 containers.

e getProtocol for included servlets / JSPs no longer returns null.

V 2.0 defines that getProtocol now returns ‘uTTP/1.1’ and thus is better aligned
with the servlet model that expects the getProtocol to return this value in the
GenericServlet.

e Parameters set on the portlet URL and the post body are aggregated into the
request parameter set. Portlet URL parameters are presented before post body
data. JSR 168 did not define if and how post body and portlet URL parameters are
being merged. The added clarification mirrors the behavior defined in the servlet
specification for servlets.

® RenderResponse.setContentType is no longer required before calling getWriter
or getOutputstream. Calling getWriter or getOutputstream without previously
setting the content type will no longer result in an IllegalStateException.

PLT.2.6.2 Changes to the Programming Model

The following additions were made to the V1.0 programming model:

Java™ Portlet Specification, version 2.0 (2008-01-11) 19

10

15

20

25

30

35

40

Use application level resource bundles instead of inline localization in the

portlet.xml.

In V1.0 the only ability to localize values on the portlet application level was
inside the portlet.xml using the xml:lang attribute. With V2.0 portlet
application developers can now provide the localized values in a resource bundle
and thus have the localized values in separate files instead of cluttering the
deployment descriptor.

PLT.2.6.3 List of all Changes in the Specification

This section list all changes that are not editorial in nature:

PLT.1.4: added JAXB 2.0 reference

PLT 1.8: added V2.0 Acknowledgments

PLT 2.5: added compatibility section

PLT 2.6: added complete section with major changes introduced with V2.0

PLT 2.7: added JavaSE and JavaEFE requirements for V2.0, now based on servlet

2.4. J2EE 1.4 and Java 5.0 and a special Java 1.4 compiled version.
PLT 3.0: updated to reflect new portlet capabilities

PLT 3.2: added section on using servlet application lifecycle listeners for portlet

applications
PLT 4.1: added portlet section

PLT 4.3: added section about portlets and web frameworks

PLT 5.0, 5.2: added references to new lifecycle interfaces EventPortlet and

ResourceServingPortlet
PLT 5.2.3: moved the End of Service section from end of this chapter to this place

PLT 5.3: erouped the existing sections Portlet Definition and Portlet Entity and

Portlet Window to a new section Portlet Customization Levels
PLT 5.4: added new event and resource lifecycle methods

PLT 5.4.2: added Event Request section

PLT 5.4.3: added reference to HTTP spec that render should be a safe operation

PLT 5.4.4: added Resource Request section

PLT 5.4.5.1: added Action Dispatching section

PLT 5.4.5.2: added Event Dispatching section

PLT 5.4.5.3: added Resource Serving Dispatching section

PLT 5.4.5.4: added render mode annotation description

PLT 6.3: added Default Event Namespace section

PLT 6.4: added Public Render Parameter Names section

PLT 6.5: added Processing Event QNames section

PLT 6.6: added Publishing Event QNames section

PLT 6.7: added Supported Locales section

PLT 6.8: added Supported Container Runtime Options section

PLT 7.1: added resource URLs and clarification that portlet URLs are only valid

within the current request and may not be real URLs.

Java™ Portlet Specification, version 2.0 (2008-01-11) 20

10

15

20

25

30

35

40

PLT 7.1.1: added new BaseURL section with content of the old Portlet URL

section in order to reflect the new BaseURL interface
PLT 7.1.1.1: added new URL properties section

PLT 7.1.2: clarified that if a portlet mode or window state is not set on a URL that

the current portlet mode and window state is chosen as default
PLT 7.1.3: clarified setSecure semantics

PLT 7.2: added Portlet URL listeners section

PLT 8.4: added portlet managed modes

PLT 8.5: added renderMode annotation description

PLT 8.7: added Setting next possible Portlet Modes section

PLT 9.5: added Defining Window State Support section

PLT 10.4: added Container Runtime Options section

PLT 11.1.1: listed and described all methods to access request parameters

PLT 11.1.1.1: added Form and Query Parameters section

PLT 11.1.1.2: added clarification that request parameters are not propagated

between different lifecycle requests
PLT 11.1.1.3: added events to the description; clarified that the portlet receives

always the render parameters explicitly set on a render URL: clarified that render
parameters are cleared with each processAction and processEvent invocation
PLT 11.1.1.4: added Resource Request Parameter section

PLT 11.1.2: added Public Render Parameter section

PLT 11.1.4.1: added User Information Request Attribute section

PLT 11.1.4.2 : added CC/PP Request Attribute section

PLT 11.1.4.3: added Render Part Request Attribute for Setting Headers in the

Render Phase section
PLT 11.1.4.4: added Lifecycle Phase Request Attribute section

PLT 11.1.4.5: added Action-scoped Request Attributes section

PLT 11.1.5.1: added Cookies section

PLT 11.1.8: clarify that the getResponseContentType and

getResponseContentType methods return the same value within a client request
and added that these methods provide the information based on the HTTP Accept
headers for serveResource calls.

PLT 11.1.12: added Access to the Portlet Window ID section

PLT 11.3: added ActionRequest Interface section

PLT 11.4: added ResourceRequest Interface section

PLT 11.5: added EventRequest Interface section

PLT 12.1.1: clarify that response properties map to header values and introduce

the new GenericPortlet.doHeaders method
PLT 12.1.2: added resource URLs: clarified that returned URLs may not be real

URLs
PLT 12.1.3: added Namespacing section

PLT 12.1.4: added Setting Cookies section

PLT 12.2: added StateAwareResponse Interface section

Java™ Portlet Specification, version 2.0 (2008-01-11) 21

10

15

20

25

30

35

40

PLT 12.3: removed the parts of the ActionResponse that are now in

State AwareResponse
PLT 12.3.1: added description for the new sendRedirect(String location, String

renderUrlParamName) method
PLT 12.4: added EventResponse Interface section

PLT 12.5: added MimeResponse Interface section

PLT 12.5.1: reduced the must requirement to set a content type to can and define

the fallback of using the first entry in the getResponseContentTypes list
PLT 12.5.2: added distinction between render and serveResource calls; clearified

that for render the portlet should only use the raw OutputStream for binary
content
PLT 12.5.3: added Access to Response Headers section

PLT 12.5.4: added Setting Markup Head Elements section

PLT 12.5.6: added Predefined MimeResponse Properties section

PLT 12.6 added RenderResponse Interface section and moved all parts that only

apply to the render response to this new section
PLT 12.6.1: added that portlets should set the new javax.portlet.renderHeaders

container runtime option when using dynamic titles
PLT 12.6.2: added Next possible portlet modes section

PLT 12.7: added ResourceResponse Interface section

PLT 12.8: added processEvent and serveResource references

PLT 13: added chapter Resource Serving

PLT 14: added chapter Serving Fragments through Portlets

PLT 15: added chapter Coordination between portlets

PLT 16.1: added Support for Markup Head Elements section

PLT 17.1: added processEvent and serveResource references; clarified that

setValue overrides previous values set with setValues
PLT 17.4: removed the restriction that you need to have one instance of a

validator per VM added that portlet preferences should not be modified in the
validator
PLT 18.2: clarified that a portlet session object is only valid within the current

client request
PLT 18.3: added clarification that portlet session objects may be accessed in

parallel; added reference to the new getWindowID method
PLT 18.5: added Writing to the Portlet Session section

PLT 19.1: removed the restriction of only having include in render

PLT 19.2: added include and forward for all lifecycle methods; add restriction

that the passed request / response pair must be either the original ones or wrappers
using the new wrapper classes
PLT 19.3: added that the servlet path lookup is based on the rules defined in

SVR.11
PLT 19.3.2: added attributes for all lifecycle phases

PLT 19.3.3: added Request and Response Objects for Included Servlets/JSPs

from within the Action and Event processing Methods section

Java™ Portlet Specification, version 2.0 (2008-01-11) 22

10

15

20

25

30

35

40

45

e PLT 19.3.4: getRemotePort and getLocalPort now return ‘0’ instead of null;

clarified that HttpUtils.getRequestURL is undefined; getProtocol now returns
‘HTTP/1.1’ instead of null

e PLT 19.3.5: added Request and Response Objects for Included Servlets/JSPs from

within the ServeResource Method section
e PLT 19.3.6: added Comparison of the different Request Dispatcher Includes

section

e PLT 19.3.8: added Path and Query Information in Included / Forwarded Servlets

section
e PLT 19.4: added The forward Method section

e PLT 19.5: added Servlet filters and Request Dispatching section

e PLT 19.6: added Changing the Default Behavior for Included / Forwarded

Session Scope section
e PLT 20: added Portlet Filter chapter

e PLT 21.1: changed that non-mapped user attributes must not be present in the

map to a should
e PLT 21.2: changed the sample to use the new enumeration for P3P Userlnfo

e PLT 22.1: changed must requirement of defining expiration based caching

support in the deployment descriptor to should; added private and public cache
scopes; added reference to new CacheControl interface; added clarification that
cache settings should be set before writing to the output stream; included new
lifecycle method processEvent and serveResource

PLT 22.2: added Validation Cache section

PLT 25: added reference to V1.0 deployment descriptor in the appendix

PLT 25.1: added locale character set mapping

PLT 25.2.2: added reference to the Java Product Versioning specification

PLT 25.5: update to new V2.0 deployment descriptor: additions in V2.0 are:

in custom-portlet-mode section: added portal-managed element
added resource-bundle element on application level

added filter element on application level

added filter-mapping element on application level

added default-namespace element on application level

added event-definition element on application level

added public-render-parameter on application level

added listener element on application level

added container-runtime-option on application level

added cache-scope on portlet level

in supports section: added window-state element

added supported-processing-event element on portlet level

added supported-publishing-event element on portlet level

added supported-public-render-parameter element on portlet level
added container-runtime-option element on portlet level

e PLT 25.6: added Pictures of the structure of a Deployment Descriptor section

Ol l|jololc]o]jo 0|0 |0 [0 |0 |0 |0 |0

e PLT 25.7: added unigueness requirements for new elements event-definition,

public-render-parameters and filter

Java™ Portlet Specification, version 2.0 (2008-01-11)

23

10

15

20

25

30

35

40

PLT 25.8.1: added reference to new application level resource bundle

PLT 25.8.2: added reference to RFC 1766; clarified that the supported locale

information should be leveraged by the portal application
PLT 25.10: added application level resource bundle description and pre-defined

keys: in the portlet resource bundle table added keys for description and display-
name
PLT 26: added new V2.0 namespace; added reference to JSP 2.0 EL

PLT 26.1: added new request/response variables: added portletSession variable:

added portletSessionScope variable: added portletPreferences variable; added
portlet PreferencesValues variable; changed sample to use new cache control API
PLT 26.2: added attributes copyCurrentRenderParameters, escapeXml, name:

added IllegalStateException: updated sample with new attributes
PLT 26.3: added attributes copyCurrentRenderParameters, escapeXml; added

IllegalStateException
PLT 26.4: added resourceURL Tag section

PLT 26.5: added the restriction that the namespace tag must match

PortletResponse.getNamespace
PLT 26.6: added new resourceURL tag: added description for empty values:

added description for having multiple param tags with the same name
PLT 26.7: added propertyTag section

PLT 26.8: added Changing the Default Behavior for escapeXml section

PLT 27: added Leveraging JAXB for Event payloads chapter

PLT A: added new RenderMode annotation to samples

PLT B: lessen restriction on iFrames from forbidden to not recommended

PLT C.5: added Tables section

PLT C.6: added rows portlet-form-field-label, portlet-form-field

PLT C.7: added rows portlet-menu-cascade, portlet-menu-cascade-item, portlet-

menu-cascade-item-selected, portlet-menu-cascade-item-hover, portlet-menu-
cascade-item-hoverselected, portlet-menu-separator, portlet-menu-cascade-
separator, portlet-menu-content, portlet-menu-content-selected, portlet-menu-
content-hover, portlet-menu-content-hover-selected, portlet-menu-indicator,
portlet-menu-indicator-selected, portlet-menu-indicator-hover,portlet-menu-
indicator-hover-selected

PLT D: split out bdate into year, month, day, hour, minute, second,

fractionssecond, timezone: added user.login.id
PLT E: added Deployment Descriptor Version 1.0 chapter

PLT.F: updated list with new TCK assertions

PLT.2.6.4 List of all API changes

This section list all non-editorial API changes:

ActionRequest:

Java™ Portlet Specification, version 2.0 (2008-01-11)

o extends ClientDataRequest
o added ACTION NAME constant

24

10

15

20

25

30

35

40

45

[©)

added getMethod

e ActionResponse:

o

extends StateAwareResponse

[©)

added sendRedirect(String location, String renderUrlParamName)

added new BaseURL interface

added new CacheControl interface

added new Event interface

added new Eventlnterface interface

added new Event

GenericPortlet

[©)

implements ResourceServingPortlet, EventPortlet

o

added new PortletConfig methods

[©)

added doHeaders method

o

added getNextPossiblePortletModes method

e added new MimeResponse interface

e PortalContext

©]

added constant MARKUP HEAD ELEMENT SUPPORT

e PortletConfig

o

added getPublicRenderParameterNames method

added getDefaultNamespace method

added getPublishingEventQNames method

added getProcessingEventQNames method

O |0 |O [0

added getSupportedLocales method

©]

added getContainerRuntimeOptions method

e PortletContext

o

added getContainerRuntimeOptions method

e PortletRequest

©)

added constants CCPP PROFILE, ACTION PHASE, EVENT PHASE,

RENDER_PHASE. RESOURCE PHASE, LIFECYCLE_PHASE,
RENDER PART, RENDER HEADERS, RENDER MARKUP,
ACTION_SCOPE_ID

added enum P3PUserInfos

added getWindowlID method

added getCookies method

O |0 |0 [0

added getPrivateParameterMap method

o

added getPublicParameterMap method

e PortletRequestDispatcher

[©)

added include(PortletRequest request, PortletResponse response) method

o

added forward method

e PortletResponse

[©)

changed getNamespace: lifetime is now for the portlet window instead just

[©)

request
added addProperty(javax.servlet.http.Cookie cookie) method

©)

added addProperty(String key, org.w3c.dom.Element element) method

[©)

added createElement method

e PortletSession

Java™ Portlet Specification, version 2.0 (2008-01-11) 25

10

15

20

25

30

35

40

45

©]

added getAttributeMap() method

o

added getAttributeMap(int scope) method

e PortletURL

o

extends BaseURL

added add/setProperty methods

added getParameterMap

added writer methods

added getPortletMode method

O [0 |0 |O |O

added getWindowState

©]

added removePublicRenderParameter method

added PortletURLGenerationListener interface

added ProcessAction annotation

added ProcessEvent annotation

added RenderMode annotation

RenderRequest

©]

added constant ETAG

o

added getETag method

e RenderResponse

©]

extends MimeResponse

©)

added constants CACHE _SCOPE, PUBLIC_SCOPE, PRIVATE _SCOPE,

©]

ETAG, USE_CACHED_CONTENT, NAMESPACED_RESPONSE,
MARKUP HEAD ELEMENT,
added createResourceURL method

o

added getCacheControl method

©]

added setNextPossiblePortletModes method

added ResourceRequest interface

added ResourceResponse interface

added ResourceServingPortlet interface

added ResourceURL interface

added StateAwareResponse interface

added javax.portlet.filter package

o

added ActionFilter interface

added ActionRequestWrapper class

added ActionResponseWrapper class

added EventFilter interface

added EventRequestWrapper class

added EventResponseWrapper class

added FilterConfig interface

added FilterChain interface

added PortletFilter interface

added PortletRequestWrapper class

added PortletResponseWrapper class

added RenderFilter interface

added RenderRequestWrapper class

added RenderResponseWrapper class

ool lo|c]o o |0]o|o |0

added ResourceFilter interface

Java™ Portlet Specification, version 2.0 (2008-01-11) 26

10

15

20

o added ResourceRequestWrapper class
o added ResourceResponseWrapper class

PETAS5PLT.2.7 Relationship with Java 2 Platform, Standard
and Enterprise Edition

The Portlet API v2+.0 is based on the Java 2-Platform, Standard Edition 5.0 and
Enterprise Edition; v1.43. Portlet containers and—pertletsshould at least meet the
requirements, described in v_1.4 of the J2EE Specification, for executing in a J2EE
environment.

As Portlet API v2.0 is intended to enable a common, composable programming model for
web development with broad applicability, it is being defined to run across a variety of
runtime environments _including JavaME (CDC/Foundation) and JavaSE 1.4.2.
Additionally, the Portlet API can be exploited in OSGi based Execution Environments
that run on top of JavaME and Java SE. These are defined in the JCP via JSR 232 and
JSR 291 respectively. The Java Portlet API jar files comply with the OSGi specification
and thus can be deployed as OSGi bundles on servers supporting OSGi.

The following Java SE 5.0 features will not be available in the Portlet API V2.0 compiled
for Java SE 1.4:

e enum P3PUserlnfos
e annotations ProcessAction, ProcessEvent, RenderMode
e oenerics for collections

Due to the analogous functionality of servlets, concepts, names and behavior of the

| portlet will be similar to the ones defined in the Serviet Specification 2.3-4 whenever

applicable.

Java™ Portlet Specification, version 2.0 (2008-01-11) 27

10

15

20

25

30

PLT.3

Relationship with the Servlet Specification

The Serviet Specification ¥2-3-defines servlets as follows:

“A servlet is a Java technology based web component, managed by a container, that
generates dynamic content. Like other Java-based components, servlets are platform
independent Java classes that are compiled to platform neutral bytecode that can be
loaded dynamically into and run by a Java enabled web server. Containers, sometimes
called servlet engines, are web server extensions that provide servlet functionality.
Servlets interact with web clients via a request/response paradigm implemented by the
servlet container.”

Portlets share many similarities with servlets:

Portlets are Java technology based web components

Portlets are managed by a specialized container

Portlets generate dynamic content

Portlets lifecycle is managed by a container

Portlets interact with web client via a request/response paradigm

Portlets differ in the following aspects from servlets:

Portlets only generate markup fragments_in the render method, not complete
documents. The Portal aggregates portlet markup fragments into a complete portal
page

Portlets are-net-directhybound-to-aUREcan only be invoked through URLs
constructed via the portlet APL

Web clients interact with portlets through a portal system

Portlets have a-more refined request handling, i.e. action requests, event request,
render request and resource requests-and-renderrequests

Portlets have predefined portlet modes and window states that indicate the
function the portlet is performing and the amount of real estate in the portal page
Portlets can exist many times in a portal page

Java™ Portlet Specification, version 2.0 (2008-01-11) 29

10

15

20

25

30

Portlets have access to the following extra functionality not provided by servlets:

e Portlets have a means for-of accessing and storing persistent configuration and
customization data

e Portlets have access to user profile information

e Portlets have URL rewriting functions for creating hyperlinks within their
content, which allow portal server agnostic creation of links and actions in page
fragments

e Portlets can store transient data in the portlet session in two different scopes: the
apphcatlon W1de scope and the portlet prlvate scope flihev—eaﬂ—m—&Ma—&Hew

e Portlets can send and receive events from other portlets or can receive container
defined events.

Portlets do not have access to the following functionality provided by servlets—intheir
render-method:

e Setting the character set encoding of the render response
eSctting HTTP headers on the response
e The URL of the client request to the portal

The portlet has full control over the response when rendering resources via the
serveResource call.

Because of these differences, the Expert Group has decided that portlets needs to be a
new component. Therefore, a portlet is not a servlet. This allows defining a clear
interface and behavior for portlets.

In order to reuse as much as possible of the existing servlet infrastructure, the Portlet
Specification leverages functionality provided by the Servlet Specification wherever
possible. This includes deployment, classloading, web applications, web application
lifecycle management, session management and request dispatching. Many concepts and
parts of the Portlet API have been modeled after the Servlet APIL.

Java™ Portlet Specification, version 2.0 (2008-01-11) 30

10

15

20

25

30

35

Portlets, servlets and JSPs are bundled in an extended web application called_a portlet
application. Portlets, servlets and JSPs within the same portlet application share_the
classloader, application context and session.

PLT.3.1 Bridging from Portlets to Servlets/JSPs

Portlets can leverage servlets, JSPs and JSP tag-libraries for generating content.

A portlet can call servlets and JSPs just like a servlet can invoke other servlets and JSPs
using a request dispatcher (see PLT.16 Dispatching Requests to Serviets and JSPs
Chapter). To enable a seamless integration between portlets and servlets the Portlet
Specification leverages many of the servlet objects.

When a servlet or JSP is called from within a portlet, the servlet request given to the
servlet or JSP is based on the portlet request and the servlet response given to the servlet
or JSP is based on the portlet response. For example, perby default:

J.e Attributes set in the portlet request are available in the included servlet request
(see PLT.46-19 Dispatching Requests to Servlets and JSPs Chapter),

2-e The portlet and the included servlet or JSP share the same output stream (see
PLT.46-19 Dispatching Requests to Serviets and JSPs Chapter).

3-e Attributes set in the portlet session are accessible from the servlet session and vice
versa (see PLT.43-18 Portlet Session Chapter).

PLT.3.2 Using Servlet Application Lifecycle Events

In chapter SRV.10 the Java Servlet Specification describes a variety of application
lifecycle events that the servlet can register for. The following portlet objects defined by
this specification mirror its servlet counterparts: PortletContext and PortletSession.
The lifecycle of the pPortletContext 1s tied to the SevletContext of this web
application and the attributes set in the PortletContext are mirrored in the
servletContext. The lifecycle of the PortletSession is tied to the HttpSession of
this web application and the attributes set in the PortletSession are mirrored in the
HttpSession. Due to this fact the servlet lifecycle listeners for ServletContext and
HttpSession can also be used for notifications on the PortletContext and
PortletSession operations.

Given that the portlet request is independent of the servlet request the servlet request
lifecycle listeners do not have a simple mapping to portlet requests. In order to allow
portlets to leverage the servlet request listeners for portlets the portlet container needs to
create a servlet request mirroring the portlet request. In order to allow the servlet request
listeners to distinguish between the case of a plain servlet request and a servlet request
targeted towards a portlet the portlet container needs to set the attribute
javax.portlet.lifecycle phase in order to mark this request as a request targeted to

a portlet.

Java™ Portlet Specification, version 2.0 (2008-01-11) 31

10

15

20

25

The following is the list of servlet listeners that also apply to portlets:

javax.servlet.ServletContextListener — for notifications about the servlet

context and the corresponding portlet context

javax.servlet.ServletContextAttributeListener — for notifications on

attributes in the servlet context or the corresponding portlet context.
javax.servlet.http.HttpSessionActivationListener — for notifications on

the activation or passivation of the HTTPSession or the corresponding
PortletSession.
javax.servlet.http.HttpSessionAttributeListener — for notifications on

attibutes of the HTTPSession or the corresponding PortletSession.
javax.servlet.http.HttpSessionBindingListener - for notifications on
binding of object to the HTTPSession or the corresponding PortletSession.

e —javax.servlet.ServletRequestListener — for notifications about changes to

the HTTPServletRequest or the mirrored portlet request of the current web

application.
javax.servlet.ServletRequestAttributeEvent - for notifications about

changes to the attributes of the HTTPServletRequest or the mirrored portlet
request of the current web application.

PET32PLT.3.3 Relationship Between the Servlet Container

and the Portlet Container

The portlet container is an extension of the servlet container. As such, a portlet container
can be built on top of an existing servlet container or it may implement all the
functionality of a servlet container. Regardless of how a portlet container is implemented,
its runtime environment is assumed to support at least Serviet Specification 2.34.

Java™ Portlet Specification, version 2.0 (2008-01-11) 32

10

15

20

PLT.4

Portlet Concepts

PLT.4.1 Portlets

Portlets provide a componentized user interface (UI) for services. In a Service Oriented
Architecture (SOA) one does not write monolithic applications, but separate services that
can be orchestrated together into applications;. This service orchestration requires
componentized Uls for the services, monolithic web Uls based on servlets are no longer
sufficient.

Portlets provide such a component UI model that is intended to aggregate the component
Uls into a larger Ul with consistent look and feel (see Appendix PLT.C Style Sheet
Definitions). The Java Portlet Specification allows coordination on the UI layer with
different means, such as events, application sessions, and public render parameters, in
order to provide a deep and seamless integration between the different services.

The predominant applications using portlets today are portals aggregating the portlet
markup into portal pages, but the Java Portlet Specification and portlets itself are not
restricted to portals.

PETA41PL.T.4.2 Embedding Portlets as Elements of a Portal
Page

A portlet generates markup fragments. A portal rermally-may adds a title, control buttons
and other decorations to the markup fragment generated by the portlet, this new fragment
is called a portlet window. Then the portal may aggregates portlet windows into a
complete document, the portal page.

Java™ Portlet Specification, version 2.0 (2008-01-11) 33

10

Figure 4-1 Elements of a Portal Page

| _——Decorations and controls

L8] <Title> M) fm] [E] [H14]]

| | —Portlet fragment
pui

<Portlet content> | __—Portlet window

[<Title> M ml €[] || |[G] <Title> M m] [E] H | . Portal page
<Portlet content> <Portlet content>
[<Title> M m] [E] 1] |

<Portlet content>

Note that this is only one example on how a portal could make use of the portlet markup
fragment. There may exist other portal implementations with a different rendering
approach. The important part of the portal page concept in regards to this specification is
that the markup fragment of the portlet may be not the only markup returned in the
document to the client. Thus the portlet markup needs to co-exist with whatever other
markup the portal produces.

PET4:2P1L.T.4.2.1 Portal Page Creation

Portlets run within a portlet container. The portlet container receives the content
generated by the portlets. Typically, the portlet container hands the portlet content to a
portal. The portal server creates the portal page with the content generated by the portlets
and sends it to the client device (i.e. a browser) where it is displayed to the user.

Java™ Portlet Specification, version 2.0 (2008-01-11) 34

10

15

20

25

FIGURE 4-2 Portal Page Creation

Client Device

Portal Page
e [romas]
/ e
B C <«— | Portal Portlet
/ Server | Container| 4

b || [rmen)

Portlet Windows

PET-43P1.T.4.2.2 Portal Page Request Sequence

Users access a portal by using a client device such as an HTML browser or a
web-enabled phone. Upon receiving the request, the portal determines the list of portlets
that need to be executed to satisfy the request. The portal, through the portlet container,
invokes the portlets. The portal creates the portal page with the fragments generated by
the portlets and the page is returned to the client where it is presented to the user.

PLT.4.3 Portlets and Web Frameworks

The portlet model provides a clear separation of the state changing logic that is embedded
in the processaction and processEvent methods and the rendering of the-markup
which is performed via the render and serveResource methods. The portlet model thus
follows the popular Model-View-Controller pattern which separates the controller logic
from the part that generates the view.

Java™ Portlet Specification, version 2.0 (2008-01-11) 35

The default technology that the Java Portlet Specification provides for rendering views is
JSPs. However, once one starts creating advanced portlets, existing web frameworks, like
Java Server Faces (JSF), Struts, WebWork, Spring MVC framework, Wicket, or others
may be used. When using such a web framework the portlet acts as a bridge between the
portlet environment and the web framework.

Version 2.0 of this specification provides additional means of making the implementation
of such bridges simpler.

Java™ Portlet Specification, version 2.0 (2008-01-11) 36

10

15

20

25

PLTFAPLT.S

———

The Portlet Interface and Additional Life

Cycle Interfaces

The portlet interface is the main abstraction of the Portlet API. All portlets implement
this interface either directly or, more commonly, by extending a class that implements the
interface.

The portlet can optionally implement the additional life cycle interfaces EventPortlet
and ResourceServingPortlet in order to leverage additional functionality for receiving
/ sending events or serving resources, respectively.

The Portlet API includes a GenericPortlet class that implements the portlet,
EventPortlet and ResourceServingPortlet interface and provides default
functionality. Developers should; typically; extend, directly or indirectly, the
GenericPortlet class to implement their portlets.

PLET1APLT.5.1 Number of Portlet Instances

The portlet definition sections in the deployment descriptor of a portlet application
control how the portlet container creates portlet instances.

For a portlet, not hosted in a distributed environment (the default), the portlet container
must" instantiate and use only one portlet object per portlet definition.

In the case where a portlet is deployed as part of a portlet application marked as
distributable, in the web.xml deployment descriptor, a portlet container may instantiate
only one portlet object per portlet definition -in the deployment descriptor- per virtual
machine (VM). ™

PETA2PLT.5.2 Portlet Life Cycle

A portlet is managed through a well defined life cycle that defines how it is loaded,
instantiated and initialized, how it handles requests from clients, and how it is taken out
of service. This life cycle of a portlet is expressed through the init, processaAction,
render and destroy methods of the Portlet interface.

Java™ Portlet Specification, version 2.0 (2008-01-11) 37

10

15

20

25

30

The Java Portlet Specification V2.0 provides the additional optional lifecycle interfaces
EventPortlet and ResourceServingPortlet that the portlet can implement.

PETA2-1PLT.5.2.1 Loading and Instantiation

The portlet container is responsible for loading and instantiating portlets. The loading and
instantiation can occur when the portlet container starts the portlet application, or delayed
until the portlet container determines the portlet is needed to service a request.

The portlet container must load the portlet class using the same ClassLoader the servlet

container uses for the web application part of the portlet application.” After loading the
portlet classes, the portlet container instantiates them for use.

PLTA122P1.T.5.2.2 Initialization

After the portlet object is instantiated, the portlet container must initialize the portlet
before invoking it to handle requests.” Initialization is provided so that portlets can
initialize costly resources (such as backend connections), and perform other one-time
activities. The portlet container must initialize the portlet object by calling the init method
of the portlet interface with a unique (per portlet definition) object implementing the
portletConfig interface. This configuration object provides access to the initialization
parameters and the ResourceBundle defined in the portlet definition in the deployment
descriptor. Refer to PLT.6 Portlet Config Chapter for information about the
portletConfig interface. The configuration object also gives the portlet access to a
context object that describes the portlet’s runtime environment. Refer to PLT.10 Portlet
Context Chapter for information about the PortletContext interface.

PLETA22APLT.5.2.2.1 Error Conditions on Initialization

During initialization, the portlet object may throw an UnavailableException oOr a
portletException. In this case, the portlet container must not place the portlet object
into active service and it must release the portlet object.” The destroy method must not
be called because the initialization is considered unsuccessful.""

The portlet container may reattempt to instantiate and initialize the portlets at any time
after a failure. The exception to this rule is when an UnavailableException indicates a
minimum time of unavailability. When this happens the portlet container must wait for
the specified time to pass before creating and initializing a new portlet object.”™

A RuntimeException thrown during initialization must be handled as a
. iX
PortletException.

Java™ Portlet Specification, version 2.0 (2008-01-11) 38

10

15

20

25

30

PET1.2.22PL.T.5.2.2.2 Tools Considerations

The triggering of static initialization methods when a tool loads and introspects a portlet
application is to be distinguished from the calling of the init method. Developers should
not assume that a portlet is in an active portlet container runtime until the init method of
the portlet interface is called. For example, a portlet should not try to establish
connections to databases or Enterprise JavaBeans™ containers when static (class)
initialization happens.

PLT.5.2.3 End of Service

The portlet container is not required to keep a portlet loaded for any particular period of
time. A portlet object may be kept active in a portlet container for a period of
milliseconds, for the lifetime of the portlet container (which could be a number of days,
months, or years), or any amount of time in between.

When the portlet container determines that a portlet should be removed from service, it
calls the destroy method of the pPortlet interface to allow the portlet to release any
resources it is using and save any persistent state. For example, the portlet container may
do this when it wants to conserve memory resources, or when it is being shut down.

Before the portlet container calls the destroy method, it should allow any threads that
are currently processing requests within the portlet object to complete execution. To
avoid waiting forever, the portlet container can optionally wait for a container-defined
time period before destroying the portlet object.

Once the destroy method is called on a portlet object, the portlet container must not
route any requests to that portlet object.” If the portlet container needs to enable the
portlet again, it must do so with a new portlet object, which is a new instance of the
portlet’s class.

If the portlet object throws a RuntimeException within the execution of the destroy
method the portlet container must consider the portlet object successfully destroyed."

After the destroy method completes, the portlet container must release the portlet object
so that it is eligible for garbage collection.”" Portlet implementations should not use
finalizers.

PLT.5.3 Portlet Customization Levels

The portlet model leverages the flyweight pattern and provides the Java instance of the
portlet class with all needed data in each request. This keeps the number of Java instances
small and thus allows better scalability for large user numbers. In order to distinguish

Java™ Portlet Specification, version 2.0 (2008-01-11) 39

10

15

20

25

30

35

between the different levels of customization the terms portlet definition, portlet entity
and portlet window are introduced in this section.

PLT.5.3.1 Portlet Definition and Portlet Entity

The portlet definition may include a set of preference attributes with their default values.
They are used to create preferences objects (see PLT. 147 Portlet Preferences Chapter).

At runtime, when serving requests, aone or more preference objects are associated with a
portlet. The resulting association of a specific preference object with a portlet is called
the portlet entity. This concept is abstract. There is not a concrete object that represents
the portlet entity. The portal / portlet container merely associates the proper preference
object with the context that is passed to the executing portlet.

Normally, a portlet customizes its behavior and the content it produces based on the
attributes of the associated preference object. The portlet may read, modify and add
preference attributes.

By default, a preferences object is built using the initial preferences values defined in the
portlet deployment descriptor. A portal/portlet-container implementation may provide
administrative _means to create new preferences objects based on existing ones.
Portal/portlet-container created preferences objects may have their attributes further
customized.

Administration, management and configuration of preferences objects are left to the
portal/portlet-container implementation. It is also left to the implementation to provide
advanced features, such as hierarchical management of preferences objects or cascading
changes on preference attributes.

PLT.5.3.2 Portlet Window

Consuming applications, like portals, typically have a more concrete concept of portlets
thean the model of this specification. In a consuming application portlets are
customizable, visual components used within portal pages. Such a usage within a portal
page is termed a portlet window. Because of the customizable aspects of portlets, each
portlet window can have many preference objects associated with it; i.e. there is a
IN:NM relationship between portlet windows and portlet entities. For example some
portal implementations may group the read-only preferences that are managed by the
administrator to a portlet entity and the read-write preferences that are managed by the
portlet user to a different portlet entity.

However, at runtime the portlet will not be able to distinguish these different preference
objects as the portlet container will provide always one aggregated set of preferences to
the portlet. Though typically portlet windows maintain distinct sets of portlet entities

Java™ Portlet Specification, version 2.0 (2008-01-11) 40

10

15

20

25

30

35

from other portlet windows (based on the same portlet), this need not be the case. Two
(or more) portlet windows can share the same portlet entity set and thus provide distinct
views onto the same thing. From a developer's perspective, portlet windows are important
because they define distinct runtime views. Hence runtime state (transient state) such as
render parameters, portlet mode, window state, and the portlet-scoped session state are
maintained based on a portlet window. For example the user may want to reference the
same portlet entity from different pages, but does not want to have the runtime state
shared between these two.

Each portlet window gets a unique ID assigned by the portal / portlet container that is
constant and valid for the lifetime of this portlet window. The portlet window ID can be
accessed by the portlet via the PortletRequest.getWindowID () call and is used by the
portlet container for keying the portlet-scoped session data. The portlet window ID
returned by PortletRequest .getWindowID () must not contain a ‘?’ character in order to
comply with the requirement for the portlet scope session ID (see PLT.18.3)

Java™ Portlet Specification, version 2.0 (2008-01-11) 41

10

15

20

25

30

Java™ Portlet Specification, version 2.0 (2008-01-11)

42

10

15

20

25

30

35

PET1:24PL.T.5.4 Request Handling

After a portlet object is properly initialized, the portlet container may invoke the portlet
to handle client requests.

The portlet interface defines two methods for handling requests, the processaAction
method and the render method. In addition the portlet may implement any of the
optional interfaces EventPortlet and ResourceServingPortlet that define the
additional lifecycle methods processEvent and serveResource.

When a portal/portlet-container invokes the processaAction method of a portlet, the
portlet request is referred to as an action request. As a result of an action, the portlet may
publish one or more events, which result in one or more invocations of the
processEvent method of athis or another portlet with the portlet request referred to as an
event requests. In addition to these portlet initiated events the portal/portlet container may
issue portal/portlet container specific events. When a portal/portlet-container invokes the
render method of a portlet, the portlet request is referred to as a render request. When a
portal/portlet-container invokes the serveResource method of a portlet, the portlet
request is referred to as a resource request.

Commonly, client requests are triggered by URLs created by portlets. These URLs are
called portlet URLs. A portlet URL is targeted to a particular portlet. Portlet URLs may
be of twe-three types, action URLs-ex, render URLs,_or resource URLs. Refer to PLT.7
Portlet URLs Chapter for details on portlet URLs.

Normally, a client request triggered by an action URL translates into one action request,
zero or more event requests and many render requests, one per portlet in the portal page.
These render requests may be followed by zero or more resource requests for this client.
A client request triggered by a render URL translates into many render requests, one per
portlet in the portal page. In addition a render URL may result in processEvent calls for
container-defined events. Fhese—render—requests—may—befollowed by —zero—or—meore
resource—requests—A client request trigged by a resource URL translates into a serve
resource request.

If the client request is triggered by an action URL, the portal/portlet-container must first
trigger the action request by invoking the processaction method of the targeted
portlet.™ The portal/portlet-container must wait until the action request finishes. Then,
the portal/portlet-container mmayshould call the processEvent methods of the event
receiving portlets and after the event processing is finished must trigger the render
request by invoking the render method for all the portlets in the portal page with the
possible exception of portlets for which their content is being cached.”™ The render
requests may be executed sequentially or in parallel without any guaranteed order.

If the client request is triggered by a render URL, the portal/portlet-container must invoke
the render method for all the portlets in the portal page with the possible exception of
portlets for which their content is being cached.™ The portal/portlet-container must not

Java™ Portlet Specification, version 2.0 (2008-01-11) 43

10

invoke any—etherlifeeyele—methodslike-the processactiony method of any of the
portlets in the portal page for that client request.

If the client request is triggered by a resource URL, the portal/portlet-container must
invoke the serveResource method of the target portlet with the possible exception of
content that has a valid cache entry.*"" The portal/portlet-container must not invoke the
processAction of any of the portlets in the portal page for that client request.

If a portlet has caching enabled, the pertal/portlet-container may choose not to invoke the
render Or serveResource method. The portal/portlet-container may instead use the
portlet’s cached content. Refer to PLT.48-242 Caching Chapter for details on caching.

A portlet object placed into service by a portlet container may end up handling no request
during its lifetime.

Java™ Portlet Specification, version 2.0 (2008-01-11) 44

Figure 5-1 Request Handling Sequence

Portlet Portlets
orta container A B C
| . |
pActiononB B
1 | »| processAction
1 1 The Action
I . I Resp(event(X)) Phase must
p Wire fo-mmmmmm- > be finished
j betweenB [________ »| processEvent(X) before the
I and A I render phase
1 cxists I . starts
e <
| I
| 1 -
I | I > render ~ Render
1 R requests are
| [EEEEEEA g - fired in no
| ®oooooooIy N specific order.
. 1 L __________ They may be
I New Page | _ fired one after
- 1 the other or in
1 1 parallel.
----------- Not defined by the Java Portlet Specification
r Portal/ Portlet Portlet Portlet
Client Portlet Container A B C
: Client Request :
oot Tt 1
1 1
1 1
1 1
1 1
! processAction() The action request
: must finish before the
1 render requests start.
1
1
: render() A
1
: Fragment
b The render requests
1 render() | are triggered in no
i ~ specific order.
| Fragment They may be fired
! one after the other or
: render() in parallel.
1 g
1
1
b Fragment J
1 1
1 1
1 1
Tt
1 Portal Page 1
1 1
1 1
1 1
1 1

= === NOT DEFINED BY THE PORTLET SPECIFICATION

Java™ Portlet Specification, version 2.0 (2008-01-11)

45

10

15

20

25

30

PETA1:2:41PL.T.5.4.1 Action Request

Typically, in response to an action request, a portlet updates state based on the
information sent in the action request parameters.

The processaction method of the portlet interface receives two parameters,
ActionRequest and ActionResponse.

The ActionRequest object provides access to information such as the parameters of the
action request, the window state, the portlet mode, the portal context, the portlet session
and the portlet preferences data.

While processing an action request, the portlet may instruct the portal/portlet-container to
redirect the user to a specific URL. If the portlet issues a redirection, when the
processAction method concludes, the portal/portlet-container must send the redirection
back to the user agent™" and it must finalize the processing of the client request.

A portlet may change its portlet mode and its window state during an action request. This
is done using the ActionResponse object. The change of portlet mode must be effective
for the following render—requests the portlet receives. There are some exceptional
circumstances, such as changes of access control privileges; that could prevent the portlet
mode change from happening. The change of window state should be effective for the
following render-requests the portlet receives. The portlet should not assume that the
subsequent request will be in the window state set as the portal/portlet-container could
override the window state because of implementation dependencies between portlet
modes and window states.

The portlet may also set, in the ActionResponse object, render parameters during the
processing of an action request. Refer to PLT.11.1.1 Request Parameters Section for
details on render parameters.

The portlet may delegate the action processing to a servlet via a request dispatcher call
(see PLT.19 Dispatching Requests to Servlets and JSPs).

The portlet may publish events via the ActionResponse setEvent ©f—setEvents
methods and thus publish state changes or other notifications to other portlets. See
PLT. 145 for more details on sending and receiving events.

PLT.5.4.2 Event Request

Events can be used to coordinate state between different portlets. The processEvent
method of the EventPortlet interface receives two parameters, EventRequest and
EventResponse.

Java™ Portlet Specification, version 2.0 (2008-01-11) 46

10

15

20

25

30

The EventRequest object provides access to information such as the event payload, the
window state, the portlet mode, the current render parameters, the portal context, the
portlet session and the portlet preferences data.

A portlet may change its portlet mode and its window state during an event request. This
is done using the EventResponse object. The change of portlet mode must be effective
for the following requests the portlet receives. There are some exceptional circumstances,
such as changes of access control privileges; that could prevent the portlet mode change
from happening. The change of window state should be effective for the following
requests the portlet receives. The portlet should not assume that the subsequent request
will be in the window state set as the portal/portlet-container could override the window
state because of implementation dependencies between portlet modes and window states.

The portlet may also set, in the EventResponse object, new render parameters during the
processing of an event request. Refer to PLT.11.1.1 Request Parameters Section for
details on render parameters.

The portlet may delegate the event processing to a servlet via a request dispatcher call
(see PLT.19 Dispatching Requests to Servlets and JSPs).

The portlet may publish events via the EventResponse setEvent methods and thus
publish state changes and other notifications to other portlets. See PLT.145 for more
details on sending and receiving events.

PET1:2:4.2P1.T.5.4.3 Render Request

Commonly, during a render request, portlets generate content based on their current state.

The render method of the Portlet interface receives two parameters, RenderRequest
and RenderResponse.

The RenderRequest object provides access to information such as the parameters of the
render request, the window state, the portlet mode, the portal context, the portlet session
and the portlet preferences data.

The portlet can produce content using the RenderResponse writer or it may delegate the
generation of content to a servlet or a JSP. Refer to PLT.46-19 Dispatching Requests to
Servlets and JSPs Chapter for details on this.

The portlet should not trigger any state changes in a render request and be a safe
operation as defined by the HTTP specification (see RFC 2616,
http://www.w3.org/Protocols/rfc2616/rfc2616.html).

Java™ Portlet Specification, version 2.0 (2008-01-11) 47

10

15

20

25

30

PLT.5.4.4 Resource Request

In order to serve resources or render content fragments via the portlet the portlet can
implement the ResourceServingPortlet interface and create resource URLs that
will trigger the serveResource method on this interface. The serveResource method
of the ResourceServingPortlet interface receives two parameters, ResourceRequest
and ResourceResponse.

The ResourceRequest object provides access to information such as the parameters of
the resource request, the input stream, the window state, the portlet mode, the portal
context, the portlet session and the portlet preferences data.

The portlet can produce content using the ResourceResponse writer or output stream, or
it may delegate the generation of content to a servlet or a JSP. Refer to PLT.169
Dispatching Requests to Serviets and JSPs Chapter for details on this.

More details on serving resources can be found in PLT.13.

PLT.5.4.5 GenericPortlet

The Genericrortlet abstract class provides default functionality and convenience
methods for handling events, resource and render requests._ By extending
GenericPortlet portlets also get robust against future changes in the Java Portlet
Specification as they can be mitigated in the implementation of GenericPortlet.

PLT.5.4.5.1 Action Dispatching

For a received action the processaction method in the GenericPortlet class tries to
dispatch to methods annotated with the tag @ProcessAction (name=<action names),
where the action name must be set on the ActionURL as value of the parameter
javax.portlet.action (or via the constant ActionRequest.ACTION NAME), and
following signature:

void <methodname> (ActionRequest, ActionResponse) throws PortletException,
java.io.lOException:

A portlet that wants to leverage this action dispatching needs to set the parameter
ActionRequest.ACTION NAME on the action URL.

Java™ Portlet Specification, version 2.0 (2008-01-11) 48

10

15

20

25

30

PLT.5.4.5.2 Event Dispatching

For a received event the processEvent method in the GenericPortlet class tries to
dispatch to methods annotated with the tag @ProcessEvent (qname=<event names),
where the event name must be in the format "{" + Namespace URI + "}" + local part (like
used by javax.xml.namespace.QName.toString() method). For using only the local
part of the event name and leverage the default namespace defined in the portlet
deployment descriptor with the default-namespace element the following alternative is
provided: @ProcessEvent (name=<event name local parts>), where the event name
is only the local part. If the Namespace URI
.equals (javax.xml.XMLConstants.NULL NS URI), only the local part is used. The
method annotated with the eProcessEvent annotation must have the and—following

signature:

void <methodname> (EventRequest, EventResponse) throws
PortletException, java.io.IOException;

If no such method can be found the GenericPortlet just sets the received render
parameters as new render parameters.

Typically. portlets will extend the GenericPortlet class directly or indirectly and they
will provide one method per consuming event that complies with the above definition in
order to have the events dispatched to different methods.

PLT.5.4.5.3 Resource Serving Dispatching

The serveResource method in the GenericPortlet class tries to forward the resource
serving to the resource ID set on the URL triggering the request for serving the resource.
If no resource ID is set, the serveResource method does nothing.

PLT.5.4.5.4 Rendering Dispatching

The render method in the GenericPortlet class sets the title specified in the portlet
definition in the deployment descriptor and invokes the dobispatch method.

The dopispatch method in the GenericPortlet class implements functionality to aid in
the processing of requests based on the portlet mode the portlet is currently in (see PLT.8
Portlet Modes Chapter).

First it tries to dispatch to methods annotated with the tag @RenderMode (name=<portlet
mode names) . The method must have the following signature:

Java™ Portlet Specification, version 2.0 (2008-01-11) 49

10

15

20

25

30

void <methodname> (RenderRequest, RenderResponse) throws
PortletException, java.io.IOException;

If no matching annotated method is found GenericPortlet will dispatch to the
following Fhese-methods-are:

e doview for handling VIEW requests™™
e dordit for handling EDIT requests™

e dotelp for handling HELP requests™

For any other portlet mode the GenericPortlet will throw a PortletException per
default.

If the window state of the portlet (see PLT.9 Window States Chapter) is MINIMIZED, the
render method of the Genericportlet does not invoke any of the portlet mode
rendering methods.™"

Typically, portlets will extend the Genericportlet class directly or indirectly and they
will either use the @RenderMode annotation or override the doview, doEdit, doHelp and
getTitle methods instead of the render and dobispatch methods.

PET1:2:43P1L.T.5.4.6 Multithreading Issues During Request
Handling

The portlet container handles concurrent requests to the same portlet by concurrent
execution of the request handling methods on different threads. Portlet developers must
design their portlets to handle concurrent execution from multiple threads from within the
processAction and render methods, or any of the optional lifecycle methods, like
processEvent, Of serveResource, at any particular time.

PET-1-2.4:4P1.T.5.4.7 Exceptions During Request Handling

A portlet may throw either a PortletException, a PortletSecurityException Or an
UnavailableException during the processing of a request.

A PortletException signals that an error has occurred during the processing of the
request and that the portlet container should take appropriate measures to clean up the
request. If a portlet throws an exception in the processAction Or processEvent method,
all operations on the ActionResponse must be ignored including set events-and-the-render
method—must—not-be—invokedwithin—the—current—clientrequest.™ The portal/portlet-

container should continue processing the other portlets visible in the portal page.

Java™ Portlet Specification, version 2.0 (2008-01-11) 50

10

15

20

25

30

A PortletSecurityException indicates that the request has been aborted because the user
does not have sufficient rights. Upon receiving a PortletSecurityException, the portlet-
container should handle this exception in an appropriate manner.

An UnavailableException signals that the portlet is unable to handle requests either
temporarily or permanently.

If a permanent unavailability is indicated by the UnavailableException, the portlet
container must remove the portlet from service immediately, call the portlet’s destroy
method, and release the portlet object.™ A portlet that throws a permanent
UnavailableException must be considered unavailable until the portlet application
containing the portlet is restarted.

When temporary unavailability is indicated by the UnavailableException, then the
portlet container may choose not to route any requests to the portlet during the time
period of the temporary unavailability.

The portlet container may choose to ignore the distinction between a permanent and
temporary unavailability and treat all UnavailableExceptions as permanent, thereby
removing a portlet object that throws any UnavailableException from service.

A RuntimeException thrown during the request handling must be handled as a

PortletExcept ion.™

When a portlet throws an exception, or when a portlet becomes unavailable, the

portal/portlet-container may include a proper error message in the portal page returned to
the user.

PET-124-5P1.T.5.4.8 Thread Safety

Implementations of the request and response objects are not guaranteed to be thread safe.
This means that they must only be used within the scope of the thread invoking the
processAction, processEvent, serveResource and render methods.

To remain portable, portlet applications should not give references of the request and
response objects to objects executing in other threads as the resulting behavior may be
non-deterministic.

Java™ Portlet Specification, version 2.0 (2008-01-11) 51

10

15

Java™ Portlet Specification, version 2.0 (2008-01-11)

52

10

15

20

25

PLT.6
|

Portlet Config

The portletconfig object provides the portlet object with information to be used during
initialization. It also provides access to the portlet context, default event namespace,
public render parameter names, and the resource bundle that provides title-bar resources.

PLT.6.1 Initialization Parameters

The getInitParameterNames and getInitParameter methods of the Portletconfig
interface return the initialization parameter names and values found in the portlet
definition in the deployment descriptor.

PLT.6.2 Portlet Resource Bundle

Portlets may specify, in their deployment descriptor definition, some basic information
that can be used for the portlet title-bar and for the portal’s categorization of the portlet.
The specification defines a few resource elements for these purposes, title, short-title and
keywords (see the PLT.24245.10 Resource Bundles Section).

These resource elements can be directly included in the portlet definition in the
deployment descriptor, or they can be placed in a resource bundle.

An example of a deployment descriptor defining portlet information inline could be:

<portlet>

<portlet-infos
<title>Stock Quote Portlet</titles
<short-title>Stock</short-titles>
<keywords>finance, stock market</keywords>
</portlet-info>

</portlets>

Java™ Portlet Specification, version 2.0 (2008-01-11) 53

10

15

20

25

30

35

If the resources are defined in a resource bundle, the portlet must provide the name of the
resource bundle. An example of a deployment descriptor defining portlet information in
resource bundles could be:

<portlets>
<resource-bundle>com. foo.myApp.QuotePortlet</resource-bundle>

</portlet>

If the portlet definition defines a resource bundle, the portlet-container must look up these
values in the ResourceBundle. If the root resource bundle does not contain the resources
for these values and the values are defined inline, the portlet container must add the inline
values as resources of the root resource bundle.”™"'

If the portlet definition does not define a resource bundle and the information is defined
inline in the deployment descriptor, the portlet container must create a ResourceBundle
and populate it, with the inline values, using the keys defined in the PLT.2425.10
Resource Bundles Section.™""

The render method of the GenericPortlet uses the ResourceBundle object of the

PortletConfig to retrieve the title of the portlet from the associated ResourceBundle or
the inline information in the portlet definition.

PLT.6.3 Default Event Namespace

The getDefaultNamespace method of the Portletconfig interface returns the default
namespace for events and public render parameters set in the portlet deployment
descriptor with the default-namespace element, or the XML default namespace
XMLConstants.NULL_NS_URI _if no default namespace is provided in the portlet
deployment descriptor. ***™

PLT.6.4 Public Render Parameter Names

The getPublicRenderParameterNames method of the Portletconfiqg interface returns
the public render parameter names found in the portlet definition in the deployment
descriptor with the supported-public-render-parameter element or an empty
enumeration if no public render parameters are defined for the current portlet definition.

XXixX

PLT.6.5 Publishing Event QNames

The getPublishingEventQNames method of the PortletConfig interface returns the
publishing event QNames found in the portlet definition in the deployment descriptor
with the supported-publishing-event element or an empty enumeration if no
publishing events are defined for the current portlet definition. ***

Java™ Portlet Specification, version 2.0 (2008-01-11) 54

10

15

20

25

If the event was defined using the name element instead of the gname element the defined
default namespace must be added as namespace for the returned QName. ***'

PLT.6.6 Processing Event QNames

The getProcessingEventQNames method of the Portletconfiqg interface returns the
processing event QNames found in the portlet definition in the deployment descriptor
with the supported-processing-event element or an empty enumeration if no
processing events are defined for the current portlet definition. **"

If the event was defined using the name element instead of the gname element the defined
default namespace must be added as namespace for the returned QName. **"

PLT.6.7 Supported Locales

The getSupportedlLocales method of the Portletconfig interface returns the
supported locales found in the portlet definition in the deployment descriptor with the
supported-locale element or an empty enumeration if no supported locales are defined
for the current portlet definition. **"

PLT.6.8 Supported Container Runtime Options

The getContainerRuntimeOptions method returns an immutable Map containing
portlet application level container runtime options merged with the portlet level container
runtime options, containing the names as keys and the container runtime values as map
values, or an empty Map if no portlet application level or portlet level container runtime
options are set in the portlet.xml or supported by this portlet container. The map
returned from getContainerRuntimeOptions will provide the subset the portlet
container supports of the options the portlet has specified in the portlet deployment
descriptor. The keys in the map are of type String. The values in the map are of type
String array. If a container runtime option is set on the portlet application level and on the
portlet level with the same name the setting on the portlet level takes precedence and
overwrites the one set on the portal application level.

See section PLT 10.4 for a list of all predefined container runtime options.

Java™ Portlet Specification, version 2.0 (2008-01-11) 55

10

15

20

25

30

PLFAPLT.7

———

Portlet URLS

As part of its content, a portlet may need to create URLs that reference the portlet itself.
For example, when a user acts on a URL that references a portlet (i.e., by clicking a link
or submitting a form) the result is a new client request to the portal targeted to the portlet.
Those URLs are called portlet URLSs.

PLEFAAPLT.7.1 Portlet URLS

The Portlet API defines the Port1etURL and ResourceURL interface. Portlets must create
portlet URLs either using PortletURL or the ResourceURL objects. A portlet creates
PortletURL/ResourceURL objects invoking the createActionURL, and—the
createRenderURL; Or the createResourceURL methods of the RendexrRespense
PortletResponse interface. The createActionURL method creates action URLs. The
createRenderURL method creates render URLs. The createResourceURL method

creates render—resource URLs. Nete—that—Because—some—portal/pertlet-containers

A render URL is an optimization for a special type of action URLs. The portal/portlet-
container must not invoke the processaction method of the targeted portlet of a render
URL.™ The portal/portlet-container must ensure that all the parameters set when
constructing the render URL become render parameters of the subsequent render requests
for the portlet.™*"

Render URLs should not be used for tasks that are not idempotent, i.e. that change state,
from the portlet perspective. Error conditions, cache expirations and changes of external
data may affect the content generated by a portlet as result of a request triggered by a
render URL. Render URLs should be accessed via HTTP method GET as they should not
change any state on the server. As a consequence, render URLs may become
bookmarkable.

Note that Render URLs sheuwld—not—be—used within forms may not work on all
portal/portlet-containers as the portal/portlet-container may ignore form parameters.

A resource URL allows the portlet serving resources with access to information of the
portlet request. When rendering resources the portlet has full control over the output
stream and can render binary markup.

Java™ Portlet Specification, version 2.0 (2008-01-11) 57

10

15

20

25

30

35

Note that portlet URLs are only valid within the current request and need to be either
written to the output stream in order to allow re-writing the portlet URL token into a real
URL.

PLT.7.1.1 BaseURL interface

The BaseURL interface provides the basic methods that are common for all URLs
pointing back to the portlet, like ResourceURLs, ActionURLs, and RenderURLs.
BaseURLs are always created either as an resource URL. action URL. or render URL.

Portlets can add application specific parameters to the PertletBaseURL objects using the
setparameter and setParameters methods. A call to any of the setParameter
methods must replace any parameter with the same name previously set.™™" All the
parameters a portlet adds to a PexrtletURE-BaseURL object must be made available to the
portlet as request parameters.”™"" Portlet developers should note that the parameters of
the current render request are not carried over when creating an PertletBaseActionURL
or RenderURL. When creating a ResourceURL the current render parameters are
automatically added to that URL by the portlet container, but are hidden to the
getParameter calls of the portlet URL object. Setting parameters on an ActionURL will
result in action parameters, not render parameters or public render parameters.

The portlet-container must “x-www-form-urlencoded” encode parameter names and
values added to a PertletURL-BaseURL object.™™

If Pertletportlet developers sheuldnet-eneodenamespace parameter names or values
before adding them to a PertietBRL—BaseURL object they are also responsible for
removing the namespace. The portlet container will not remove any namespacing the
portlet has done on these parameters..

If a portal/portlet-container encodes additional information as parameters, it must encode

namespace them properly to avoid collisions with the parameters set and used by the
]

portlet.”

Using the tostring method, a portlet can obtain the string representation of the
PortletURLBaseURL. If the portlet wants to include a portlet URL fer-its-inelusion-in the
portlet content_it should use the write method and avoid the string object creation of the
toString method.

An example of creating a portlet URI would be:

Java™ Portlet Specification, version 2.0 (2008-01-11) 58

10

15

20

25

30

35

40

PortletURL url = response.createRenderURL() ;
url.setParameter (“customer”,” foo.com”) ;
url.setParameter (“show” , ” summary”) ;
writer.print (“<A HREF=\"") ;

+url .teStringwrite (writer) ;

writer.print (+”\”>Summary") ;

Portlet developers should be aware that the string representation of a PortletURL_or
ResourceURL may not be a well formed URL but a special token at the time the portlet is
generating its content. Portal servers often use a technique called URL rewriting that
post-processes the content resolving tokens into real URLs._It may even be an ECMA
script method that may generate the URL at the time the user clicks on the link.

PLT.7.1.1.1 URL Properties

Properties can be used by portlets to set vendor specific information on the PortletURL
object and thus use extended URL capabilities.

A portlet can set properties using the following methods of the BaseURL interface:

® setProperty
® addProperty

The setProperty method sets a property with a given name and value. A previous
property is replaced by the new property. Where a set of property values exist for the
name, the values are cleared and replaced with the new value. The addProperty method
adds a property value to the set with a given name. If there are no property values already
associated with the name, a new set is created.

PET1AAPLT.7.1.2 Including a Portlet Mode or a Window State

A portlet URL can include a specific portlet mode (see PLT.8 Portlet Modes Chapter) or
window state (see PLT.9 Window States Chapter). The PertletURL—BasePortletURL
interface has the setwindowState and setPortletMode methods for setting the portlet
mode and window state in the portlet URL. For example:

PortletURL url = response.createActionURL() ;
url.setParameter (“paymentMethod”, ”creditCardInProfile”) ;
url.setWindowState (WindowState .MAXIMIZED) ;

writer.print (“*<FORM METHOD=\"”POST\” ACTION=\"");
+—url.teStringwrite (writer) ;

writer.print (+”\”>");

A portlet cannot create a portlet URL using a portlet mode that is not defined as
supported by the portlet or that the user it is not allowed to use. The setPortletMode
methods must throw a PortletModeException in that situation.™. The change of portlet
mode must be effective for the request triggered by the portlet URL.*" There are some

Java™ Portlet Specification, version 2.0 (2008-01-11) 59

10

15

20

25

30

exceptional circumstances, such as changes in access control privileges; that could
prevent the portlet mode change from happening. If the portlet mode is not set for a URL,
it must have the portlet mode of the current request as default™",

A portlet cannot create a portlet URL using a window state that is not supported by the
portlet container. The setWindowstate method must throw a windowStateException if
that is the case.™ The change of window state should be effective for the request
triggered by the portlet URL. The portlet should not assume that the request triggered by
the portlet URL will be in the window state set as the portal/portlet-container could
override the window state because of implementation dependencies between portlet
modes and window states._If the window state is not set for a URL, it must have the
window state of the current request as default™.

PETA12PLT.7.1.3 Portlet URL security

The setsecure method of the PortletURL interface allows a portlet to indicate if the
portlet URL has to be a secure URL or not (i.e. HTTPS or HTTP). If the setsecure
method is not used, the portlet URL sust-should be of the same security level of the
current request. If setSecure is called with true, the transport for the request triggered
with this URL must be secure (i.e. HTTPS). ™ If set to false the portlet indicates that it
does not require a secure connection for the request triggered with such a URL.

PLT.7.2 Portlet URL listeners

Portlets can register portlet URL listeners in order to filter URLs before they get
generated either as a string via the toString method or written to the output stream via
the write method of the BaseURL interface. The portlet URL listener is also called for a
render URL that is added to a redirect URL via the method sendRedirect (location,
renderUrlParamName).

For example the portlet could use URL listeners to set the caching level of resource
URLs in one central piece of code (see PLT13.7).

In order to receive a callback from the portlet container before a portlet URL is generated
the listener class needs to implement the PortletURLGenerationListener interface
and register it in the deployment descriptor.

PLT.7.2.1 PortletURLGenerationListener Interface

The PortletURLGenerationListener interface provides callbacks for each portlet URL

type. If the portlet application has specified one or more
PortletURLGenerationListener

Java™ Portlet Specification, version 2.0 (2008-01-11) 60

10

15

20

classes in the portlet deployment descriptor the portlet container must call

e the method filterActionURL method for all action URLs before executing the
write O toString method of these action URLs*"!

o the method f£ilterRenderURL method for all render URLs before executing the
write OF toString method of these render URLs* 1

e the method filterResourceURL method for all resource URLSs before executing
the write or toString method of these resource URLs™™

The portlet container must provide the PortletURL Or ResourceURL to generate to the
filter methods and execute the write or toString method on the updated PortletURL
or ResourceURL that is the outcome of the filter method call. '

PLT.7.2.2 Registering Portlet URL Listeners

Portlet applications must register Portlet URL listeners in the portlet deployment
descriptor under the application section with the 1istener element and provide the class
name that implements the PortletURLGenerationListener as value in the listener-
class element.

If more than one listener is registered the portlet container must chain the listeners in the
order of how they appear in the deployment descriptor. l

Java™ Portlet Specification, version 2.0 (2008-01-11) 61

10

15

20

25

PLT.8

Portlet Modes

| A portlet mode indicates the function a portlet is performing_in the render method.
Normally, portlets perform different tasks and create different content depending on the
function they are currently performing. A portlet mode advises the portlet what task it
should perform and what content it should generate. When invoking a portlet, the portlet
container provides the current portlet mode to the portlet. Portlets can programmatically
change their portlet mode when processing an action request.

The Portlet Specification defines three portlet modes, view, EDIT, and HELP. The
portletMode class defines constants for these portlet modes.

The availability of the portlet modes, for a portlet, may be restricted to specific user roles

by the portal. For example, anonymous users could be allowed to use the view and HELP
portlet modes but only authenticated users could use the EDIT portlet mode.

PLT.8.1 VIEW Portlet Mode

The expected functionality for a portlet in viEw portlet mode is to generate markup
reflecting the current state of the portlet. For example, the viEw portlet mode of a portlet
may include one or more screens that the user can navigate and interact with, or it may
consist of static content that does not require any user interaction.

Portlet developers should implement the view portlet mode functionality by overriding
the doview method of the GenericPortlet class.

Portlets must support the viEw portlet mode.

PLT.8.2 EDIT Portlet Mode

Within the Ep1T portlet mode, a portlet should provide content and logic that lets a user
customize the behavior of the portlet. The EDIT portlet mode may include one or more
screens among which users can navigate to enter their customization data.

Typically, portlets in EDIT portlet mode will set or update portlet preferences. Refer to
PLT.44-17 Portlet Preferences Chapter for details on portlet preferences.

Java™ Portlet Specification, version 2.0 (2008-01-11) 63

10

15

25

30

35

Portlet developers should implement the EDIT portlet mode functionality by overriding
the doEdit method of the GenericPortlet class.

Portlets are not required to support the EDIT portlet mode.

PLT.8.3 HELP Portlet Mode

When in HELP portlet mode, a portlet should provide help information about the portlet.
This help information could be a simple help screen explaining the entire portlet in
coherent text or it could be context-sensitive help.

Portlet developers should implement the HELP portlet mode functionality by overriding
the doHelp method of the GenericPortlet class.

Portlets are not required to support the HELP portlet mode.

PLT.8.4 Custom Portlet Modes

Portal vendors may define custom portlet modes for vendor specific functionality_for
modes that need to be managed by the portal. Portlets may define additional modes that
don’t need to be managed by the portal and correspond to the view mode from a portal
point of view. The portlet must declare portlet modes that are not managed by the portal
via the <portal-managed>false</portal-managed> tag. Portlet modes are considered
portal managed by default.

3 PR 5 : ; al—Portlets must define the
custom portlet modes they intend to use in the deployment descriptor using the custom-
portlet-mode element. At deployment time, the portal managed custom portlet modes
defined in the deployment descriptors should be mapped to custom portlet modes
supported by the portal implementation. Portlets that list custom portlet modes that are
not managed by the portal may provide a localized decoration -name as resource bundle
entry with the key javax.portlet.app.custom-portlet-mode.<name>.decoration-
name for this portlet mode. If no entry in the portlet resource bundle with such a name
exists the portal / portlet container should use the portlet mode name as default decoration
name.

If a custom portlet mode defined in the deployment descriptor is not mapped to a custom
portlet mode provided by the portal_or otherwise supported as non-managed portlet mode,
portlets must not be invoked in that portlet mode.

For example, the deployment descriptor for a portlet application containing portlets that
support clipboard and eenfig-admin custom portlet modes would have the following
definition:

<portlet-app>

Java™ Portlet Specification, version 2.0 (2008-01-11) 64

10

15

20

25

30

35

<custom-portlet-mode>
<description>Creates content for Cut and Paste</descriptions
<mameportlet-mode>clipboard</mrameportlet-modes>
<portal -managed>false</portal -managed>
</custom-portlet-mode>

<custom-portlet-mode>
<description>Provides administration functions</descriptions
<aameportlet-mode>eenfigadmin</rameportlet-modes>
<portal -managed>true</portal -managed>

</custom-portlet-mode>

</portlet-app>

The PLT.A Extended Portlet Modes appendix defines a list of portlet mode names and
their suggested utilization. Portals implementing these predefined custom portlet modes
could do an automatic mapping when custom portlet modes with those names are defined
in the deployment descriptor. Therefore providing a decoration name or portal-managed
element for the modes defined in PLT.4 is not necessary.

PLT.8.5 GenericPortlet Render Handling

The Genericportlet class implementation of the render method dispatches requests
to the methods annotated with the tag @RenderMode (name=<portlet mode names) .
The method must have the following signature:

void <methodname> (RenderRequest, RenderResponse) throws
PortletException, java.io.IOException;

If no matching annotated method is found GenericpPortlet will dispatch to the -doview,
doEdit or doHelp method depending on the portlet mode indicated in the request using
the dobispatch method or throws a PortletException if the mode is not VIEW, EDIT,

or ueLp. M

PLT.8.6 Defining Portlet Modes Support

Portlets must describe within their definition, in the deployment descriptor, the portlet
modes they can handle for each markup type they support_in the render method. As all
portlets must support the vIEw portlet mode, vIEW does not have to be indicated.™ The
portlet must not be invoked in a portlet mode that has not been declared as supported for
a given markup type."’

The following example shows a snippet of the portlet modes a portlet defines as
supporting in its deployment descriptor definition:

Java™ Portlet Specification, version 2.0 (2008-01-11) 65

10

15

20

25

30

35

<supportss>
<mime-types>text/html</mime-type>
<portlet-mode>edit</portlet-mode>
<portlet-mode>help</portlet-mode>

</supports>

<supportss>
<mime-types>text/vnd.wap.wmnl</mime-type>
<portlet-mode>help</portlet-mode>

</su§§6rts>

For HTML markup, this portlet supports the EDIT and HELP portlet modes in addition to
the required view portlet mode. For WML markup, it supports the viEw and HELP portlet
modes.

The portlet container must ignore all references to custom portlet modes that are not

supported by the portal implementation, or that have no mapping to portlet modes
supported by the portal."”

PLT.8.7 Setting next possible Portlet Modes

Via the render response the portlet can set next possible portlet modes that make sense
from the portlet point of view. If set, the portal should honor these enumeration of portlet
modes and only provide the end user with choices to the provided portlet modes or a
subset of these modes based on access control considerations. If the portlet does not set
any next possible portlet modes the default is that all portlet modes that the portlet has
defined supporting in the portlet deployment descriptor are meaningful new portlet
modes.

In order to ensure that the next possible portlet modes are honored by all portal
implementations the portlet should set the javax.portlet.renderHeaders container
runtime option and either overwrite the getNextPossiblePortletModes method in the
GenericPortlet or set the next possible portlet modes in the RENDER HEADERS sub-
phase of the render phase (see PLT.11.1.1.4.3) via setNextPossiblePortletModes.
This allows that the portal receives these suggested new modes before writing the portlet
window decorations and thus is able to optimize the amount of buffering needed.

Java™ Portlet Specification, version 2.0 (2008-01-11) 66

10

15

20

25

PLT.9

Window States

A window state is an indicator of the amount of portal page space that will be assigned to
the content generated by a portlet_via the render method. When invoking a portlet, the
portlet-container provides the current window state to the portlet. The portlet may use the
window state to decide how much information it should render. Portlets can
programmatically change their window state when processing an action request.

The Portlet Specification defines three window states, NORMAL, MAXIMIZED and
MINIMIZED. The windowState class defines constants for these window states.

PLT.9.1 NORMAL Window State

The norMAL window state indicates that a portlet may be sharing the page with other
portlets. It may also indicate that the target device has limited display capabilities.
Therefore, a portlet should restrict the size of its rendered output in this window state.

PLT.9.2 MAXIMIZED Window State

The max1MIZED window state is an indication that a portlet may be the only portlet being
rendered in the portal page, or that the portlet has more space compared to other portlets
in the portal page. A portlet may generate richer content when its window state is
MAXIMIZED.

PLT.9.3 MINIMIZED Window State

When a portlet is in mINIMIZED window state, the portlet should only render minimal
output or no output at all.

PLT.9.4 Custom Window States

Portal vendors may define custom window states.
Portlets can only use window states that are defined by the portal. Portlets must define the

custom window states they intend to use in the deployment descriptor using the custom-
window-state element. At deployment time, the custom window states defined in the

Java™ Portlet Specification, version 2.0 (2008-01-11) 67

10

15

20

25

30

35

40

deployment descriptors should be mapped to custom window states supported by the
portal implementation.

If a custom window state defined in the deployment descriptor is not mapped to a custom
window state provided by the portal, portlets must not be invoked in that window state."

For example, the deployment descriptor for a portlet application containing portlets that
use a custom half page window state would have the following definition:

<portlet-app>

<custom-window-state>
<description>Occupies 50% of the portal page</descriptions
<namewindow-state>half page</ramewindow-state>
</custom-window-state>

</portlet-app>

PLT.9.5 Defining Window State Support

Portlets may restrict within their definition, in the deployment descriptor, the custom
window states they can handle for each markup type they support in the render method.
If the portlet does not list explicitly which window states it supports, the portal / portlet
container should assume that the portlet supports all pre-defined window states and all
custom window states defined for this portlet application.

As all portlets must at least support the pre-defined window states NORMAL,
MAXIMIZED, MINIMIZED, these window states do not have to be indicated." The portlet
should not be invoked in a custom window state that has not been declared as supported
for a given markup type.

The following example shows a snippet of the window states a portlet defines as
supporting in its deployment descriptor definition:

<supports>
<mime-types>text/html</mime-type>
<portlet-modes>edit</portlet-mode>
<portlet-mode>help</portlet-mode>
<window-states>half-page</window-state>

</supports>
<supports>
<mime-typestext/vnd.wap.wml</mime-type>

<portlet-mode>help</portlet-mode>

</supports>

Java™ Portlet Specification, version 2.0 (2008-01-11) 68

For HTML markup, this portlet supports the HALF-PAGE window state in addition to the
required pre-defined window states. For WML markup, it supports only the pre-defined
window states.

The portlet container must ignore all references to custom window states that are not
supported by the portal implementation, or that have no mapping to window states
supported by the portal, "

Java™ Portlet Specification, version 2.0 (2008-01-11) 69

PLT.10

10

15

20

25

Portlet Context

The portletcontext interface defines a portlet’s view of the portlet application within
which the portlet is running. Using the PortletContext object, a portlet can log events,
obtain portlet application resources, application and portlet runtime options and set and
store attributes that other portlets and servlets in the portlet application can access.

PLT.10.1 Scope of the Portlet Context

There is one instance of the Portletcontext interface associated with each portlet
application deployed into a portlet container.”™ In cases where the container is distributed
over many virtual machines, a portlet application will have an instance of the
PortletContext interface for each VM.™

PLT.10.2 Portlet Context functionality

Through the PortletContext interface, it is possible to access context initialization
parameters, retrieve and store context attributes, obtain static resources from the portlet
application and obtain a request dispatcher to include servlets and JSPs.

PLT.10.3 Relationship with the Servlet Context

A portlet application is an extended web application. As a web application, a portlet
application also has a servlet context. The portlet context leverages most of its
functionality from the servlet context of the portlet application. However, the context
objects themselves may be different objects.

The context-wide initialization parameters are the same as initialization parameters of the
servlet context and the context attributes are shared with the servlet context. Therefore,
they must be defined in the web application deployment descriptor (the web.xml file).
The initialization parameters accessible through the portletContext must be the same
that are accessible through the servietcontext of the portlet application.™

Context attributes set using the PortletContext must be stored in the servletContext
of the portlet application. A direct consequence of this is that data stored in the
ServletContext by servlets or JSPs is accessible to portlets through the
portletContext and vice versa.™

Java™ Portlet Specification, version 2.0 (2008-01-11) 71

10

15

20

25

30

35

The portletContext must offer access to the same set of resources the
ServletContext exposes.™!

The PortletContext must handle the same temporary working directory the
ServletContext handles. It must be accessible as a context attribute using the same
constant defined in the Serviet Specification 23 SVR 3 Servlet Context Chapter,
javax.servlet.context.tempdir.™ The portlet context must follow the same
behavior and functionality that the servlet context has for virtual hosting and reloading

Ixv,

considerations. (see Serviet Specification 23 SVR 3 Servlet Context Chapter) ™ :

PLT.10.3.1 Correspondence between ServletContext and
PortletContext methods

The following methods of the Portletcontext should provide the same functionality as

the methods of the sServletContext of similar name: getAttribute,
getAttributeNames, getInitParameter, getInitParameterNames, getMimeType,
getRealPath, getResource, getResourcePaths, getResourceAsStream, 1log,

removeAttribute and setAttribute.

PLT.10.4 Portlet Container Runtime Options

The portlet can define additional runtime behavior in the portlet.xml on either the
portlet application level or the portlet level with the container-runtime-option element.
Runtime options that are defined on the application level should be applied to all portlets
in the portlet application. Runtime options that are defined on the portlet level should be
applied for this portlet only and override any runtime options defined on the application
level with the same name.

Container runtime options besides the
javax.portlet.actionScopedRequestAttributes option are optional to support by
the portlet container and the portlet can find out which container runtime options are
supported by the portlet container running the portlet via the method
getContainerRuntimeOptionsOnthePortletContext

The getContainerRuntimeOptions method returns an enumeration of type String
containing the keys of all container runtime options that the current portlet container

supports.

PLT.10.4.1 Runtime Option javax.portlet.escapeXml

In the Java Portlet Specification V1.0 the behavior in regards to XML escaping URLs
written by the tag library was undefined and thus portlets may have been coded with the
assumption that the URLs were not XML escaped. In order to be able to run these
portlets on a Java Portlet Specification V 2.0 container the specification provides the
javax.portlet.escapeXml container runtime option. The value of this setting can either

Java™ Portlet Specification, version 2.0 (2008-01-11) 72

10

15

20

25

be true for XML escaping URLs per default, or false for not XML escaping URLs per
default.

Portlets that require that the default behavior for URLs written to the output stream via
the portlet tag library should therefore define the following container runtime option in
the portlet deployment descriptor:

<portlet>

<container-runtime-option>

<name>javax.portlet.escapeXml</name>

<value>false</value>

</container-runtime-option>

</portlet>

If the portlet has defined the javax.portlet.escapexml container runtime option the
portlet container should honor this setting as otherwise the portlet may not work

correctly.

PLT.10.4.2 Runtime Option javax.portlet.renderHeaders

Portlets that need to write any headers in the render phase can set the additional
container-runtime-option with name javax.portlet.renderHeaders and value true.
The default for this setting is false. When set to true streaming portal implementations
should call the render method of the portlet twice with RENDER PART attribute set in the
render request (see PLT.11.1.4.3.). Example:

<portlet>

<container-runtime-option>

<name>javax.portlet.renderHeaders</name>

<value>true</value>

</container-runtime-option>

</portlet>

Java™ Portlet Specification, version 2.0 (2008-01-11) 73

10

15

20

25

30

PLT.10.4.3 Runtime Option

javax.portlet.servletDefaultSessionScope

The default for the session variable of included / forwarded servlets or JSPs is that it
maps to the portlet session with application scope. Some portlets may require that the
session variable of included / forwarded servlets or JSPs maps instead to the portlet
session scope in order to work correctly. These portlets can indicate this via setting the
container-runtime-option javax.portlet.servletDefaultSessionScope to
PORTLET scoPE. The default for javax.portlet.servletDefaultSessionScope I8
APPLICATION SCOPE.

Example:

<portlet>

<container-runtime-option>

<name>javax.portlet.servletDefaultSessionScope</name>

<value>PORTLET SCOPE</value>

</container-runtime-option>

</portlet>

Portlet developers should note that not all portlet containers may be able to provide this
feature as a portable JavaEE solution does not currently exist. Therefore, relying on this
feature may restrict the numbers of portlet containers the portlet can be executed on.

PLT.10.4.4 Runtime Option
javax.portlet.actionScopedRequestAttributes

The Java Portlet Specification follows a model of separating concerns in different
lifecycle methods, like processAction, processEvent, render. This provides a clean
separation of the action semantics from the rendering of the content, however, it may
create some issues with servlet-based applications that don’t follow this strict Model-
View-Controller pattern. Such applications in some cases assume that attributes that they
set in the action phase will be accessible again when starting the rendering. The Java
Portlet Specification provides the render parameters for such use cases, but some
applications need to transport complex objects instead of strings.

Java™ Portlet Specification, version 2.0 (2008-01-11) 74

10

15

20

25

30

One example for such an use case is a Java Server Faces (JSF) bridge portlet that expects
to be executed in a single lifecycle phase for processing actions, events and rendering
from the JSF point of view and thus needs to transport attributes from action to
subsequent event and render calls until the next action occurs.

For such use cases the Java Portlet Specification provides the action-scoped request
attributes as container runtime option with the intent to provide portlets with these
request attributes until a new action occurs. This container runtime option must be
supported by portlet containers. *"!

Portlets should note that using this container runtime option will result in increased
memory usage and thus may have a decreased performance as the portlet container needs
to maintain and store these attributes across requests.

Portlets that want to leverage the action-scoped request attributes need to set the
container runtime option javax.portlet.actionScopedRequestAttributes to true,
default is false. In addition the portlet may provide a value called
numberOfCachedScopes where the following value element must be a positive number
indicating the number of scopes the portlets wants to have cached by the portlet
container. This value is a hint to the portlet container that the portlet container may not be
able to honor because of resource constraints. The order of the values in the portlet

deployment descriptor must be true, numberOfCachedScopes, <number of cached
scopes>.

Example:

<portlet>

<container-runtime-option>

<name>javax.portlet.actionScopedRequestAttributes</name>

<value>true</value>

<value>numberOfCachedScopes</value>

<value>10</value>

</container-runtime-option>

</portlet>

Java™ Portlet Specification, version 2.0 (2008-01-11) 75

10

15

20

25

30

35

PLT.10.4.4.1 Action Scope ID Render Parameter

The portlet container must store the action scope ID as render parameter with the name
“Javax.portlet.as”, defined as PortletRequest.ACTION SCOPE ID. When using the
action-scoped request attribute extension the portlet must not use this render parameter
name for its private render parameters.

The portlet container must provide the action scope ID render parameter and its value
when calling one of the portlet lifecycle methods and is responsible for setting this action
scope ID at the end of a processAction or processEvent method call. The portlet
should not set a value for the render parameter named
PortletRequest.ACTION SCOPE ID (“javax.portlet.—as”).

If the portlet removes the PortletRequest.ATION SCOPE ID render parameter in a
PortletURL listener the portlet container should honor this and create a portlet URL
without this render parameter. This allows the portlet to create resource URLs that are
cacheable across action scopes.

PLT.10.4.4.2 Lifetime of Action-scoped Request Attributes

The portlet can view attributes set on action, event, or resource requests in any of its
lifecycle requests lasting until the next action occurs, or until some timeout or
invalidation mechanism of the portlet container frees up the occupied memory, e.g. the
user session has timed out.

A new action scope is started when

e recelving an action — starts a new action scope with a new scope 1D, all previous
attributes are no longer accessible, new attributes can be stored.

e receiving a render without an existing scope ID — starts a new scope without any
scope 1D, all previous attributes are no longer accessible, no new attributes can be
stored.

e receiving an event without an existing scope ID - starts a new action scope with a
new scope 1D, all previous attributes are no longer accessible, new attributes can
be stored.

e receiving an event with an existing scope ID after the first render for this scope
had occurred, as this event will likely have an action semantic. All previous
attributes are no longer accessible, new attributes can be stored.

The existing scope is preserved with the current scope ID and action-scoped attributes
when

e receiving a render call with an existing scope ID

Java™ Portlet Specification, version 2.0 (2008-01-11) 76

10

15

20

25

30

e recelving an processEevent call with an existing scope ID before the first render
for this scope had occurred.
e receiving a serveResouce call with an existing scope 1D

The following attributes are not stored in the action scope by the portlet container:

e all attributes starting with javax.portlet

e all Java Portlet Specification defined objects, like request, response, session, as
they are only valid for the current request

e any other attributes the portal/portlet container provides itself for handling the

lifecycle call

The portlet may also filter out attributes that should not be stored in the action-scope ¥ia
at the end of the request either via removeAttribute or via a response filter.

If portlets use non-serializable objects as attribute values they may not be provided across
different requests, e.g. if the portlet container leverages mechanisms such as a session and
session replication. However, portlet containers should either provide the complete set of
attributes to the portlet or discard the entire set of attributes in order to allow the portlet to
always run in a consistent state.

PLT.10.4.4.3 ServeResource Calls

If a serveResource call is triggered by a resource URL with a cache level of FurL the
action scope ID may not be included and thus the portlet may not have access to the
action-scoped attributes.

PLT.10.4.4.4 Examples

Example 1:

portlet receives a processAction call and sets attribute foo, new scope contains foo
portlet receives a processEvent call reads foo and sets bar, scope contains foo, bar
portlet receives a render call, scope contains foo, bar

portlet receives a processEvent call and sets f002, new scope contains fo02

portlet receives a render call, scope contains f002

Example 2:

Java™ Portlet Specification, version 2.0 (2008-01-11) 77

10

15

e portlet receives a render call, empty scope

e portlet receives a processEvent call and sets foo and bar, new scope contains foo,
bar

e portlet receives a serveResource call, scope contains foo, bar and sets foo’ and
bar2, new scope contains foo’, bar and bar 2

PLT.10.4.4.5 Semantics for Portlet Containers

In order to provide a consistent user experience for end users the portlet container should
keep previous action-scoped attributes cached in order to allow the end user to navigate
between different views with the browser forward and backward buttons. The portlet
container should use the specified numberofCachedScopes provided by the portlet or a
meaningful default if the portlet has not provided this value.

In order to determine if an render has already occurred for the current action-scope it is
assumed that the portlet container stores a bit invisible to the portlet in the action-scoped
attributes that indicates if a render has already occurred.

Java™ Portlet Specification, version 2.0 (2008-01-11) 78

10

15

20

25

30

PLT.11

Portlet Requests

The request objects encapsulate all information about the client request, parameters,
request content data, portlet mode, window state, etc. A request object is passed to the
processAction, processEvent, serveResource and render methods of the portlet.

PETAAPLT.11.1 PortletRequest Interface

The portletRequest interface defines the common functionality for the-all the request
AetionRegquest-and-RenderRequest-interfaces.

PETA11PLT.11.1.1 Request Parameters

If a portlet receives a request from a client request targeted to the portlet itself, the
parameters must be the string parameters encoded in the URL (added when creating the
PortletURL) and the string parameters sent by the client to the portlet as part of the client
request.”" The parameters the request object returns must be "x-www-form-
urlencoded" decoded.™

The parameters are stored as a set of name-value pairs. Multiple parameter values can
exist for any given parameter name. The following methods of the PortletRequest
interface are available to access parameters:

getParameter
getParameterNames
getParameterValues
getParameterMap
getPublicParameterMap
getPrivateParameterMap

The getParametervalues method returns an array of string objects containing all the
parameter values associated with a parameter name. The value returned from the
getParameter method must be the first value in the array of string objects returned by
getParametervalues M. If there is a single parameter value associated with a parameter
name the method returas-must return is an array of size one containing the parameter
value.™. The getpParameterMap method must return an unmodifiable Map object™. If
the request does not have any parameters, the get ParameterMap must return an empty

Map object™ ! The values in the returned Map object are from type String array.

Java™ Portlet Specification, version 2.0 (2008-01-11) 79

10

15

20

25

30

Parameters set on the portlet URL and the post body are aggregated into the request
parameter set. Portlet URL parameters are presented before post body data. ™

If portlets namespace or encode URL parameters or form parameters they are also
responsible for removing the namespace. The portlet container will not remove any
namespacing the portlet has done on these parameters.

PLT.11.1.1.1 Form and Query Parameters

If the portlet is performing an HTML Form submission via HTTP method POST the post
form data will be populated to the portlet request parameter set if the content type is

application/x-www-form-urlencoded.

If the post form data are populated to the portlet request parameters the post form data
will no longer be available for reading directly from the request object’s input stream. If
the post form data is not included in the parameter set, the post data must still be
available to the portlet via the ActionRequest / ResourceRequest input stream.

If the portlet is performing an HTML Form submission via the HTTP method GET the
form data set is appended to the portlet URL used for the form submission and are
therefore accessible as request parameters for the portlet.

Note that some portal/portlet-containers implementations may encode internal state as
part of the URL query string and therefore do not support forms using the HTTP GET
method.

As portlet URLs may be ECMA script functions that produce the required URL only on
executing the URL the portlet should not simply add additional query parameters to a
portlet URL on the client.

PLT.11.1.1.2 Action and Event Request Parameters

The portlet-container must not propagate parameters received in an action or event
request to subsequent render requests of the portlet.™" The portlet-container must not
propagate parameters received in an action to subsequent event requests of the portlet. ™"

If a portlet wants to do that_in either the processAction or processEvent methods, #
canuserender URLs orit must use the setRenderParameter Or setRenderParameters
methods of the aetienStateAwareResponse object within the processAction or
processEvent call. The set render parameters must be provided to the processEvent
and render calls of at least the current client request. ™!

Java™ Portlet Specification, version 2.0 (2008-01-11) 80

10

15

20

25

30

35

PLT.11.1.1.3 Render Request Parameters

If a portlet receives a render request that is the result of a client request targeted to
another portlet in the portal page, the parameters sust-should be the same parameters as
of the previous render request_from this client.

If a portlet receives an event that is the result of a client request targeted to another portlet
in the portal page, the parameters should be the same parameters as of the previous render
request from this client.

If a portlet receives a render request following an action or event request_-as part of the
same client request, the parameters received with render request must be the render
parameters set during the action or event request."™"

If a portlet receives a render request that is the result of invoking a render URL targeting
this portlet the render parameters received with the render request must be the parameters
set on the render URL if these were not changed by the portlet as a result of an container
event received for this render URL.™1i

Commonly, portals provide controls to change the portlet mode and the window state of
portlets. The URLs these controls use are generated by the portal. Client requests
triggered by those URLs must be treated as render URLs and the existing render
parameters must be preserved.™™

A portlet must not see any parameter targeted to other portlets.™ I Ppertlets shouldnot

Java™ Portlet Specification, version 2.0 (2008-01-11) 81

10

15

20

25

30

Note that render parameters get automatically cleared if the portlet receives a
processAction Or processEvent call and need to be explicitly re-set on the response of
such a lifecycle call.

PLT.11.1.1.4 Resource Request Parameters

For serveResource requests the portlet must receive any resource parameters that were
explicitly set on the ResourceURL that triggered the request. If the cacheability level of
that resource URL (see PLT.13.7) was PORTLET or PAGE, the portlet must also receive the
render parameters present in the request in which the URL was created

If a resource parameter is set that has the same name as a render parameter, the render
parameter must be the last entry in the parameter value array.

PLT.11.1.2 Public Render Parameters

In order to allow co-ordination of render parameters with other portlets, within the same
portlet application or across portlet applications, the portlet can declare public render
parameters in its deployment descriptor using the public-render-parameter element in
the portlet application section. Public render parameters are available in all lifecycle
methods of the portlet: processaAction, processEvent, render, and serveResource.
Public render parameters can be viewed and changed by other portlets or components. In
the portlet section each portlet can specify the public render parameters it would like to
share via the supported-public-render-parameter element. The supported-
public-render-—parameter element must reference the identifier of a public render
parameter defined in the portlet application section in a public-render-parameter
tagelement ™™, The portlet should use the defined public render parameter identifier in
its code in order to access the public render parameter.

Example:

<public-render-parameter>

<identifier>foo</identifier>

<gname xmlns:x="http://example.com/params’>x:foo2</gname>

</public-render-parameter>

<public-render-parameter>

<identifier>bar</identifier>

<gname xmlins:x="http://example.com/params’>x:foobar</gname>

Java™ Portlet Specification, version 2.0 (2008-01-11) 82

10

15

20

25

30

</public-render-parameter>

<portlet>

<portlet-name>portletA</portlet-name>

<supported-public-render-parameter>foo</supported-public-render-parameter>

</portlet>

<portlet>

<portlet-name>portletB</portlet-name>

<supported-public-render-parameter>bar</supported-public-render-parameter>

</portlet>

The portlet container must only send those public render parameters to a portlet which the
portlet has defined support for using supported-public-render-parameter element in
the portlet.xm!™. The portlet container must only share those render parameters of a
portlet which the portlet has declared as supported public render parameters using
supported-public-render-parameter element in the portlet.xml ™ The portlet
container is free to only provide a subset of the defined public render parameters to
portlets that are not target of a render URL as storing of render parameters is only
encouraged, but not mandated for portal / portlet container implementations. A public
render parameter that is not supplied for this request should be viewed by the portlet as
having the value nuil1i.

If the portlet was the target of a render URL and this render URL has set a specific public
render parameter the portlet must receive at least this render parameter >V

A portlet can access the public render parameters in any lifecycle method via the
getPublicParameterMap method of the portlet request. In addition the portlet can access
public render parameters via the getParameter and getParameterMap methods. In the
case of a processAction Or serveResource call the public parameters are merged with
the action / resource parameters set on the action / resource URL. If a action or resource
parameter has the same name as a public render parameter the public render parameter
values must be the last entries in the parameter value array. ™

Java™ Portlet Specification, version 2.0 (2008-01-11) 83

10

15

20

25

30

35

If a portlet wants to delete a public render parameter it needs to use the
removePublicRenderParameter method on the StateAwareResponse or the
PortletURL.

By default all public render parameters declared by the portlet will be provided in the
current request. In order to minimize updates a portlet should only set public render
parameters explicitly on a render URL, if the values in the target request should be
different from the parameter values of the current request.

Portlets can access a merged set of public and private parameters via the getParameter
methods on the pPortletRequest or separated as maps of private parameters via the
getPrivateParameterMap method and public parameters via the
getPublicParameterMapInethod.lXXXVI

The gname element should uniquely identify the sharedpublic render parameter and use
the QNames as defined in the XML specifications: XML Schema Part2: Datatypes
specification (http://www.w3.org/TR/xmlschema-2/#QName), Namespaces in XML
(http://www.w3.org/TR/REC-xml-names/#ns-qualnames), Namespaces in XML Errata
(http://www.w3.org/XML/xml-names-199901 14-errata), TAG Finding: Using Qualified
Names (QNames) as Identifiers in Content (http:/www.w3.0org/2001/tag/doc/gqnameids-

2002-06-17).

As an alternative the portlet can specify a default namespace via the default-
namespace element that will be applied to all public render parameters defined only with
a local name with the name element in the public render parameter definition section.

It is up to the portal implementation to decide which portlets may share the same public
render parameters. The portal should use the information provided in the deployment
descriptor, like the name, gname, alias names and description-, in order to perform such a
mapping_between sharedpublic render parameters of different portlets. It is also an
implementation choice of the portal whether different portlet windows of the same portlet
will receive the same sharedpublic render parameters. An example where different portlet
windows may not want to share the same render parameters is a generic viewer portlet
that takes as public render parameter the news article ID to display. The user may have
several of this viewer portlets on her pages that may be connected to different content

systems.

To enable localization support of public parameters for administration and configuration
tools, developers should provide a display name in the portlet application
ResourceBundle (see the PLT.22XXX25. 10 Resource Bundles Section). The entry for the

display name should be constructed as ‘javax.portlet.app.public-render-
parameter.<identifier>.display-name’'.

Java™ Portlet Specification, version 2.0 (2008-01-11) 84

10

15

20

25

30

PETA12PLT.11.1.3 Extra Request Parameters

The portal/portlet-container implementation may add extra parameters to portlet URLSs to
help the portal/portlet-container route and process client requests.

Extra parameters used by the portal/portlet-container must be invisible to the portlets
receiving the request. ™' It is the responsibility of the portal/portlet-container to
properly namespace these extra parameters to avoid name collisions with parameters the
portlets define.

Parameter names beginning with the “javax.portlet.” prefix are reserved for
definition by this specification and for use by portal/portlet-container implementations.

PET113PLT.11.1.4 Request Attributes

Request attributes are objects associated with a portlet during a single portlet request.
Portlets can not assume that attributes are sharedpublic between action, resource, event
and render requests. Request attributes may be set by the portlet or the portlet container to
express information that otherwise could not be expressed via the API. Request attributes
can be used to share information with a servlet or JSP being included via the
PortletRequestDispatcher.

Attributes are set, obtained and removed using the following methods of the
PortletRequest interface:

getAttribute
getAttributeNames
setAttribute
removeAttribute

Only one attribute value may be associated with an attribute name.

Attribute names beginning with the “javax.portlet.” prefix are reserved for definition
by this specification. It is suggested that all attributes placed into the attribute set be
named in accordance with the reverse domain name convention suggested by the Java
Programming Language Specification [for package naming.

PLT.11.1.4.1 The User Information Request Attribute

The portlet can access a map with user information attributes via the request attribute
PortletRequest .USER_INFO. ™! See Chapter 20, User Information for more details.

PLT.11.1.4.2 The CC/PP Request Attribute

The portlet can access a Composite Capability/Preference Profile (CC/PP, W3C:
Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies

Java™ Portlet Specification, version 2.0 (2008-01-11) 85

10

15

20

25

30

35

http://www.w3.0rg/TR/2001/WD-CCPP-struct-vocab-20010315/) javax.ccpp.profile via
the request attribute PortletRequest.CCPP_PROFILE. The
PortletRequest.CCPP_PROFILE request attribute must return a javax.ccpp.Profile
based on the current portlet request. ™ It may contain additional CC/PP information set
by the portal / portlet container. (See JSR 188 (CC/PP__ Processing,
http://icp.org/en/jsr/detail7id=188) for more details on CC/PP profile processing).

Note that once the CC/PP profile API provides a factory method taking the
PortletRequest / PortletResponse as parameters this attribute may become

deprecated.

PLT.11.1.4.3 The Render Part Request Attribute for Setting Headers in
the Render Phase

There are cases in which the portlet may want to return header information, or other
information that is required before getting the markup, like the portlet title or the next
possible portlet modes, in the render phase. However, some portal implementations may
choose to implement itself in a streaming manner and thus do not buffer the output of the
portlet. In order to support these implementations the Java Portlet Specification provides
the javax.portlet.renderHeaders container runtime setting and the RENDER PART
request attribute that these streaming portal implementations need to set. Portlets that
want to ensure that they run with maximum performance on all portal implementations
should leverage this mechanism for:

Setting cookies
Setting headers
Setting the title
Returning new possible portlet modes

Portlets that need to set any of the above mentioned headers should set the additional
container-runtime-option with name javax.portlet.renderHeaders and value true.
The default for this setting is false. When set to true streaming portal implementations
should call the render method of the portlet twice with RENDER PART attribute set in the
render request. Example:

<portlet>

<container-runtime-option>

<name>javax.portlet.renderHeaders</name>

Java™ Portlet Specification, version 2.0 (2008-01-11) 86

10

15

20

25

30

<value>true</value>

</container-runtime-option>

</portlet>

If the RENDER PART portlet request attribute is set it indicates that the render request
needs to be split into two parts:

1. The render headers part that must be indicated by setting the RENDER_PART
request attribute with the value RENDER_HEADERS. In this part the portlet should
only set the header related data, cookies, the next possible portlet modes and the
portlet title. The portlet can set cache information for this response that may differ
from the one set on the RENDER MARKUP response.

2. The render markup part that must be indicated by setting the RENDER_PART
request attribute with the value RENDER MARKUP. In this part the portlet should
produce only its markup.

Non-streaming portals will not set this attribute and thus the portlet should set headers,
portlet title and produce its markup in a single render request.

Portlets should either extend GenericPortlet, which provides handling of the
RENDER PART request attribute in the render method, or check for the RENDER PART
request attribute themselves.

PLT.11.1.4.4 The Lifecycle Phase Request Attribute

The LIFECYCLE PHASE request attribute of the PortletRequest interface allows a portlet
to _determine the current lifecycle phase of this request. This attribute value must be
ACTION PHASE if the current request is of type ActionRequest, EVENT PHASE if the
current request is of type EventRequest, RENDER PHASE if the current request is of type
RenderRequest, and RESOURCE SERVING pHASE if the current request is of type
ResourceRequest.XC

The main intendt of this methedattribute is to allowine frameworks implemented on -top
of the Java Portlet Specification to perform the correct type casts from the
PortletRequest/PortletResponse to a specific request/response pair, like

ActionRequest/ActionResponse.

Java™ Portlet Specification, version 2.0 (2008-01-11) 87

10

15

20

25

30

35

PLT.11.1.4.5 Action-scoped Request Attributes

The Java Portlet Specification follows a model of separating concerns in different
lifecycle methods, like processAction, processEvent, render. This provides a clean
separation of the action semantics from the rendering of the content, however, it may
create some issues with servlet-based applications that don’t follow this strict Model-
View-Controller pattern. Such applications in some cases assume that attributes that they
set in the action phase will be accessible again when starting the rendering. The Java
Portlet Specification provides the render parameters for such use cases, but some
applications need to transport complex objects instead of strings.

For such use cases the Java Portlet Specification provides the action-scoped request
attributes as container runtime option with the intent to provide portlets with these
request attributes until a new action occurs.

Section PLT.10.1.4.4 describes this option in more detail.

PET114PLT.11.1.5 Request Properties

A portlet can access portal/portlet-container specific properties and, if available, the
headers of the HTTP client request through the following methods of the methods of the
PortletRequest interface:

® getProperty
e getProperties
e getPropertyNames

There can be multiple properties with the same name. If there are multiple properties with
the same name, the getProperty method returns the first property value. The
getProperties method allows access to all the property values associated with a
particular property name, returning an Enumeration of String objects.

Depending on the underlying web-server/servlet-container and the portal/portlet-
container implementation, client request HTTP headers may not be always available.
Portlets should not rely on the presence of headers to function properly. The
portletRequest interface provides specific methods to access information normally
available as HTTP headers: content-length, content-type, accept-language. Portlets
should use the specific methods for retrieving those values as the portal/portlet-container
implementation may use other means to determine that information.

PLT.11.1.5.1 Cookies

The portlet can access cookies provided by the current request with the getCookies
method. The returned cookie array provides the portlet with all cookie properties.

Java™ Portlet Specification, version 2.0 (2008-01-11) 88

10

15

20

25

30

‘ PETA15PLT.11.1.6 Request Context Path

The context path of a request is exposed via the request object. The context path is the
path prefix associated with the deployed portlet application. If the portlet application is
rooted at the base of the web server URL namespace (also known as "default" context),
this path must be an empty string.*" Otherwise, it must be the path the portlet application
is rooted to, the path must start with a '/' and it must not end with a '/' character.™"

‘ PLT.1.1.6PLT.11.1.7 Security Attributes

The PortletRequest interface offers a set of methods that provide security information
about the user and the connection between the user and the portal. These methods are:

e getAuthType

e getRemoteUser

e getUserPrincipal
e isUserInRole

e isSecure

The getauthType indicates the authentication scheme being used between the user and
the portal. It may return one of the defined constants (BASIC AUTH, DIGEST AUTH,
CERT AUTH and FORM_AUTH) or another string value that represents a vendor provided
authentication type. If the user is not authenticated the getauthType method must return

xciii

null.
The getRemoteUser method returns the login name of the user making this request.

The getUserPrincipal method returns a java.security.Principal object containing
the name of the authenticated user.

The isUserInrRole method indicates if an authenticated user is included in the specified
logical role.

The issecure method indicates if the request has been transmitted over a secure protocol
such as HTTPS.

PET11.7PLT.11.1.8 Response Content Types

Portlet developers may code portlets to support multiple content types. A portlet can
obtain, using the getResponseContentType method of the request object, a string
representing the default content type the portlet container assumes for the output._ Fhe

If the portlet container supports additional content types for the portlet’s output, it must
declare the additional content types through the getResponseContentTypes method of

Java™ Portlet Specification, version 2.0 (2008-01-11) 89

10

15

20

25

30

35

the request object. The returned Enumeration of strings should contain the content types
the portlet container supports in order of preference. The first element of the enumeration
must be the same content type returned by the getResponseContentType method. "

The returned values of the qetResponseContentTvpeznuiqetResponseContentTvpes
call are the same for processAction, processEvent and render calls occurring within
the same client request.

If a portlet defines support for all content types using a wildcard and the portlet container
supports all content types, the getResponseContentType may return the wildcard or the
portlet container preferred content type.

Ifthe(qetResponseContentType or getResponseContentTypes nuﬁhodsareexposed
via an ActionRequest, EventRequest, Or RenderRequest the following additional
restrictions apply:

e The content type must only includes the MIME type, not the character set. ** The
character set of the response can be retrieved via the
RenderResponse.getCharacterEncoding.

® The getResponseContentTypes method must return only the content types
supported by the current portlet mode of the portlet.*"

Ifthe(qetResponseContentTvpe or getResponseContentTypes nkﬂhodsareexposed
via an ResourceRequest the returned values should be based on the HTTP Accept header
provided by the client.

PLT1.1.8P1L.T.11.1.9 Internationalization

The portal/portlet-container decides what locale will be used for creating the response for
a user. The portal/portlet-container may use information that the client sends with the
request. For example the Accept-Language header along with other mechanisms
described in the HTTP/1.1 specification. The getLocale method is provided in the
portletRequest interface to inform the portlet about the locale of user the portal/portlet-
container has chosen.

PET-119PLT.11.1.10 Portlet Mode

The getpPortletMode method of the PortletRequest interface allows a portlet to find
out its current portlet mode. A portlet may be restricted to work with a subset of the
portlet modes supported by the portal/portlet-container. A portlet can use the
isPortletModeAllowed method of the PortletRequest interface to find out if the
portlet is allowed to use a portlet mode. A portlet mode is not allowed if the portlet mode
is not in the portlet definition or, the portlet or the user has been constrained further by
the portal. Note that the viEw mode is always allowed, even if not explicitly listed in the
portlet definition.

Java™ Portlet Specification, version 2.0 (2008-01-11) 90

10

15

20

25

30

PLTI1110PLT.11.1.11 Window State

The getwindowstate method of the PortletRequest interface allows a portlet to find
out its current window state.

A portlet may be restricted to work with a subset of the window states supported by the

portal/portlet-container. A portlet can use the iswindowStateaAllowed method of the
portletRequest interface to find out if the portlet is allowed to use a window state.

PLT.11.1.12 Access to the Portlet Window ID

The getwindowID method of the PortletRequest interface provides the portlet with the
current portlet window ID. The portlet window ID must be unique for this portlet window
and constant for the lifetime of the portlet window. The portlet window ID retrieved with
the getwindowID method must be the same as the one that is used by the portlet container
for scoping the portlet-scope session attributes. **"

PLTA2P1.T.11.2 ClientDataRequest Interface

The clientDataRequest interface extends the PortletRequest interface and it is used
as base class for the ActionRequest and ResourceRequest. In addition to the
functionality provided by the PortletRequest interface, the ClientDataRequest
interface represents the request information -of the HTTP request issued from the client to
the consuming application / portal, such as the input stream.

PET124PLT.11.2.1 Retrieving Uploaded Data

The input stream is useful when the client request contains HTTP POST data of type
other than application/x-www-form-urlencoded. For example, when a file is
uploaded to the portlet as part of a user interaction.

As a convenience to the portlet developer, the AetioRRClientHttpDataRequest
interface also provides a getReader method that retrieves the HTTP POST data as
character data according to the character encoding defined in the userrequest.

Only one of the two methods, getPortletInputStream Or getReader, can be used
during an action request. If the input stream is obtained, a call to the getReader must
throw an IllegalStateException. Similarly, if the reader is obtained, a call to the
getPortletInputStream must throw an Il1legalStateException. "

To help manage the input stream, the aetienClientHttpDataRequest interface also
provides the following methods:

e getContentType
e getCharacterEncoding
e setCharacterEncoding

Java™ Portlet Specification, version 2.0 (2008-01-11) 91

10

15

20

25

30

e getContentLength

The setCharacterEncoding method only sets the character set for the Reader that the
getReader method returns.

If the user request HTTP POST data is of type application/x-www-form-urlencoded,
this data has been already processed by the portal/portlet-container and is available as
request parameters. The getPortletInputStream and getReader methods must throw
an IllegalStateException if called.*™

PLT.11.3 ActionRequest Interface

The actionRequest interface extends the clientDataRequest interface and is used in
the processaction method of the portlet interface. Currently, the ActionRequest
interface does not define any additional methods but only the AcTION NAME constant that
can be used together with the @ProcessAction annotation.

PLT.11.4 ResourceRequest Interface

The ResourceRequest interface extends the clientDataRequest interface and is used
in the serveResource method of the ResourceServingPortlet interface. The
ResourceRequest interface defines in addition the ETAG constant and the getETag
method for validation based caching and the getResourceID method for getting the
resource ID set on the resource URL.

PLT.11.5 EventRequest Interface

The EventRequest interface extends the PortletRequest interface and is used in the
processEvent method of the EventPortlet Interface. The EventRequest interface
provides the event that triggered the processEvent call via the getEvent method which
returns an Event object. The Event object provides the event QName via getQName .

PETA3PLT.11.6 RenderRequest Interface

The RenderRequest interface extends the PortletRequest interface and is used in the
render method of the portlet interface. Currently, the RenderRequest interface does
not define any additional methods.

PETA4PLT.11.7 Lifetime of the Request Objects

Each request object is valid only within the scope of a particular processAction,
processEvent, serveResource Of render method call. Containers commonly recycle
request objects in order to avoid the performance overhead of request object creation. The
developer must be aware that maintaining references to request objects outside the scope
described above may lead to non-deterministic behavior.

Java™ Portlet Specification, version 2.0 (2008-01-11) 92

PLT.12

10

20

25

Portlet Responses

The response objects encapsulate all information to be returned from the portlet to the
portlet container during a request: a redirection, a portlet mode change, title, content, etc.
The portal/portlet-container will use this information to construct the response -usually a
portal page- to be returned to the client. A response object is passed to the
processAction, processEvent, serveResource and the render methods of the
portlet.

PETAAPLT.12.1 PortletResponse Interface

The pPortletResponse interface defines the common functionality for the
ActionResponse, EventResponse, ResourceResponse and RenderResponse
interfaces.

PLT11APLT.12.1.1 Response Properties

Properties can be used by portlets to send vendor specific information to the
portal/portlet-container.

A portlet can set properties using the following methods of the PortletResponse
interface:

e setProperty
e addProperty

The setpProperty method sets a property with a given name and value. A previous
property is replaced by the new property. Where a set of property values exist for the
name, the values are cleared and replaced with the new value. The addproperty method
adds a property value to the set with a given name. If there are no property values already
associated with the name, a new set is created.

Response properties can be viewed as header values set for the portal application. If these
header values are intended to be transmitted to the client they should be set before the
response is committed. When setting headers in the render lifecycle phase portlets should

Java™ Portlet Specification, version 2.0 (2008-01-11) 93

10

15

20

25

30

set the header in the render headers part or simply override the
GenericPortlet.doHeaders method (see PLT.11.1.1.4.3).

The portlet should note that headers set on the response are not guaranteed to be
transported to the client as the portal application may restrict headers due to security
reasons, or they may conflict with other headers set by other portlets on the page.

PEFA12PLT.12.1.2 Encoding of URLSs

Portlets may generate content with URLs referring to other resources within the portlet
application, such as servlets, JSPs, images and other static files. Some portal/portlet-
container implementations may require those URLs to contain implementation specific
data encoded in it. Because of that, portlets should use the encodeUrRL method to create
such URLs. The encodeUrRL method may include the session ID and other portal/portlet-
container specific information into the URL. If encoding is not needed, it may returns the
URL unchanged.

Resources that are addressed not by an URL encoded with encodeURL, or directly via a
ResourceURL, are not guaranteed to be accessible.

Portlet developer should be aware that the returned URL mayight not be a well formed
URL but a special token at the time the portlet is generating its content. Thus portlets
should not add additional parameters on the resulting URL or expect to be able to parse
the URL. As a result, the outcome of the encodeURL call may be different than calling
encodeURL in the servlet world.

PLT.12.1.3 Namespacing

Within their content, portlets may include elements that must be unique within the whole
portal page. JavaScript functions and variables are an example of this.

The getNamespace method must provide the portlet with a mechanism that ensures the
uniqueness of the returned string in the whole portal page.° For example, the
getNamespace method will return a unique string that could be prefixed to a JavaScript
variable name within the content generated by the portlet, ensuring its uniqueness in the
whole page. The getNamespace method must return the same value for the lifetime of the
portlet window."

The getNamespace method must return a valid identifier as defined in the 3.8 Identifier
Section of the Java Language Specification Second Edition.”"

Java™ Portlet Specification, version 2.0 (2008-01-11) 94

10

15

20

25

30

PLT.12.1.4 Setting Cookies

A portlet can set HTTP cookies at the response via the addProperty method with a
javax.servlet.http.Cookie as parameter. The portal application is not required to
transfer the cookie to the client. Thus the portlet should not assume that it has access to
the cookie on the client or that request triggered with URLs not generated by the portlet
API can access the cookie.

Cookies set in the response of one lifecycle call should be available to the portlet in the
subsequent lifecycle calls, e.g. setting a cookie in processAction should enable the
portlet to retrieve the cookie in the next render call.

For requests trigeered via portlet URLs the portlet should receive back the cookie.
Cookies can be retrieved via the request.getCookies method.

Cookies are properties and all restrictions said above about properties also apply for
cookies, i.e. to be successfully transmitted back to the client, cookies must be set before
the response is committed. Cookies set in render or serveResource after the response is
committed will be ignored by the portlet container.

When setting cookies in the render lifecycle phase portlets should set the cookies in the
render headers part or simply override the GenericPortlet.doHeaders method in order
to run with maximum performance on all portal implementations (see PLT.11.1.1.34.3).

PLT.12.2 StateAwareResponse Interface

The stateAwareResponse interface extends the PortletResponse interface and in
addition provides methods to set new render parameters, a new portlet mode, or window
state. ActionResponse and EventResponse both extend this interface.

PLT.12.2.1 Render Parameters

Using the setRenderParameter and setRenderParameters methods portlets may set
render parameters. A call to any of the setRenderpParameter methods must replace any
parameter with the same name previously set. " Subsequent lifecycle calls, like
processEvent or render that are part of the current client request should contain the
newly set render parameters. If no other requests occur which influence render
parameters, like subsequent processiEvent calls of this client request, occur these
parameters will be used in all subsequent render requests until a new client request or
event targets the portlet.

Java™ Portlet Specification, version 2.0 (2008-01-11) 95

10

15

20

25

30

Portlet developers do not need to “x-www-form-urlencoded” encode render parameters
names and values set in the StateAwareResponse.

The removePublicRenderParameter method allows the portlet to remove a public
render parameter.

PLT.12.2.2 Portlet Modes and Window State Changes

The setPortletMode method allows a portlet to change its current portlet mode. The
new portlet mode will be effective in the following processEvent and render requests.
If a portlet attempts to set a portlet mode that it is not allowed to switch to, a
PortletModeException must be thrown."

The setwindowsState method allows a portlet to change its current window state. The
new window state weuldill be effective in the following processEvent and render
requests. If a portlet attempts to set a window state that it is not allowed to switch to, a
WindowStateException must be thrown.®”

Portlets cannot assume that subsequent processEvent or render calls will be called with
the set portlet mode or window state as the portal/portlet-container could override these

changes.

If the portlet does not set a new portlet or window state at the StateAwareResponse
interface the current portlet mode and window state are preserved.

PLT.12.2.3 Publishing Events

The portlet can publish events via the setEvent method. It is also valid to call setEvent
multiple times in the current processAction or processEvent method and thus publish
multiple events (see PLT. 15.2).

PETA2PLT.12.3 ActionResponse Interface

The ActionResponse interface extends the PertletStateAwareResponse interface and
it is used in the processaction method of the portlet interface. This interface also

allows a portlet in—addition—to redirect the user to another URL;—set-render—parameters;

PLTA2AP1.T.12.3.1 Redirections

The sendredirect (String location) method instructs the portal/portlet-container to
set the appropriate headers and content body to redirect the user to a different URL. A

Java™ Portlet Specification, version 2.0 (2008-01-11) 96

10

15

20

25

30

35

fully qualified URL or a full path URL must be specified. If a relative path URL is given,
an IllegalArgumentException must be thrown.”"

If the sendrRedirect (String location) method is called after the setPortletMode,
setWindowState, removePublicRenderParameter, setRenderParameter or
setRenderParameters methods of the ActionResponse interface, an
IllegalStateException must be thrown and the redirection must not be executed.*"

The sendRedirect (String location, String renderUrlParamName) method
instructs the portal/portlet-container to set the appropriate headers and content body to
redirect the user to a different URL. A fully qualified URL or a full path URL must be
specified. If a relative path URL is given, an IllegalArgumentException must be

cviii

thrown.

The portlet container must attach a render URL with the currently set portlet mode,
window state and render parameters on the ActionResponse and the current public
render parameters. °* The attached URL must be available as query parameter value
under the key provided with the renderUrlpParamName parameter. <

New values for portlet mode, window state, private or public render parameters must be
encoded in the attached render URL®™, but are not remembered after the redirect is
1ssued.

Sending events when doing a redirect is discouraged as these events may be discarded by
the portlet container / portal application as the further processing of the event may result
in state changes that the portlet container would not be able to honor because of the
performed redirect.

Java™ Portlet Specification, version 2.0 (2008-01-11) 97

10

15

20

25

30

35

PLT.12.4 EventResponse Interface

The EventResponse interface extends the StateAwareResponse interface and adds the
additional method setRenderParameters (EventRequest request). One thing to note
is that if a portlet receives multiple processEvent calls while processing one client
request the new portlet mode or window state that the portlet may have set, may be not
validated by the portal between these multiple processEvent calls. This means that even
if the portlet container may not throw an exception when the portlet sets a new portlet
mode or window state that the portal may still not approve this portlet mode or window
state change and call the portlet render method with a different portlet mode or window
state.

PLT.12.5 MimeResponse Interface

The MimeResponse interface extends the PortletResponse interface and is used as base
interface for RenderResponse and ResourceResponse. In addition to the
PortletResponse interface the MimeResponse interface provides the functionality to
create MIME-based content that is returned to the portal application.

Java™ Portlet Specification, version 2.0 (2008-01-11) 98

10

15

20

25

30

PETA31PLT.12.5.1 Content Type

A portlet must—can set the content type of the response using the setContentType
method of the ReaderMimeResponse interface in order to indicate to the portlet container
which content type the portlet has chosen.

For the render response The—the setContentType method must throw an
IllegalArgumentException if the content type set does not match (including wildcard
matching) any of the content types returned by the getResponseContentType method of
the PortletRequest object™". For the render response Fhe-the portlet container should
ignore any character encoding specified as part of the content type_and treat the content
type as if the character encoding was not specified.

The setcontentType method must be called before the getwriter or
getPortletOutputStream methods. If called after, it should be ignored.

If the portlet has set a content type, the getContentType method must return it.
Otherwise, the getContentType method must return nu11.”"

If the portlet does not specify a content type before the getWriter or
getPortletOutputStream methods the portlet container assumes the content type of the
PortletRequest.getResponseContentType () method and resolves wildcards on a best-
can-do basis.

PET132PLT.12.5.2 Output Stream and Writer Objects

A portlet may generate its content by writing to the outputStream or to the writer of
the RenderMimeResponse object. A portlet must use only one of these objects. The
portlet container must throw an IllegalStateException if a portlet attempts to use
both. "

The termination of the render or serveResource method of the portlet indicates that the
portlet has satisfied the request and that the output ebjeet-buffer is to be elesedflushed.

In render FThe-the raw outputStream is available because of some servlet container
implementations requirements and for portlets that do not generate markup fragments.

Java™ Portlet Specification, version 2.0 (2008-01-11) 99

10

15

20

25

30

Portlets should only use the raw outputStream for binary content and use the writer for
text-based markup. If a portlet utilizes the outputSstream, the portlet is responsible ef-for
using the proper character encoding.

PLT.12.5.3 Access to Response Headers

A portlet can set HTTP headers for the response via the setProperty Or addProperty
call in the MimeResponse. To be successfully transmitted back, headers must be set
before the response is committed. Headers set after the response is committed will be
ignored by the portlet container.

Note that it is not guaranteed that headers, like cookies, will be transmitted all the way
back to the client.

For render calls, portlets should set headers in the render headers part of the render
lifecycle phase or simply override the GenericPortlet.doHeaders method (see
PLT.11.1.4.3) in order to run with maximum performance on all portal implementations.

PLT.12.5.4 Setting Markup Head Elements

A portlet can set markup head elements at the response via the addProperty method with

MimeResponse.MARKUP HEAD ELEMENT (value:
"javax.portlet.markup.head.element") as property name and an
org.w3c.dom.Elementvahw.

This property is intended to be a hint to the portal application that the provided DOM
element should be added to the markup head section of the response to the client.

Support for this property is optional and the portlet can verify if the calling portal
supports this property via the MARKUP HEAD ELEMENT SUPPORT property on the
PortalContext.

Even if the calling portal supports this property, delivery of the DOM element to the
client cannot be guaranteed, e.g. due to possible security rules of the portal application or
elements that conflict with the response of other portlets.

For render calls, portlets should set head properties in the render headers part of the
render lifecycle phase or simply override the GenericPortlet.doHeaders method (see
PLT.11.1.4.3) in order to run with maximum performance on all portal implementations.

Java™ Portlet Specification, version 2.0 (2008-01-11) 100

10

15

20

25

30

35

PET133PLT.12.5.5 Buffering

A portlet container is allowed, but not required, to buffer output going to the client for
efficiency purposes. Typically servers that do buffering make it the default, but allow
portlets to specify buffering parameters.

The following methods in the RenderRespense-MimeResponse interface allow a portlet
to access and set buffering information:

getBufferSize
setBufferSize
isCommitted
reset
resetBuffer
flushBuffer

These methods are provided on the RernderRespense-MimeResponse interface to allow
buffering operations to be performed whether the portlet is using an outputStream or a
Writer.

The getBuffersize method returns the size of the underlying buffer being used. If no
buffering is being used, this method must return the int value of o (zero).™"

The portlet can request a preferred buffer size by using the setBuffersize method. The
buffer assigned is not required to be the size requested by the portlet, but must be at least
as large as the size requested.”™"" This allows the container to reuse a set of fixed size
buffers, providing a larger buffer than requested if appropriate. The method should be
called before any content is written using a OutputStream or Writer. If any content has
been written, this method may throw an I1legalStateException.

The isCommitted method returns a boolean value indicating whether any response bytes
have been returned to the client. The f1ushBuffer method forces content in the buffer to
be written to the client.

The reset method clears data in the buffer when the response is not committed.
Properties set by the portlet prior to the reset call must be cleared as well.*" The
resetBuffer method clears content in the buffer if the response is not committed
without clearing the properties.

If the response is committed and the reset or resetBuffer method is called, an
IllegalStateException must be thrown.”™"" The response and its associated buffer
must be unchanged.”*™

When using a buffer, the container must immediately flush the contents of a filled buffer
to the ehentportal application.™ If this is the first data that is sent to the ekentportal
application, the response must be considered as committed.

Java™ Portlet Specification, version 2.0 (2008-01-11) 101

10

15

20

25

30

PLT.12.5.6 Predefined MimeResponse Properties

The MimeResponse interface defines some property names that allows portlets leveraging
these extensions to interoperate across different portal / portlet container
implementations.

PLT.12.5.6.1 Cache properties

The MimeResponse defines the property names CACHE SCOPE, EXPIRATION CACHE,
ETAG and USE CACHED CONTENT and the property values PRIVATE ScoPE and
PUBLIC_SCOPE, which can be used for validating expired content, setting new expiration
times and cache scopes. See PLT.22 for more details.

PLT.12.5.6.2 Namespaced Response Property

The NAMESPACED RESPONSE constant is intended to be a hint to the portal application that
the returned content is completely namespaced. This includes all markup id elements,
form fields, etc. One example where this might be used is for portal applications that are
form-based and thus need to re-write any forms included in the portlet markup.

This property needs to be set using the setProperty method with a non-null value. The
value itself is not evaluated. The value of the NAMESPACED RESPONSE constant is X-
JAVAX-PORTLET-NAMESPACED-RESPONSE indicating that it is intended to be a header in
the portlet response to the portal application.

Portlets should set the namespaced property in the render headers part of the render
lifecycle phase or simply override the GenericPortlet.doHeaders method in order to
run with maximum performance on all portal implementations (see PLT.11.1.4.3).

Java™ Portlet Specification, version 2.0 (2008-01-11) 102

10

15

20

25

30

PLT.12.6 RenderResponse Interface

The RenderResponse interface extends the MimeResponse interface and it is used in the
render method of the portlet interface. This interface allows a portlet to set its title,
indicate the next possible portlet modes, and generate content.

The portlet cannot set the character encoding or the locale of the response as these are
pre-set by the portal / portlet container.

PEFA3-5PLT.12.6.1 Portlet Title

A portlet may indicate to the portal/portlet-container its preferred title. It is up to the
portal/portlet-container to use the preferred title set by the portlet.

The setTitle method must be called before the output of the portlet has been
committed, if called after it should be ignored.™*

Portlets should set the javax.portlet.renderHeaders container runtime option and
cither set the title in the render headers part of the render lifecycle phase (see
PLT.11.1.1.4.3) or simply override the GenericPortlet.getTitle method in order to
run with maximum performance on all portal implementations.

PLT.12.6.2 Next possible portlet modes

A portlet may indicate to the portal application the next possible portlet modes that the
make sense from the portlet point of view via the setNextPossiblePortletModes
method.

If set. the portal should honor these enumeration of portlet modes and only provide the
end user with choices to the provided portlet modes or a subset of these modes based on
access control considerations.

If the portlet does not set any next possible portlet modes the default is that all portlet
modes that the portlet has defined supporting in the portlet deployment descriptor are
meaningful new portlet modes.

In order to ensure that the next possible portlet modes are honored by all portal
implementations, portlets should set the javax.portlet.renderHeaders container
runtime option and either set the next possible portlet modes in the render headers part of
the render lifecycle phase (see PLT.11.1.1.4.3) or simply override the GenericPortlet.
getNextPossiblePortletModes method in order to run with maximum performance on
all portal implementations.

Java™ Portlet Specification, version 2.0 (2008-01-11) 103

10

15

20

25

30

PLT.12.7 ResourceResponse Interface

The ResourceResponse interface extends the MimeResponse interface and #-is used in
the serveResource method of the ResourceServingPortlet interface. This interface
allows a portlet to generate content that is directly served to the client, including binary
content.

The portlet can set the character encoding or the locasle of the response. The portal /
portlet container may pre-set character encoding and locale.

PLT.12.7.1 Setting the Response Character Set

The portlet can set the character encoding for a resource response in several ways:

e viathe setCharacterEncoding method

e viathe setContentType method. Calls to setContentType set the character
encoding only if the given content type string provides a value for the charset
attribute.

e viathe setLocale method and a 1ocale-encoding-mapping-1list mapping in
the web.xml deployment descriptor (see servlet specification SVR.5.4 for
details). Calls to setLocale set the character encoding only if neither
setCharacterEncoding NOr setContentType has set the character encoding
before.

If the portlet does not set a character encoding via one of the above listed methods before
calling getwriter UTF-8 is applied by the portlet container as default character

encoding.

PETA4PLT.12.8 Lifetime of Response Objects

Each response object is valid only within the scope of a particular processaction,
processEvent, serveResource, Or render method call. Containers commonly
recycle response objects in order to avoid the performance overhead of response object
creation. The developer must be aware that maintaining references to response objects
outside the scope described above may lead to non-deterministic behavior.

Java™ Portlet Specification, version 2.0 (2008-01-11) 104

10

15

20

25

30

PLT.13

Resource Serving

Portlets can create two different kinds of resource links in order to serve resources:

1. Direct links to the resource in the same portlet web application. These links are
constructed by the portlet and encoded with the PortletResponse.encodeURL ()
method.

Note that this method mightay not return a valid URL.

Direct links are not guaranteed to pass through the portal server and will not have
the portlet context available.

Direct links should be used for use cases where the access to the portlet context
and access through the portal is not needed, as they are more efficient than
resource serving requests via resource URLs through the portal.

2. Resource URL links pointing back to the portlet. Via these links the
serveResource method of the ResourceservingPortlet interface is called and
the portlet can serve the resource. Thus resources served via resource URLs may
be protected by the portal security and can leverage the portlet context. Static
resources should still be served with direct links in order to allow portal
applications to configure and optimize static resource serving in a consistent
manner.

The remainder of this chapter defines how resource URL links can be created and how
the portlet is called to serve the resource.

PLT.13.1 ResourceServingPortlet Interface

A portlet that wants to serve resources addressed via a resource URL must implement the
ResourceServingPortlet interface with the method serveResource. The portlet
container must not render any output in addition to the content returned by the
portletserveResource call. For serveResource calls the portal application should just
act as a proxy for accessing the resource.

The serveResource call normally follows a render call and can be viewed as a logical
extension the render phase. The portlet should not change any state in the
serveResource call that was issued via an HTTP method GET.

For use cases that require state changes the serveResource call should be issued via an
HTTP method POST or PUT or DELETE. For serveResource calls only state changes
to non-shared state, like the portlet session scope or portlet preferences, should be
performed as otherwise portlets participating in this shared state would display stale

Java™ Portlet Specification, version 2.0 (2008-01-11) 105

10

15

markup. The portlet should note that such state changes impact cachability of the
resource and set the cache settings accordingly.

The serveResource call can also be used to implement Asynchronous Javascript and
XML (AJAX) use cases (see Chapter 14).

Figure 1343-1 Resource Request Handling Sequence

A Portlet Portlets
container A B C

| Page request |
| | I
’ -
| L]
[["
I New Page #-:-:22227 N
| with I -
| ResourceURL r ----------
I in Markup of I
Portlet C
R 1
Bl et | | |
II_{_e.SE’P_r??_--_.I
Irequest b--------- » serveResource
1 1 >
— | ! R
.
jeResource
j markup I
1 |

PLT.13.2 Access to Render Parameters, Portlet Mode, and
Window State

The ResourceRequest should be provided with the current portlet mode and window
state. The ResourceRequest call should also be provided with the current render
parameters of the portlet.

PLT.13.3 Access to Request and Response Headers

Given that the portal / portlet container does not render any additional markup for a
serveResource response it is important for the portlet to be able to access the incoming
request headers and to be able to set new headers for the response.

A portlet can access the headers of the HTTP client request through the getProperty or
getProperties call, like all portlet requests (see PLT 11.1.5).

Java™ Portlet Specification, version 2.0 (2008-01-11) 106

10

15

20

25

30

A portlet can set HTTP headers for the response via the setProperty or addProperty call in
the PortletResponse. To be successfully transmitted back to the client, headers must be
set before the response is committed. Headers set after the response is committed will be
ignored by the portlet container.

The portlet should be aware that the portal application may filter out some headers due to
the fact that it has already set these headers to a different value or because of security
reasons.

PLT.13.4 Getting the HTTP Method

The portlet must be able to get the HTTP method with which this request was made, for
example, GET, POST, or PUT, via the getMethod call on the ResourceRequest. ™"

PLT.13.5 Access to the Resource ID

The portlet must be able to get the resource ID that was set on the resource URL with the
setResourceID method via the getResourceID method from the resource request. ™" If
no resource ID was set on the resource URL the getResourceID method must return

CXXiV

null.

PLT.13.6 Resource URLSs

The portlet can create resource URLSs pointing back to itself via the createResourceURL
method on the PortletResponse. When an end user invokes such a resource URL the
portlet container must call the serveResource method of the portlet or return a valid
cached result for this resource URL™ If the portlet does not implement the
ResourceServingPortlet interface it is left to the portal / portlet container to either
provide some meaningful error handling or ignore the URL.

The portlet container must not call the processaAction or processEvent method™".

Resource URLs should be provided with the current portlet mode, window state, and
render parameters that the portlet can access via the PertletResourceRequest with
getPortletMode, getWindowState, or one of the getParameter methods.
ResourceURLs cannot change the current portlet mode, window state or render
parameters™"". Parameters set on a resource URL are not render parameters but
parameters for renderserving this resource and will last only for the current
serveResource request.

If a parameter is set that has the same name as a render parameter that this resource URL
contains, the render parameter values must be the last entries¥ in the parameter value

CXXIX

array.

Java™ Portlet Specification, version 2.0 (2008-01-11) 107

10

15

20

25

30

35

40

PLT.13.7 Caching of Resources

The supported use cases for serveResource include retrieving new markup fragments
based on the current portlet state and allowing the portlet to include portlet URLs in the
returned markup. If portlet URLs are included in the markup, portals / portlet containers
must create correct portlet URLs for all text-based markup types. ““** If the returned
markup of the serveResource call includes portlet URLs the cachability of the markup
on the browser will most likely be limited as a common practice of portal application is to
encode the state of the portlets in the URL.

With the setCacheability method on the ResourceURL the portlet can indicate that it
only needs parts of the overall state via the cache level parameter and thus the portal
application can create URLs that result in an increased likelihood of a subsequent
browser access being served from a browser/web cache. With the getCachability
method on the ResourceURL the portlet can retrieve the current cache level.

The following values are defined for the cache level parameter:

e FULL — The resource URL does not need to contain the current state of the page
or the current render parameters, portlet mode, or window state of the portlet.
Thus the portlet should not access the portlet mode, window state, or render
parameters in the serveResource call.

Only URLs efthetypewith a cache level FULL are allowed in the response of the
serveResource call triggered via a ResourceURL with a cache level Furr. The
same restriction is true for all downstream URLs that result from this
serveResource call. Setting a cachability different from FULL must result in an
IllegalStateException‘ . Attempts to create URLs that are not of type FULL
or are not resource URLSs in the current; or a downstream response must result in
an Illegal StateExceptioncxxxu.

In order to enable sharing of the resource between different portlet applications
the portlet can set a unique ID, preferable a QName in the QName.toString
format, via the property key ResourceURL. SHARED on the resource URL. This
unique ID is intended to allow the portal application identifying resource links
that identify the same resource (e.g. in case of a JavaScript library it could
include the namespace + name of the library + version). All downstream URLs
will be assumed to have the same sharing ID if no other unique ID is specified.
For resource URLs that have set the ResourceURL. SHARED property the portlet
may not get called for serving the resource as it may already be cached on the
portlet application when serving the same resource for a different portlet.

URLSs of the type ruLL have the highest cacheability in the browser as they do
not depend on any state of the portlet or page.

e PORTLET — The serveResource call triggered by a PORTLET resource URL
does have access to the portlet state consisting of the render parameters, portlet

Java™ Portlet Specification, version 2.0 (2008-01-11) 108

10

15

20

25

mode and window state. The resource URL does not include further state of the
portal page and therefore the markup returned from serveResource, Or any
further downstream calls resulting from this URL, must only include URLs of
type FULL or PORLET. Creating other URLSs, e.g. resource URLS of type PAGE or
action or render URLs, must result in an I1legalStateException

URLSs of the type PORTLET are cacheable on the portlet level in the browser and
can be served from the browser cache for as long as the state of this portlet does
not change.

e PAGE — The resource URL may contain artifacts that require knowledge of the
state of the complete page, like Port1etURLs, or resource URLs of type PAGE.
The markup returned by such a resource URL may contain any portlet URL.
Resource URLs of the type PAGE are only cacheable on the page level and can
only be served from the browser cache as long as no state on the page changes.

The cacheability constants are ordered (from strong to weak) in the following manner:
FULL, PORTLET, PAGE.

If no cachability is set on the resource URL, the cacheability setting of the parent
resource is used. If no parent resource is available, PAGE is the default.

E.g. a portlet creates in render a resource URL with cachability PORTLET. When this
resource URL is being triggered and the serveResource method of the portlet is being
called all resource URLs created in this serveResource call will have per default
PORTLET cacheability. The portlet can only further restrict the cacheability, e.g. set it to
FULL, but not lessen it, like trying to set it to PAGE.

PLT.13.8 Generic Portlet Support

The serveResource method in the GenericPortlet class tries to forward the resource
serving to the resource ID set on URL triggering the request for serving the resource. If
no resource ID is set, the serveResource method does nothing.

Java™ Portlet Specification, version 2.0 (2008-01-11) 109

10

15

20

25

30

PLT.14

B

Serving Fragments through Portlets

Through the render method of the Portlet interface the Portlet produces its complete
markup that is embedded as a fragment into the overall page by the portal application.
However, there are use cases where the portlet would like to only replace a part of its
markup, e.g. via an AJAX call.

+—There are two different scenarios:

1. Perform operations that don’t need coordination features or change shared state,
like portlet application session scope data, or any navigational state, like render
parameters, portlet mode or window state.

2. Perform operations that want to leverage coordination features or need to change
shared state like portlet application session scope data, render parameters, portlet
mode or window state.

For scenario 1 the Java Portlet Specification provides the serveResource method.

Scenario 2 requires coordination between the portlet and the portal application as
changing shared state or state that may be stored on the client, like render parameters,
affects not only the portlet markup itself, but also other parts of the page. Thus the portal
application needs to provide these updates and the portlet needs to have some means to
allow the portal performing these updates. Version 2.0 of the Java Portlet Specification
does not address this coordinated scenario that requires defining client side interfaces and
thus reaches beyond the Java space.

The remainder of this chapter explains how to serve portlet fragments by using the
serveResource method. In this context a portlet fragment is a response that impacts in
most cases only parts of the portlet markup. A fragment response will be commonly in a
HTML format but it can also be XML, JSON, etc.

PL.T.14.1 Serving Fragments via serveResource Method

Serving fragments via serveResource 1s under the complete control of the portlet.
Typically a portlet would issue an XMLHttpRequest with a resource URL and provide
either markup or data as response in the serveResource method. The ECMA client side
code of the portlet is then responsible for inserting either the markup or otherwise update
the page DOM in a non-disruptive manner for the other components on the page.

Java™ Portlet Specification, version 2.0 (2008-01-11) 110

10

15

Due to the fact that the portal application is not involved in serving the fragment several
restrictions apply for serving fragments via serveResource:

e No support for coordination like events or shared render parameters. The portlet
will only receive the current shared render parameter values, cannot change these
values.

e The serveResource call cannot set new render parameters, a new portlet mode or
window state.

e The serveResource call cannot issue redirects.

o The serveResource call should not change application-scoped session state, as
other parts of the page will not see these session updates and thus represent an
inconsistent user experience.

The portlet should note that such state changes impact cachability of the resource
response and set the cache settings accordingly.

The following figure shows how a request flow using serveResource for serving portlet
fragments will look like.

Figure 3: Request flow when serving fragments via the serveResource method

Java™ Portlet Specification, version 2.0 (2008-01-11) 111

10

Portlet Portlets

Client Portal container A B C
: Action on B J
: Il _________ » processAction |
I p---m--eed
| |
I | > render
| | PO
I [
I L » >
| | PR ——
I New Page |
[¢----------- 1
| |
| |
: A: XHR via :
resourccURL
g fesource - q
: :' --------- " serveResource
I Fragment] <
I returned to A |
F. ____________
I Aupdates |
I itself 1
! .

----------- Not defined by the Java Portlet Specification

The top part of the picture shows a normal action request that results in a complete page
re-rendering. In portlet A’s markup is a resource URL that gets triggered by the user and
results in an asynchronous XMLHttpRequest to the portlet, which then results in calling
the serveResource method on portlet A. Portlet A returns a portlet fragment that gets
delivered all the way back to the client and is evaluated and processed by some script
code of portlet A on the client. This could then result in portlet A updating itself via
direct manipulation of the browser DOM.

Java™ Portlet Specification, version 2.0 (2008-01-11) 112

10

15

20

25

PLT.15

B

Coordination between portlets

In order to provide coordination between portlets the Java Portlet Specification
introduces the following mechanisms:

e sharing data between artifacts in the same web application via the session in the
application scope (see PLT.17.2)
e public render parameters in order to share render state between portlets (see

PLT.11.1.2)

e portlet events that a portlet can receive and send

In this chapter we’ll cover briefly the public render parameters and the portlet events in
detail.

Note that it is not in the scope of this specification to define how portlets are wired
together, nor how a set of portlets relate to each other or to a portal page. All this is done
on portal application level and is not reflected in the Java Portlet API or portlet.xml.

PLT.15.1 Public Render Parameters

Public render parameters are intended for sharing view state across portlets. Using public
render parameters instead of events avoids the additional process event call and enables
the end-user using the browser navigation and bookmarking if the portal stores the render
parameters in the URL.

An example where public render parameters are useful is the following: a weather portlet
wants to display the weather of a selected city. It therefore uses the sharedpublic render
parameters for encoding the zip code. The user now adds additional portlets on the page
that also have zip code as one of their public render parameters, like a map portlet
displaying the location of the city and a tourist information portlet displaying tourist
information for the selected city. If the portal encodes the zip code into the URL the user
can even bookmark these information for specific cities.

For more details on public render parameters see PLT.11.1.1.2.

Java™ Portlet Specification, version 2.0 (2008-01-11) 113

10

15

20

25

30

35

PLT.15.2 Portlet Events

Portlet events are intended to allow portlets to react to actions or state changes not
directly related to an interaction of the user with the portlet. Events could be either portal
or portlet container generated or the result of a user interaction with other portlets. The
portlet event model is a loosely coupled, brokered; model that allows creating portlets as
stand-alone portlets that can be wired together with other portlets at runtime. Portlet
programmers should therefore not make any specific assumptions about the environment
of portlets they are running together with. The means of wiring different portlets together
is portal implementation specific.

Portlet events are not a replacement for reliable messaging (see other JavaEE APIs, like
Java Message Service, JMS, for providing reliable messaging). Portlet events are not
guaranteed to be delivered and thus the portlet should always work in a meaningful
manner even if some or all events are not being delivered.

In response to an event a portlet may publish new events that should be delivered to other
portlets and thus may trigger state changes on these other portlets.

An example where a portlet may want to offer receiving events is for state changes
triggered by simple user interactions, e.g2. adding an item to a shopping cart. By offering
this as an event to other portlets these can trigger adding items to the shopping cart based
on the user interactions happing inside these portlets. In contrast to using the portlet
application scope session this will work across portlet application boundaries.

PLT.15.2.1 EventPortlet Interface

In order to receive events the portlet must implement the EventPortlet interface in the
javax.portlet package. The portlet container will call the processEvent method for
each event targeted to the portlet with an EventRequest and EventResponse object.
Events are targeted by the portal / portlet container to a specific portlet window in the
current client request.

Events are a lifecycle operation that occurs before the rendering phase. The portlet may
issue _events via the setEvent method during the action processing which will be
processed by the portlet container after the action processing has finished. As a result of
issuing an event the portlet may optionally receive events from other portlets or container
events. A portlet that is not target of a user action may optionally receive container
events, e.g. a portlet mode changed event, or events from other portlets, e.g. an item was
added to the shopping cart event.

PLT.15.2.2 Receiving Events

The portlet can access the event that triggered the current process event call by using the
EventRequest.getEvent method. This method returns an object of type Event

Java™ Portlet Specification, version 2.0 (2008-01-11) 114

10

15

20

25

30

35

40

encapsulating the current event name and value. The event must always have a name and
may optionally have a value.™™"

Event names are represented as QNames in order to make them uniquely identifiable. The
event name can be either retrieved with the getoName method that returns the complete
QName of the event, or with the getName method that only returns the local part of the
event name.

If the event has a value it must be based on the type defined in the deployment descriptor.
% The default XML to Java mapping that every container should support is the JAXB
mapping (see PLT.27).****' Portlet containers are free to support additional mapping
mechanisms beyond the JAXB mapping. For optimization purposes in local Java runtime
environments the portlet container can use Java Serialization or direct Java object passing
for the event payload. The portlet must not make any assumptions on the mechanism the
portlet container chooses to pass the event payload.

Example for receiving an event:

event defined in the DD:

<default-namespaceshttp:example.com/events</default-namespace>
<event-definition>

<name>foo</name>

<value-types>java.lang.String</value-type>
</event-definition>

<portlet>
<supported-processing-event>

<name>foo</name>
</supported-processing-event>

</portlet>

event processing in the portlet:

void processEvent (EventRequest reqg, EventResponse resp)

Event event = reg.getEvent() ;
if (event.getName () .equals (“foo”))

String payload = (String) event.getValue() ;

PLT.15.2.3 Sending Events

The portlet can publish events via the StateAwareResponse.setEvent method. """
The sStateAwareReponse methods are exposed via the ActionResponse and

Java™ Portlet Specification, version 2.0 (2008-01-11) 115

10

15

20

25

30

35

40

45

EventResponse interfaces. It is also valid to call StateAwareResponse.setEvent
multiple times in the current processAction or processEvent method. “***™

Events can be published either with their full QName with the setEvent (OName,
Serializable) or by only specifying their local part with the setEvent (String,
Serializable) method. If only the local part is specified the namespace must be the
default namespace defined in the portlet deployment descriptor with the default-
namespace element. “** If no such element is provided in the portlet deployment
descriptor the XML default namespace javax.xml.XMLConstants.NULL_NS_URI must
be assumed. !

The event payload must have a valid JAXB binding, or be in the list of Java primitive
types / standard classes of the JAXB 2.0 specification section 8.5.1 or 8.5.2 (except
java.lang.Object), and implement java.io.Serializable. Otherwise the setEvent
method on the StateAwareResponse must throw a

cxli

java.lang.IllegalArgumentException.

Example for sending an event:

event defined in the DD:

<event-definition>
<gname xmlns:x="http:example.com/events”>x:foo.bar</gname>
<value-type>com.example.Address</value-type>
</event-definition>

<portlets>
<supported-publishing-event>

<gname xmlns:x="http:example.com/events” >x:foo.bar</gname>
</supported-publishing-events>

</portlets>

event processing in the portlet:

@XmlRootElement
public class Address implements Serializable

private String street;

private String city;

public void setStreet (String s) {street = s;}
public String getStreet () { return street;}
public void setCity(String c) { city = c¢;}
public String getCity () { return city;}

1}

void processEvent (EventRequest reqg, EventResponse resp)

{

Address sampleAddress = new Address() ;

Java™ Portlet Specification, version 2.0 (2008-01-11) 116

10

15

20

25

30

35

sampleAddress.setStreet (“myStreet”) ;

sampleAddress.setCity ("myCity”) ;

OName name = new QOName (”"http:example.com/events”, “foo.bar”) ;
resp.setEvent (name, sampleAddress) ;

PLT.15.2.4 Event declaration

The portlet should declare all events that it would like to receive and the ones it would
like to initiate. Typically portlets only receive events that the portlet has declared as
processing events.

PLT.15.2.4.1 Declaration in the deployment descriptor

The portlet should declare events in the portlet.xml deployment descriptor (see PLT.24
Deployment Descriptor). On the application level the portlet should define the basic
event definition with the event-definition element. The event definition must contain
an event name. " The portlet container must use the event name entry in the portlet
deployment descriptor as event name when submitting an event to the portlet. “'! The
portlet can specify additional alias names in order to enable portals performing an
automatic wiring between events. When publishing an event the portlet should also use
the event name entry in the deployment descriptor as event name, otherwise the container
may ignore this event.

The event definition should be referenced on the portlet level where the portlet can define
the processing events with the supported-processing-event element and the events
being published with the supported-publishing-event tagelement. -The referenced
event name should either be the full QName provided with the gname element and
referencing the QName of the event definition provided by the gname element, or the
local part of the QName provided with the name element and referencing the local part of
the event definition provided by the name element.

Event definitions are valid for all entities created based on the portlet definition.

Portlet container or portal defined events do not need to be declared on the application
level with the event-definition element. but can be directly referenced on the portlet
level with the supported-processing-event element.

The event name should uniquely identify the event and use the QNames as defined in the
XML specifications: XML Schema Part2: Datatypes specification
(http://www.w3.org/TR/xmlschema-2/#QName), Namespaces in XML
(http://www.w3.org/TR/REC-xml-names/#ns-qualnames), Namespaces in XML Errata
(http://www.w3.org/XML/xml-names-19990114-errata), TAG Finding: Using Qualified
Names (QNames) as Identifiers in Content (http:/www.w3.org/2001/tag/doc/gnameids-

2002-06-17).

Java™ Portlet Specification, version 2.0 (2008-01-11) 117

10

15

20

25

30

35

As an alternative the portlet can specify a default namespace via the default-namespace
element that will be applied to all events defined only with a local name with the name
element in the event definition section.

The portlet is encouraged to organize the local part of the event names in the event-
definition element in a hierarchical manner using the dot ‘.’ as separator. A trailing '.'
tells the Consumer that this is not the end of the hierarchy and the Portlet is interested in
all events with names in this branch of the hierarchy. The portlet must not specify events
with the same name but different types. Event names in the event-definition element
should not end with a trailing ““.” character as wildcards are not supported in the event
definition level. Wildcards should only be used in the supported-processing-event or
supported-publishing-event elements and should be able to be resolved by the portlet
container to an event definition without wildcards in the event-definition element- by

nn

matching event names ending with a "." character to any event whose local name starts
with the characters before the "." character and also specifies the same namespace. If the
wildcard string should match a part of a hierarchy two dots are required at the end of the

wildcard string: one to denote the hierarchy and one for the wildcard: “foo.bar..”.

A localized display name for the portlet event definition should be provided in the
application level resource bundle (see PLT.25.10) with an entry of the name
javax.portlet.app.event-definition.<name>.display-name.

PLT.15.2.4.2 Events not declared in the Deployment Descriptor

The portlet can send events which are not declared in the portlet deployment descriptor;
at runtime using the setEvent methods on either the ActionResponse or
EventResponse. 1" The portlet should note that by not declaring these events in the
deployment descriptor, the abilities of the portal for distributing the event to other portlets
may be limited or even non-existent.

PLT.15.2.5 Event processing

Events are valid only in the current client request and the portlet container must therefore
deliver all events within the current client request. " Event delivery is not guaranteed
and the container may restrict event delivery in a meaningful manner, e.g. in order to
prevent endless loops. Events are not ordered and the container may re-order the received
events before distributing them. However, portal applications should distribute events
returned by a single portlet in the order the portlet called the setEvent methods while
executing the processaction or processEvent method, but ordering of distribution is
not guaranteed. Thus portlet developers should rely on other mechanisms, like adding the
ordering in the event payload, if ordering of the events is required.

Event distribution is non-blocking and can happen in parallel for different portlet
windows.

Java™ Portlet Specification, version 2.0 (2008-01-11) 118

10

15

20

25

30

35

Event distribution must be serialized for a specific portlet window per client request so
that at any given time a portlet window is only processing one event in the
processEvent method for the current client request. ““' The portlet container should
therefore queue the events for one portlet window for one user. When processing the
queue the container should take any previously returned event response data, like render
parameters, portlet mode, window state, into account and supply these updated values
with the event request.

Note that event processing for different portlets within the current client request may
happen in parallel and that therefore for state changes on shared data, like public render
parameters or the application session, the last state change wins.

Portlet event processing may occur after the processing of the action, if the portlet was
target of an action URL, and must be finished before the render phase. """

Container raised events are issued by the portlet container and not a portlet. The portlet
should not publish container events, only process them. Container events published by
the portlet should be ignored by the portlet container. If a portlet would like to receive a
container raised event it should declare the event in the portlet deployment descriptor
with the <supported-processing-events element.

PLT.15.2.6 Exceptions during event processing

A portlet may throw a PortletException, a PortletSecurityException Or as
UnavailableException during the processEvent.

A PortletException signals that an error has occurred during the processing of the
event and that the portlet container should take appropriate measures to clean up the
event processing. If a portlet throws an exception in the processEvent method, all
operations on the EventResponse must be ignored. “™! The portal/portlet-container
should continue processing other events targeted to the portlet and the other portlets
participating in the current client request. Otherwise it is up to the portlet container
implementation if the error is faced to the end user, the portlet is removed from the
current request cycle or if the render method of the portlet is called.

An UnavailableException signals that the portlet is unable to handle requests either
temporarily or permanently.

If a permanent unavailability is indicated by the UnavailableException, the portlet
container must remove the portlet from service immediately, call the portlet’s destroy
method, and release the portlet object. ™ A portlet that throws a permanent
UnavailableException must be considered unavailable until the portlet application
containing the portlet is restarted.

Java™ Portlet Specification, version 2.0 (2008-01-11) 119

10

15

20

25

30

35

When temporary unavailability is indicated by the UnavailableException, then the
portlet container may choose not to route any requests to the portlet during the time
period of the temporary unavailability.

The portlet container may choose to ignore the distinction between a permanent and
temporary unavailability and treat all UnavailableExceptions as permanent, thereby
removing a portlet object that throws any UnavailableException from service.

A RuntimeException thrown during the event handling must be handled as a
PortletException.

When a portlet throws an exception, or when a portlet becomes unavailable, the
portal/portlet-container may include a proper error message in the portal page returned to
the user.

PLT.15.2.7 GenericPortlet support

The GenericPortlet implements theEventPortlet interface and provides a default
event handling. For a received event the GenericPortlet tries to dispatch to methods
annotated with the tag e@pProcessEvent. The event name can be either specified as
QName or local part only.

For using QNames as event name the syntax is the following: @ProcessEvent
(qname=<event name>), where the event name must be in the format "{" + Namespace
URI + "Y" + Jocal part (like used by javax.xml.namespace.QOName.toString()
method). If the Namespace URI is equal to the javax.xml.XMLConstants.NULL NS URI
only the local part is used.

For using only the local part of the event name and leverage the default namespace
defined in the portlet deployment descriptor with the default-namespace element the
following alternative is provided: @ProcessEvent (name=<event
name local parts), where the event name is only the local part. If no default
namespace is defined in the deployment descriptor the XML default namespace
XMLConstants.NULL NS URI is used.

(134

If the local part of the event name has a wildcard at the end (*.”) the GenericPortlet
will try to match the received event either to the same wildcard event name or to the
longest matching event name for this wildcard. E.g. if an event with the local part of the
event name of "a.b.c.d" is being received and there are methods annotated for handling
"a.b." and "a.b.c." events in this portlet, the GenericPortlet will dispatch the event to
the method annotated with "a.b.c.".

The method annotated with the eProcessEvent annotation must have the following
signature:

Java™ Portlet Specification, version 2.0 (2008-01-11) 120

10

15

20

25

30

public void <methodname> (EventRequest, EventResponse) throws
PortletException, java.io.IOException;

If no such method can be found the GenericPortlet just sets the received render
parameters as new render parameters. If multiple annotations matches the current event it
1s indeterministic which method will be called for handling this event.

Example:

(@ProcessEvent(gname="{http://com.example/events} foo.bar")

public void processFoo(EventRequest request, EventResponse response) throws
PortletException, java.io.lOException {

// process event foo.bar

H
PLT.15.3 Predefined Container Events

The Web Service for Remote Portlets (WSRP) specification predefines some common
events that should be leveraged when requiring an event for one of the following
scenarios:

o Event handling failed (wsrp:eventHandlingFailed) —This is a portal
application generated event which signals to the portlet that the portal application
detected that errors occurred while distributing events. As a simple notification,
this event carries no predefined payload, but does use an open content definition.

e Navigations context changed (wsrp:newNavigationalContextScope)— allowing
the portlet to manage its own navigational context in a consistent manner with the
navigational context managed by the portal application.

e New portlet mode (wsrp:newMode) — indicating to the portlet that it has been put
into a new portlet mode and allowing the portlet to pre-set some state before
getting rendered in this new mode.

e New window state(wsrp:newiWindowState) — indicating to the portlet that it has
been put into a new window state and allowing the portlet to pre-set some state
before getting rendered in this window state.

See section 5.11 of the Web Services for Remote Portlets specification V2.0 for more
details and the QNames for these events.

Java™ Portlet Specification, version 2.0 (2008-01-11) 121

Portals / portlet containers supporting one of the above predefined events should deliver
these events to all portlets having declared receiving event support for these events in the
portlet deployment descriptor.

Java™ Portlet Specification, version 2.0 (2008-01-11) 122

10

15

20

PLETASPLT.16

—_—

Portal Context

The portalcontext interface provides information about the portal that is invoking the
portlet.

The getPortalInfo method returns information such as the portal vendor and portal
version.

The getpProperty and get PropertyNames methods return portal properties.

The getSupportedpPortletModes method returns the portlet modes supported by the
portal.

The getSupportedwindowStates method returns the window states supported by the
portal.

A portlet obtains a PortalContext object from the request object using
getPortalContext method.

PLT.16.1 Support for Markup Head Elements

Portals should indicate if they support the MimeResponse property

MimeResponse.MARKUP HEAD ELEMENT (Value:
"Javax.portlet.markup.head.element") bV prOViding the
PortalContext.HTML HEAD ELEMENT SUPPORT (Value:

"javax.portlet.markup.head.element.support") property on the PortalContext.

A non-null value of MARKUP HEAD ELEMENT SUPPORT indicates that the portal application
supports the MARKUP HEAD ELEMENT property.

Java™ Portlet Specification, version 2.0 (2008-01-11) 123

10

15

20

25

30

PLT.17

Portlet Preferences

Portlets are commonly configured to provide a customized view or behavior for different
users. This configuration is represented as a persistent set of name-value pairs and it is
referred to as portlet preferences. The portlet container is responsible for the details of
retrieving and storing these preferences.

Portlet preferences are intended to store basic configuration data for portlets. It is not the
purpose of the portlet preferences to replace general purpose databases.

PLET1APLT.17.1 PortletPreferences Interface

Portlets have access to their preferences attributes through the pPortletPreferences
interface. Portlets have access to the associated PortletPreferences object while they
are processing requests. Portlets may only modify preferences attributes during a
processAction,—©Ff processEvent, OI serveResource invocation.

Preference attributes are String array objects. Preferences attributes can be set to nu11.”

To access and manipulate preference attributes, the PortletPreferences interface
provides the following methods:

getNames
getValue
setValue
getValues
setValues
getMap
isReadOnly
reset
store

The getMap method returns an immutable Map of String keys and string[] values
containing all current preference values. Preferences values must not be modified if the
values in the Map are altered." The getvValue and setValue methods are convenience
methods for dealing with single values. If a preference attribute has multiple values, the
getvalue method returns the first value. The setvalue method sets a single value into
a preferences attribute._If setvalues method has been called with multiple values, the
subsequent setvalue method overwrites all existing values replacing them with the new

single value.

Java™ Portlet Specification, version 2.0 (2008-01-11) 125

10

15

20

25

30

35

The following code sample demonstrates how a stock quote portlet would retrieve from
its preferences object, the preferred stock symbols, the URL of the backend quoting
services and the quote refresh frequency.

PortletPreferences prefs = reqg.getPreferences() ;
String[] symbols =
prefs.getValues ("preferredStockSymbols”,
new String[] {”ACME”,”F00"}) ;
String url = prefs.getValue (“quotesFeedURL”,null) ;
int refreshInterval =
Integer.parselnt (prefs.getValue ("refresh”,”10”)) ;

The reset method must reset a preference attribute to its default value. If there is no
default value, the preference attribute must be deleted.®" It is left to the vendor to specify
how and from where the default value is obtained.

If a preference attribute is read only, the setvalue, setvValues and reset methods must
throw a ReadonlyException when the portlet is in any of the standard modes.”™

The store method must persist all the changes made to the PortletPreferences object
in the persistent store.” If the call returns successfully, it is safe to assume the changes
are permanent. The store method must be conducted as an atomic transaction regardless
of how many preference attributes have been modified." The portlet container
implementation is responsible for handling concurrent writes to avoid inconsistency in
portlet preference attributes. All changes made to PortletPreferences object not
followed by a call to the store method must be discarded when the portlet finishes the
processAction, ©Ff—processEvent, Or serveResource method. clvi If the store
method is invoked within the scope of a render ef—serveReseuree—method invocation,
itmus'['[hrowamIllegalStateException.dvll

The portletPreferences object must reflect the current values of the persistent store
when the portlet container invokes the processaAction, processEvent, render and
rserveResourceender methods of the portlet. clvii

PLET12PLT.17.2 Preference Attributes Scopes

Portlet Specification assumes preference attributes are user specific, it does not make any
provision at API level or at semantic level for sharing preference attributes among users,
but enables sharing of preferences and different levels of portlet entities (see Section
5.3.1). If a portal/portlet-container implementation provides an extension mechanism for
sharing preference attributes, it should be well documented how the sharing of preference
attributes works. Sharing preference attributes may have significant impact on the
behavior of a portlet. In many circumstances it could be inappropriate sharing attributes
that are meant to be private or confidential to the user.

Java™ Portlet Specification, version 2.0 (2008-01-11) 126

10

15

20

25

30

35

40

PLTA1.3PL.T.17.3 Preference Attributes definition

The portlet definition may define the preference attributes a portlet uses.

A preference attribute definition may include initial default values. A preference attribute
definition may also indicate if the attribute is read only.

An example of a fragment of preferences attributes definition in the deployment
descriptor would be:

<portlets>

<!—- Portlet Preferences -->
<portlet-preferencess>
<preference>
<name>PreferredStockSymbols</name>
<value>F0O</value>
<value>XYZ</value>
<read-onlys>true</read-only>
</preference>
<preference>
<name>quotesFeedURL</name>
<value>http://www.foomarket.com/quotes</value>
</preferences>
</portlet-preferences>
</portlets>

If a preference attribute definition does not contain the read-only element set to true,
the preference attribute is modifiable when the portlet is processing an action request in
any of the standard portlet modes (vIEw, EDIT or HELP).”™ Portlets may change the value
of modifiable preference attributes using the setvalue, setvalues and reset methods
of the PortletPreferences interface. Deployers may use the read-only element set to
true to fix certain preference values at deployment time. Portal/portlet-containers may
allow changing read-only preference attributes while performing administration tasks.

Portlets are not restricted to use preference attributes defined in the deployment
descriptor. They can programmatically add preference attributes using names not defined
in the deployment descriptor. These preferences attributes must be treated as modifiable
attributes.

Portal administration and configuration tools may use and change, default preference

attributes when creating a new portlet preferences objects. In addition, the portal may
further constraint the modifiability of preferences values.

PETA31PLT.17.3.1 Localizing Preference Attributes

The Portlet Specification does not define a specific mechanism for localizing preference
attributes. It leverages the J2SE ResourceBundle classes.

Java™ Portlet Specification, version 2.0 (2008-01-11) 127

10

15

20

25

30

35

| To enable localization support of preference attributes for administration and

configuration tools, developers should adhere to the following naming convention for
entries in the portlet’s ResourceBundle (see the PLT.2425.10 Resource Bundles Section).

Entries for preference attribute descriptions should be constructed as
‘javax.portlet.preference.description.<attribute-name>"', where
<attribute-names> is the preference attribute name.

Entries for preference attribute names should be constructed as
‘javax.portlet.preference.name.<attribute-names', where <attribute-names
is the preference attribute name. These values should be used as localized preference
display names.

Entries for preference attribute values that require localization should be constructed as
'javax.portlet.preference.value.<attribute-names.<attribute-values>"',
where <attribute-name> is the preference attribute name and <attribute-values is
the localized preference attribute value.

PET14PL.T.17.4 Validating Preference values

A class implementing the Preferencesvalidator interface can be associated with the
preferences definition in the deployment descriptor, as shown in the following example:

<!—- Portlet Preferences -->
<portlet-preferencess>

<preferences-validators>

com.foo.portlets.XYZValidator

</preferences-validators>
</portlet-preferences>

A PreferencesValidator implementation must be coded in a thread safe manner as the
portlet contamer may invoke concurrently from several requests I—Pa—pe%ﬂet—deﬁ&&}eﬂ

When a validator is associated with the preferences of a portlet definition, the store
method of the PortletPreferences implementation must invoke the validate method
of the validator before writing the changes to the persistent store.™ If the validation fails,
the Preferencesvalidator implementation must throw a validatorException. If a
ValidatorException is thrown, the portlet container must cancel the store operation
and it must propagate the exception to the portlet. ™ If the validation is successful, the
store operation must be completed.”™" Portlet preferences eanshould not be modified

when they are belng validated by a Preferencesvalidator oblect }Pth%s{er%methed—ts

Java™ Portlet Specification, version 2.0 (2008-01-11) 128

When creating a validatorException, portlet developers may include the set of
preference attributes that caused the validator to fail. It is left to the developers to indicate
the first preference attribute that failed or the name of all the invalid preference attributes.

Java™ Portlet Specification, version 2.0 (2008-01-11) 129

10

15

20

25

PLT.18

Sessions

To build effective portlet applications, it is imperative that requests from a particular
client be associated with each other. There are many session tracking approaches such as
HTTP Cookies, SSL Sessions or URL rewriting. To free the programmer from having to
deal with session tracking directly, this specification defines a PortletSession interface
that allows a portal/portlet-container to use any of the approaches to track a user’s session
without involving the developers in the nuances of any one approach.

PETAAPLT.18.1 Creating a Session

A session is considered “new” when it is only a prospective session and has not been
established. Because the Portlet Specification is designed around a request-response
based protocol (HTTP would be an example of this type of protocol) a session is
considered to be new until a client “joins” it. A client joins a session when session
tracking information has been returned to the server indicating that a session has been
established. Until the client joins a session, it cannot be assumed that the next request
from the client will be recognized as part of a session.

The session is considered to be “new” if either of the following is true:

e The client does not yet know about the session
e The client chooses not to join a session

These conditions define the situation where the portlet container has no mechanism by
which to associate a request with a previous request. A portlet developer must design the
application to handle a situation where a client has not, cannot, or will not join a session.

For portlets within the same portlet application, a portlet container must ensure that every
portlet request generated as result of a group of requests originated from the portal to
complete a single client request receive or acquire the same session.”™ In addition, if
within these portlet requests more than one portlet creates a session, the session object
must be the same for all the portlets in the same portlet :clpplication.Clxv

PET12PLT.18.2 Session Scope

PortletSession objects must be scoped at the portlet application context level. ™!

Java™ Portlet Specification, version 2.0 (2008-01-11) 131

10

15

20

25

30

35

Each portlet application has its own distinct PortletSession object per user session.
Note that the portletSession object is only valid within the current client request and
thus should be retrieved via getPortletSession for each client request and not stored
by the portlet across client requests. The portlet container must not share the
PortletSession object or the attributes stored in it among different portlet applications
or among dlfferent userlsess10ns—rﬂthe%&f%neHieebfedﬁ&shafed—&&Pﬂmﬁes—m—th%peﬁ4%t
1] l 1 ciIxvi

PET-13PL.T.18.3 Binding Attributes into a Session

A portlet can bind an object attribute into a PortletSession by name.

The pPortletSession interface defines two scopes for storing objects,
APPLICATION SCOPE and PORTLET SCOPE.

Any object stored in the session using the APPLICATION SCOPE is available to any other
portlet that belongs to the same portlet application and that handles a request identified as
being a part of the same session.®™" The portlet should take into account that objects that
are stored in the application scope can be accessed by other portlets in parallel and thus
should synchronize write access to these objects.

Objects stored in the session using the PORTLET ScOPE must be available to the portlet
during requests for the same portlet window that the objects where stored from.”™™ The
object must be stored in the appLICATION Scopk with the following fabricated attribute
name ‘javax.portlet.p.<ID>?<ATTRIBUTE NAME>’. <ID> is a unique identification for
the portlet window (assigned by the portal/portlet-container) that must be equal to the ID
returned by the PortletRequest.getWindowID() method and not contain a 7’
character.”™ <ATTRIBUTE NAME> is the attribute name used to set the object in the
PORTLET SCOPE of the portlet session.

Attributes stored in the PORTLET SCOPE are not protected from other web components of
the portlet application. They are just conveniently namespaced.

The setattribute method of the portletSession interface binds an object to the
session into the specified scope. For example:

PortletSession session = request.getSession (true) ;
URL url = new URL(“http://www.foo.com”) ;

session.setAttribute (“*home.url”,url, PortletSession.APPLICATION SCOPE) ;

session.setAttribute (“*bkg.color”, ”"RED”, PortletSession.PORTLET SCOPE) ;

The getattribute method from the PortletSession interface is used to retrieve
attributes stored in the session.

To remove objects from the session, the removeattribute method is provided by the
PortletSession interface.

Java™ Portlet Specification, version 2.0 (2008-01-11) 132

15

20

25

30

35

| Objects that need to know when they are placed into a session; or removed from a session
must implement the HttpSessionBindingListener of the servlet API (see Serviet
Specification 2.3, SRV.7.4 Section). The portletSessionutil class provides utility
methods to help determine the scope of the object in the PortletSession. If the object
was stored in the PORTLET ScoPE, the decodeAttributeName method of the
PortletSessionUtil class allows retrieving the attribute name without any portlet-
container fabricated prefix. Portlet developers should always wuse the
PortletSessionUtil class to deal with attributes in the PORTLET scopE when accessing
them through the servlet API.

| PET-1-4PL.T.18.4 Relationship with the Web Application
HttpSession

A Portlet Application is also a Web Application. The Portlet Application may contain
servlets and JSPs in addition to portlets. Portlets, servlets and JSPs may share information
through their session. Note that the session objects may be different, but access to objects
stored in the application session scope is available to any portlet, servlet or JSPs within
the same portlet application.

The container must ensure that all attributes placed in the PortletSession are also
available in the HttpSession of the portlet application. Fhe-PortietSessionmust-store
all-attributes—in-the-He tpsession-of the portlet-applieation: A direct consequence of this
is that data stored in the Httpsession by servlets or JSPs of the Portlet Application is
accessible to portlets through the Portletsession in the portlet application scope.”™
Conversely, data stored by portlets in the portletsession in the portlet application
scope is accessible to servlets and JSPs through the Ht tpsession.

If the HttpSession object is invalidated, the PortletSession object must also be invalidated
by the portlet container.™ " If the PortletSession object is invalidated by a portlet, the
portlet container must invalidate the associated HttpSession object. ™"

PET14-1PLT.18.4.1 HttpSession Method Mapping

The getCreationTime, getId, getLastAccessedTime, getMaxInactiveInterval,
invalidate, isNew and setMaxInactiveInterval methods of the PortletSession
interface must provide the same functionality as the methods of the HttpSession
interface with identical names.

The getAttribute, setAttribute, removeAttribute and getAttributeNames
methods of the PortletSession interface must provide the same functionality as the
methods of the HttpSession interface with identical names adhering to the following
rules:

e The attribute names must be the same if APPLICATION SCOPE scope is

used.clxxv

Java™ Portlet Specification, version 2.0 (2008-01-11) 133

10

15

20

25

30

e The attribute name has to conform with the specified prefixing if
PORTLET SCOPE is used.”™"!

e The variant of these methods that does not receive a scope must be treated as
PORTLET SCOPE. ™!

PLT.18.5 Writing to the Portlet Session

When writing to the portlet session the distinct lifecycle phases action and render should
be taken into account, as writing in the render phase may create issues as explained
below.

PLT.18.5.1 Process action and process event phase

Setting__attributes in the action or event phase to the portlet session in the
PORTLET SCOPE will likely not create any concurrency issues. Concurrency issues
may occur if the end user interacts at the same time with multiple browser windows with
this portlet window or triggers request to the portlet window with a faster rate than the
requests get processed.

Setting_ attributes in the APPLICATION_SCOPE are more likely to create concurrency
1ssues as these scopes are shared with other portlets that may run in parallel and also
change the same attribute.

A set or remove attribute calls must be conducted as an atomic operations. The portlet
container implementation is responsible for handling concurrent writes to avoid
inconsistency in portlet session attributes.

PLT.18.5.2 Rendering phase

The portlet API allewsdoes not prevent portlets writing to the portlet session even in the
rendering phase in either render or serveResource. The ability to write to the session
in the rendering phase is merely introduced in order to allow easier migration of existing,
servlet-based, web applications and the implementation of bridges frameworks that
bridge from the portlet environment to web application frameworks.

In general the usage of the set methods on the portlet session in render is strongly
discouraged as it breaks the concept of rendering being idempotent and re-playable. This
1s especially true for APPLICATION SCOPE attributes as different portlets share these
attributes.

Java™ Portlet Specification, version 2.0 (2008-01-11) 134

10

15

PET1.5PLT.18.6 Reserved HttpSession Attribute Names

Session attribute names starting with “javax.portlet.” are reserved for usage by the
Portlet Specification and for Portlet Container vendors. A Portlet Container vendor may
use this reserved namespace to store implementation specific components. Application
Developers must not use attribute names starting with this prefix.

PLT1.6P1.T.18.7 Session Timeouts

The portlet session follows the timeout behavior of the servlet session as defined in the
Servlet Specification-2-3, SRV.7.5 Section.

PLT1.7P1.T.18.8 Last Accessed Times

The portlet session follows the last accessed times behavior of the servlet session as
defined in the Servlet Specification-23, SRV.7.6 Section.

PLET1.8PL.T.18.9 Important Session Semantics

The portlet session follows the same semantic considerations as the servlet session as
defined in the Serviet Specification23, SRV.7.7.3 Section.

These considerations include Threading Issues, Distributed Environments and Client
Semantics M

Java™ Portlet Specification, version 2.0 (2008-01-11) 135

10

15

20

25

PLT.19

Dispatching Requests to Servlets and JSPs

Portlets can delegate the execution of logic or creation of content to servlets and JSPs.
This is useful for implementing the Model-View-Controller pattern where the portlet may
act as controller and dispatch to different JSPs for rendering the views.

The pPortletRequestDispatcher interface provides a mechanism to accomplish this
dispatching.

Servlets and JSPs invoked from within a portlet in the render phase should generate

markup fragments following the recommendations of the PLT.B Markup Fragment
Appendix.

render-method-of the Portlet-interface—PortletRequestDispatcher objects may be
obtained using one of the following methods of the Portletcontext object:

e getRequestDispatcher
e getNamedDispatcher

The getRequestDispatcher method takes a String argument describing a path within
the scope of the portletcontext of a portlet application. This path must begin with a “/°
and it is relative to the PortletContext root. ™

The getNamedDispatcher method takes a String argument indicating the name of a
servlet known to the Portletcontext of the portlet application.

If no resource can be resolved based on the given path or name the methods must return

null 'clxxx

Java™ Portlet Specification, version 2.0 (2008-01-11) 137

10

15

20

25

30

35

PETAAAPLT.19.1.1 Query Strings in Request Dispatcher Paths

The getRequestDispatcher method of the Portletcontext that creates
PortletRequestDispatcher objects using path information allows the optional
attachment of query string information to the path. For example, a Developer may obtain
a PortletRequestDispatcher by using the following code:

String path = "/raisons.jsp?orderno=5";
PortletRequestDispatcher rd = context.getRequestDispatcher (path) ;
rd.include (renderRequest, renderResponse) ;

Parameters specified in the query string used to create the PortletRequestDispatcher
must be aggregated with the portlet render parameters and take precedence over other
portlet render parameters of the same name passed to the included servlet or JSP. The
parameters associated with a PortletRequestDispatcher are scoped to apply only for

1 clxxxi

the duration of the include call.

PETA2PLT.19.2 Using a Request Dispatcher

To include a servlet or a JSP, a portlet calls the include method of the
PortletRequestDispatcher interface. To forward the request processing to a servlet or
JSP the portlet calls the forward method of the PortletRequestDispatcher interface.

The parameters to these methods must be the request and response arguments that were
passed in via the corresponding lifecycle method (e.g. processAction, processEvent,

serveResource, render_)_ methed—ef—&Hefe}ee—ﬁﬁePfae%er—amueeﬂeﬂai—hfeevele

[}

or the request and response arguments must be instances of the correspondmg subclasses
of the request and response wrapper classes that were introduced for version 2.0 of the
specification. ™ In the latter case, the wrapper instances must wrap the request or
response objects that the container passed into the lifecycle method.—render—eor
serveResource-method:

q

The portlet container must ensure that the servlet or JSP called through a
PortletRequestDispatcher is called in the same thread as the
PortletRequestDispatcher include invocation. ™

PLTA1.3P1.T.19.3 The Include Method

The include method of the PortletRequestDispatcher interface may be called at any
time and multlple times within the current portlet hfecvcle —feﬁdea_c—method—ef—the

m%er—faee— The servlet or JSP bemg 1nc1uded can make a 11m1ted use of the recelved
HttpServletRequestandHttpServletResponseOhwcm.

Java™ Portlet Specification, version 2.0 (2008-01-11) 138

10

15

20

25

30

35

Servlets and JSPs included from portlets should not use the servlet RequestDispatcher
forward method as its behavior may be non-deterministic.

Servlets and JSPs included from portlets in the render method must be handled as HTTP
GET requests.*™"

The lookup of the servlet given a path is done according to the servlet path matching rule
defined in SRV.11 section of the servlet specification.

PEFA31PLT.19.3.1 Included Request Parameters

Except for servlets obtained by using the getNamedDispatcher method, a servlet or JSP
being used from within an include call has access to the path used to obtain the
PortletRequestDispatcher. The following request attributes must be set™™*":

javax.servlet.include.request uri
javax.servlet.include.context path
javax.servlet.include.servlet_path
javax.servlet.include.path info
javax.servlet.include.query string

These attributes are accessible from the included servlet via the getattribute method
on the request object.

If the included servlet was obtained by using the getNamedDispatcher method these
attributes are not set.

PETA32PLT.19.3.2 Included Request Attributes

In addition to the request attributes specified in Serviet Specification—23, SRV.8.3.1
Section, the included servlet or JSP must have the following request attributes set:

Request Attribute Type

javax.portlet.config javax.portlet.PortletConfig
3 1 a7 +1lat+

3 a7 noyrel racmeaaot = o Rendae+rRamiaar
Jovax- POttt CgutstT JavVax- POttt CaaCTICgucsT

Favax-portlet-—respeonse ———————————————Favax-portlet-RenderResponse

For includes from the processaction method the following additional attributes must
be set:

Reguest Attribute Type
javax.portlet.request javax.portlet.ActionRequest
javax.portlet.response javax.portlet.ActionResponse

Java™ Portlet Specification, version 2.0 (2008-01-11) 139

10

15

20

25

30

35

For includes from the processEvent method the following additional attributes must be
set:

Reguest Attribute Type
javax.portlet.request javax.portlet.EventRequest
javax.portlet.response javax.portlet.EventResponse

For includes from the render method the following additional attributes must be set:

Request Attribute Type
javax.portlet.request javax.portlet.RenderRequest
javax.portlet.response javax.portlet.RenderResponse

For includes from the serveResource method the following additional attributes must be
set:

Reguest Attribute Type

javax.portlet.request javax.portlet.ResourceRequest
javax.portlet.response

javax.portlet.RenderResourceRespon

se

These attributes must be the same Portlet API objects accessible to the portlet doing the
include call. ™' They are accessible from the included servlet or JSP via the
getAttribute method on the HttpServletRequest object.

PLT.19.3.3 Request and Response Objects for Included
Servlets/JSPs from within the Action and Event processing Methods

The target servlet or JSP of the portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the include is done from within the
processAction or processEvent method in order to keep the action semantic intact.

The following methods of the HttpServletRequest must return null: getRemoteAddr,

getRemoteHost, getRealPath, getLocalAddress, getLocalName, and

.
getRequestURL.SM!

Java™ Portlet Specification, version 2.0 (2008-01-11) 140

10

15

20

25

30

35

The following methods of the HttpServletRequest must return ‘0’: getRemotePort
and qetLocalPort.Clxxxvm

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:

getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath.

The following methods of the HttpServletRequest must be equivalent to the methods

of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getlLocale, getlocales, isSecure, getAuthType,

getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionlIdValid, getCookies.™

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.189.1.1 Query

Strings in Request Dispatcher Paths Section: getParameter, getParameterNames,
CXC1

getParameterValues and getParameterMap.

In case of an include from processiction, the following methods of the
HttpServletRequest must be based on the corresponding methods of the

ActionRequest. getCharacterEncoding, setCharacterEncoding,
getContentType, getInputStream, getContentLength, getMethod and
getReader.”™"

In case of an include from processEvent, the following methods of the

HttpServletRequest must do no operations and/or return null:
getCharacterEncoding, setCharacterEncoding, getContentType,

getInputStream and getReader.”" The getContentLength method of the
HttpServletRequest must return 0.V The getMethod method of the
HTTPServletRequest must be based on the corresponding method of the EventRequest,
which must provide the name of the HTTP method with which the original action request

was made. <Y

The following methods of the HttpServletRequest must be based on the properties

provided by the getProperties method of the PortletRequest interfacc: getHeader,
CXCV1

getHeaders, getHeaderNames, getDateHeader and getIntHeader.

The following methods of the HttpServletRequest must provide the functionality

defined by the Serviet Specification: getRequestDispatcher, isUserInRole,
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL

and isReguestedSessionIdFromUrl.“"™"

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1".

Java™ Portlet Specification, version 2.0 (2008-01-11) 141

10

15

20

25

30

The following methods of the HttpServletResponse must return null:
encodeRedirectURL, encodeRedirectUrl, ____getCharacterEncoding,
getContentType, getlocale, resetBuffer, reset. ™™

c

The following method of the HttpServletResponse must return 0: getBufferSize.©

The following methods of the HttpServletResponse must return an outputstream /
writer that ignores any output written to it: getOutputStream and getWriter. °

The following methods of the HttpServletResponse must be equivalent to the methods
of the ActionResponse(EventResponse of similar name: encodeURL and

ccii
encodeUrl.

The following methods of the HttpServletResponse must perform no operations:

setContentType, setCharacterkEncoding, setContentlLength, setlocale,
addCookie, sendError, sendRedirect, setDateHeader, addDateHeader,
setHeader, addHeader, setIntHeader, addIntHeader, setStatus,

cciii

setBufferSize and flushBuffer.

The containsHeader method of the HttpServletResponse must return false. "

The isCommitted method of the HttpServletResponse must return true.”"

PETA33PLT.19.3.4 Request and Response ebjeets-Objects for
Included Servlets/JSPs_from within the Render mMethod

The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the include is done from within the
render method.

The following methods of the HttpServletRequest must return null: getPretecol;
getRemoteAddr, getRemoteHost, getRemotePort,———getLocalAddress,

getLocalName, gethoecalPoert,—getRealPath, and getRequestURL.cCVI

The following methods of the HttpServletRequest must return ‘0’: getRemotePort
and qetLocalPort.CCVll

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:

getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath. "

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name: getScheme, getServerName,

Java™ Portlet Specification, version 2.0 (2008-01-11) 142

10

15

20

25

30

35

getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getLocale, getLocales, isSecure, getAuthType,
getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionIdvalid, getCookies. ™

The following methods of the HttpServletRequest must be equivalent to the methods
of the pPortletRequest of similar name with the provision defined in PLT.4618.1.1
Query Strings in Request Dispatcher Paths Section: getParameter,

getParameterNames, getParameterValues and getParameterMap.CCX

The following methods of the HttpServletRequest must do no operations and return
null: getCharacterEncoding, setCharacterEncoding, getContentType,
The getcContentLength method of the

cexi

getInputStream and getReader.“
HttpServletRequest must return 0.°*"

The following methods of the HttpsServletRequest must be based on the properties
provided by the getProperties method of the PortletRequest interface: getHeader,
getHeaders, getHeaderNames, getCookiesygetDateHeader and getIntHeader.ccxm.

The following methods of the HttpServletRequest must provide the functionality
defined by the Serviet Specification—2-3: getRequestDispatcher, getMethod,

isUserInRole, getSession, isRequestedSessionIdFromCookie,
isRequestedSessionIdFromURL and isRequestedSessionIdFromUrl .

s CCXV

The getMethod method of the HttpServletRequest must always return ‘GET’.

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1".
CCXV1

The following methods of the HttpServletResponse must return null:
encodeRedirectURL and encodeRedirectUrl.**The following methods of the
HttpServletResponse must be equivalent to the methods of the RenderResponse of
similar name: getCharacterEncoding, setBufferSize, flushBuffer,
resetBuffer, reset, getBufferSize, isCommitted, getOutputStream,
getWriter, encodeURL and encodeUrl.chvul

The following methods of the HttpServletResponse must perform no operations:
setContentType, setContentLength, setLocale, addCookie, sendError,
sendRedirect, setDateHeader, addDateHeader, setHeader, addHeader,

setIntHeader, addIntHeader and setStatus.’™ The containsHeader method of
the HttpServletResponse must return false.

The getLocale method of the HttpServletResponse must be based on the getLocale

method of the RenderResponse.“ ™™

Java™ Portlet Specification, version 2.0 (2008-01-11) 143

10

15

20

25

30

35

PLT.19.3.5 Request and Response Objects for Included
Servlets/JSPs from within the ServeResource Method

The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the include is done from within the
serveResource method.

The following methods of the HttpServletRequest must return null: getRemoteAddr,

getRemoteHost, getLocalAddress, getLocalName, getRealPath, and

getReque stURL.CCXXII

The following methods of the HttpServletRequest must return ‘0’: getRemotePort
and getLocalPort | coxxm

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:

getPathInfo, getPathTranslated, getQueryString, getRequestURT and
getServletPath. ™"

The following methods of the HttpServletRequest must be equivalent to the methods

of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getLocale, getLocales, isSecure, getAuthType,

getContextPath, getRemoteUser, getUserPrincipal, getRequestedSegsionId,
isRequestedSessionIdValid, getCookies. ™

The following methods of the HttpServlietRequest must be equivalent to the methods
of the ResourceRequest of similar name: getCharacterEncoding,
setCharacterEncoding, getContentType, getMethod, getContentLength and
getReader. The HttpServletRequest getInputStream must be equivalent to
the method getPortletInputStream of the ResourceRequest.

cexxvi

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.18.1.1 Query
Strings in Request Dispatcher Paths Section: getParameter, getParameterNames,

CCXXVii

getParameterValues and getParameterMap.

The following methods of the HttpServletRequest must be based on the properties
provided by the getProperties method of the PortletRequest interface: getHeader,

cexxviii

getHeaders, getHeaderNames, getDateHeader and getIntHeader.

The following methods of the HttpServletRequest must provide the functionality

defined by the Serviet Specification: getRequestDispatcher, isUserInRole,
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL

and isRequestedSessionIdFromUrl. ™™

Java™ Portlet Specification, version 2.0 (2008-01-11) 144

10

15

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1".

CCXXX

The following methods of the must return null:
encodeRedirectURL and encodeRedirectUrl.“**The following methods of the
HttpServletResponse must be equivalent to the methods of the ResourceResponse of
similar name: getCharacterEncoding, setBufferSize, flushBuffer,
resetBuffer, reset, getBufferSize, isCommitted, getOutputStream,

encodeURL and encodeurl.’“™"

HttpServletResponse

getWriter, getlocale,

The following methods of the HttpServletResponse must perform no operations:

sendError, sendRedirect, addCookie, setDateHeader, addDateHeader,
setHeader, addHeader, setIntHeader, addIntHeader, setContentlLength,
setCharacterEncoding, setContentType, setlLocale and setStatus. ™ The
containsHeader method of the HttpServlietResponse must return false. <
PET1.3.6PLT.19.3.6 Comparison of the different Request
Dispatcher Includes
HttpServletRequ | ActionReques EventRequest RenderReque ResourceReque
est method t mapping mapping st mapping st mapping
getAuthType getAuthType getAuthType getAuthType getAuthType
getContextPath getContextPa getContextPath getContextPa getContextPath
th th
getCookies getCookies getCookies getCookies getCookies
getDateHeader getProperties getProperties getProperties getProperties
getHeader getProperties getProperties getProperties getProperties
getHeaderName | getPropertyN getPropertyNa getPropertyN getPropertyNa
5 ames mes ames mes
getHeaders getProperties getProperties getProperties getProperties
getIntHeader getProperties getProperties getProperties getProperties
getMethod getMethod getMethod ‘GET’ getMethod
getPathlInfo path used to path used to path used to path used to
obtain the obtain the obtain the obtain the
PortletReqg PortletRequ PortletReg PortletRequ
uestDispat estDispatch uestDispat estDispatch
cher er cher er
getPathTranslate | path used to path used to path used to path used to
d obtain the obtain the obtain the obtain the
PortletReq PortletRequ PortletReq PortletRequ
uestDispat estDispatch uestDispat estDispatch
cher er cher er
getQueryString query string query string query string query string
information information information information
used to used to obtain used to used to obtain
obtain the the obtain the the
PortletReq PortletRequ PortletReq PortletRequ
uestDispat estDispatch uestDispat estDispatch
cher er cher er
getRemoteUser getRemoteUs getRemoteUser getRemoteUs getRemoteUser
Java™ Portlet Specification, version 2.0 (2008-01-11) 145

er er
getRequestedSe | getRequested getRequestedS getRequested getRequestedS
ssionId SessionId essionld SessionId essionld
getRequestURI path and path and path and path and
query string query string query string query string
information information information information
used to used to obtain used to used to obtain
obtain the the obtain the the
PortletReqg PortletRequ PortletReqg PortletRequ
uestDispat estDispatch uestDispat estDispatch
cher er cher er
getRequestURL null null null null
getServletPath path used to path used to path used to path used to
obtain the obtain the obtain the obtain the
PortletReqg PortletRequ PortletReqg PortletRequ
uestDispat estDispatch uestDispat estDispatch
cher er cher er
getSession getPortletSes getPortletSessi getPortletSes getPortletSessi
sion(APPLICA on(APPLICATIO sion(APPLICA on(APPLICATIO
TION SCOPE N SCOPE) TION SCOPE N SCOPE)
))
getUserPrincipal | getUserPrinci getUserPrincipa getUserPrinci getUserPrincipa
pal | pal |
isRequestedSessi | N/A N/A N/A N/A
onldFromCookie
isRequestedSessi | N/A N/A N/A N/A
onldFromUrl
isRequestedSessi | N/A N/A N/A N/A
onldFromURL
isRequestedSessi | isRequestedS isRequestedSes isRequestedS isRequestedSes
onldValid essionldValid sionIdValid essionldValid sionIdValid
isUserInRole isUserInRole isUserInRole isUserInRole isUserInRole
getAttribute getAttribute getAttribute getAttribute getAttribute
getAttributeNam | getAttributeN getAttributeNa — getAttributeN getAttributeNa
€s ames mes ames mes
getCharacterEnc | getCharacterE null null getCharacterEnc
oding ncoding oding
getContentLengt | getContentle 0 0 getContentleng
h ngth th
getContentType | getContentTy null null getContentTyp
pe e
getlnputStream | getPortletinp null null getPortletInput
utStream Stream
getlLocalAddr null null null null
getlocale getlocale getlocale getlLocale getlLocale
getlocales getlocales getlocales getlLocales getlLocales
getlLocalName null null null null
getlLocalPort 0 0 0 0
getParameter getParameter getParameter getParameter getParameter
getParameterMa | getParameter getParameterM getParameter getParameterM
b Map ap Map ap
getParameterNa | getParameter getParameterN getParameter getParameterN
mes Names ames Names ames
getParameterVal | getParameter getParameterV getParameter getParameterV

Java™ Portlet Specification, version 2.0 (2008-01-11)

146

ues Values alues Values alues
getProtocol HTTP/1.1 HTTP/1.1 HTTP/1.1 HTTP/1.1
getReader getReader null null getReader
getRealPath null null null null
getRemoteAddr | null null null null
getRemoteHost | null null null null
getRemotePort 0 0 0 0
getRequestDispa | N/A N/A N/A N/A
tcher
getScheme getScheme getScheme getScheme getScheme
getServerName getServerNa getServerName getServerNa getServerName
me me
getServerPort getServerPort getServerPort getServerPort getServerPort
isSecure isSecure isSecure isSecure isSecure
removeAttribute | removeAttrib removeAttribut removeAttrib removeAttribut
ute [S ute e
setAttribute setAttribute setAttribute setAttribute setAttribute
setCharacterEnc | setCharacterE no-op no-op setCharacterEn
oding ncoding coding

Note: no-op indicates that this method does not perform any operation and N/A indicates
that such a method is not available in the portlet interface and the functionality defined by
the Servlet Specification must be provided for this call.

HttpServletR | ActionResponse EventResponse RenderRespons ResourceRespo
esponse mappin mappin € mapping nse mapping
method

addCookie no-op no-o no-o no-o
addDateHea | no-op no-op no-op no-op

der

addHeader no-op no-o no-o no-o
addIntHeade | no-op no-o no-op no-o

r

containsHea | false false false false

der

encodeRedir | null null null null

ectUrl

encodeRedir | null null null null

ectURL

encodeUr] encodeURL encodeURL encodeURL encodeURL
encodeURL encodeURL encodeURL encodeURL encodeURL
sendError no-op no-op no-op no-op
sendRedirect | no-op no-o no-o no-o
setDateHead | no-op no-op no-op no-op

er

setHeader no-op no-o no-o no-o
setIntHeader | no-op no-o no-o no-o
setStatus no-op no-o no-o no-o

Java™ Portlet Specification, version 2.0 (2008-01-11) 147

10

15

20

flushBuffer no-op no-o flushBuffer flushBuffer
getBufferSiz | 0 0 getBufferSize getBufferSize
e

getCharacter | null null getCharacterEn getCharacterEn
Encoding coding coding
getContentT | null null getContentTyp getContentTyp
ype € [

getlocale null null getlocale getlocale
getOutputStr | null stream null stream getPortletOutpu getPortletOutpu
eam tStream tStream
getWriter null writer null writer getWriter getWriter
isCommitted | true true isCommitted isCommitted
reset no-o no-o reset reset
resetBuffer no-op no-op resetBuffer resetBuffer
setBufferSize | no-op no-op setBufferSize setBufferSize
setCharacter | no-op no-o no-op no-op
Encoding

setContentlL | no-op no-op no-op no-op

ength

setContentT | no-op no-op no-op no-op

ype

setlocale no-op no-o no-op no-op

PET134PLT.19.3.7 Error Handling

If the servlet or JSP that is the target of a request dispatcher throws a runtime exception
or a checked exception of type IOException, it must be propagated to the calling
portlet.“™™¥ All other exceptions, including a ServletException, must be wrapped with
The root cause of the exception must be set to the original

d CCXXXVi

a PortletException.
exception before being propagate

PLT.19.3.8 Path and Query Information in Included / Forwarded
Servlets

As mentioned in the previous sections the methods of the HttpServletRequest of an
included servlet that deal with path and query information (getPathInfo,
getPathTranslated, getQueryString, getRequestURI and getServletPath)
must return the path and query string information used to obtain the
PortletRequestDispatcher object. This is different than in the Servlet API, where
these values are based on the path and query string of the client request. This makes sense
from the servlet programming model point of view where you want to run the included /
forwarded code as if it really where running in the servlet issuing the request dispatcher
include or forward call.

On the other hand, the portlet does not have direct access to the path and query
information of the client request as it is one component rendered on the page. Thus the

Java™ Portlet Specification, version 2.0 (2008-01-11) 148

10

15

20

25

30

portlet acts as starting point of the include chain and the included / forwarded servlet
must gets the path and query string information wused to obtain the
PortletRequestDispatcher object. ““*"" Note that when doing additional includes or
forwards from the included or forwarded servlet it will have the same semantics as in the
plain servlet case: all further included / forwarded servlets or JSPs will get the path and
query string information used to obtain the PortletRequestDispatcher object as this is
viewed as the initial path and query information.

PLT.19.4 The forward Method

The forward method of the RequestDispatcher interface may be called by the calling
portlet only when no output has been committed to the response. The request dispatcher
forward allows setting the response content type by the servlet or JSP the forward call is
made to. If output data exists in the response buffer that has not been committed, the
content must be cleared before the target servlet’s service method is called. *“™™™ If the
response has been committed, an T1legalStateException must be thrown. “*™

Information like cookies, properties, portlet mode, window state, render parameters, or
the portlet title that the portlet may have set before calling the request dispatcher forward
method should still be valid.

The path elements of the request object exposed to the target servlet must reflect the path
used to obtain the RequestDispatcher.

Before the forward method of the RequestDispatcher interface returns, the response
content must be sent and committed, and closed by the portlet container, **'

When using a RequestDispatcher in a servlet that was target of a forward from a portlet,
the servlet must request the RequestDispatcher via the ServletRequest and not the
ServletContext. Using a RequestDispatcher that was retrieved via the ServletContext may
behave in a way that does not comply with this specification.

PLT.19.4.1 Query String

The request dispatching mechanism is responsible for aggregating query string
parameters when forwarding or including requests.

PLT.19.4.2 Forwarded Request Parameters

Except for servlets obtained by using the getNamedDispatcher method, a servlet that
has been invoked by a portlet using the forward method of RequestDispatcher has
access to the path used to obtain the PortletRequestDispatcher.

cexli

The following request attributes must be set:

Java™ Portlet Specification, version 2.0 (2008-01-11) 149

10

15

20

25

30

javax.servlet.forward.request uri

javax.servlet.forward.context path

javax.servlet.forward.servlet path

javax.servlet.forward.path info

javax.servlet.forward.query string

The values of these attributes must be equal to the return values of the
HttpServletRequestrndhOngetRequestURI, getContextPath, getServletPath,

getPathInfo, getQueryString respectively, invoked on the request object passed to
the first servlet object in the forward call chain, “*"

These attributes are accessible from the forwarded servlet via the getAttribute method
on the request object. Note that these attributes must always reflect the information in the
target of the first forward servlet in the situation that multiple forwards and subsequent
includes are called. “*

If the forwarded servlet was obtained by using the getNamedbispatcher method, these
attributes must not be set. “*"

PLT.19.4.3 Request and Response Objects for Forwarded
Servlets/JSPs from within the Action and Event processing Methods

The target servlet of the portlet request dispatcher has access to a limited set of methods
of the request and the response objects when the forward is done from within the
processAction or processEvent method in order to keep the action semantic intact.

The following methods of the HttpServletRequest must return null: getRemoteAddr,

getRemoteHost, getLocalAddress, getLocalName, getRealPath, and

qetRequestURL.cCXIV

The following methods of the HttpServletRequest must return ‘0’: getRemotePort
and getLocalport M

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:

getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath. "

The following methods of the HttpServletRequest must be equivalent to the methods
of the ©PortletRequest of similar name: getScheme, getServerName,

Java™ Portlet Specification, version 2.0 (2008-01-11) 150

10

15

20

25

30

35

getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getlLocale, getlocales, isSecure, getAuthType,
getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionIdvalid, getCookies. ™™

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.18.1.1 Query

Strings in Request Dispatcher Paths Section: getParameter, getParameterNames,
cexlix

getParameterValues andqetParameterMaD.

In case of a forward from processAction, the following methods of the
HttpServletRequest must be based on the corresponding methods of the

ActionRequest. getCharacterEncoding, setCharacterEncoding,
getContentType, getInputStream, getContentLength, getMethod and
getReader.*

In case of a forward from processEvent, the following methods of the

HttpServletRequest must do no operations and/or return null:
getCharacterEncoding, setCharacterEncoding, getContentType,

getInputStream and getReader.”” The getContentLength method of the
HttpServletRequest must return 0." The getMethod method of the
HttpServletRequest must be based on the corresponding method of the
ActionRequest triggering this event, ©

The following methods of the HttpServletRequest must be based on the properties

provided by the getProperties method of the PortletRequest interface: getHeader,
ccliv

getHeaders, getHeaderNames, getDateHeader and getIntHeader.

The following methods of the HttpServletRequest must provide the functionality

defined by the Serviet Specification: getRequestDispatcher, isUserInRole,
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL

and isRequestedSessionIdFromUrl.""

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1".
cclvi

The following methods of the HttpServletResponse must return null:
encodeRedirectURL, encodeRedirectUrl, getCharacterEncoding,

getContentType, getlocale, and getBufferSize.

cclvii

The following methods of the HttpServletResponse must return an outputstream /
writer that ignores any output written to it: getOutputStream and getWriter.

The following methods of the HttpServletResponse must be equivalent to the methods
of the ActionResponse/EventResponse of similar name: encodeURL and

T
encodeUrl.” ™

The following methods of the HttpServletResponse must perform no operations:
resetBuffer, reset, setContentType, setContentLength,

Java™ Portlet Specification, version 2.0 (2008-01-11) 151

10

15

20

25

30

35

setCharacterEncoding, setLocale, sendError, setDateHeader,
addDateHeader, setHeader, addHeader, setIntHeader, addIntHeader,

setStatus, setBufferSize and flushBuffer.”

The sendRedirect method of the HttpServletResponse must be mapped to the
ActionResponse.sendRedirect in the processaction call and to a no-op for the

processEventcaH.

The addcookie method of the HttpServletResponse must be based on addProperty
method of the ActionResponse/EventResponse interface. <

The containsHeader method of the HttpServletResponse must return false. “Xi

celxiii

The iscommitted method of the HttpServletResponse must return xuefalse

PLT.19.4.4 Request and Response Objects for Forwarded
Servlets/JSPs from within the Render Method

The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the forward is done from within the
render method.

The following methods of the HttpServletRequest must return null: getRemoteAddr,

getRemoteHost, getLocalAddress, getLocalName, getRealPath, and

o
O[etReO(uestURL.CCXlV

The following methods of the HttpServletRequest must return ‘0’: getRemotePort
and qetLocalPort.CCIXV

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:

getPathInfo, getPathTranslated, getQueryString, getRequestURIT and
getServletPath. ™"

The following methods of the HttpServletRequest must be equivalent to the methods

of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getLocale, getLocales, isSecure, getAuthType,

getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionId,
isRequestedSessionIdvalid, getCookies.®™"

The following methods of the HttpServletRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.18.1.1 Query

Strings in Request Dispatcher Paths Section: getParameter, getParameterNames,
celxviii

getParameterValues andqetParameterMaD.

Java™ Portlet Specification, version 2.0 (2008-01-11) 152

10

15

20

25

30

35

The following methods of the HttpServletRequest must do no operations and return
null: getCharacterEncoding, setCharacterEncoding, getContentType,
The getContentLength method of the

cclxix

getInputStream and getReader.
HttpServletRequest must return O.CCIXX

The following methods of the HttpsServletRequest must be based on the properties

provided by the getProperties method of the PortletRequest interface: getHeader,
celxxi

getHeaders, getHeaderNames, getDateHeader and getIntHeader.

The following methods of the HttpServletRequest must provide the functionality

defined by the Serviet Specification: getRequestDispatcher, isUserInRole,
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL

and isRequestedSessionIdFromUrl. ™

The getMethod method of the HttpServletRequest must always return ‘ger’, P

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1".

celxxiv

The following methods of the HttpServlietResponse must return null:
encodeRedirectURL _and encodeRedirectUrl.“"The following methods of the
HttpServletResponse must be equivalent to the methods of the RenderResponse of
similar name: getCharacterEncoding, setBufferSize, flushBuffer,

resetBuffer, reset, getBufferSize, getLocale, isCommitted,
celxxvi

getOutputStream, getWriter, setContentType, encodeURL and encodeUrl.

The following methods of the HttpServletResponse must perform no operations:

celxxvii

setContentlLength, setLocale, sendError, sendRedirect, and setStatus.
The containsHeader method of the HttpServletResponse must return false, <

The following methods of the HttpServletResponse must be based on the properties
provided by the setProperties/addProperties method of the RenderResponse
interface: addCookie, setDateHeader, addDateHeader, setHeader, addHeader,
setIntHeader, addIntHeader. cchxxix

PLT.19.4.5 Request and Response Objects for Forwarded
Servlets/JSPs from within the ServeResource Method

The target servlet or JSP of portlet request dispatcher has access to a limited set of
methods of the request and the response objects when the include is done from within the
serveResource method.

The following methods of the HttpServletRequest must return null: getRemoteAddr,

getRemoteHost, getLocalAddress, getLocalName, getRealPath, and

1
O[etReO(uestURL.Cc o

Java™ Portlet Specification, version 2.0 (2008-01-11) 153

10

15

20

25

30

35

The following methods of the HttpServletRequest must return ‘0’: getRemotePort
and getLocalPort .CClXXX]

The response of HttpUtils.getRequestURL is undefined and should not be used.

The following methods of the HttpServletRequest must return the path and query
string information used to obtain the PortletRequestDispatcher object:

getPathInfo, getPathTranslated, getQueryString, getRequestURI and
getServletPath.

The following methods of the HttpServletRequest must be equivalent to the methods

of the PortletRequest of similar name: getScheme, getServerName,
getServerPort, getAttribute, getAttributeNames, setAttribute,
removeAttribute, getlLocale, getlocales, isSecure, getAuthType,

getContextPath, getRemoteUser, getUserPrincipal, getRequestedSessionld,
isRequestedSessionIdvalid, getCookies.® ™™

The following methods of the HttpServletRequest must be equivalent to the methods

of the ResourceRequest of similar name: getCharacterEncoding,
setCharacterEncoding, getContentType, getMethod and getReader. °“ The
HttpServletRequest getInputStream must be equivalent to the method
getPortletInputStream of the ResourceRequest.

The following methods of the HttpServlietRequest must be equivalent to the methods
of the PortletRequest of similar name with the provision defined in PLT.18.1.1 Query

Strings in Request Dispatcher Paths Section: getParameter, getParameterNames,
celxxxv

getParameterValues and getParameterMap.

The following methods of the HttpServletRequest must be based on the properties

provided by the getProperties method of the PortletRequest interface: getHeader,
celxxxvi

getHeaders, getHeaderNames, getDateHeader and getIntHeader.

The following methods of the HttpServletRequest must provide the functionality

defined by the Serviet Specification: getRequestDispatcher, isUserInRole,
getSession, isRequestedSessionIdFromCookie, isRequestedSessionIdFromURL

and isRequestedSessionIdFromUrl. """

The getProtocol method of the HttpServletRequest must always return ‘HTTP/1.1".
celxxxviii

The following methods of the HttpServletResponse must return null:
encodeRedirectURL and encodeRedirectUrl.”**The following methods of the
HttpServletResponse must be equivalent to the methods of the ResourcerResponse of

similar name: getCharacterEncoding, setContentType, setBufferSize,
flushBuffer, resetBuffer, reset, getBufferSize, isCommitted,

getOutputStream, getWriter, getlLocale, encodeURL and encodeUrl.” ™

Java™ Portlet Specification, version 2.0 (2008-01-11) 154

10

15

The following methods of the HttpServletResponse must be equivalent to the method
defined in the Servlet Specification for HttpServletResponse:
and setlLocale.

setContentLength,

setCharacterEncoding,

The following methods of the HttpServletRequest must be based on the properties
provided by the setProperties/addProperties method of the ResourceResponse

interface: addCookie, setDateHeader, addDateHeader, addHeader,
setIntHeader, addIntHeader.

setHeader,

If the portlet want to set a response status code it should do this via setProperty with
thekByTResourceResponse.HTTP STATUS CODE.

The following methods of the HttpServletResponse must perform no operations:
sendError, sendRedirect . The method of the
HttpServletResponse must return false

containsHeader

cexcii

PLT.19.4.6 Comparison of the different Request Dispatcher

Forwards

HttpServletR | ActionRequest EventRequest RenderRequest ResourceReque

equest mappin mapping mappin st mapping

method

getAuthType | getAuthType getAuthType getAuthType getAuthType

getContextP | getContextPath getContextPath getContextPath getContextPath

ath

getCookies getCookies getCookies getCookies getCookies

getDateHead | getProperties getProperties getProperties getProperties

er

getHeader getProperties getProperties getProperties getProperties

getHeaderN | getPropertyNa getPropertyNa getPropertyNa getPropertyNa

ames mes mes mes mes

getHeaders getProperties getProperties getProperties getProperties

getIntHeade | getProperties getProperties getProperties getProperties

r

getMethod getMethod getMethod of 'GET’ getMethod

ActionRequest

getPathInfo | path used to path used to path used to path used to
obtain the obtain the obtain the obtain the
PortletRequ PortletRequ PortletRequ PortletRequ
estDispatch estDispatch estDispatch estDispatch
er er er er

getPathTran | path used to path used to path used to path used to

slated obtain the obtain the obtain the obtain the
PortletRequ PortletRequ PortletRequ PortletRequ
estDispatch estDispatch estDispatch estDispatch
er er er er

getQueryStri | query string query string query string query string

ng information information information information
used to obtain used to obtain used to obtain used to obtain

Java™ Portlet Specification, version 2.0 (2008-01-11)

155

the the the the
PortletRequ PortletRequ PortletRequ PortletRequ
estDispatch estDispatch estDispatch estDispatch
er er er er
getRemoteU | getRemoteUser getRemoteUser getRemoteUser getRemoteUser
ser
getRequeste | getRequestedS getRequestedS getRequestedS getRequestedS
dSessionId essionld essionld essionld essionld
getRequestU | path and path and path and path and
RI guery string query string query string query string
information information information information
used to obtain used to obtain used to obtain used to obtain
the the the the
PortletRequ PortletRequ PortletRequ PortletRequ
estDispatch estDispatch estDispatch estDispatch
er er er er
getRequestU | null null null null

RL

getServiletPa | path used to path used to path used to path used to

th obtain the obtain the obtain the obtain the
PortletRequ PortletRequ PortletRequ PortletRequ
estDispatch estDispatch estDispatch estDispatch
er er er er

getSession getPortletSessi getPortletSessi getPortletSessi getPortletSessi
on(APPLICATIO on(APPLICATIO on(APPLICATIO on(APPLICATIO
N SCOPE) N SCOPE) N SCOPE) N SCOPE)

getUserPrinc | getUserPrincipa getUserPrincipa getUserPrincipa getUserPrincipa

ipal | | | |

isRequested | N/A N/A N/A N/A

SessionIdFro

mCookie

isRequested | N/A N/A N/A N/A

SessionIdFro

muUrl

isRequested | N/A N/A N/A N/A

SessionIdFro

mURL

isRequested | isRequestedSes isRequestedSes isRequestedSes isRequestedSes

SessionIdVal | sionIdValid sionIdValid sionIdValid sionIdValid

id

isUserInRole | isUserInRole isUserInRole isUserInRole isUserInRole

getAttribute | getAttribute getAttribute getAttribute getAttribute

getAttribute | getAttributeNa getAttributeNa getAttributeNa getAttributeNa

Names mes mes mes mes

getCharacter | getCharacterEn null null getCharacterEn

Encoding coding coding

getContentL | getContentleng 0 0 getContentleng

ength th th

getContentT | getContentTyp null null getContentTyp

ype [S [

getInputStre | getPortletinput null null getPortletInput

am Stream Stream

getlocalAddr | null null null null

getlocale getlocale getlocale getlocale getlocale

getlocales getlocales getlLocales getlocales getlocales

Java™ Portlet Specification, version 2.0 (2008-01-11)

156

getLocalNam | null null null null

(S

getlocalPort | 0 0 0 0
getParamete | getParameter getParameter getParameter getParameter
r

getParamete | getParameterM getParameterM getParameterM getParameterM
rMap ap ap ap ap
getParamete | getParameterN getParameterN getParameterN getParameterN
rNames ames ames ames ames
getParamete | getParameterV getParameterV getParameterV getParameterV
rValues alues alues alues alues
getProtocol HTTP/1.1 HTTP/1.1 HTTP/1.1 HTTP/1.1
getReader getReader null null getReader
getRealPath | null null null null
getRemoteA | null null null null

ddr

getRemoteH | null null null null

ost

getRemoteP | 0 0 0 0

ort

getRequestD | N/A N/A N/A N/A

ispatcher

getScheme getScheme getScheme getScheme getScheme
getServerNa | getServerName getServerName getServerName getServerName
me

getServerPor | getServerPort getServerPort getServerPort getServerPort
t

isSecure isSecure isSecure isSecure isSecure
removeAttrib | removeAttribut removeAttribut removeAttribut removeAttribut
ute € e € e

setAttribute | setAttribute setAttribute setAttribute setAttribute
setCharacter | setCharacterEn no-op no-op setCharacterEn
Encoding coding coding

Note: no-op indicates that this method does not perform any operation and N/A indicates

that such a method is not available in the portlet interface and the functionality defined by

the Servlet Specification must be provided for this call.

HttpServletR | ActionResponse EventResponse RenderRespons ResourceRespo
esponse mappin mapping € mapping nse mapping
method

addCookie addProperty addProperty addProperty addProperty
addDateHea | no-op no-op addProperties addProperties

Java™ Portlet Specification, version 2.0 (2008-01-11)

157

der

addHeader no-op no-o addProperties addProperties
addIntHeade | no-op no-o addProperties addProperties
r

containsHea | false false false false

der

encodeRedir | null null null null

ectUrl

encodeRedir | null null null null

ectURL

encodeUr] encodeURL encodeURL encodeURL encodeURL
encodeURL encodeURL encodeURL encodeURL encodeURL
sendError no-op no-o no-op no-op
sendRedirect | sendRedirect no-op no-op no-op
setDateHead | no-op no-op setProperties setProperties
er

setHeader no-op no-op setProperties setProperties
setIntHeader | no-op no-op setProperties setProperties
setStatus no-op no-o no-op setProperties
flushBuffer no-op no-op flushBuffer flushBuffer
getBufferSiz | null null getBufferSize getBufferSize
e

getCharacter | null null getCharacterEn getCharacterEn
Encoding coding coding
getContentT | null null getContentTyp getContentTyp
ype e e

getlocale null null getlocale getlocale
getOutputStr | null stream null stream getPortletOutpu getPortletOutpu
eam tStream tStream
getWriter null writer null writer getWriter getWriter
isCommitted | false false isCommitted isCommitted
reset no-op no-o reset reset
resetBuffer no-op no-op resetBuffer resetBuffer
setBufferSize | no-op no-o setBufferSize setBufferSize
setCharacter | no-op no-o no-op setCharacterEn
Encoding coding
setContentL | no-op no-o no-op setContentlLeng
ength th

setContentT | no-op no-op setContentType setContentType
ype

setlocale no-op no-o no-op setLocale

PLT.19.5 Servlet filters and Request Dispatching

Since the Java Servlet Specification V2.4 you can specify servlet filters for request
dispatcher include calls. Portlet containers must support this capability for included
servlets via the PortletRequestDispatcher. “*“" The servlet filters for the servlets
included via the PortletRequestDispatcher must be defined as described in the Java
Servlet Specification. See SRV.6.2.5 in the Java Servlet Specification for more
information.

Java™ Portlet Specification, version 2.0 (2008-01-11) 158

10

15

20

PLT.19.6 Changing the Default Behavior for Included /
Forwarded Session Scope

The default for the session variable named “session” of included / forwarded servlets or
JSPs is that it maps to the portlet session with application scope. Some portlets may
require that the session variable for included / forwarded servlets or JSPs maps instead to
the portlet session scope in order to work correctly. These portlets can indicate this via
setting the container-runtime-option
javax.portlet.servletDefaultSessionScope to PORTLET SCOPE. The default for
javax.portlet.servletDefaultSessionScope 1S APPLICATION SCOPE.

Example:

<portlet>

<container-runtime-option>

<name>javax.portlet.servletDefaultSessionScope</name>

<value>PORTLET SCOPE</value>

</container-runtime-option>

</portlet>

Portlet developers should note that not all portlet container may be able to provide this
feature as a portable JavaEE solution does not currently exist. Therefore, relying on this
feature may restrict the numbers of portlet containers the portlet can be executed on.

Java™ Portlet Specification, version 2.0 (2008-01-11) 159

10

15

20

25

PEAPLT.20

Portlet Filter

Filters are Java components that allow on the fly transformations of information in both
the request to and the response from a portlet.

PLT.20.1 What is a portlet filter?

A filter is a reusable piece of code that can transform the content of portlet requests and
portlet responses. Filters do not generally create a response or respond to a request as
portlets do, rather they modify or adapt the requests, and modify or adapt the response.

Among the types of functionality available to the developer needing to use filters are the
following:

e The modification of request data by wrapping the request in customized versions
of the request object.

e The modification of response data by providing customized versions of the
response object.

e The interception of an invocation of a portlet after its call.

Portlet filters are modeled after the servlet filters in order to make them easy to
understand for people already familiar with the servlet model and to have one consistent
filter concept in JavaEE.

PLT.20.2 Main Concepts

The main concepts of this filtering model are described in this section. The application
developer creates a filter by implementing one of the
javax.portlet.filter.XYZFilter interfaces and providing a public constructor taking
no arguments. The class is packaged in the portlet application WAR along with the static
content and portlets that make up the portlet application. A filter is declared using the
<filter> clement in the portlet deployment descriptor. A filter or collection of filters can
be configured for invocation by defining <filter-mapping> elements in the portlet
deployment descriptor. This is done by mapping filters to a particular portlet by the
portlet’s logical name, or mapping to a group of portlets using the ‘*’ as a wildcard.

Java™ Portlet Specification, version 2.0 (2008-01-11) 160

10

15

20

25

30

35

PLT.20.2.1 Filter Lifecycle

After deployment of the portlet application, and before a request causes the portlet
container to access a portlet, the portlet container must locate the list of portlet filters that
must be applied to the portlet as described below“*". The portlet container must ensure
that it has instantiated a filter of the appropriate class for each filter in the list, and called
its

dCCXCV

init (FilterConfig config) metho . The filter may throw an exception to indicate
that it cannot function properly. If the exception is of type UnavailableException, the
container may examine the isPermanent attribute of the exception and may choose to
retry the filter at some later time.

Only one instance per <filter> declaration in the deployment descriptor is instantiated
per Java Virtual Machine of the portlet container. The container provides the filter
config as declared in the filter’s deployment descriptor, the reference to the
PortletContext for the portlet application, and the set of initialization parameters.

When the container receives an incoming request, it takes the first filter instance in the
list and calls its doFilter method, passing in the PortletRequest and
PortletResponse, and a reference to the Filterchain object it will use.

Depending on the target method of doFilter call the PortletRequest and
PortletResponse must be instances of the following interfaces™™ "

ActionRequest and ActionResponse for processaAction calls

EventRequest and EventResponse for processEvent calls

RenderRequest and RenderResponse for render calls

ResourceRequest and ResourceResponse for serveResource calls

The doFilter method of a filter will typically be implemented following this or some
subset of the following pattern:

The method examines the request information.

The method may wrap the request object passed in to its doFilter method with a

customized implementation of one of the request wrappers

(ActionRequestWrapper , EventReguestWrapper, RenderReqguestWrapper,

ResourceRequestWrapper) in order to modify request data.

3. The method may wrap the response object passed in to its doFilter method with
a customized implementation of one of the response wrappers (Act ionResponse,
EventResponse, RenderResponse, ResourceResponse)to modify response
data.

4. The filter may invoke the next component in the filter chain. The next component

may be another filter, or if the filter making the invocation is the last filter

DN |—

Java™ Portlet Specification, version 2.0 (2008-01-11) 161

10

15

20

25

30

35

40

configured in the deployment descriptor for this chain, the next component is the
target method of the portlet. The invocation of the next component is effected by
calling the doFilter method on the Filterchain object, and passing in the
request and response with which it was called or passing in wrapped versions it
may have created. The filter chain’s implementation of the doFilter method,
provided by the portlet container, must locate the next component in the filter
chain and invoke its doFilter method, passing in the appropriate request and
response objects. Alternatively, the filter chain can block the request by not
making the call to invoke the next component, leaving the filter responsible for
filling out the response object.

5. After invocation of the next filter in the chain, the filter may examine the response
data.

6. Alternatively, the filter may have thrown an exception to indicate an error in
processing. If the filter throws a UnavailableException during its doFilter
processing, the portlet container must not attempt continued processing down the
filter chain. It may choose to retry the whole chain at a later time if the exception
is not marked permanent.

7. When the last filter in the chain has been invoked, the next component accessed is
the target method on the portlet at the end of the chain.

8. Before a filter instance can be removed from service by the portlet container, the
portlet container must first call the destroy method on the filter to enable the
filter to release any resources and perform other cleanup operations. “**"

PLT.20.2.2 Wrapping Requests and Responses

Central to the notion of filtering is the concept of wrapping a request or response in order
that it can override behavior to perform a filtering task. In this model, the developer has
the ability to override existing methods on the request and response objects. The portlet
should not add additional methods to the wrapper as further downstream wrappers may
not honor these. In order to support this style of filter the container must support the
following requirement. When a filter invokes the doFilter method on the portlet
container’s filter chain implementation, the container must ensure that the request and
response object that it passes to the next component in the filter chain, or to the target
portlet if the filter was the last in the chain, is the same object that was passed into the
doFilter method by the calling filter or one of the above mentioned wrappers. “<*"™"

PLT.20.2.3 Filter Environment

A set of initialization parameters can be associated with a filter using the <init-params>
element in the portlet deployment descriptor. The names and values of these parameters
are available to the filter at runtime via the getInitParameter and
getInitParameterNames methods on the filter’s Filterconfig object. Additionally, the
Filterconfig affords access to the Portletcontext of the portlet application for the
loading of resources, for logging functionality, and for storage of state in the
PortletContext’s attribute list.

Java™ Portlet Specification, version 2.0 (2008-01-11) 162

10

15

20

25

30

PLT.20.2.4 Configuration of Filters in a Portlet Application

A filter is defined in the deployment descriptor using the <filters element. In this
element, the programmer declares the following:

filter-name: used to map the filter to a portlet

filter-class: used by the portlet container to identify the filter type
lifecycle: used to determine for which lifecycles the filter should be applied
init-params: initialization parameters for a filter

Optionally, the programmer can specify a textual description, and a display name for tool
manipulation. The portlet container must instantiate exactly one instance of the Java class
defining the filter per filter declaration in the deployment descriptor®*“*. Hence, two
instances of the same filter class will be instantiated by the portlet container if the

developer makes two filter declarations for the same filter class.

Here is an example of a filter declaration:

<filter>

<filter-name>Log Filter</filter-name>

<filter-class>com.acme.LogFilter</filter-class>

<lifecycle>ACTION PHASE</lifecyclex>

</filter>

Once a filter has been declared in the portlet deployment descriptor, the <filter-
mapping> element is used to define portlets in the portlet application to which the filter is
to be applied. Filters can be associated with a portlet using the <portlet-name> element.
Each filter mapping matching the portlet should be applied for this portlet, even if that
result in one filter being applied more than once.
-For example, the following code example maps the Log Filter filter to the
SamplePortlet portlet:

<filter-mapping>

<filter-name>Log Filter</filter-name>

<portlet-name>SamplePortlet</portlet-name>

</filter-mapping>

Filters can be associated with groups of portlets using the ‘*’ character as a wildcard at
the end of a string to indicate that the filter must be applied to any portlet whose name
starts with the characters before the character®. Example:

23 32)

Java™ Portlet Specification, version 2.0 (2008-01-11) 163

10

15

20

25

30

35

<filter-mapping>

<filter-name>Log Filter</filter-name>

<portlet-name>*</portlet-name>

</filter-mapping>

Here the Log Filter is applied to all the portlets within the portlet application, because
every portlet name matches the ‘*’ pattern.

The order the container uses in building the chain of filters to be applied for a particular
request is as follows: the <portlet-name> matching filter mappings in the same order
that these elements appear in the deployment descriptor. The portlet container is free to
add additional filters at any place in this filter chain, but must not remove filters matching
a specific portlet. ',

It is expected that high performance portlet containers will cache filter chains so that they
do not need to compute them on a per-request basis.

PLT.20.2.5 Defining the Target Lifecycle Method for a Portlet
Filter

A portlet filter can be applied to different lifecycle method calls: processaction,
processEvent, render, serveResource' .. Thus the filter must definee the lifecycle
methods for which the filter is written in the <lifecycle> element #of the <filters
element. ““™ A filter can be applied to one or more lifecycle methods. The following

constants are valid values for the <1ifecycle> element:

e ACTION PHASE requesting that the portlet container processes this filter for the
processAction lifecycle method. The filter implementation must implement the
ActionFilter interface.

® EVENT PHASE requesting that the portlet container processes this filter for the
processEvent lifecycle method. The filter implementation must implement the
EventFilter interface.

e RENDER_PHASE requesting that the portlet container processes this filter for the
render lifecycle method. The filter implementation must implement the
EventFilter interface.

e RESOURCE PHASE requesting that the portlet container processes this filter for the
serveResource lifecycle method. The filter implementation must implement the
ResourceFilter interface.

If the lifecycle declaration and portlet filter type do not match the portlet container is free
to either reject the portlet at deployment time or ignore this filter.

Java™ Portlet Specification, version 2.0 (2008-01-11) 164

10

Example:

<filter>

<filter-name>Sample Filter</filter-name>

<filter-class>com.acme.SampleFilter</filter-class>

<lifecycle>ACTION PHASE</lifecyclex>

<lifecycle>RENDER PHASE</lifecyclex>

</filter>

In this example the portlet filter is applied to the action and render phase.

Java™ Portlet Specification, version 2.0 (2008-01-11)

165

10

15

20

25

30

35

PLTI9PLT.21

—

User Information

Commonly, portlets provide content personalized to the user making the request. To do
this effectively they may require access to user attributes such as the name, email, phone
or address of the user. Portlet containers provide a mechanism to expose available user
information to portlets.

PETA91PL.T.21.1 Defining User Attributes

The deployment descriptor of a portlet application must define the user attribute names
the portlets use. The following example shows a section of a deployment descriptor
defining a few user attributes:

<portlet-app>

<user-attributes>
<description>User Given Name</descriptions>
<names>user.name.given</name>
</user-attributes>
<user-attributes>
<description>User Last Name</descriptions>
<name>user.name.family</name>
</user-attribute>
<user-attributes>
<description>User eMail</descriptions>
<name>user.home-info.online.email</name>
</user-attribute>
<user-attributes>
<description>Company Organization</description>
<names>user.business-info.postal.organization</name>
</user-attributes>

<portlet-app>

A deployer must map the portlet application’s logical user attributes to the corresponding
user attributes offered by the runtime environment. At runtime, the portlet container uses
this mapping to expose user attributes to the portlets of the portlet application. User
attributes of the runtime environment not mapped as part of the deployment process must
should not be exposed to portlets.***

Java™ Portlet Specification, version 2.0 (2008-01-11) 166

10

15

20

25

30

Refer to PLT.D User Information Attribute Names Appendix for a list of recommended
names.

PETA92PL.T.21.2 Accessing User Attributes

Portlets can obtain an unmodifiable Map object containing the user attributes; of user
associated with the current request;-_from the request attributes. The Map object can be
retrieved using the USER_INFO constant defined in the PortletRequest interface. If the
request is done in the context of an un-authenticated user, calls to the getattribute
method of the request using the USER INFO constant must return nu11.”". If the user is
authenticated and there are no user attributes available, the Map must be an empty Map.

The Map object must contain a String name value pair for each available user attribute.
The Map object should only contain user attributes that have been mapped during

deployment-.

An example of a portlet retrieving user attributes would be:

Map userInfo = (Map) request.getAttribute (PortletRequest.USER INFO) ;
String givenName = (userInfo!=null)

? (String)
userInfo.get (“user-name-given’PortletRequest.P3PUserInfos.USER NAM
E GIVEN) : “”;
String lastName = (userInfol!=null)

? (String)
userInfo.get (PortletRequest .P3PUserInfos.USER NAME FAMILY‘“use¥r-hnam

3 ") . wro,
0 : H

PLET193PLT.21.3 Important Note on User Information

The Portlet Specification expert group is aware of the fact that user information is outside
of the scope of this specification. As there is no standard Java standard to access user
information, and until such Java standard is defined, the Portlet Specification will provide
this mechanism that is considered to be the least intrusive from the Portlet API
perspective. At a latter time, when a Java standard for user information is defined, the
current mechanism will be deprecated in favor of it.

Java™ Portlet Specification, version 2.0 (2008-01-11) 167

10

15

20

25

30

PLTAPLT.22

———

Caching

Caching content helps #mpreve-improving the Portal response time for users. It also helps
to-reduee-reducing the load on servers.

The Portlet Specification defines an expiration based caching mechanism. This caching
mechanism is per portlet—per—user—ehent. Cached content must not be shared across
different user clients displaying the same portlet for the private cache scope.

Portlet containers are not required to implement expiration caching. Portlet containers
implementing this caching mechanism may disable it, partially or completely, at any time
to free memory resources.

PET1APLT.22.1 Expiration Cache

Portlets that want their content to be cached using expiration cache must-should define
the_default duration (in seconds) of the expiration cache in the deployment descriptor.
The portlet container should treat portlets with no default duration in the deployment
descriptor as always expired as default.

The following is an example of a portlet definition where the portlet defines that its
content should be cached for 5 minutes (300 seconds) and must not be shared across
users.

<portlet>
<expiration-cache>300</expiration-cache>
<cache-scopes>private</cache-scope>

</portlet>

A portlet that has defined an cxpiration cache in its portlet definition may

programmatically alter the expiration time or caching scope by setting a property in the
RenderResponse O ResourceResponse object using the— EXPIRATION CACHE Or
cACHE _scoPE constant defined in the PertletRespense—MimeResponse interface in
forwarded or included servlets/JSPs. Inside the portlet the CacheControl object is
available via the MimeResponse for setting the expiration time or caching scope via the
calls setExpirationTime Or setScope.

Java™ Portlet Specification, version 2.0 (2008-01-11) 169

10

15

20

25

30

35

The portlet should set the expiration time or caching scope before writing to the output
stream as otherwise portals / portlet containers may ignore the values.

If the expiration property is set to 0, eaching—is—disabled—for—thepeortletthe returned

markup fragment should be treated as always expired. If the expiration cache property is

set to —1, the cache does not expire. If during a render invocation the expiration cache
property is not set, the explratlon time deﬁned in the deployment descrlptor m&st—should

caching scope is set to PRIVATE SCOPE the cached data must not be shared across users.
If the caching scope is set to PUBLIC scoPE the cached data may be shared across users.
The private scope is the default scope if no scope is provided in the deployment
descriptor or via the RenderResponse Or ResourceResponse.

If the content of a portlet is cached, the cache has not expired and the portlet is not the
target of an action or event the-chentrequestthen-the request handling methods of the
portlet should not be invoked as part of the client request. Instead, the portlet-container
should use the data from the cache.

If the content of a portlet is cached and a-€hentrequestistargeted-to-the portlet_is target
of request with an action-type semantic (e.g. an action or event call), the portlet container

must-should discard the cache and invoke the corresponding request handling methods of
the portlet like processaAction, Or processEvent.

PLT.22.2 Validation Cache

As an extension of the expiration-based caching mechanism portlets may use validation
caching. Validation-based caching allows portlets to return a validation token together
with the markup response and expiration time. The portlet can set the validation token on
the RenderResponse Or ResourceResponse via the ETAG property from within
servlets/JSPs or via the CacheControl setETag method from within the portlet. If no
expiration time is set, the content should be viewed by the portlet container as expired.

After the content is expired the portlet container should send a render or
serveResource request to the portlet with the validation token (called ETag in HTTP) of
the expired content. The portlet can access the validation token provided by the portlet
container either via the property ETaG of the RenderRequest Or ResourceRequest, O
the getETag method of the RenderRequest or ResourceRequest. The portlet can
validate if the cached content for the given ETag is still valid or not. If the content is still
valid the portlet should not render any output but either set the property
USE_CACHED CONTENT RenderResponse Or ResourceResponse and a new expiry time,
Or setUseCachedContent on the cachecontrol of the RenderResponse or
ResourceResponse and set a new expiry time.

The portlet should set the validation token, expiry time or caching scope before writing to
the output stream as otherwise portals / portlet containers may ignore the values.

Java™ Portlet Specification, version 2.0 (2008-01-11) 170

10

15

20

25

Example:

protected void doView (RenderRequest request, RenderResponse response)

throws PortletException, java.io.IOException

if (request.getETag() != null) { // validation request

if (_ markupIsStillvalid(request.getETag())) {

// markup is still wvalid

response.getCacheControl () .setExpirationTime (30) ;
response.getCacheControl () .setUseCachedContent (true) ;
return;

)
)

// create new content with new validation tag

response.getCacheControl () .setETag (somelD) ;
response.getCacheControl () .setExpirationTime (60) ;
PortletRequestDispatcher rd =

getPortletContext () .getPortletRequestDispatcher (“isp/view.isp”) ;

rd.include (request, response) ;

Java™ Portlet Specification, version 2.0 (2008-01-11) 171

Java™ Portlet Specification, version 2.0 (2008-01-11) 172

10

15

20

25

PLTF21PLT.23

—

Portlet Applications

| A portlet application is a web application, as defined in Serviet Specification-2-3, SRV.9

Chapter, containing portlets and a portlet deployment descriptor in addition to servlets,
JSPs, HTML pages, classes and other resources normally found in a web application. A
bundled portlet application can run in multiple portlet containers implementations.

PET211PL.T.23.1 Relationship with Web Applications

All the portlet application components and resources other than portlets are managed by
the servlet container the portlet container is built upon.

PET212PL.T.23.2 Relationship to PortletContext

The portlet container must enforce a one to one correspondence between a portlet
application and a portletcontext.”"" If the application is a distributed application, the
portlet container must create an instance per VM. A portletcContext object provides
a portlet with its view of the application.

PET213P1.T.23.3 Elements of a Portlet Application

A portlet application may consist of portlets plus other elements that may be included in
web applications, such as servlets, JSP™ pages, classes, static documents.

Besides the web application specific meta information, the portlet application must
include descriptive meta information about the portlets it contains.

PET21:4P1.T.23.4 Directory Structure

A portlet application follows the same directory hierarchy structure as web applications.
In addition it must contain a /WEB- INF/portlet.xml deployment descriptor file.
Portlet classes, utility classes and other resources accessed through the portlet application

classloader must reside within the /WEB-INF/classes directory or within a JAR file in
the /WEB-INF/1ib/ directory.

Java™ Portlet Specification, version 2.0 (2008-01-11) 173

10

15

20

25

PET21.5PL.T.23.5 Portlet Application Classloader

The portlet container must use the same classloader the servlet container uses for the web
application resources for loading the portlets and related resources within the portlet
application.” """

The portlet container must ensure that requirements defined in the Servlet Specification
23-SRV.9.7.1 and SRV.9.7.2 Sections are fulfilled.“™

PET21-6P1.T.23.6 Portlet Application Archive File

Portlet applications are packaged as web application archives (WAR) as defined in the
Servlet Specification 23-SRV.9.6 Chapter.

PET21.7PL.T.23.7 Portlet Application Deployment Descriptor

In addition to a web application deployment descriptor, a portlet application contains a
portlet application deployment descriptor. The portlet deployment descriptor contains
configuration information for the portlets contained in the application.

Refer to PLT.21 Packaging and Deployment Descriptor Chapter for more details on the
portlet application deployment descriptor.

PET21.8P1.T.23.8 Replacing a Portlet Application

A portlet container should be able to replace a portlet application with a new version
without restarting the container. In addition, the portlet container should provide a robust
method for preserving session data within that portlet application, when the replacement
of the portlet application happens.

PET21.9P1.T.23.9 Error Handling

It is left to the portal/portlet-container implementation how to react when a portlet throws
an exception while processing a request. For example, the portal/portlet-container could
render an error page instead of the portal page, render an error message in the portlet
window of the portlet that threw the exception or remove the portlet from the portal page
and log an error message for the administrator.

PET2110PL.T.23.10 Portlet Application Environment

The Portlet Specification leverages the provisions made by the Serviet Specification-23
SRV.9.11 Section.

Java™ Portlet Specification, version 2.0 (2008-01-11) 174

PLEAPLT.24

——

Security

Portlet applications are created by Application Developers who license the application to
a Deployer for installation into a runtime environment. Application Developers need to
communicate to Deployers how the security is to be set up for the deployed application.

PLTAAPLT.24.1 Introduction

A portlet application contains resources that can be accessed by many users. These
resources often traverse unprotected, open networks such as the Internet. In such an
environment, a substantial number of portlet applications will have security requirements.

The portlet container is responsible for informing portlets of the roles users are in when
accessing them. The portlet container does not deal with user authentication. It should
leverage the authentication mechanisms provided by the underlying servlet container
defined in the Servlet Specification-23, SRV.12.1 Section.

PLTA12P1.T.24.2 Roles

The Portlet Specification shares the same definition as roles of the Serviet Specification
23, SRV.12.4 Section.

PETA3PLT.24.3 Programmatic Security

Programmatic security consists of the following methods of the Request interface:

e getRemoteUser
e isUserInRole
e getUserPrincipal

The getRemoteUser method returns the user name the client used for authentication. The
isUserInRole method determines if a remote user is in a specified security role. The
getUserPrincipal method determines the principal name of the current user and returns
a java.security.Principal object. These APIs allow portlets to make business logic
decisions based on the information obtained.

The values that the Portlet API getRemoteUser and getUserPrincipal methods return
the same values returned by the equivalent methods of the servlet response object.“™

Java™ Portlet Specification, version 2.0 (2008-01-11) 175

| Refer to the Servlet Specification—23, SRV.12.3 Section for more details on these
methods.

| The isUserInrRole method expects a string parameter with the role-name. A
security-role-ref element must be declared by the portlet in deployment descriptor
with a role-name sub-element containing the role-name to be passed to the method. The
security-role-ref element should contain a role-1ink sub-element whose value is
the name of the application security role that the user may be mapped into. This mapping
is specified in the web.xml deployment descriptor file. The container uses the mapping

of security-role-ref to security-role when determining the return value of the
Call,CCCXI

For example, to map the security role reference "FOO" to the security role with
role-name "manager" the syntax would be:

<portlet-app>
<portlets>
<security-role-ref>
<role-name>F0OO</role-name>
<role-link>manager</managerrole-link>

</security-role-ref>
</portlets>

</pof£iet—app>

In this case, if the portlet called by a user belonging to the "manager" security role made
the API call isUserinRole ("FoO"), then the result would be true.

If the security-role-ref element does not define a role-1ink element, the container
must default to checking the role-name element argument against the list of security-
role elements defined in the web.xml deployment descriptor of the portlet
application.”™" The isUserInrRole method references the list to determine whether the
caller is mapped to a security role. The developer must be aware that the use of this
default mechanism may limit the flexibility in changing role-names in the application
without having to recompile the portlet making the call.

PET-1-4P1.T.24.4 Specifying Security Constraints

Security constraints are a declarative way of annotating the intended protection of
portlets. A constraint consists of the following elements:

e portlet collection
e user data constraint

Java™ Portlet Specification, version 2.0 (2008-01-11) 176

A portlets collection is a set of portlet names that describe a set of resources to be
protected. All requests targeted to portlets listed in the portlets collection are subject to
the constraint.

A user data constraint describes requirements for the transport layer for the portlets
collection. The requirement may be for content integrity (preventing data tampering in
the communication process) or for confidentiality (preventing reading while in transit).
The container must at least use SSL to respond to requests to resources marked integral
or confidential.

For example, to define that a portlet requires a confindential transport the syntax would
be:

<portlet-app>
<portlets>
<portlet-name>accountSummary</portlet-name>
</portlets>

<security-constraints>
<display-name>Secure Portlets</display-names
<portlet-collection>
<portlet-name>accountSummary</portlet-name>
</portlet-collection>
<user-data-constraint/>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraints>
</security-constraint>

</pof£iet—app>

PLT.1.5PLT.24.5 Propagation of Security Identity in EJB™
Calls

A security identity, or principal, must always be provided for use in a call to an enterprise
bean.

The default mode in calls to EJBs from portlet applications should be for the security
identity of a user, in the portlet container, to be propagated to the EIB™ container.

Portlet containers, running as part of a J2EE platform, are required to allow users that are
not known to the portlet container to make calls to the the EJB™ container. In these
scenarios, the portlet application may specify a run-as element in the web.xml
deployment descriptor. When it is specified, the container must propagate the security
identity of the caller to the EJB layer in terms of the security role name defined in the
run-as element.”“" The security role name must be one of the security role names
defined for the web.xml deployment descriptor.“™" Alternatively, portlet application
code may be the sole processor of the signon into the EJB™ container.

Java™ Portlet Specification, version 2.0 (2008-01-11) 177

10

15

20

25

PLTAPLT.25

—— 2

Packaging and Deployment Descriptor

The deployment descriptor conveys the elements and configuration information of a
portlet application between Application Developers, Application Assemblers, and
Deployers. Portlet applications are self-contained applications that are intended to work
without further resources. Portlet applications are managed by the portlet container.

In the case of portlet applications, there are two deployment descriptors: one to specify
the web application resources (web.xml) and one to specify the portlet resources
(portlet.xml). The web application deployment descriptor is explained in detail in the
Servlet Specification-234, SRV.13Deployment Descriptor Chapter.

For backwards compatibility of portlet applications written to the 1.0 version of the Java
Portlet Specification, portlet containers are also required to support the 1.0 version of the

deployment descriptor. The 1.0 version is defined in the appendix.

PETAAPLT.25.1 Portlet and Web Application Deployment
Descriptor

For-In the Portlet Specification werston—-0-there is a clear distinction between web
resources, like servlets, JSPs, static markup pages, etc., and portlets. This is due to the
fact that, in the Serviet Specification-2-3, the web application deployment descriptor is not
extensible. All web resources that are not portlets must be specified in the web.xml
deployment descriptor. All portlets and portlet related settings must be specified in an
additional file called portlet.xml. The format of this additional file is described in
detail below.

The following portlet web application properties reed—tecan be set in the web.xml
deployment descriptor:

portlet application description using the <description> tagelement

portlet application name using the <display-name> tagelement

portlet application security role mapping using the <security-roles> tagelement
portlet application locale-character set mapping for serving resources using the
<locale-encoding-mapping-list>.

Java™ Portlet Specification, version 2.0 (2008-01-11) 179

10

15

20

25

30

PETA2PL.T.25.2 Packaging

All resources, portlets and the deployment descriptors are packaged together in one web
application archive (WAR file). This format is described in Serviet Specification—23,
SRV.9 Web Application Chapter.

In addition to the resources described in the Servlet Specification—23, SRV.9 Web
Application Chapter a portlet application weg- INF directory consists of:

e The /WEB-INF/portlet.xml deployment descriptor.

e Portlet classes in the /WEB-INF/classes directory.
e Portlet Java ARchive files /WEB-INF/1lib/*.jar

PET124PLT.25.2.1 Example Directory Structure

The following is a listing of all the files in a sample portlet application:

/images/myButton.gif

/META-INF/MANIFEST .MF

/WEB-INF/web.xml

/WEB-INF/portlet.xml

/WEB-INF/lib/myHelpers.jar
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class
/WEB-INF/classes/com/mycorp/portlets/MyPortlet.class
/WEB-INF/jsp/myHelp.jsp

Portlet applications that need additional resources that cannot be packaged in the WAR
file, like EJBs, may be packaged together with these resources in an EAR file.

PLTA122P1.T.25.2.2 Version Information

If portlet application providers want to provide version information about the portlet
application it is recommended to provide a META- INF/MANIFEST.MF entry in the WAR
file. The ‘Implementation-*' attributes should be used to define the version
information._The version information should follow the format defined by the Java
Product Versioning Specification (http://java.sun.com/j2se/1.4/pdf/versioning.pdf)

Example:

Implementation-Title: myPortletApplication
Implementation-Version: 1.1.2
Implementation-Vendor: SunMicrosystems. Inc.

PETA3PLT.25.3 Portlet Deployment Descriptor Elements

The following types of configuration and deployment information are required to be
supported in the portlet deployment descriptor for all portlet containers:

Java™ Portlet Specification, version 2.0 (2008-01-11) 180

10

15

20

25

30

35

Portlet Application Definition
Portlet Definition

Security information, which may also appear in the deployment descriptor is not required
to be supported unless the portlet container is part of an implementation of the J2EE
Specification.

| PET14PL.T.25.4 Rules for processing the Portlet Deployment

Descriptor

In this section is a listing of some general rules that portlet containers and developers
must note concerning the processing of the deployment descriptor for a portlet
application:

Portlet containers should ignore all leading whitespace characters before the first
non-whitespace character, and all trailing whitespace characters after the last non-
whitespace character for PCDATA within text nodes of a deployment descriptor.
Portlet containers and tools that manipulate portlet applications have a wide range
of options for checking the validity of a WAR. This includes checking the validity
of the web application and portlet deployment descriptor documents held within.
It is recommended, but not required, that portlet containers and tools validate both
deployment descriptors against the corresponding DTD and XML Schema
definitions for structural correctness. Additionally, it is recommended that they
provide a level of semantic checking. For example, it should be checked that a
role referenced in a security constraint has the same name as one of the security
roles defined in the deployment descriptor. In cases of non-conformant portlet
applications, tools and containers should inform the developer with descriptive
error messages. High end application server vendors are encouraged to supply this
kind of validity checking in the form of a tool separate from the container.

In elements whose value is an "enumerated type", the value is case sensitive.

PLT.25.5 Portlet Deplovmment Descriptor

Portlet deployment descriptor schema:

<?xml version="1.0" encoding="UTF-8"?>

<schema xmlns="http://www.w3.0rg/2001/XMLSchema"

xmlns:portlet="http://java.sun.com/xml/ns/portlet/portlet-app 2 0.xsd"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"

targetNamespace="http://java.sun.com/xml/ns/portlet/portlet-app 2 0.xsd"

elementFormDefault="qualified" attributeFormDefault="unqualified" version="2.0"

xml:lang="en">

Java™ Portlet Specification, version 2.0 (2008-01-11) 181

10

15

20

25

<annotation>

<documentation>

This is the XML Schema for the Portlet 2.0 deployment descriptor.

</documentation>

</annotation>

<annotation>

<documentation>

The following conventions apply to all J2EE

deployment descriptor elements unless indicated otherwise.

- In elements that specify a pathname to a file within the

same JAR file, relative filenames (i.e., those not

starting with "/") are considered relative to the root of

the JAR file's namespace. Absolute filenames (i.e., those

starting with "/") also specify names in the root of the

JAR file's namespace. In general, relative names are

preferred. The exception is .war files where absolute

names are preferred for consistency with the Servlet API.

</documentation>
</annotation>
<!__ khkkhkkhkhkhkkhkhkhkhkhhkkhhkhrhhkkhkhkhhhkhhkhrhhkhkhhhhdhhkhrhkhkhkhhkhkhkhhkrhkkhkhkhrhrkhkkhkhhrkhkhk*x -_>
<import namespace="http://www.w3.0rg/XML/1998/namespace"

schemalocation="http://www.w3.0rg/2001/xml.xsd"/>

<element name="portlet-app" type="portlet:portlet-appType">

<annotation>

<documentation>

The portlet-app element is the root of the deployment descriptor

for a portlet application. This element has a required attribute version

Java™ Portlet Specification, version 2.0 (2008-01-11) 182

10

15

20

25

to specify to which version of the schema the deployment descriptor

conforms. In order to be a valid JSR 286 portlet application the version

must have the value "2.0".

</documentation>

</annotation>

<unique name="portlet-name-uniqueness">

<annotation>

<documentation>

The portlet element contains the name of a portlet.

This name must be unique within the portlet application.

</documentation>

</annotation>

<selector xpath="portlet:portlet"/>

<field xpath="portlet:portlet-name"/>

</unique>

<unique name="custom-portlet-mode-uniqueness">

<annotation>

<documentation>

The custom-portlet-mode element contains the portlet-mode.

This portlet mode must be unique within the portlet application.

</documentation>

</annotation>

<selector xpath="portlet:custom-portlet-mode"/>

<field xpath="portlet:portlet-mode"/>

</unique>

<unique name="custom-window-state-uniqueness">

<annotation>

Java™ Portlet Specification, version 2.0 (2008-01-11)

183

10

15

20

25

<documentation>

The custom-window-state element contains the window-state.

This window state must be unique within the portlet application.

</documentation>

</annotation>

<selector xpath="portlet:custom-window-state"/>

<field xpath="portlet:window-state"/>

</unique>

<unique name="user-attribute-name-uniqueness">

<annotation>

<documentation>

The user-attribute element contains the name the attribute.

This name must be unique within the portlet application.

</documentation>

</annotation>

<selector xpath="portlet:user-attribute"/>

<field xpath="portlet:name"/>

</unique>

<unique name="filter-name-uniqueness">

<annotation>

<documentation>

The filter element contains the name of a filter.

The name must be unique within the portlet application.

</documentation>

</annotation>

<selector xpath="portlet:filter"/>

<field xpath="portlet:filter-name"/>

Java™ Portlet Specification, version 2.0 (2008-01-11) 184

10

15

20

25

</unique>
</element>

<complexType name="portlet-appType">

<sequence>

<element name="portlet" type="portlet:portletType" minOccurs="0"

maxOccurs="unbounded">

<unique name="init-param-name-uniqueness">

<annotation>

<documentation>

The init-param element contains the name the attribute.

This name must be unique within the portlet.

</documentation>

</annotation>

<selector xpath="portlet:init-param"/>

<field xpath="portlet:name"/>

</unique>

<unique name="supports-mime-type-uniqueness">

<annotation>

<documentation>

The supports element contains the supported mime-type.

This mime type must be unique within the portlet.

</documentation>

</annotation>

<selector xpath="portlet:supports"/>

<field xpath="mime-type"/>

</unique>

<unique name="preference-name-uniqueness'">

Java™ Portlet Specification, version 2.0 (2008-01-11) 185

10

15

20

25

<annotation>

<documentation>

The preference element contains the name the preference.

This name must be unique within the portlet.

</documentation>

</annotation>

<selector xpath="portlet:portlet-preferences/portlet:preference"/>

<field xpath="portlet:name"/>

</unique>

<unique name="security-role-ref-name-uniqueness">

<annotation>

<documentation>

The security-role-ref element contains the role-name.

This role name must be unique within the portlet.

</documentation>

</annotation>

<selector xpath="portlet:security-role-ref"/>

<field xpath="portlet:role-name"/>

</unique>

</element>

<element name="custom-portlet-mode"

type="portlet:custom-portlet-modeType" minOccurs="0"

maxOccurs="unbounded" />

<element name="custom-window-state"

type="portlet:custom-window-stateType" minOccurs="0"

maxOccurs="unbounded" />

<element name="user-attribute"

Java™ Portlet Specification, version 2.0 (2008-01-11)

186

10

15

20

25

type="portlet:user-attributeType" minOccurs="0" maxOccurs="unbounded"/>

<element name="security-constraint"

type="portlet:security-constraintType" minOccurs="0"

maxOccurs="unbounded" />

<element name="resource-bundle" type="portlet:resource-bundleType"

minOccurs="0"/>

<element name="filter" type="portlet:filterType" minOccurs="0"

maxOccurs="unbounded" />

<element name="filter-mapping" type="portlet:filter-mappingType"

minOccurs="0" maxOccurs="unbounded"/>

<element name="default-namespace" type="xs:anyURI" minOccurs="0"/>

<element name="event-definition" type="portlet:event-definitionType"

minOccurs="0" maxOccurs="unbounded"/>

<element name="public-render-parameter"

type="portlet:public-render-parameterType" minOccurs="0"

maxOccurs="unbounded" />

<element name="listener" type="portlet:listenerType" minOccurs="0"

maxOccurs="unbounded" />

<element name="container-runtime-option"

type="portlet:container-runtime-optionType" minOccurs="0"

maxOccurs="unbounded" />

</sequence>

<attribute name="version" type="portlet:string" use="required"/>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="cache-scopeType">

<annotation>

Java™ Portlet Specification, version 2.0 (2008-01-11)

187

10

15

20

25

<documentation>

Caching scope, allowed values are "private" indicating that the content

should not be shared across users and "public" indicating that the

content may be shared across users.

The default value if not present is "private".

Used in: portlet

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<complexType name="custom-portlet-modeType">

<annotation>

<documentation>

A custom portlet mode that one or more portlets in

this portlet application supports.

If the portal does not need to provide some management functionality

for this portlet mode, the portal-managed element needs to be set

to "false", otherwise to "true". Default is "true".

Used in: portlet-app

</documentation>

</annotation>

<sequence>

<element name="description" type="portlet:descriptionType" minOccurs="0"

maxOccurs="unbounded" />

<element name="portlet-mode" type="portlet:portlet-modeType"/>

Java™ Portlet Specification, version 2.0 (2008-01-11)

188

10

15

20

25

<element name="portal-managed" type="portlet:portal-managedType"

minOccurs="0"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="custom-window-stateType">

<annotation>

<documentation>

A custom window state that one or more portlets in this

portlet application supports.

Used in: portlet-app

</documentation>

</annotation>

<sequence>

<element name="description" type="portlet:descriptionType" minOccurs="0"

maxOccurs="unbounded" />

<element name="window-state" type="portlet:window-stateType"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="expiration-cacheType">

<annotation>

<documentation>

Expiration-time defines the time in seconds after which the portlet

output expires.

-1 indicates that the output never expires.

Used in: portlet

Java™ Portlet Specification, version 2.0 (2008-01-11)

189

10

15

20

25

</documentation>

</annotation>

<simpleContent>

<extension base="int"/>

</simpleContent>

</complexType>

<complexType name="init-paramType">

<annotation>

<documentation>

The init-param element contains a name/value pair as an

initialization param of the portlet

Used in:portlet

</documentation>

</annotation>

<sequence>

<element name="description" type="portlet:descriptionType" minOccurs="0"

maxOccurs="unbounded" />

<element name="name" type="portlet:nameType"/>

<element name="value" type="portlet:valueType"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="keywordsType">

<annotation>

<documentation>

Locale specific keywords associated with this portlet.

The kewords are separated by commas.

Java™ Portlet Specification, version 2.0 (2008-01-11)

190

10

15

20

25

Used in: portlet-info

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<complexType name="mime-typeType">

<annotation>

<documentation>

MIME type name, e.g. "text/html".

The MIME type may also contain the wildcard

character '*', like "text/*" or "*/*",

Used in: supports

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<complexType name="nameType">

<annotation>

<documentation>

The name element contains the name of a parameter.

Used in: init-param,

</documentation>

</annotation>

Java™ Portlet Specification, version 2.0 (2008-01-11)

191

10

15

20

25

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<complexType name="portletType">

<annotation>

<documentation>

The portlet element contains the declarative data of a portlet.

Used in: portlet-app

</documentation>

</annotation>

<sequence>

<element name="description" type="portlet:descriptionType" minOccurs="0"

maxOccurs="unbounded" />

<element name="portlet-name" type="portlet:portlet-nameType"/>

<element name="display-name" type="portlet:display-nameType"

minOccurs="0" maxOccurs="unbounded"/>

<element name="portlet-class" type="portlet:portlet-classType"/>

<element name="init-param" type="portlet:init-paramType" minOccurs="0"

maxOccurs="unbounded" />

<element name="expiration-cache" type="portlet:expiration-cacheType"

minOccurs="0"/>

<element name="cache-scope" type="portlet:cache-scopeType"

minOccurs="0"/>

<element name="supports" type="portlet:supportsType"

maxOccurs="unbounded" />

<element name="supported-locale" type="portlet:supported-localeType"

Java™ Portlet Specification, version 2.0 (2008-01-11) 192

10

15

20

25

minOccurs="0" maxOccurs="unbounded"/>

<element name="resource-bundle" type="portlet:resource-bundleType"

minOccurs="0"/>

<element name="portlet-info" type="portlet:portlet-infoType"

minOccurs="0"/>

<element name="portlet-preferences"

type="portlet:portlet-preferencesType" minOccurs="0"/>

<element name="security-role-ref" type="portlet:security-role-refType"

minOccurs="0" maxOccurs="unbounded"/>

<element name="supported-processing-event"

type="portlet:event-definition-referenceType" minOccurs="0"

maxOccurs="unbounded" />

<element name="supported-publishing-event"

type="portlet:event-definition-referenceType" minOccurs="0"

maxOccurs="unbounded" />

<element name="supported-public-render-parameter" type="portlet:string"

minOccurs="0" maxOccurs="unbounded"/>

<element name="container-runtime-option"

type="portlet:container-runtime-optionType" minOccurs="0"

maxOccurs="unbounded" />

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<simpleType name="portlet-classType">

<annotation>

<documentation>

The portlet-class element contains the fully

Java™ Portlet Specification, version 2.0 (2008-01-11) 193

10

15

20

25

qualified class name of the portlet.

Used in: portlet

</documentation>

</annotation>

<restriction base="portlet:fully-qualified-classType"/>

</simpleType>

<complexType name="container-runtime-optionType">

<annotation>

<documentation>

The container-runtime-option element contains settings

for the portlet container that the portlet expects to be honored

at runtime. These settings may re-define default portlet container

behavior, like the javax.portlet.escapeXml setting that disables

XML encoding of URLs produced by the portlet tag library as

default.

Names with the javax.portlet prefix are reserved for the Java

Portlet Specification.

Used in: portlet-app, portlet

</documentation>

</annotation>

<sequence>

<element name="name" type="portlet:nameType"/>

<element name="value" type="portlet:valueType" minOccurs="0"

maxOccurs="unbounded" />

</sequence>

</complexType>

<complexType name="filter-mappingType">

Java™ Portlet Specification, version 2.0 (2008-01-11) 194

10

15

20

25

<annotation>

<documentation>

Declaration of the filter mappings in this portlet

application is done by using filter-mappingType.

The container uses the filter-mapping

declarations to decide which filters to apply to a request,

and in what order. To determine which filters to

apply it matches filter-mapping declarations on the

portlet-name and the lifecyle phase defined in the

filter element. The order in which filters are invoked

is the order in which filter-mapping declarations

that match appear in the list of filter-mapping elements.

Used in: portlet-app

</documentation>

</annotation>

<sequence>

<element name="filter-name" type="portlet:filter-nameType"/>

<element name="portlet-name" type="portlet:portlet-nameType"

maxOccurs="unbounded" />

</sequence>

</complexType>

<complexType name="filterType">

<annotation>

<documentation>

The filter element specifies a filter that can transform the

content of portlet requests and portlet responses.

Filters can access the initialization parameters declared in

Java™ Portlet Specification, version 2.0 (2008-01-11)

195

10

15

20

25

the deployment descriptor at runtime via the FilterConfig

interface.

A filter can be restricted to one or more lifecycle phases

of the portlet. Valid entries for lifecycle are:

ACTION PHASE, EVENT PHASE, RENDER PHASE,

RESOURCE PHASE

Used in: portlet-app

</documentation>

</annotation>

<sequence>

<element name="description" type="portlet:descriptionType" minOccurs="0"

maxOccurs="unbounded" />

<element name="display-name" type="portlet:display-nameType"

minOccurs="0" maxOccurs="unbounded"/>

<element name="filter-name" type="portlet:filter—-nameType"/>

<element name="filter-class" type="portlet:fully-qualified-classType"/>

<element name="lifecycle" type="portlet:string" maxOccurs="unbounded"/>

<element name="init-param" type="portlet:init-paramType" minOccurs="0"

maxOccurs="unbounded" />

</sequence>

</complexType>

<complexType name="portlet-collectionType">

<annotation>

<documentation>

The portlet-collectionType is used to identify a subset

of portlets within a portlet application to which a

security constraint applies.

Java™ Portlet Specification, version 2.0 (2008-01-11) 196

10

15

20

25

Used in: security-constraint

</documentation>

</annotation>

<sequence>

<element name="portlet-name" type="portlet:portlet-nameType"

maxOccurs="unbounded" />

</sequence>

</complexType>

<complexType name="event-definitionType">

<annotation>

<documentation>

The event-definitionType is used to declare events the portlet can either

receive or emit.

The name must be unique and must be the one the

portlet is using in its code for referencing this event.

Used in: portlet-app

</documentation>

</annotation>

<sequence>

<element name="description" type="portlet:descriptionType" minOccurs="0"

maxOccurs="unbounded" />

<choice>

<element name="gname" type="xs:QName"/>

<element name="name" type="xs:NCName"/>

</choice>

<element name="alias" type="xs:QName" minOccurs="0"

maxOccurs="unbounded" />

Java™ Portlet Specification, version 2.0 (2008-01-11)

197

10

15

20

25

<element name="value-type" type="portlet:fully-qualified-classType"

minOccurs="0"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="event-definition-referenceType">

<annotation>

<documentation>

The event-definition-referenceType is used to reference events

declared with the event-definition element at application level.

Used in: portlet

</documentation>

</annotation>

<choice>

<element name="gname" type="xs:QName"/>

<element name="name" type="xs:NCName"/>

</choice>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="listenerType">

<annotation>

<documentation>

The listenerType is used to declare listeners for this portlet

application.

Used in: portlet-app

</documentation>

</annotation>

Java™ Portlet Specification, version 2.0 (2008-01-11)

198

10

15

20

25

<sequence>

<element name="description" type="portlet:descriptionType" minOccurs="0"

maxOccurs="unbounded" />

<element name="display-name" type="portlet:display-nameType"

minOccurs="0" maxOccurs="unbounded"/>

<element name="listener-class" type="portlet:fully-qualified-classType"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="portlet-infoType">

<sequence>

<element name="title" type="portlet:titleType" minOccurs="0"/>

<element name="short-title" type="portlet:short-titleType"

minOccurs="0"/>

<element name="keywords" type="portlet:keywordsType" minOccurs="0"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<simpleType name="portal-managedType">

<annotation>

<documentation>

portal-managed indicates if a custom portlet mode

needs to be managed by the portal or not.

Per default all custom portlet modes are portal managed.

Valid values are:

- true for portal-managed

- false for not portal managed

Java™ Portlet Specification, version 2.0 (2008-01-11)

199

10

15

20

25

Used in: custom-portlet-modes

</documentation>

</annotation>

<restriction base="portlet:string">

<enumeration value="true"/>

<enumeration value="false"/>

</restriction>

</simpleType>

<complexType name="portlet-modeType">

<annotation>

<documentation>

Portlet modes. The specification pre-defines the following values

as valid portlet mode constants:

"edit", "help", "view".

Portlet mode names are not case sensitive.

Used in: custom-portlet-mode, supports

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<complexType name="portlet-nameType">

<annotation>

<documentation>

The portlet-name element contains the canonical name of the

portlet. Each portlet name is unique within the portlet

Java™ Portlet Specification, version 2.0 (2008-01-11)

200

10

15

20

25

application.

Used in: portlet, filter-mapping

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<complexType name="portlet-preferencesType">

<annotation>

<documentation>

Portlet persistent preference store.

Used in: portlet

</documentation>

</annotation>

<sequence>

<element name="preference" type="portlet:preferenceType" minOccurs="0"

maxOccurs="unbounded" />

<element name="preferences-validator"

type="portlet:preferences-validatorType" minOccurs="0"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="preferenceType">

<annotation>

<documentation>

Persistent preference values that may be used for customization

Java™ Portlet Specification, version 2.0 (2008-01-11) 201

10

15

20

25

and personalization by the portlet.

Used in: portlet-preferences

</documentation>

</annotation>

<sequence>

<element name="name" type="portlet:nameType"/>

<element name="value" type="portlet:valueType" minOccurs="0"

maxOccurs="unbounded" />

<element name="read-only" type="portlet:read-onlyType" minOccurs="0"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<simpleType name="preferences-validatorType">

<annotation>

<documentation>

The class specified under preferences-validator implements

the PreferencesValidator interface to validate the

preferences settings.

Used in: portlet-preferences

</documentation>

</annotation>

<restriction base="portlet:fully-qualified-classType"/>

</simpleType>

<simpleType name="read-onlyType">

<annotation>

<documentation>

read-only indicates that a setting cannot

Java™ Portlet Specification, version 2.0 (2008-01-11)

202

10

15

20

25

be changed in any of the standard portlet modes

("view","edit" or "help").

Per default all preferences are modifiable.

Valid values are:

- true for read-only

- false for modifiable

Used in: preferences

</documentation>

</annotation>

<restriction base="portlet:string">

<enumeration value="true"/>

<enumeration value="false"/>

</restriction>

</simpleType>

<complexType name="resource-bundleType">

<annotation>

<documentation>

Name of the resource bundle containing the language specific

portlet informations in different languages (Filename without

the language specific part (e.g. en) and the ending (.properties).

Used in: portlet-info

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

Java™ Portlet Specification, version 2.0 (2008-01-11)

203

10

15

20

25

<complexType name="role-1linkType">

<annotation>

<documentation>

The role-link element is a reference to a defined security role.

The role-link element must contain the name of one of the

security roles defined in the security-role elements.

Used in: security-role-ref

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<complexType name="security-constraintType">

<annotation>

<documentation>

The security-constraintType i1s used to associate

intended security constraints with one or more portlets.

Used in: portlet-app

</documentation>

</annotation>

<sequence>

<element name="display-name" type="portlet:display-nameType"

minOccurs="0" maxOccurs="unbounded"/>

<element name="portlet-collection"

type="portlet:portlet-collectionType"/>

<element name="user-data-constraint"

Java™ Portlet Specification, version 2.0 (2008-01-11)

204

10

15

20

25

type="portlet:user-data-constraintType"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="security-role-refType">

<annotation>

<documentation>

The security-role-ref element contains the declaration of a

security role reference in the code of the web application. The

declaration consists of an optional description, the security

role name used in the code, and an optional link to a security

role. If the security role is not specified, the Deployer must

choose an appropriate security role.

The value of the role name element must be the String used

as the parameter to the

EJBContext.isCallerInRole (String roleName) method

or the HttpServletRequest.isUserInRole (String role) method.

Used in: portlet

</documentation>

</annotation>

<sequence>

<element name="description" type="portlet:descriptionType"

minOccurs="0" maxOccurs="unbounded"/>

<element name="role-name" type="portlet:role-nameType"/>

<element name="role-link" type="portlet:role-linkType" minOccurs="0"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

Java™ Portlet Specification, version 2.0 (2008-01-11) 205

10

15

20

25

</complexType>

<complexType name="public-render-parameterType">

<annotation>

<documentation>

The public-render-parameters defines a render parameter that is allowed

to be public and thus be shared with other portlets.

The identifier must be used for referencing this public render parameter

in the portlet code.

Used in: portlet-app

</documentation>

</annotation>

<sequence>

<element name="description" type="portlet:descriptionType" minOccurs="0"

maxOccurs="unbounded" />

<element name="identifier" type="portlet:string"/>

<choice>

<element name="gname" type="xs:QName"/>

<element name="name" type="xs:NCName"/>

</choice>

<element name="alias" type="xs:QName" minOccurs="0"

maxOccurs="unbounded" />

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="short-titleType">

<annotation>

<documentation>

Java™ Portlet Specification, version 2.0 (2008-01-11) 206

10

15

20

25

Locale specific short version of the static title.

Used in: portlet-info

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<complexType name="supportsType">

<annotation>

<documentation>

Supports indicates the portlet modes a

portlet supports for a specific content type. All portlets must

support the view mode.

Used in: portlet

</documentation>

</annotation>

<sequence>

<element name="mime-type" type="portlet:mime-typeType"/>

<element name="portlet-mode" type="portlet:portlet-modeType"

minOccurs="0" maxOccurs="unbounded"/>

<element name="window-state" type="portlet:window-stateType"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="supported-localeType">

Java™ Portlet Specification, version 2.0 (2008-01-11)

207

10

15

20

25

<annotation>

<documentation>

Indicated the locales the portlet supports.

Used in: portlet

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<complexType name="titleType">

<annotation>

<documentation>

Locale specific static title for this portlet.

Used in: portlet-info

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<simpleType name="transport-guaranteeType">

<annotation>

<documentation>

The transport-guaranteeType specifies that

the communication between client and portlet should

be NONE, INTEGRAL, or CONFIDENTIAL.

Java™ Portlet Specification, version 2.0 (2008-01-11)

208

10

15

20

25

NONE means that the portlet does not

require any transport guarantees. A value of

INTEGRAL means that the portlet requires that the

data sent between the client and portlet be sent in

such a way that it can't be changed in transit.

CONFIDENTIAL means that the portlet requires

that the data be transmitted in a fashion that

prevents other entities from observing the contents

of the transmission.

In most cases, the presence of the INTEGRAL or

CONFIDENTIAL flag will indicate that the use

of SSL is required.

Used in: user-data-constraint

</documentation>

</annotation>

<restriction base="portlet:string">

<enumeration value="NONE"/>

<enumeration value="INTEGRAL"/>

<enumeration value="CONFIDENTIAL"/>

</restriction>

</simpleType>

<complexType name="user-attributeType">

<annotation>

<documentation>

User attribute defines a user specific attribute that the

portlet application needs. The portlet within this application

can access this attribute via the request parameter USER INFO

Java™ Portlet Specification, version 2.0 (2008-01-11)

209

10

15

20

25

map.

Used in: portlet-app

</documentation>

</annotation>

<sequence>

<element name="description" type="portlet:descriptionType" minOccurs="0"

maxOccurs="unbounded" />

<element name="name" type="portlet:nameType"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

</complexType>

<complexType name="user-data-constraintType">

<annotation>

<documentation>

The user-data-constraintType is used to indicate how

data communicated between the client and portlet should be

protected.

Used in: security-constraint

</documentation>

</annotation>

<sequence>

<element name="description" type="portlet:descriptionType" minOccurs="0"

maxOccurs="unbounded" />

<element name="transport-guarantee"

type="portlet:transport-guaranteeType"/>

</sequence>

<attribute name="id" type="portlet:string" use="optional"/>

Java™ Portlet Specification, version 2.0 (2008-01-11)

210

10

15

20

25

</complexType>

<complexType name="valueType">

<annotation>

<documentation>

The value element contains the value of a parameter.

Used in: init-param

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<complexType name="window-stateType">

<annotation>

<documentation>

Portlet window state. Window state names are not case sensitive.

Used in: custom-window-state

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string"/>

</simpleContent>

</complexType>

<!--- everything below is copied from j2ee 1 4.xsd -->

<complexType name="descriptionType">

<annotation>

<documentation>

Java™ Portlet Specification, version 2.0 (2008-01-11)

211

10

15

20

25

The description element is used to provide text describing the

parent element. The description element should include any

information that the portlet application war file producer wants

to provide to the consumer of the portlet application war file

(i.e., to the Deployer). Typically, the tools used by the

portlet application war file consumer will display the

description when processing the parent element that contains the

description. It has an optional attribute xml:lang to indicate

which language is used in the description according to

RFC 1766 (http://www.ietf.org/rfc/rfcl766.txt). The default

value of this attribute is English (“en”).

Used in: init-param, portlet, portlet-app, security-role

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string">

<attribute ref="xml:lang"/>

</extension>

</simpleContent>

</complexType>

<complexType name="display-nameType">

<annotation>

<documentation>

The display-name type contains a short name that is intended

to be displayed by tools. It is used by display-name

elements. The display name need not be unique.

Example:

Java™ Portlet Specification, version 2.0 (2008-01-11)

212

10

15

20

25

<display-name xml:lang="en">Employee Self Service</display-name>

It has an optional attribute xml:lang to indicate

which language is used in the description according to

RFC 1766 (http://www.ietf.org/rfc/rfcl766.txt). The default

value of this attribute is English(“en”).

</documentation>

</annotation>

<simpleContent>

<extension base="portlet:string">

<attribute ref="xml:lang"/>

</extension>

</simpleContent>

</complexType>

<simpleType name="fully-qualified-classType">

<annotation>

<documentation>

The elements that use this type designate the name of a

Java class or interface.

</documentation>

</annotation>

<restriction base="portlet:string"/>

</simpleType>

<simpleType name="role-nameType">

<annotation>

<documentation>

Java™ Portlet Specification, version 2.0 (2008-01-11)

213

10

15

20

25

The role-nameType designates the name of a security role.

The name must conform to the lexical rules for an NMTOKEN.

</documentation>

</annotation>

<restriction base="NMTOKEN"/>

</simpleType>

<simpleType name="string">

<annotation>

<documentation>

This is a special string datatype that is defined by JavaEE

as a base type for defining collapsed strings. When

schemas require trailing/leading space elimination as

well as collapsing the existing whitespace, this base

type may be used.

</documentation>

</annotation>

<restriction base="string">

<whiteSpace value="collapse"/>

</restriction>

</simpleType>

<simpleType name="filter-nameType">

<annotation>

<documentation>

The logical name of the filter is declare

by using filter-nameType. This name is used to map the

filter. Each filter name is unique within the portlet

Java™ Portlet Specification, version 2.0 (2008-01-11)

214

10

application.

Used in: filter, filter-mapping

</documentation>

</annotation>

<restriction base="portlet:string"/>

</simpleType>

</schema>

Java™ Portlet Specification, version 2.0 (2008-01-11)

215

PLT.25.6 Pictures of the structure of a Deployment Descriptor

aitributes

''

|

|

|

| Z

| '—F portlet:portlet-name |
|

|

|

|

|

''

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
e | {'_a_ezefz%@'_e'gfiftéi@'_@@@%_i |
| |

| |

| |

| |

| |

| |

| |

| |

| |

| |

}

—{ portlet:supports

1 portlet portlet- mode |

s
Lm

__

0.= |

-' portlet window- state |

—(=H

.......................

0.x | !

Figure 4: Part one of the portlet element

Java™ Portlet Specification, version 2.0 (2008-01-11) 216

eferences [l

|’*: - portlet:sup

- portlet:supported-publishing-es

portlet:supported-public-rende;

Figure 5: Part 2 of the portlet element

Java™ Portlet Specification, version 2.0 (2008-01-11)

217

l___________________________________—|
portlet:portlet-appType

attributes

@3

E _______________________ ﬁ___:c" E | portiet:portlet-collectionType _|
portlet:portlet-collection Er.:-:)rtlE,lt:;:bortlet-name |
| 1.=
L]
-

portlet:user-data-constraint [=}

d portlet resource-bundle :

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 6: Part 1 of the portlet-app element

Java™ Portlet Specification, version 2.0 (2008-01-11) 218

. Eporllel.hfa«cryt:l

2 e
1.®

portlet:name

Figure 7: Part 2 of the portlet-app element

Java™ Portlet Specification, version 2.0 (2008-01-11)

219

10

15

20

25

30

PET1-7PLT.25.7 Uniqueness of Deployment Descriptor
Values

The following deployment descriptor values must be unique in the scope of the portlet
application definition:

portlet <portlet-names
custom-portlet-mode <portlet-modes>
custom-window-state <window-states>
user-attribute <name>

event-definition <name> and <gname>
public-render-parameter <name> and <gname>
filter <filter-name>

The following deployment descriptor values must be unique in the scope of the portlet
definition:

init-param <name>

supports <mime-type>
preference <name>
security-role-ref <role-name>

<supported-processing-event>

<supported-publishing-event>

<supported-public-render-parameter>

PLT1.8P1.T.25.8 Localization

The portlet deployment descriptor allows for localization on two levels:

e Localize values needed at deployment time
e Advertise supported locales at run-time

Both are described in the following sections.

| PET1.8-1PLT.25.8.1 Localization of Deployment Descriptor
Values

Localization of deployment descriptor values allows the deployment tool to provide
localized deployment messages to the deployer. The following deployment descriptor
elements may exist multiple times with different locale information in the xml:lang
attribute:

Java™ Portlet Specification, version 2.0 (2008-01-11) 220

10

15

20

25

30

35

40

45

e all <description> elements
e portlet <display-name>

The default value for the xml:lang attribute is English (“en”). Portlet-container
implementations using localized values of these elements should treat the English (*en”)
values as the default fallback value for all other locales.

The preferred method for localization of values in the deployment descriptor is
providinge a resource bundle via the <resource-bundles> element on the portlet
application level (see Resource Bundle section below).

PET1.8:2PL.T.25.8.2 Locales Supported by the Portlet

The portlet should always declare the locales it is going to support at run-time using the
<supported-locale> element in the deployment descriptor.

The supported locales declared in the deplovment descriptor should follow the
lang. COUNTRY _variant format as defined by RFC 1766
(http://www.fags.org/rfcs/rfc1766.html).

The supported locales are meta information intended to be used by the portal application.

PET-1-9PLT.25.9 Deployment Descriptor Example

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app *2 0.xsd"
version="42.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/portlet/portlet-app +2 0.xsd
http://java.sun.com/xml/ns/portlet/portlet-app *2 0.xsd">
—_ <portlets>
— — <description xml:lang="en"s>Portlet displaying the time in different time
zones</description>
— — <description xml:lang="de">Dieses Portlet zeigt die Zeit in
verschiedenen Zeitzonen an. </descriptions>
—_ — <portlet-name>TimeZoneClock</portlet-names>
— — <display-name xml:lang="en">Time Zone Clock Portlet</display-name>
—_ — <display-name xml:lang="de">ZeitzonenPortlet</display-name>
— — <portlet-class>com.myco.samplets.util.zoneclock.ZoneClock</portlet-
class>
— — <expiration-cache>60</expiration-cache>
— — <supports>
— — — <mime-type>text/html</mime-type>
— — — <portlet-mode>config</portlet-mode>

—_ — — <portlet-mode>edit</portlet-modes>

— — — <portlet-mode>help</portlet-mode>
— — </supports>

— — <supports>

— — — <mime-type>text/wml</mime-type>

— — — <portlet-mode>edit</portlet-modes>

— — — <portlet-mode>help</portlet-mode>
—_ — </supports>
— — <supported-localesen</supported-locale>

—_ — <portlet-info>

Java™ Portlet Specification, version 2.0 (2008-01-11) 221

10

15

20

25

30

35

40

45

50

55

— — — «<title>Time Zone Clock</title>
— — — <short-title>TimeZone</short-title>

— — — <keywords>Time, Zone, World, Clock</keywordss>
— — </portlet-info>

—_ — <portlet-preferences>

— — — <preferences>

— — — — <name>time-server</name>

— — — — <values>http://timeserver.myco.com</values>
— — — — <read-onlystrue</read-only>

— — — </preference>
— — — <preferences>
— — — — <name>port</name>

— — — — <value>404</value>
— — — — «<read-onlys>true</read-only>

— — — </preferences>
— — — <preferences>

— — — — <name>time-format</name>
— — — — <values>HH</value>

— — — — <value>mm</value>

— — — — <valuesss</value>

— — — </preferences>

— — </portlet-preferences>
—_ — <security-role-ref>
— — — <role-name>trustedUser</role-name>

— — — <role-linksauth-user</role-link>

— — </security-role-ref>
— </portlet>
—_ <custom-portlet-mode>

—_ — <description xml:lang="en">Pre-defined custom portlet mode

CONFIG</description>

— — <portlet-mode>CONFIG</portlet-mode>
— </custom-portlet-mode>

—_ <custom-window-state>

— — <description xml:lang="en">Occupies 50% of the portal page</descriptions>
— — <window-state>half-page</window-state>

—_ </custom-window-state>
—_ <user-attribute>

—_ — <description xml:lang="en">Pre-defined attribute for the telephone

number of the user at work.</description>
— — <names>workInfo/telephone</name>

— </user-attributes>

—__ <security-constraints>

—_ — <portlet-collection>

— — — <portlet-name>TimeZoneClock</portlet-name>

— — </portlet-collection>

—_— — <user-data-constraint>

— — — <transport-guarantee>CONFIDENTIAL</transport-guarantees>

— — </user-data-constraints>

— </security-constraint>
</portlet-app>

PLET110PLT.25.10 Resource Bundles

As an alternative to embedding all localized values in the deployment descriptor the
portlet can provide a separate resource bundle containing the localized values. Providing
localized values via resource bundles is the preferred way, as it allows the separation of
deployment descriptor values from localized values.

For language specific portlet application level information the fully qualified class name
of the resource bundle can be set in the deployment descriptor using the resource-
bundle element on the portlet application level. The Java Portlet Specification defines
the following constants for the application level resource bundle:

Java™ Portlet Specification, version 2.0 (2008-01-11) 222

javax.portlet.app.
custom-portlet-mode.

<portlet-mode>.description

Description of custom portlet mode <portlet-mode>.

javax.portlet.app.
custom-window-state.

<window-state>.description

Description of the custom window state <window-
state>.

javax.portlet.app.

user-attribute.<name>.description

Description of the user attribute <name>.

javax.portlet.app.

event-definition.
<name>.description

Description of the event <name>. <name> uses the
string representation of the Java oName class with

{namespace}localpart. If the namespace 1S
missing the defined default namespace is assumed.

Note that the resource bundle name needs to comply
with the java.util.Property.store method, i.e.
the “:” must be escaped.

javax.portlet.app.
event-definition.<name>.

display-name

Name under which this event is displayed to users or
to_tools. The display name need not be unique.
<name> uses the string representation of the Java
OName class with

{namespace}localpart. If the namespace 1S
missing the defined default namespace is assumed.

Note that the resource bundle name needs to comply
with the java.util.Property.store method, i.e.
the “:” must be escaped.

javax.portlet.app.
public-render-parameter.
<name>.description

Description of the public render parameter <name>.

javax.portlet.app.
public-render-parameter.
<name>.display-name

Name under which this public render parameter is
displayed to users or to tools. The display name need
not be unique.

To provide language specific portlet information, like title and keywords, resource
bundles can be used. The fully qualified class name of the resource bundle can be set in
the portlet definition in the deployment descriptor using the resource-bundle

tagelement.

The Java Portlet Specification +-8-defines the following constants for this-the portlet level

resource bundle:

Java™ Portlet Specification, version 2.0 (2008-01-11) 223

javax.portlet.title

The title that should be displayed in the titlebar of
this portlet. Only one title per locale is allowed. Note
that this title may be overrided by the portal or
programmatically by the portlet.

javax.portlet.short-title

A short version of the title that may be used for
devices with limited display capabilities. Only one
short title per locale is allowed.

javax.portlet.keywords

Keywords describing the functionality of the portlet.
Portals that allow users to search for portlets based
on keywords may use these keywords. Multiple
keywords per locale are allowed, but must be
separated by commas °,’.

javax.portlet.description

Description of the portlet.

javax.portlet.display-name

Name under which this portlet is displayed at
deployment time or to tools. The display name need
not be unique.

javax.portlet.app.custom-portlet-

Decoration name for the portlet managed custom

mode.<name>.decoration-name

portlet mode <name>.

Java™ Portlet Specification, version 2.0 (2008-01-11) 224

10

15

PETAHPLT.25.11 Resource Bundle Example

This section shows the resource bundles for the world population clock portlet from the
deployment descriptor example. The first resource bundle is for English and the second
for German locales.

English Resource Bundle

#

filename: clock en.properties

Portlet Info resource bundle example
javax.portlet.title=World Population Clock
javax.portlet.short-title=WorldPopClock
javax.portlet.keywords=World, Population, Clock

German Resource Bundle

#

filename: clock de.properties

Portlet Info resource bundle example
javax.portlet.title=Weltbevdlkerungsuhr
javax.portlet.short-title=Weltuhr
javax.portlet.keywords=Welt, Bevdlkerung, Uhr

Java™ Portlet Specification, version 2.0 (2008-01-11) 225

Java™ Portlet Specification, version 2.0 (2008-01-11) 227

PETF24PLT.26

10

15

20

25

Portlet Tag Library

The portlet tag library enables JSPs that are included from portlets to have direct access
to portlet specific elements such as the_ request, like RenderRequest oOr
ResourceReqguest and response, like ActionResponse O RenderResponse. It also
provides JSPs with access to portlet functionality such as creation of portlet URLs.

CCCXV

The portlet-container must provide an implementation of the portlet tag library.
Portlet developers may indicate an alternate implementation using the mechanism defined
in the JSP.7.3.9 Well-Know URIs Section of the JSP Specification+-2.

JSP pages using the tag library must declare this in a taglib like this (using the suggested
prefix value):

<%@ taglib uri="http://java.sun.com/portlet_2 0” prefix="portlet”

o
>

Since Java Portlet Specification V2.0 JSP V2.0 is supported and thus the Portlet Tag
Library implementation should support the JSP 2.0 Expression Language (EL) for the
tags in the Portlet Tag Library.

In order to support Java Portlet Specification V1.0 portlets that references the V1.0 tag
library via

<%@ taglib uri="http://java.sun.com/portlet” prefix="portlet” %>

the portlet container must also support the V1.0 tag library defined in JSR 168.

PET241PL.T.26.1 defineObjects Tag

.ccexvi

The defineobjects tag must define the following variables in the JSP page:

e RenderRequest renderRequest when included from within the render method,
null or not defined otherwise er

® ResourceRequest resourceRequest when included from within the
serveResource method, null or not defined otherwise

® ActionRequest actionRequest when included from within the processaction
method, null or not defined otherwise

Java™ Portlet Specification, version 2.0 (2008-01-11) 229

10

15

20

25

30

35

® FEventRequest eventRequest when included from within the processEvent
method, null or not defined otherwise

® RenderResponse renderResponse when included from within the render
method, null or not defined otherwise

® ResourceResponse resourceResponse when included from within the
serveResource method, null or not defined otherwise

® ActionResponse actionResponse when included from within the

processAction method, null or not defined otherwise

e FEventResponse eventResponse when included from within the
processEvent method, null e—or not defined otherwise

e PortletConfig portletConfig

e portletSession portletSession, providing access to the portletSession, does
not create a new session, only returns an existing session or null if no session
exists.

® Map<String, Object> portletSessionMapScope, providing access to the
portletSession attributes as a Map equivalent to the
PortletSession.getAttributeMap () call, does not create a new session, only
returns an existing session. If no session attributes exist this method returns an
empty Map.

® PortletPreferences portletPreferences, providing access to the portlet
preferences.

® Map<String, String[]> portletPreferencesValues, providing access to the
portlet preferences as a Map, equivalent to the PortletPreferences.getMap ()
call. If no portlet preferences exist this method returns an empty Map.

These variables must reference the same Portlet API objects stored in the request object
of the JSP as defined in the PLT.46189.3.42 Included Request Attributes Section.

A JSP using the defineObjects tag may use these variables from scriptlets throughout
the page.

The defineObjects tag must not define any attribute and it must not contain any body
content.” ™"

An example of a JSP using the defineObjects tag could be:

<portlet:defineObjects/>

<%=r

0]

nderResponse.getCacheControl () .setFitlesetExpirationTime (im

et—titdell0) %>

He

After using the defineObjects tag, the JSP invokes the setFitlegetCacheControl()
method of the renderResponse to set the title-of the-pertletexpiration time of the response
to 10 seconds.

Java™ Portlet Specification, version 2.0 (2008-01-11) 230

10

15

20

25

30

35

PET24:2P1.T.26.2 actionURL Tag

The portlet actionURL tag creates a URL that must point to the current portlet and must
trigger an action request with the supplied parameters.““*""

Parameters may be added to the URL by including the param tag between the actionURL
start and end tags.

The following non-required attributes are defined for this tag:

e windowState (Type: String, non-required) — indicates the window state that the
portlet should have when this link is executed. The following window states are
predefined: minimized, normal, and maximized. If the specified window state is
illegal for the current request, a JspException must be thrown.“““™ Reasons for a
window state being illegal may include that the portal does not support this state,
the portlet has not declared in its deployment descriptor that it supports this state,
or the current user is not allowed to switch to this state. If a window state is not
set for a URL, it should stay the same as the window state of the current
request.“““* The window state attribute is not case sensitive.

e portletMode (Type: String, non-required) — indicates the portlet mode that the
portlet must have when this link is executed, if no error condition ocurred.**
The following portlet modes are predefined: edit, help, and view. If the
specified portlet mode is illegal for the current request, a JspException must be
thrown. ““**"Reasons for a portlet mode being illegal may include that the portal
does not support this mode, the portlet has not declared in its deployment
descriptor that it supports this mode for the current markup, or the current user is
not allowed to switch to this mode. If a portlet mode is not set for a URL, it must
stay the same as the mode of the current request. “““*""The portlet mode attribute
1s not case sensitive.

e var (Type: String, non-required) — name of the exported scoped variable for the
action URL. The exported scoped variable must be a string. By default, the
result of the URL processing is written to the current Jspwriter. If the result is
exported as a JSP scoped variable, defined via the var attributes, nothing is
written to the current gspwriter. ™"

Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation. If the given
variable name already exists in the scope of the page or it is used within an
iteration loop, the new value overwrites the old one.” ™"

e secure (Type: String, non-required) — indicates if the resulting URL should be a
secure connection (secure="true”) or an insecure one (secure="false”). If the
specified security setting is not supported by the run-time environment, a
JspException must be thrown.““™"" If the security is not set for a URL, it must
stay the same as the security setting of the current request.

Java™ Portlet Specification, version 2.0 (2008-01-11) 231

10

15

20

25

30

35

e copyCurrentRenderParameters (Type: boolean, non-required) — if set to true
requests that the private render parameters of the portlet of the current request
must be attached to this URL. ““*""" It is equivalent to setting each of the current
private render parameters via the <portlet :params tag. If additional
<portlet:param> tags are specified parameters with the same name as an
existing render parameter will get merged and the value defined in additional
<portlet :params tags must be pre-pended. “““***™
The default for this attribute is false.

e escapeXml (Type: boolean, non-required) — determines whether characters
<>, &.’.” in the resulting output should be converted to their corresponding
character entity codes (‘<’ gets converted to ‘&lIt;’, >’ gets converted to ‘>’
‘&’ gets converted to ‘&’, ‘*’ gets converted to ‘'’, " gets converted
to ‘":%). ““““*™* Default value is true.

e name (Type: String, non-required) — specifies the name of the action that can be
used by GenericPortlet to dispatch to methods annotated with ProcessAction.
Setting this name will result in adding a parameter to this action URL with the
name javax.portlet.action.

A JspException with the PortletException that caused this error as root cause is
thrown in the following cases:

e Ifanillegal window state is specified in the windowState attribute.
e Ifan illegal portlet mode is specified in the portletMode attribute.
e [f- an illegal security setting is- specified in the secure attribute.

A JspException with the java.lang.IllegalStateException that caused this error as
root cause is thrown in the following cases:

e [Ifthis tag is used in markup provided by a serveResource call that was directly
or indirectly triggered via a resource URL of type FULL or PORTLET.

An example of a JSP using the actionURL tag could be:

<portlet:actionURL copyCurrentRenderParameters="true”
windowState="maximized” portletMode="edit”_name="editStocks”>

<portlet:param name="aetionpage” value="editSteeksl” />
</portlet:actionURL>

The example creates a URL that brings the portlet into EDIT mode and MAXIMIZED
window state to edit the stocks quote list.

PET-243P1.T.26.3 renderURL Tag

The portlet renderURL tag creates a URL that- must point to the current portlet and must
trigger a render request with the supplied parameters.“““**

Java™ Portlet Specification, version 2.0 (2008-01-11) 232

Parameters may be added by including the param tag between the renderURrL start and
end tags.

The following non-required attributes are defined for this tag:

10

15

20

25

30

35

40

windowState (Type: String, non-required) — indicates the window state that the
portlet should have when this link is executed. The following window states are
predefined: minimized, normal, and maximized. If the specified window state is
illegal for the current request, a JspException must be thrown.““***' Reasons for a
window state being illegal may include that the portal does not support this state,
the portlet has not declared in its deployment descriptor that it supports this state,
or the current user is not allowed to switch to this state. If a window state is not
set for a URL, it should stay the same as the window state of the current
request.““““" The window state attribute is not case sensitive.

portletMode (Type: String, non-required) — indicates the portlet mode that the
portlet must have when this link is executed, if not error condition ocurred.*““***"
The following portlet modes are predefined: edit, help, and view. Ifthe
specified portlet mode is illegal for the current request, a JspException must be
thrown. " Reasons for a portlet mode being illegal may include that the portal
does not support this mode, the portlet has not declared in its deployment
descriptor that it supports this mode for the current markup, or the current user is
not allowed to switch to this mode. If a portlet mode is not set for a URL, it must
stay the same as the mode of the current request.““™* The portlet mode attribute
1s not case sensitive.

var (Type: String, non-required) — name of the exported scoped variable for the
render URL. The exported scoped variable must be a string. By default, the
result of the URL processing is written to the current gspwriter. If the result is
exported as a JSP scoped variable, defined via the var attributes, nothing is
written to the current gspwriter. "

Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation. If the given
variable name already exists in the scope of the page or it is used within an
iteration loop, the new value overwrites the old one.”™*""

secure (Type: String, non-required) — indicates if the resulting URL should be a
secure connection (secure="true”’) or an insecure one (secure="false”). If the
specified security setting is not supported by the run-time environment, a
JspException must be thrown. If the security is not set for a URL, it must stay the
same as the security setting of the current request.”**"™"
copyCurrentRenderParameters (Type: boolean, non-required) — if set to true

requests that the private render parameters of the portlet of the current request
must attached to this URL. ““**™ It is equivalent to setting each of the current
private render parameters via the <portlet :params tag. If additional
<portlet :params tags are specified parameters with the same name as an
existing render parameter will get merged and the value defined in additional

Java™ Portlet Specification, version 2.0 (2008-01-11) 233

10

15

20

25

30

<portlet :params tags must be pre-pended. <

The default for this attribute is false.

e escapeXml (Type: boolean, non-required) — deterrmines whether characters
<.>.&.’.” in the resulting output should be converted to their corresponding
character entity codes (‘<’ gets converted to ‘<’, >’ gets converted to ‘>’
‘&’ gets converted to ‘&’, *“’ gets converted to ‘'’, ” gets converted
to ‘":”). “*I Default value is true

A JspException with the PortletException that caused this error as root cause is
thrown in the following cases:

e Ifan illegal window state is specified in the windowState attribute.
e Ifan illegal portlet mode is specified in the portletMode attribute.
e Ifan illegal security setting is specified in the secure attribute.

A JspException with the java.lang.IllegalStateException that caused this error as
root cause is thrown in the following cases:

e Ifthis tag is used in markup provided by a serveResource call that was directly
or indirectly triggered via a resource URL of type FULL or PORTLET.

An example of a JSP using the renderURL tag could be:

<portlet:renderURL portletMode="view” windowState="normal” >
<portlet:param name="showQuote” value="myCompany” />
<portlet:param name="showQuote” value="someOtherCompany” />
</portlet:renderURL>

The example creates a URL to provide a link that shows the stock quote of myCompany

and someOtherCompany and changes the portlet mode to view and the window state to
NORMAL.

PLT.26.4 resourceURL Tag

The portlet rendersourceURL tag creates a URL that- must point to the current portlet
and must trigger a serveResource request with the supplied parameters.“**"

The resourceURL must preserve the current portlet mode, window state and render
parameters, <

Parameters may be added by including the param tag between the resourceURL start and
end tags. If such a parameter has the same name as a render parameter in this URL, the
render parameter value must be the last value in the attribute value array. <"

The following non-required attributes are defined for this tag:

Java™ Portlet Specification, version 2.0 (2008-01-11) 234

10

15

20

25

30

35

e var (Type: String, non-required) — name of the exported scoped variable for the
resource URL. The exported scoped variable must be a string. By default, the
result of the URL processing is written to the current Jspwriter. If the result is
exported as a JSP scoped variable, defined via the var attributes, nothing is
written to the current Jspuiriter.® >

Note: After the URL is created it is not possible to extend the URL or add any
further parameter using the variable and String concatenation. If the given
variable name already exists in the scope of the page or it is used within an
iteration loop, the new value overwrites the old one.®*"!

e secure (Type: String, non-required) — indicates if the resulting URL should be a
secure connection (secure="true’’) or an insecure one (secure="false). If the
specified security setting is not supported by the run-time environment, a
JspException must be thrown. If the security is not set for a URL, it must stay the
same as the security setting of the current request.*i

e escapeXml (Type: boolean, non-required) — determines whether characters
<>, &.’.” in the resulting output should be converted to their corresponding
character entity codes (‘<’ gets converted to ‘&lIt;’, >’ gets converted to ‘>’
‘&’ gets converted to ‘&’, ‘*’ gets converted to ‘'’, “”” gets converted
to ‘":”). “*Mil Default value is true

e id (type:String, non-required) — sets the ID for this resource. The ID can be
retrieved in the serveResource call from the request via the getResourcelID
method.

e cacheability (type: String, non-required) — defines the cacheability of the markup
returned by this resource URL. Valid values are: “rury”, “PorTLET”, and “PAGE”.
See Section PLT 13.6 for more details on the semantic of these constants.

If cacheability is not set the default is PAGE cachability.

A JspException with the PortletException that caused this error as root cause is
thrown in the following case:

e [Ifan illegal security setting is specified in the secure attribute.

A JspException with the java.lang.IllegalStateException that caused this error as
root cause is thrown in the following cases:

e If this tag is used in markup provided by a serveResource call that was directly
or indirectly triggered via a resource URL of a weaker cacheability type.

An example of a JSP using the resourceURL tag could be:

Java™ Portlet Specification, version 2.0 (2008-01-11) 235

10

15

20

25

30

<portlet:resourceURL id="icons/mypict.gif” var="iconsURL"”/>
<img src="<%=iconsURL%>" >

The example creates a URL to provide a link that renders the icon named mypict.gif
via the default GenericPortlet resource serving mechanism.

PET24.4P1.T.26.5 namespace Tag

This tag produces a unique value for the current portlet and must match the value of
PortletResponse .getNamespace method. “*™

This tag should be used for named elements in the portlet output (such as Javascript
functions and variables). The namespacing ensures that the given name is uniquely
associated with this portlet and avoids name conflicts with other elements on the portal
page or with other portlets on the page.

The namespace tag must not allow any body content.

An example of a JSP using the namespace tag could be:

<A HREF="javascript:<portlet:namespace/>doFoo ()" >Foo

The example prefixes a JavaScript function with the name ‘doFoo’, ensuring uniqueness
on the portal page.

PET24.5PL.T.26.6 param Tag

This tag defines a parameter that may be added to an actionURL, ef-renderURL_ Or

1
resourceURL.cCC

The param tag must not contain any body content.®"

If the param tag has an empty value the specified parameter name must be removed from
the URL. ““!! In the case of a resource URL an empty value does not alter the render
parameters automatically added by the portlet container to resource URLs.

If the same name of a parameter occurs more than once within a—an actionURL,
renderURL OI resourceURL the values must be delivered as parameter value array with
the values in the order of the declaration within the URL tag, “!ii

The following required attributes are defined for this tag:

e name (Type: String, required) — the name of the parameter to add to the URL. If
name is null or empty, no action is performed.

e value (Type: String, required) — the value of the parameter to add to the URL. If
value is null, it is processed as an empty value.

Java™ Portlet Specification, version 2.0 (2008-01-11) 236

10

15

20

25

30

An example of a JSP using the param tag could be:

<portlet:param name="myParam” value="someValue”/>

PLT.26.7 property Tag

This tag defines a property that may be added to an actionURL, renderURL Or
resourceURL and is equivalent to the API call addProperty ().

The property tag should not contain any body content.

If the same name of a property occurs more than once within an actionURL, renderURL
or resourceURL the values should be delivered as properties value array with the values
in the order of the declaration within the URL tag.

The following required attributes are defined for this tag:

e name (Type: String, required) — the name of the property to add to the URL. If
name is null or empty, no action is performed.

e value (Type: String, required) — the value of the property to add to the URL. If
value is null, it is processed as an empty value.

An example of a JSP using the param tag could be:

<portlet:actionURL>
<portlet:property name="myProperty” value="someValue”/>
</portlet:actionURL>

PLT.26.8 Changing the Default Behavior for escapeXml

In the Java Portlet Specification V1.0 the behavior in regards to XML escaping URLs
written by the tag library was undefined and thus portlets may have been coded with the
assumption that the URLs where not XML escaped. In order to be able to run these
portlets on a Java Portlet Specification V 2.0 container the specification provides the
javax.portlet.escapexml container runtime option. The value of this setting can either
be true for XML escaping URLs per default, or false for not XML escaping URLs per
default.

Portlet that require that the default behavior for URLs written to the output stream via the
portlet tag library should therefore define the following container runtime option in the
portlet deployment descriptor:

<portlet>

<container-runtime-option>

Java™ Portlet Specification, version 2.0 (2008-01-11) 237

<name>javax.portlet.escapeXml</name>

<value>false</value>

</container-runtime-option>

</portlet>

If the portlet has defined the javax.portlet.escapexml container runtime option the
portlet container should honor this setting as otherwise the portlet may not work

correctly.

Java™ Portlet Specification, version 2.0 (2008-01-11) 238

10

15

PLT.27

I

Leveraging JAXB for Event payloads

The Java Portlet Specification 2.0 leverages the Java Architecture for

XML Binding (JAXB) 2.0 for defining event payload data that may be transported across
the network via remote protocols such as Web Services for Remote Portlets (WSRP) 2.0

specification.

The event payload must be defined using the JAXB annotations in the Java object and
defining the Java object class name in the deployment descript via the value-type
element. The event payload must have a valid JAXB binding, or be in the list of Java
primitive types / standard classes of the JAXB 2.0 specification section 8.5.1 or 8.5.2, and
implement java.io.Serializable, otherwise a
java.lang.IllegalArqumentException must be thrown. The primitive type
xsd:anyURI must be mapped to java.net.URI and not java.lang.String, which is the
default in JAXB, in order to not loose semantics.

Java™ Portlet Specification, version 2.0 (2008-01-11) 239

10

15

20

25

PETF25PL.T.28

—

Technology Compatibility Kit Requirements

This chapter defines a set of requirements a portlet container implementation must meet
in order to run the portlet Technology Compatibility Kit (TCK).

These requirements are only needed for the purpose of determining whether a portlet
container implementation complies with the Portlet Specification or not.

PET251APLT.28.1 TCK Test Components

Based on the Portlet Specification (this document) and the Portlet API, a set of testable
assertions have been extracted and identified. The portlet TCK treats each testable
assertion as a unique test case.

All test cases are run from a Java Test Harness. The Java Test Harness collects the results
of all the tests and makes a report on the overall test.

Each portlet TCK test case has two components:

e Test portlet applications: These are portlet applications containing portlets,
servlets or JSPs coded to verify an assertion. These test portlet applications are
deployed in the portlet container being tested for compliance.

e Test client: It is a standalone java program that sends HTTP requests to portlet
container where test portlet applications of the test case have been deployed for
compliance testing.

The portlet TCK assumes that the test portlet applications are deployed in the portlet
container before the test run is executed.

The test client looks for expected and unexpected sub strings in the HTTP response to

decide whether a test has failed or passed. The test client reports the result of the test
client to the Java Test Harness.

Java™ Portlet Specification, version 2.0 (2008-01-11) 240

PET252PL.T.28.2 TCK Requirements

In TCK, every test is written as a set of one or more portlets. A test client is written for
each test, the test client must interact with a portal page containing the portlets that are
part of the test. To accomplish this, TCK needs to obtain the initial URL for the portal
page of each test case. All the portlets in the portal page obtained with the initial URL
must be in VIEW portlet mode and in NORMAL window state. Subsequent requests to
the test are done using URLs generated by PortletURI that are part of the returned portal
pages. These subsequent requests must be treated as directed to same portal page
composed of the same portlets.

Portal/portlet-containers must disable all caching mechanisms when running the TCK test
cases.

Since aggregation of portlets in a portal page and the URLs used to interact with the
portlets are vendor specific, TCK provides two alternative mechanisms in the framework
to get the URLs to portal pages for the test cases: declarative configuration or
programmatic configuration. A vendor must support at least one of these mechanisms to
run the conformance tests.

| PET252-1P1.T.28.2.1 Declarative configuration of the portal page for
a TCK test

TCK publishes an XML file containing the portlets for each test case. Vendors must refer
to this file for establishing a portal page for every test. Vendors must provide an XML
file with a full URL for the portal page for each test. A call to this URL must generate a
portal page with the content of all the portlets defined for the corresponding test case. If
redirected to another URL, the new URL must use the same host name and port number
as specified in the file. Refer to TCK User guide for details on declarative configuration.

A snippet of the TCK provided XML file for declarative configuration would look like:

<test case>
<test name>PortletRequest GetAttributeTest</test name>
<test portlets>
<app name>PortletRequestWebApp</app name>
<portlet name>GetAttributeTestPortlet</portlet name>
</test_portlet>
<test portlets>
<app_name>PortletRequestWebApp</app name>
<portlet name>GetAttributeTest 1 Portlet</portlet namex>
<test portlets>
</test casex>

The corresponding snippet for the vendor’s provided XML file might look like:

<test_case_url>

<test names>PortletRequest GetAttributeTest</test name>

<test urls>http://foo:8080/portal?pageName=TestCasel</test urls>
</test_case urls

Java™ Portlet Specification, version 2.0 (2008-01-11) 241

10

15

20

25

30

35

40

45

50

55

| PETF25211P1L.T.28.2.1.1 Schema for XML file provided with Portlet

TCK

<?xml version="1.0" encoding="UTF-8"?>
<!—portletTCKTestCases.xsd-->
<xs:schema
targetNamespace="http://java.sun.com/xml/ns/portlet/portletTCK 1 0.xsd"
xmlns:pct="http://java.sun.com/xml/ns/portlet/portletTCK 1 0.xsd"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="pct test cases">
<xs:annotations
<xs:documentation>Test Cases defined in Portlet Compatibility
Kit</xs:documentations>
</xs:annotation>
<xs:complexType>
<XS:sequencex
<xs:element ref="pct:test case" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="test case">
<xs:annotations>
<xs:documentation>Test Case</xs:documentations>
</xs:annotation>
<xs:complexTypes>
<XS:sequencex
<xs:element ref="pct:test _name"/>

<xs:element ref="pct:test portlet" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="test portlet">
<xs:annotations
<xs:documentation>A test Portlet</xs:documentations>
</xXs:annotation>
<xs:complexType>
<XS:sequence>
<xs:element ref="pct:portlet name"/>
<xs:element ref="pct:app name"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="test name" type="xs:string"s>
<xs:annotations>
<xs:documentation>Unique name for a test case</xs:documentations>
</xs:annotation>
</xs:element>
<xs:element name="app name" type="xs:string">
<xs:annotations
<xs:documentation>Name of the portlet application a portlet belongs
to.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="portlet name" type="xs:string"s>
<xs:annotations
<xs:documentation>Name of the portlet</xs:documentations
</xXs:annotation>
</xs:element>
</xXs:schemas>

Java™ Portlet Specification, version 2.0 (2008-01-11) 242

10

15

20

25

30

35

40

45

50

55

| PET25.2.1.2P1.T.28.2.1.2 Schema for XML file that provided by
vendors

<?xml version="1.0" encoding="UTF-8"?>
<!—portletTCKTestURLs.xsd - Schema that must be followed by the vendors to write
the file that has mapping from a portlet TCK -->
<!-- test case to a url. -->
<xs:schema
targetNamespace="http://java.sun.com/xml/ns/portlet/portletTCKVendor 1 0.xsd"
xmlns:pct="http://java.sun.com/xml/ns/portlet/portletTCKVendor 1 0.xsd"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified">
<xs:element name="test case urls">
<xs:annotations
<xs:documentation>Mapping of Test Cases defined in Portlet Compatibility
Kit to vendor specific URLs</xs:documentations
</xs:annotation>
<xs:complexTypes>
<XS:sequencex
<xs:element ref="pct:test case url" minOccurs="1" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="test case_url"s>
<xs:annotations
<xs:documentation>Test Case to URL map entry </xs:documentations>
</xs:annotation>
<xs:complexTypes>
<XS:sequencex
<xs:element ref="pct:test_name"/>
<xs:element ref="pct:test url"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="test name" type="xs:string"s>
<xs:annotations
<xs:documentation>Unique name for a test case from the
portletTCKTestCases.xml published by TCK</xs:documentations>
</xs:annotation>
</xs:element>
<xs:element name="test url" type="xs:string">
<xs:annotations
<xs:documentation>Complete URL that would result in a page containing
contents of portlets defined for this test case.</xs:documentations>
</xs:annotation>
</xs:element>
</xs:schemas>

PET-2522P1.T.28.2.2 Programmatic configuration of the portal
page for a test

For programmatic configuration, a vendor must provide a full URL as a configuration
parameter to the TCK. The TCK will call this URL with a set of parameters indicating
the set of portlets that must appear in a portal page for the given test. Upon receiving this
request, the vendor provided URL could dynamically create a portal page with the
required portlets. Calls to this vendor provided URL are always HTTP GET requests. The
parameter names on the URL are multiple occurrences of "portletName". Values of this
paramater must be a string consisting of the test case application name and portlet name
delimited by a “/”. The response of this call must be a portal page with the required

Java™ Portlet Specification, version 2.0 (2008-01-11) 243

10

15

20

25

30

portlets or a redirection to another URL where the portal page will be served. If
redirected, the new URL must use the same host and port number as original URL.

A vendor provided URL would look like:

VendorPortalURL=http://fo0:8080/portal/tckservliet

For a test case involving one portlet, TCK would call this URL with the following
parameters:

http://foc0:8080/portal/tckservlet?portletName=PortletRequestWebApp
/GetAttributeTestPortlet

PLT.25.2.3P1.T.28.2.3 Test Portlets Content

The test cases portlets encode information for the test client within their content. As
different vendor implementations may generate different output surrounding the content
produced by the portlets, the portlets delimit the information for the test clients using a
special element tag, portlet-tck.

PET-252.4P1.T.28.2.4 Test Cases that Require User Identity

Some of the Portlet TCK require an authenticated user. The TCK configuration file
indicates the name and password of the authenticated user and the authentication
mechanism TCK will use.

Portlet TCK provides two mechanisms to send the user credentials: HTTP Basic
authentication and a Java interface provided by the TCK. If TCK framework is
configured to use HTTP Basic authentication, an Authorization HTTP header -using
the configured user and password values- is constructed and sent with each test case
request. If TCK framework is configured to use the Java interface mechanism, the value
obtained from the specified interface implementation will be sent as a Cookie HTTP
header with request of the test case.

Additionally, a portal vendor may indicate that certain test cases, not required by TCK, to
be executed in the context of an authenticated user. This is useful for vendor
implementations that require an authenticated user for certain functionality to work. A
vendor can specify the names of these test cases in a configuration file. TCK will consult
this file to decide if user authentication is needed for each test case. Refer to TCK User
Guide to get details on the specific configuration properties.

Java™ Portlet Specification, version 2.0 (2008-01-11) 244

10

15

20

25

30

PLT.A

Custom Portlet Modes

Portals may provide support for custom portlet modes. Similarly, portlets may use custom
portlet modes. This appendix describes a list of custom portlet modes and their intended
functionality. Portals and portlets should use these custom portlet mode names if they
provide support for the described functionality.

Portlets should use the getSupportedpPortletModes method of the PortalcContext
interface to retrieve the portlet modes the portal supports.

PLT.A.1 About Portlet Mode

The about portlet mode should be used by the portlet to display information on the
portlets purpose, origin, version etc.

Portlet developers should implement the about portlet mode functionality by using the

@RenderMode (name="about”) annotation supported by everriding—thedobispateh
method-ofthe Genericrortlet class-and-cheeking for portietModetabout).

In the deployment descriptor the support for the about portlet mode must be declared
using
<portlet-app>
<portlets>
;éﬁpports>
éﬁértlet—mode>about</portlet—mode>
</supports>
</§6rtlet>

<custom-portlet-mode>
<pameportlet-mode>about</aameportlet -mode>
</custom-portlet-mode>

ékﬁortlet—app>

Java™ Portlet Specification, version 2.0 (2008-01-11) 245

10

15

20

25

30

35

40

PLT.A.2 Config Portlet Mode

The config portlet mode should be used by the portlet to display one or more
configuration views that let administrators configure portlet preferences that are marked
non-modifiable in the deployment descriptor. This requires that the user must have
administrator rights. Therefore, only the portal can create links for changing the portlet
mode into config.

Portlet developers should implement the config portlet mode functionality by using the

@RenderMode (name="config”) annotation supported byeverriding—the—debispateh
method-of the Genericprortlet class-and-cheeking for PortletModeteonfigh).

The conric mode of portlets operates typically on shared state that is common to many
portlets of the same portlet definition. When a portlet modifies this shared state via the
PortletPreferences, for all affected portlet entities, in the doview method the
PortletPreferences must give access to the modified state.

In the deployment descriptor the support for the config portlet mode must be declared
using
<portlet-app>
éﬁértlet>
;éﬁpports>
éﬁértlet—mode>config</portlet—mode>
</supports>
</.p‘o‘rtlet>

<custom-portlet-mode>
<mameportlet-mode>config</amameportlet-mode>
</custom-portlet-mode>

ékﬁortlet—app>
PLT.A.3 Edit_defaults Portlet Mode

The edit defaults portlet mode signifies that the portlet should render a screen to set
the default values for the modifiable preferences that are typically changed in the EDIT
screen. Calling this mode requires that the user must have administrator rights. Therefore,
only the portal can create links for changing the portlet mode into edit defaults.

Portlet developers should implement the edit defaults portlet mode functionality by
using the @RenderMode (name="edit defaults”) annotation supported byeverridingthe
dobispateh—method—eof the GenericPortlet class—and——<hecking—for

"y
7T .

o
T o

Java™ Portlet Specification, version 2.0 (2008-01-11) 246

10

20

25

30

35

40

In the deployment descriptor the support for the edit defaults portlet mode must be
declared using
<portlet-app>
<portlets
;éﬁpports>
;ﬁértlet—mode> edit _defaults </portlet-mode>
</supports>
</§6rtlet>

<custom-portlet-mode>
<pameportlet-mode> edit defaults </mameportlet-modex>
</custom-portlet-mode>

;)éortlet—app>

PLT.A.4 Preview Portlet Mode

The preview portlet mode should be used by the portlet to render output without the need
of having back-end connections or user specific data available. It may be used at page
design time and in portlet development tools.

Portlet developers should implement the preview portlet mode functionality by using the

@RenderMode (name="preview”) annotation supported byeverriding—the—debispateh
method-of the GenericpPortlet class-and-checking forportletMode(preview—1).

In the deployment descriptor the support for the preview portlet mode must be declared
using
<portlet-app>
;éértlet>
<supports>
<portlet-mode> preview </portlet-modes>
</supports>
</portlet>

<custom-portlet-modes>
<pameportlet-mode> preview </mameportlet-mode>
</custom-portlet-mode>

</portlet-app>

Java™ Portlet Specification, version 2.0 (2008-01-11) 247

PLT.A.5 Print Portlet Mode

The printportlet mode signifies that the portlet should render a view that can be printed.

Portlet developers should implement the printportlet mode functionality by using the

@RenderMode (name="print”) annotation supported byeverriding—the —debispateh
5 | method-of the GenericPortlet class-and-cheekingfor PortletMode(lprinti).

In the deployment descriptor the support for the printportlet mode must be declared

using
<portlet-app>
10 ;éértlet>
;éﬁpports>
;bértlet—mode>print</port1et—mode>
15 </supportss

</portlets>

<custom-portlet-modes>
20 <mameportlet -mode>print</aameportlet-mode>
</custom-portlet-mode>

</portlet-app>

Java™ Portlet Specification, version 2.0 (2008-01-11) 248

10

15

20

PLTAPLT.B

——

Markup Fragments

Portlets generate markup fragments that are aggregated in a portal page document.
Because of this, there are some rules and limitations in the markup elements generated by
portlets. Portlets should conform to these rules and limitations when generating content.

The disallowed tags indicated below are those tags that impact content generated by other
portlets or may even break the entire portal page. Inclusion of such a tag invalidates the
whole markup fragment.

Portlets generating HTML fragments must not use the following tags: base, body,
iffame——frame, frameset, head, html and title. i%e——&éfame4a&+mﬁ4*%&ﬁ%¥

ﬁeﬁal—aa%ad}gm-Usmg the iframe tag is not forbldden but portlets using iframes should
not expect portal/portlet context for the content of i frames

Portlets generating XHTML and XHTML-Basic fragments must not use the following
tags: base, body, iframe, head, html and title.

HTML, XHTML and XHTML-Basic specifications disallow the use of certain elements
outside of the <head> element in the document. However, some browser
implementations support some of these tags in other sections of the document. For
example: current versions of Internet Explorer and Netscape Navigator both support the
style tag anywhere within the document. Portlet developers should decide carefully the
use of following markup elements that fit this description: 1ink, meta and style.

Java™ Portlet Specification, version 2.0 (2008-01-11) 249

10

15

20

PLT.C

CSS Style Definitions

To achieve a common look and feel throughout the portal page, all portlets in the portal
page should use a common CSS style sheet when generating content.

This appendix defines styles for a variety of logical units in the markup. It follows the

style being considered by the OASIS Web Services for Remote Portlets Technical
Committee.

PLT.C.1 Links (Anchor)

A custom CSS class is not defined for the <a> tag. The entity should use the default
classes when embedding anchor tags.

PLT.C.2 Fonts

The font style definitions affect the font attributes only (font face, size, color, style, etc).

Style Description Example

Font attributes for the “normal” fragment font. Used | Normal

portlet-font for the display of non-accentuated information. Text

Font attributes similar to the .portlet.font but the

portlet-font-dim color is lighter.

If an portlet developer wants a certain font type to be larger or smaller, they should
indicate this using a relative size. For example:

<div class="portlet-font" style="font-size:larger">Important
information</divs>

<div class="portlet-font-dim" style="font-size:80%">Small and
dim</div>

Java™ Portlet Specification, version 2.0 (2008-01-11) 251

PLT.C.3 Messages

Message style definitions affect the rendering of a paragraph (alignment, borders,
background color, etc) as well as text attributes.

Style Description Example
portlet-msg-status Status. of the current Progress: 80%
operation.
) Help messages, general
portlet-msg-info additional information, etc. Info about
portlet-msg-error Error messages. Portlet not available
portlet-msg-alert Warning messages. ZTal:ZfOW occurred, iry again
Verification of the successful | Operation completed
portlet-msg-success .
completion of a task. successfully

PLT.C.4 Sections

Section style definitions affect the rendering of markup sections such as table, div and
span (alignment, borders, background color, etc) as well as their text attributes.

Style Description
portlet-section-header Table or section header
portlet-section-body Normal text in a table cell
portlet-section-alternate Text in every other row in the cell
portlet-section-selected Text in a selected cell range
portlet-section-subheader Text of a subheading
portlet-section-footer Table or section footnote
Text that belongs to the table but does not fall in one of
portlet-section-text the other categories (e.g. explanatory or help text that is
associated with the section).

Java™ Portlet Specification, version 2.0 (2008-01-11) 252

PLT.C.5 Tables

Table style definitions affect the rendering (i.e. alienment, borders, background color,

etc.) as well as their text attributes.

Style

Description

portlet-table-header

Table header

portlet-table-body

Normal text in a table cell

portlet-table-alternate

Text in every other row in the table

[portlet-table-selected

Text in a selected cell range

portlet-table-subheader

Text of a subheading

portlet-table-footer

Table footer

portlet-table-text

Text that belongs to the table but does not fall in one of the other

categories (e.g. explanatory or help text that is associated with

the table).

PLT.C.6 Forms

Form styles define the look-and-feel of the elements in an HTML form.

Style

Description

portlet-form-label

Text used for the descriptive label of the whole form
(not the labels for fields.

portlet-form-input-field

Text of the user-input in an input field.

portlet-form-button

Text on a button

portlet-icon-label

Text that appears beside a context dependent action
icon.

portlet-dlg-icon-label

Text that appears beside a “standard” icon (e.g. Ok, or
Cancel)

portlet-form-field-label

Text for a separator of fields (e.g. checkboxes, etc.)

portlet-form-field

Text for a field (not input field, e.g. checkboxes, etc)

portlet-form-field-label

Text that appears beside a form field (e.g. input fields,
checkboxes, etc.)

portlet-form-field

Text for a field which is not input field (e.g. checkboxes,
etc)

Java™ Portlet Specification, version 2.0 (2008-01-11) 253

porlet-form-field-labe] ——m
portlet-form-field ——w

Enter Option

Enter password I -

[T Check this option

i
-

-porlet-form-label
— podlet-form-input-field

Submit h'— porler-form-button

Java™ Portlet Specification, version 2.0 (2008-01-11)

254

PLT.C.6PLT.C.7 Menus

Menu styles define the look-and-feel of the text and background of a menu structure. This
structure may be embedded in the aggregated page or may appear as a context sensitive
popup menu.

Java™ Portlet Specification, version 2.0 (2008-01-11) 255

Style

Description

portlet-menu

General menu settings such as background
color, margins, etc

portlet-menu-item

Normal, unselected menu item.

portlet-menu-item-selected

Selected menu item.

portlet-menu-item-hover

Normal, unselected menu item when the
mouse hovers over it.

portlet-menu-item-hover-selected

Selected menu item when the mouse hovers
over it.

portlet-menu-cascade-item

Normal, unselected menu item that has sub-
menus.

portlet-menu-cascade-item-selected

Selected sub-menu item that has sub-menus.

portlet-menu-cascade

General sub-menu settings such as
background color, margins, etc

portlet-menu-cascade-item

A normal, unselected sub-menu item

portlet-menu-cascade-item-selected

Selected sub-menu item

portlet-menu-cascade-item-hover

Normal, unselected sub-menu item when the
mouse hovers over it

portlet-menu-cascade-item-hover-
selected

Selected sub-menu item when the mouse
hovers over it

portlet-menu-separator

Separator between menu items

portlet-menu-cascade-separator

Separator between sub-menu items

portlet-menu-content

Content for a normal, unselected menu or
sub-menu item

portlet-menu-content-selected

Content for an selected menu or sub-menu
item

portlet-menu-content-hover

Content for an unselected menu or sub-menu
item when the mouse hovers over it

portlet-menu-content-hover-selected

Content for a selected menu or sub-menu
item when the mouse hovers over it

portlet-menu-indicator

Indicator that a menu item has an associated
sub-menu

portlet-menu-indicator-selected

Indicator when the associated menu item is
selected

portlet-menu-indicator-hover

Indicator when the associated menu item has
the mouse hover over it

portlet-menu-indicator-hover-selected

Indicator when the associated menu item is
selected and has the mouse hover over it

portlet-menu-description

Descriptive text for the menu (e.g. in a help
context below the menu)

portlet-menu-caption

Menu caption

‘ Java™ Portlet Specification, version 2.0 (2008-01-11) 256

Title bar
Portlet Menn | «+————— portlet-menu-caption

portlet-menu-itern-selected

_porlet-rmenu-item-hover Eﬂﬂﬁg P Subltem] « parlet-menu-cascade-item
b;:is > Subltem? « partlet-menu-cascade-item-haver

portlet-menu-itern —T

-partlermenu-description —u o tayt that explains this menu

Java™ Portlet Specification, version 2.0 (2008-01-11) 257

PLT.D

User Information Attribute Names

This appendix defines a set of attribute names for user information and their intended
meaning. To allow portals an automated mapping of commonly used user information
attributes portlet programmers should use these attribute names. These attribute names
are derived from the Platform for Privacy Preferences 1.0 (P3P 1.0) Specification by the
W3C (http://www.w3c.org/TR/P3P). The same attribute names are also being considered
by the OASIS Web Services for Remote Portlets Technical Committee.

Attribute Name
user.bdate.ymd.year
user.bdate.ymd.month
user.bdate.ymd.day
user.bdate.hms.hour
user.bdate.hms.minute
| user .bdate.hms.second
| user.bdate.fractionsecond
user.bdate.timezone

user.gender

user.employer

user.department

user.jobtitle

user.name.prefix

user.name.given

user.name.family

user.name.middle

user.name.suffix

user.name.nickName

user.login.id

user.home-info.postal.name
user.home-info.postal.street
user.home-info.postal.city
user.home-info.postal.stateprov
user.home-info.postal.postalcode
user.home-info.postal.country
user.home-info.postal.organization
user.home-info.telecom.telephone.intcode
user.home-info.telecom.telephone.loccode
user.home-info.telecom.telephone.number
user.home-info.telecom.telephone.ext
user.home-info.telecom.telephone.comment
user.home-info.telecom.fax.intcode
user.home-info.telecom. fax.loccode
user.home-info.telecom. fax.number

Java™ Portlet Specification, version 2.0 (2008-01-11) 259

user.

home-info.

telecom.

fax.ext

user

.home-info.

telecom.

fax.co

mment

user.

home-info.

telecom.

mobile.

intcode

user.

home-info.

telecom.

mobile.

loccode

user.

home-info.

telecom.

mobile.

number

user.

home-info.

telecom.

mobile.

ext

user.

home-info.

telecom.

mobile.

comment

user.

home-info.

telecom

.pager.

intcode

user

.home-info.

telecom.

pager

.loccode

user.

home-info.

telecom.

pager.

number

user

.home-info.

telecom.

pager

.ext

user.

home-info.

telecom.

pager.

comment

user

.home-info.

online.email

user.

home-info.

online.uri

user.

business-info.

postal.

name

user.

business-info.

postal

.street

user.

business-info.

postal

.city

user.

business-info.

postal.

stateprov

user.

business-info.

postal

.postalcode

user

.business-info.

postal

.country

user.

business-info.

postal

.organizatio

n

usexr

.business-info.

telecom.

telephone.

intcode

user.

business-info.

telecom.

telephone.

loccode

user

.business-info.

telecom.

telephone.

number

user.

business-info.

telecom.

telephone.

ext

usexr

.business-info.

telecom.

telephone.

comment

user.

business-info.

telecom.

fax.intcode

user.

business-info.

telecom.

fax.loccode

user.

business-info.

telecom.

fax.number

user.

business-info.

telecom.

fax.ext

user.

business-info.

telecom.

fax.comment

user.

business-info.

telecom.

mobile.

intcode

usexr

.business-info.

telecom.

mobile.

loccode

user.

business-info.

telecom.

mobile.

number

user

.business-info.

telecom.

mobile.

ext

user.

business-info.

telecom.

mobile.

comment

usexr

.business-info.

telecom.

pager.intcode

user.

business-info.

telecom.

pager.loccode

user.

business-info.

telecom

.pager .number

user.

business-info.

telecom.

pager.ext

user.

business-info.

telecom.

pager.comment

user.

business-info.

online.

email

user.

business-info.

online.

uri

The P3P user attribute constants can be accessed in the portlet via the P3PUserInfos

enum on the PortletRequest.

Java™ Portlet Specification, version 2.0 (2008-01-11)

260

10

15

20

PLT.D.1 Example

Below is an example of how these attributes may be used in the deployment descriptor:

<portlet-app>

<user-attribute>

<name> user.name.prefix</names
</user-attribute>
<user-attribute>

<name> user.name.given</name>
</user-attribute>
<user-attribute>

<name> user.name.family</name>
</user-attribute>
<user-attribute>

<name> user.home-info.postal.city</name>
</user-attribute>

</portlet-app>

FutureReleases-doe

Java™ Portlet Specification, version 2.0 (2008-01-11)

261

PLT.E

R

Deployment Descriptor Version 1.0

This appendix defines the deployment descriptor for version 1.0. All portlet containers

are required to support portlet applications using the 1.0 deployment descriptor.

PLT.E.1.1 Deplovment Descriptor of Version 1.0

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://java.sun.com/xml/ns/portlet/portlet-app 1 0.xsd"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:portlet="http://java.sun.com/xml/ns/portlet/portlet-app 1 0.xsd"
xmlns="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qualified"
attributeFormDefault="unqualified" version="1.0" xml:lang="en">
<annotation>
<documentation>
This is the XML Schema for the Portlet 1.0 deployment descriptor.
</documentation>
</annotation>
<annotation>
<documentation>
The following conventions apply to all J2EE
deployment descriptor elements unlegs indicated otherwise.
- In elements that specify a pathname to a file within the
same JAR file, relative filenames (i.e., those not

starting with "/") are considered relative to the root of
the JAR file's namespace. Absolute filenames (i.e., those
starting with "/") also specify names in the root of the

JAR file's namespace. In general, relative names are

preferred. The exception is .war files where absolute

names are preferred for consistency with the Servlet APT.
</documentation>

</annotation>
ERE RS SRS SR SRS SRS SR SRS SRS SRR R R RS SRS SR SRR SRR R R EEEEEEEEEEEEEE] -—>

<!--
<import namespace="http://www.w3.org/XML/1998/namespace"
schemal.ocation="http://www.w3.0rg/2001/xml.xsd"/>
<element name="portlet-app" type="portlet:portlet-appType">
<annotation>
<documentation>
The portlet-app element is the root of the deployment descriptor
for a portlet application. This element has a required attribute version
to specify to which version of the schema the deployment descriptor
conforms.
</documentation>
</annotation>
<unigue name="portlet-name-unigueness">
<annotation>
<documentation>
The portlet element contains the name of a portlet.
This name must be unique within the portlet application.
</documentation>
</annotation>
<selector xpath="portlet:portlet"/>
<field xpath="portlet:portlet-name"/>

Java™ Portlet Specification, version 2.0 (2008-01-11) 262

</unique>
<unigue name="custom-portlet-mode-uniquenessg">
<annotation>
<documentation>
The custom-portlet-mode element contains the portlet-mode.
This portlet mode must be unique within the portlet application.
</documentation>
</annotation>
<selector xpath="portlet:custom-portlet-mode"/>
<field xpath="portlet:portlet-mode"/>
</unique>
<unigue name="custom-window-state-uniquenesg">
<annotation>
<documentation>
The custom-window-state element contains the window-state.
This window state must be unique within the portlet application.
</documentation>
</annotation>
<selector xpath="portlet:custom-window-state"/>
<field xpath="portlet:window-state"/>
</unique>
<unigue name="user-attribute-name-uniquenessg">
<annotation>
<documentation>
The user-attribute element contains the name the attribute.
This name must be unique within the portlet application.
</documentation>
</annotation>
<selector xpath="portlet:user-attribute"/>
<field xpath="portlet:name"/>
</unique>
</element>
<complexType name="portlet-appType">
<sequence>
<element name="portlet" type="portlet:portletType" minOccurs="0"
maxOccurs="unbounded" >
<unigue name="init-param-name-unigueness">
<annotation>
<documentation>
The init-param element contains the name the attribute.
This name must be unique within the portlet.
</documentation>
</annotation>
<selector xpath="portlet:init-param"/>
<field xpath="portlet:name"/>
</unigque>
<unigue name="supports-mime-type-uniqueness">
<annotation>
<documentation>
The supports element contains the supported mime-type.
This mime type must be unique within the portlet.
</documentation>
</annotation>
<selector xpath="portlet:supports"/>
<field xpath="mime-type"/>
</unigque>
<unigue name="preference-name-unigueness">
<annotation>
<documentation>
The preference element contains the name the preference.
This name must be unique within the portlet.
</documentation>
</annotation>
<selector xpath="portlet:portlet-preferences/portlet:preference"/>
<field xpath="portlet:name"/>
</unigque>
<unigue name="security-role-ref-name-uniqueness">
<annotation>
<documentation>
The security-role-ref element contains the role-name.
This role name must be unigque within the portlet.
</documentation>

Java™ Portlet Specification, version 2.0 (2008-01-11) 263

</annotation>
<selector xpath="portlet:security-role-ref"/>
<field xpath="portlet:role-name"/>
</unigque>
</element>
<element name="custom-portlet-mode" type="portlet:custom-portlet-modeType"
minOccurs="0" maxOccurs="unbounded"/>
<element name="custom-window-state" type="portlet:custom-window-stateType"
minOccurs="0" maxOccurs="unbounded"/>
<element name="user-attribute" type="portlet:user-attributeType"
minOccurs="0" maxOccurs="unbounded"/>
<element name="gecurity-constraint" type="portlet:security-constraintType"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="version" type="string" use="required"/>
<attribute name="id" type="string" use="optional"/>
</complexType>
<complexType name="custom-portlet-modeType">
<annotation>
<documentation>
A custom portlet mode that one or more portlets in
this portlet application supports.
Used in: portlet-app
</documentation>
</annotation>
<sequence>
<element name="desgcription" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded" />
<element name="portlet-mode" type="portlet:portlet-modeType"/>
</sequence>
<attribute name="id" type="gtring" use="optional'"/>
</complexType>
<complexType name="custom-window-gtateType">
<annotation>
<documentation>
A custom window state that one or more portlets in this
portlet application supports.
Used in: portlet-app
</documentation>
</annotation>
<sequence>
<element name="desgcription" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded" />
<element name="window-state" type="portlet:window-stateType"/>
</sequence>
<attribute name="id" type="string" use="optional"/>
</complexType>
<complexType name="expiration-cacheType">
<annotation>
<documentation>
Expriation-cache defines expiration-based caching for this
portlet. The parameter indicates
the time in seconds after which the portlet output expires.
-1 indicates that the output never expires.
Used in: portlet
</documentation>
</annotation>
<simpleContent>
<extension base="int"/>
</simpleContent>
</complexType>
<complexType name="init-paramType">
<annotation>
<documentation>
The init-param element contains a name/value pair as an
initialization param of the portlet
Used in:portlet
</documentation>
</annotation>
<sequence>
<element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded" />

Java™ Portlet Specification, version 2.0 (2008-01-11) 264

<element name="name" type="portlet:nameType"/>
<element name="value" type="portlet:valueType"/>
</sequence>
<attribute name="id" type="string" use="optional"/>
</complexType>
<complexType name="keywordsType">
<annotation>
<documentation>
Locale specific keywords associated with this portlet.
The kewords are separated by commas.
Used in: portlet-info
</documentation>
</annotation>
<simpleContent>
<extension base="gtring"/>
</simpleContent>
</complexType>
<complexType name="mime-typeType">
<annotation>
<documentation>
MIME type name, e.g. "text/html".
The MIME type may also contain the wildcard
character '*', like "text/*" or "*/xn,
Used in: supports
</documentation>
</annotation>
<simpleContent>
<extension base="string"/>
</simpleContent>
</complexType>
<complexType name="nameType'">
<annotation>
<documentation>
The name element contains the name of a parameter.
Used in: init-param,
</documentation>
</annotation>
<simpleContent>
<extension base="gtring"/>
</simpleContent>
</complexType>
<complexType name="portletType">
<annotation>
<documentation>
The portlet element contains the declarative data of a portlet.
Used in: portlet-app
</documentation>
</annotation>
<sequence>
<element name="desgcription" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded" />
<element name="portlet-name" type="portlet:portlet-nameType"/>
<element name="digsplay-name" type="portlet:display-nameType" minOccurs="0"
maxOccurs="unbounded" />
<element name="portlet-class" type="portlet:portlet-classType"/>
<element name="init-param" type="portlet:init-paramType" minOccurs="0"
maxOccurs="unbounded" />
<element name="expiration-cache" type="portlet:expiration-cacheType"
minOccurs="0"/>
<element name="gupports" type="portlet:supportsType"
maxOccurs="unbounded" />
<element name="supported-locale" type="portlet:supported-localeType"
minOccurs="0" maxOccurs="unbounded"/>
<choice>
<sequence>
<element name="resource-bundle" type="portlet:resource-bundleType"/>
<element name="portlet-info" type="portlet:portlet-infoType"
minOccurs="0"/>
</sequence>
<element name="portlet-info" type="portlet:portlet-infoType"/>
</choice>

Java™ Portlet Specification, version 2.0 (2008-01-11) 265

<element name="portlet-preferences" type="portlet:portlet-preferencesType"
minOccurs="0"/>
<element name="sgsecurity-role-ref" type="portlet:security-role-refType"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
<attribute name="id" type="string" use="optional"/>
</complexType>
<simpleType name="portlet-classType">
<annotation>
<documentation>
The portlet-class element contains the fully
qualified class name of the portlet.
Used in: portlet
</documentation>
</annotation>
<restriction base="portlet:fully-qualified-classType"/>
</simpleType>
<complexType name="portlet-collectionType">
<annotation>
<documentation>
The portlet-collectionType is used to identify a subset
of portlets within a portlet application to which a
security constraint applies.
Used in: security-constraint
</documentation>
</annotation>
<sequence>
<element name="portlet-name" type="portlet:portlet-nameType"
maxOccurs="unbounded" />
</sequence>
</complexType>
<complexType name="portlet-infoType">
<sequence>
<element name="title" type="portlet:titleType"/>
<element name="short-title" type="portlet:short-titleType" minOccurs="0"/>
<element name="keywords" type="portlet:keywordsType" minOccurs="0"/>
</sequence>
<attribute name="id" type="string" use="optional"/>
</complexType>
<complexType name="portlet-modeType">
<annotation>
<documentation>
Portlet modes. The sgpecification pre-defines the following values
as valid portlet mode constants:
lleditn’ llhelplll llviewll .
Portlet mode names are not case sensitive.
Used in: custom-portlet-mode, supports
</documentation>
</annotation>
<simpleContent>
<extension base="gtring"/>
</simpleContent>
</complexType>
<complexType name="portlet-nameType">
<annotation>
<documentation>
The portlet-name element contains the canonical name of the
portlet. Each portlet name is unique within the portlet
application.
Used in: portlet, portlet-mapping
</documentation>
</annotation>
<simpleContent>
<extension base="string"/>
</simpleContent>
</complexType>
<complexType name="portlet-preferencesType">
<annotation>
<documentation>
Portlet persistent preference store.
Used in: portlet
</documentation>

Java™ Portlet Specification, version 2.0 (2008-01-11) 266

</annotation>
<sequence>
<element name="preference" type="portlet:preferenceType" minOccurs="0"
maxOccurs="unbounded" />
<element name="preferences-validator" type="portlet:preferences-
validatorType" minOccurs="0"/>
</sequence>
<attribute name="id" type="string" use="optional"/>
</complexType>
<complexType name="preferenceType">
<annotation>
<documentation>
Persistent preference values that may be used for customization
and personalization by the portlet.
Used in: portlet-preferences
</documentation>
</annotation>
<sequence>
<element name="name" type="portlet:nameType"/>
<element name="value" type="portlet:valueType" minOccurs="0"
maxOccurs="unbounded" />
<element name="read-only" type="portlet:read-onlyType" minOccurs="0"/>
</sequence>
<attribute name="id" type="string" use="optional"/>
</complexType>
<simpleType name="preferences-validatorType">
<annotation>
<documentation>
The class specified under preferences-validator implements
the PreferencesValidator interface to validate the
preferences settings.
Used in: portlet-preferences
</documentation>
</annotation>
<restriction base="portlet:fully-qualified-classType"/>

</simpleType>
<simpleType name="read-onlyType">
<annotation>
<documentation>

read-only indicates that a setting cannot
be changed in any of the standard portlet modes
("view","edit" or "help").
Per default all preferences are modifiable.
Valid values are:
- true for read-only
- false for modifiable
Used in: preferences
</documentation>
</annotation>
<restriction base="portlet:string">
<enumeration value="true"/>
<enumeration value="false"/>
</restriction>
</simpleType>
<complexType name="resource-bundleType">
<annotation>
<documentation>
Filename of the resource bundle containing the language specific
portlet informations in different languages.
Used in: portlet-info
</documentation>
</annotation>
<simpleContent>
<extension base="string"/>
</simpleContent>
</complexType>
<complexType name="role-1linkType">
<annotation>
<documentation>
The role-link element is a reference to a defined security role.
The role-link element must contain the name of one of the
security roles defined in the security-role elements.

Java™ Portlet Specification, version 2.0 (2008-01-11) 267

Used in: security-role-ref
</documentation>
</annotation>
<simpleContent>
<extension base="gtring"/>
</simpleContent>
</complexType>
<complexType name="gecurity-constraintType">
<annotation>
<documentation>
The security-constraintType is used to associate
intended security constraints with one or more portlets.
Used in: portlet-app
</documentation>
</annotation>
<sequence>
<element name="display-name" type="portlet:display-nameType" minOccurs="0"
maxOccurs="unbounded" />
<element name="portlet-collection" type="portlet:portlet-collectionType"/>
<element name="user-data-constraint" type="portlet:user-data-
constraintType"/>
</sequence>
<attribute name="id" type="gtring" use="optional'"/>
</complexType>
<complexType name="gecurity-role-refType">
<annotation>
<documentation>
The security-role-ref element containsg the declaration of a
security role reference in the code of the web application. The
declaration consists of an optional description, the security
role name used in the code, and an optional link to a security
role. If the security role is not specified, the Deployer must
choose an appropriate security role.
The value of the role name element must be the String used
as the parameter to the
EJBContext.isCallerInRole (String roleName) method
or the HttpServletRequest.isUserInRole (String role) method.
Used in: portlet
</documentation>
</annotation>
<sequence>
<element name="desgcription" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded" />
<element name="role-name" type="portlet:role-nameType"/>
<element name="role-1ink" type="portlet:role-linkType" minOccurs="0"/>
</sequence>
<attribute name="id" type="gtring" use="optional'"/>
</complexType>
<complexType name="ghort-titleType">
<annotation>
<documentation>
Locale specific short version of the static title.
Used in: portlet-info
</documentation>
</annotation>
<simpleContent>
<extension base="gtring"/>
</simpleContent>
</complexType>
<complexType name="supportsType">
<annotation>
<documentation>
Supports indicates the portlet modes a
portlet supports for a specific content type. All portlets must
support the view mode.
Used in: portlet
</documentation>
</annotation>
<sequence>
<element name="mime-type" type="portlet:mime-typeType"/>
<element name="portlet-mode" type="portlet:portlet-modeType" minOccurs="0"
maxOccurs="unbounded" />

Java™ Portlet Specification, version 2.0 (2008-01-11) 268

</sequence>
<attribute name="id" type="string" use="optional"/>
</complexType>
<complexType name="supported-localeType">
<annotation>
<documentation>
Indicated the locales the portlet supports.
Used in: portlet
</documentation>
</annotation>
<simpleContent>
<extension base="string"/>
</simpleContent>
</complexType>
<complexType name="titleType">
<annotation>
<documentation>
Locale specific static title for this portlet.
Used in: portlet-info
</documentation>
</annotation>
<simpleContent>
<extension base="gtring"/>
</simpleContent>

</complexType>
<simpleType name="transport-guaranteeType">
<annotation>
<documentation>

The transport-guaranteeType specifies that
the communication between client and portlet should
be NONE, INTEGRAL, or CONFIDENTIAL.
NONE means that the portlet does not
require any transport guarantees. A value of
INTEGRAL means that the portlet requires that the
data sent between the client and portlet be sent in
such a way that it can't be changed in transit.
CONFIDENTIAL means that the portlet requires
that the data be transmitted in a fashion that
prevents other entities from observing the contents
of the transmission.
In most cases, the presence of the INTEGRAL or
CONFIDENTIAL flag will indicate that the use
of SSI. is required.
Used in: user-data-constraint
</documentation>
</annotation>
<restriction base="portlet:string">
<enumeration value="NONE"/>
<enumeration value="INTEGRAL"/>
<enumeration value="CONFIDENTIAL"/>
</restriction>
</simpleType>
<complexType name="user-attributeType">
<annotation>
<documentation>
User attribute defines a user specific attribute that the
portlet application needs. The portlet within this application
can access this attribute via the request parameter USER INFO
map.
Used in: portlet-app
</documentation>
</annotation>
<sequence>
<element name="description" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded" />
<element name="name" type="portlet:nameType"/>
</sequence>
<attribute name="id" type="string" use="optional"/>
</complexType>
<complexType name="user-data-constraintType">
<annotation>
<documentation>

Java™ Portlet Specification, version 2.0 (2008-01-11) 269

The user-data-constraintType is used to indicate how
data communicated between the client and portlet should be
protected.
Used in: security-constraint
</documentation>
</annotation>
<sequence>
<element name="desgcription" type="portlet:descriptionType" minOccurs="0"
maxOccurs="unbounded" />
<element name="transport-guarantee" type="portlet:transport-
guaranteeType"/>
</sequence>
<attribute name="id" type="gtring" use="optional'"/>
</complexType>
<complexType name="valueType">
<annotation>
<documentation>
The value element contains the value of a parameter.
Used in: init-param
</documentation>
</annotation>
<simpleContent>
<extension base="gtring"/>
</simpleContent>
</complexType>
<complexType name="window-stateType">
<annotation>
<documentation>
Portlet window state. Window state names are not case sensitive.
Used in: custom-window-state
</documentation>
</annotation>
<simpleContent>
<extension base="string"/>
</simpleContent>
</complexType>
<l--- everything below is copied from j2ee 1 4.xsd -->
<complexType name="descriptionType">
<annotation>
<documentation>
The description element is used to provide text describing the
parent element. The description element should include any
information that the portlet application war file producer wants
to provide to the consumer of the portlet application war file
(i.e., to the Deployer). Typically, the tools used by the
portlet application war file consumer will display the
description when processing the parent element that contains the
description. It has an optional attribute xml:lang to indicate
which language is used in the description according to
RFC 1766 (http://www.ietf.org/rfc/rfcl766.txt). The default
value of this attribute is English (“en”).
Used in: init-param, portlet, portlet-app, security-role
</documentation>
</annotation>
<simpleContent>
<extension base="string">
<attribute ref="xml:lang"/>
</extension>
</simpleContent>
</complexType>
<complexType name="display-nameType">
<annotation>
<documentation>
The display-name type contains a short name that is intended
to be displayed by tools. It is used by display-name
elements. The display name need not be unique.

Example:

<display-name xml:lang="en">Employee Self Service</display-name>

It has an optional attribute xml:lang to indicate
which language is used in the description according to

Java™ Portlet Specification, version 2.0 (2008-01-11) 270

RFC 1766 (http://www.ietf.org/rfc/rfcl766.txt). The default

value of this attribute is English (“en”).
</documentation>
</annotation>
<simpleContent>
<extension base="portlet:string">
<attribute ref="xml:lang"/>
</extension>
</simpleContent>
</complexType>
<simpleType name="fully-qualified-classType">
<annotation>
<documentation>
The elements that use this type designate the name of a
Java class or interface.
</documentation>

</annotation>
<restriction base="portlet:string"/>
</simpleType>
<simpleType name="role-nameType">
<annotation>
<documentation>

The role-nameType designates the name of a security role.

The name must conform to the lexical rulesg for an NMTOKEN.
</documentation>

</annotation>
<restriction base="NMTOKEN"/>
</simpleType>
<simpleType name="string">
<annotation>
<documentation>

This is a special string datatype that is defined by J2EE
as a base type for defining collapsed strings. When
schemas require trailing/leading space elimination as
well as collapsing the existing whitespace, this base
type may be used.
</documentation>

</annotation>

<restriction base="sgtring">
<whiteSpace value="collapse"/>

</restriction>

</simpleType>
</schema>

Java™ Portlet Specification, version 2.0 (2008-01-11)

271

PLEEPLT.K

TCK Assertions

The following is the list of assertions that have been identified in the Portlet Specification

for the purposes of the compliance test.

Assertions marked as Testable=false are not verifiable.

'SPEC:1

TSPEC:2
I SPEC:3
¥ SPEC:4
Y SPEC:5

V' SPEC:6
Vi SPEC:7
Vil SPEC:8
X SPEC:9

* SPEC:10
¥ SPEC:11
*i SPEC:12
Xl SPEC:13

XV SPEC:14

Testable=true

Testable=false

Testable=false

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=false

Testable= false

Testable=false

Testable= false

Testable=true

Section=PLT.2.5

Section=PLT.5.1

Section=PLT.5.1

Section=PLT.5.2.1

Section=PLT.5.2.2

Section=PLT.5.2.2.1

Section=PLT.5.2.2.1

Section=PLT.5.2.2.1

Section=PLT.5.2.2.1

Section=PLT.5.2.3

Section=PLT.5.2.3

Section=PLT.5.2.3

Section=PLT.5.2.3

Section=PLT 5.4

Java™ Portlet Specification, version 2.0 (2008-01-11) 272

* SPEC:15
I SPEC:16
il SPEC:17
il SPEC:18
X SPEC:19
* SPEC:20
i SPEC:21
=il SPEC:22
il SPEC:23
IV SPEC:24
*V SPEC:25
i SPEC:26
»vil GPEC:27
il SPEC:28
X SPEC:29
X SPEC:30
*xi SPEC:31
xxil SPEC:32
wxiil SPEC:33
iV SPEC:34
X SPEC:35
Vi SPEC:36
xovil GPEC:37

oot gpR(C:38

Testable=true

Testable=true

Testable=true

Testable= true

Testable= true

Testable= true

Testable= true

Testable=true

Testable= true

Testable=false

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Section=PLT 5.4

Section=PLT 5.4

Section=PLT 5.4

Section=PLT.5.4.1

Section=PLT.5.4.5.4

Section=PLT.5.4.5.4

Section=PLT.5.4.5.4

Section=PLT 5.4.5.4

Section=PLT.5.4.7

Section=PLT.5.4.7

Section=PLT.5.4.7

Section=PLT.6.2

Section=PLT.6.2

Section=PLT.6.3

Section=PLT.6.4

Section=PLT.6.5

Section=PLT.6.5

Section=PLT.6.6

Section=PLT.6.6

Section=PLT.6.7

Section=PLT.7.1

Section=PLT.7.1

Section=PLT.7.1.1

Section=PLT.7.1.1

Java™ Portlet Specification, version 2.0 (2008-01-11)

273

»xix SPEC:39
X' SPEC:40
I SPEC:41
i SPEC:42
il SPEC:43
IV SPEC:44
IV SPEC:45
*M SPEC:46
M SPEC:47
Ml SPEC:48
X SPEC:49
'SPEC:50

' SPEC:51

" SPEC:52
i SPEC:53
Y SPEC:54
v SPEC:55
M SPEC:56
Mi SPEC:57
Mit SPEC:58
x SPEC:59
X SPEC:60
™ SPEC:61

i SPEC:62

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable=true

Testable=true

Testable=true

Testable=false

Testable=true

Testable=true

Testable=false

Testable=false

Testable=false

Testable=true

Testable=true

Section=PLT.7.1.1

Section=PLT.7.1.1

Section=PLT.7.1.2

Section=PLT.7.1.2

Section=PLT.7.1.2

Section=PLT.7.1.2

Section=PLT.7.1.2

Section=PLT.7.1.3

Section=PLT.7.2.1

Section=PLT.7.2.1

Section=PLT.7.2.1

Section=PLT.7.2.1

Section=PLT.7.2.2

Section=PLT.8.5

Section=PLT.8.6

Section=PLT.8.6

Section=PLT.8.6

Section=PLT.9.4

Section=PLT.9.5

Section=PLT.9.5

Section=PLT.10.1

Section=PLT.10.1

Section=PLT.10.3

Section=PLT.10.3

Java™ Portlet Specification, version 2.0 (2008-01-11)

274

kil SPEC:63
MV SPEC:64
X SPEC:65
i SPEC:66
il SPEC:67
i SPEC:68
XX SPEC:69
XX SPEC:70
i SPEC:71
bl QPEC:72
il SPEC:73
boiv SPEC:74
v SPEC:75
i SPEC:76
it SPEC:77
Ixxviii SPEC:78
bxix SPEC:79
X SPEC:80
i SPEC:81
boxii SPEC:82
bowxiil GPE(C:83
boodv SPEC:84
v SPEC:85

bvi SPR(C:86

Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable= true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable= true
Testable= true
Testable=true
Testable=true
Testable=true
Testable= true
Testable=true
Testable= false
Testable= true
Testable= true
Testable= true
Testable= true

Testable= true

Section=PLT.10.3
Section=PLT.10.3
Section=PLT.10.3(servlet spec)
Section=PLT.10.4.4
Section=PLT.11.1.1
Section=PLT.11.1.1
Section=PLT.11.1.1
Section=PLT.11.1.1
Section=PLT.11.1.1
Section=PLT.11.1.1
Section=PLT.11.1.1
Section=PLT.11.1.1.2
Section=PLT.11.1.1.2
Section=PLT.11.1.1.2
Section=PLT.11.1.1.3
Section=PLT.11.1.1.3
Section=PLT.11.1.1.3
Section=PLT.11.1.1.3
Section=PLT.11.1.2
Section=PLT.11.1.2
Section=PLT.11.1.2
Section=PLT.11.1.2
Section=PLT.11.1.2

Section=PLT.11.1.2

Java™ Portlet Specification, version 2.0 (2008-01-11)

275

boovil SPR(C:87
Ixxxviii SPEC:88
boxix GPE(C:89
** SPEC:90

* SPEC:91
il SPEC:92
xdil SPEC:93
*V SPEC:94
" SPEC:95
*M SPEC:96
il SPEC:97
il SPEC:98
xix SPEC:99

° SPEC:100

% SPEC:101

i SPEC:102
il SPEC:103
v SPEC:104
" SPEC:105
! SPEC:106
i SPEC:107
Vi SPEC:108
“* SPEC:109

“ SPEC:110

Testable=false

Testable=true

Testable=true

Testable=true

Testable= true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable= true

Testable= true

Testable=true

Testable= true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Section=PLT.11.1.3

Section=PLT.11.1.4.1

Section=PLT.11.1.4.2

Section=PLT.11.1.4.4

Section=PLT.11.1.6

Section=PLT.11.1.6

Section=PLT.11.1.7

Section=PLT.11.1.8

Section=PLT.11.1.8

Section=PLT.11.1.8

Section=PLT.11.1.12

Section=PLT.11.2.1

Section=PLT.11.2.1

Section=PLT.12.1.3

Section=PLT.12.1.3

Section=PLT.12.1.3

Section=PLT.12.2.1

Section=PLT.12.2.2

Section=PLT.12.2.2

Section=PLT.12.3.1

Section=PLT.12.3.1

Section=PLT.12.3.1

Section=PLT.12.3.1

Section=PLT.12.3.1

Java™ Portlet Specification, version 2.0 (2008-01-11)

276

i SPEC:111
il SPEC:112
@il SPEC:113
oV SPEC:114
v SPEC:115
I SPEC:116
oVl SPEC:117
il SPEC:118
@ix SPEC:119
X SPEC:120
o SPEC:121
il SPEC:122
il SPEC:123
oV SPEC:124
o SPEC:125
o SPEC:126
ool SPEC:127
ool SPEC:128
exix SPEC:129
@ SPEC:130
eoxi GPEC:131
eoxii GPEC:132

exxxiil SPE(C:133

iV BVENT: 134

Testable=true

Testable=true

Testable= true

Testable= true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable= true

Section=PLT.12.2.1

Section=PLT.12.5.1

Section=PLT.12.5.1

Section=PLT.12.5.2

Section=PLT.12.5.5

Section=PLT.12.5.5

Section=PLT.12.5.5

Section=PLT.12.5.5

Section=PLT.12.5.5

Section=PLT.12.5.5

Section=PLT.12.6.1

Section=PLT.13.1.4

Section=PLT.13.1.5

Section=PLT.13.1.5

Section=PLT.13.1.6

Section=PLT.13.1.6

Section=PLT.13.1.6

Section=PLT.13.1.6

Section=PLT.13.1.6

Section=PLT.13.1.7

Section=PLT.13.1.7

Section=PLT.13.1.7

Section=PLT.13.1.7

Section=PLT.15.2.2

Java™ Portlet Specification, version 2.0 (2008-01-11)

277

XV EVENT: 135 Testable= true

Vi BVENT: 136 Testable= true

exxvii gpE(:137

exxviil QPR 138

exxxix SPE(C:139
< SPEC:140
i SPEC:141

exlii SpR(C:142

exlill BVENT: 143

XV SPRC:144

IV EVENT:145

M EVENT: 146

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

Testable= true

M EVENT:147 Testable= true

il EVVENT: 148 Testable= true

liX BEVENT: 149 Testable= true

¢ SPEC:150
i SPEC:151
il SPEC:152
il SPEC:153
v SPEC:154
v SPEC:155
M SPEC:156
Vi SPEC:157

it SpE(C:158

Testable= true

Testable= true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable= true

Testable=true

Section=PLT.15.2.2

Section=PLT.15.2.2

Section=PLT.15.2.3

Section=PLT.15.2.3

Section=PLT.15.2.3

Section=PLT.15.2.3

Section=PLT.15.2.3

Section=PLT.15.2.4.1

Section=PLT.15.2.4.1

Section=PLT.15.2.4

Section=PLT.15.2.5

Section=PLT.15.2.5

Section=PLT.15.2.5

Section=PLT.15.2.6

Section=PLT.15.2.6

Section=PLT.17.1

Section=PLT.17.1

Section=PLT.17.1

Section=PLT.17.1

Section=PLT.17.1

Section=PLT.17.1

Section=PLT.17.1

Section=PLT.17.1(change)

Section=PLT.17.1

Java™ Portlet Specification, version 2.0 (2008-01-11)

278

lix SPEC:159
X SPEC:160
i SPEC:161
il SPEC:162
il SPEC:163
XV SPEC:164
v SPEC:165
i SPEC:166
vl SPEC:167
chvill SPEC:168
X SPEC:169
e SPEC:170
chxi SPEC:171
it SPEC:172
chxill GPEC:173
chxiv SPEC:174
cxv SPEC:175
chovi GPEC:176
chovil QPEC:177
clxxviii SPEC:178
chxix SPEC:179
o SPEC:180
choxi SPEC:181

choxil GPE(C:182

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable= true

Testable=true

Section=PLT.17.3

Section=PLT.17.3

Section=PLT.17.4

Section=PLT.17.4

Section=PLT.17.4

Section=PLT.18.1

Section=PLT.18.1

Section=PLT.18.2

Section=PLT.18.2

Section=PLT.18.3

Section=PLT.18.3

Section=PLT.18.3

Section=PLT.18.4

Section=PLT.18.4

Section=PLT.18.4

Section=PLT.18.4

Section=PLT.18.4.1

Section=PLT.18.4.1

Section=PLT.18.4.1

Section=PLT.18.9(servlet spec)

Section=PLT.19.1

Section=PLT.19.1

Section=PLT.19.1.1

Section=PLT.19.2

Java™ Portlet Specification, version 2.0 (2008-01-11)

279

choxiii SpR(C:183

clxxxiv SPE (184

choxv SpR(C:185

choxvi GPE(C: 186
choxvii QPR 187
ClXXXViii SPEC: 1 88

choxix GPEC:189

¢ SPEC:190
¢l SPEC:191
il SPEC:192
il SPEC:193
eV SPEC:194
v SPEC:195
Vi SPEC:196
Vil SPEC:197
exevill SPEC:198
XX SPEC:199
° SPEC:200
¢ SPEC:201
il SPEC:202
ceiil SPEC:203
¥ SPEC:204
¥ SPEC:205

Vi SPEC:206

Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=false(impl)
Testable=true
Testable=true

Testable=true

Section=PLT.19.2

Section=PLT.19.3

Section=PLT.19.3.1

Section=PLT.16.3.2

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section= PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.3

Section=PLT.19.3.4

Java™ Portlet Specification, version 2.0 (2008-01-11)

280

cvil SPEC:207
covil SPEC:208
<X SPEC:209
< SPEC:210
cexi SPEC:211
cxii SPEC:212
cxill GPEC:213
cxiv SPEC:214
¥ SPEC:215
i SPEC:216
covil SPEC:217
covill SPEC:218
cexix SPEC:219
cxx SPEC:220
coxi SPEC:221
coxil SPEC:222
cexxilil GPE(C:223
coxiv SPEC:224
cxxv SPEC:225

coxvi GPEC:226

coxxvit QPR (1227

coxxviii GPE(:228

coxix PEC:229

% SPEC:230

Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=false(impl)
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true

Testable=true

Section=PLT.19.3.4

Section=PLT.19.3.4

Section= PLT.19.3.4

Section=PLT.19.3.4

Section=PLT.19.3.4

Section=PLT.19.3.4

Section=PLT.19.3.4

Section=PLT.19.3.4

Section=PLT.19.3.4

Section=PLT.19.3.4

Section= PLT.19.3.4

Section=PLT.19.3.4

Section=PLT.19.3.4

Section=PLT.19.3.4

Section= PLT.19.3.4

Section=PLT.19.3.5

Section=PLT.19.3.5

Section=PLT.19.3.5

Section= PLT.19.3.5

Section=PLT.19.3.5

Section=PLT.19.3.5

Section=PLT.19.3.5

Section=PLT.19.3.5

Section=PLT.19.3.5

Java™ Portlet Specification, version 2.0 (2008-01-11)

281

coxxi GPRE(C:231

coxxii GPE(C:232
cexxxiii SPEC'233

coxxiv GPE(C:234

Y SPEC:235

coxxxvi SPE(C:236

cexxxvil SPEC'237

Testable=true
Testable=true
Testable=false(impl)
Testable=true
Testable=true
Testable=true

Testable=true

cooxxviil SpE(:238 Testable=true

cxxix GPE(C:239

<l SPEC:240

cxi SPEC:241

cexlil GPE(C:242
cexliii SPE(C:243
cxlV SPEC:244
cxlv SPEC:245
cexM SPEC:246

cxii PR (247

cexlviil SpE(C:248

coxlix SPEC:249
! SPEC:250
el SPEC:251
<l SPEC:252
ccliiil SPEC:253

ccliv SPEC:254

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Section=PLT.19.3.5

Section=PLT.19.3.5

Section=PLT.19.3.5

Section=PLT.19.3.5

Section=PLT.19.3.7

Section=PLT.19.3.7

Section=PLT.19.3.8

Section=PLT.19.4

Section=PLT.19.4

Section=PLT.19.4

Section=PLT.19.4.2

Section=PLT.19.4.2

Section=PLT.19.4.2

Section=PLT.19.4.2

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Java™ Portlet Specification, version 2.0 (2008-01-11)

282

<V SPEC:255
i SPEC:256
Vi SPEC:257
celvili SPEC:258
celix SPEC:259
« SPEC:260
i SPEC:261
cehil SPEC:262
celdii SPEC:263
eV SPEC:264
kv SPEC:265
cehvi SPEC:266
cehvil SPEC:267
cchvill GPEC:268
chix SPEC:269
e SPEC:270
cebod SPEC:271
el SPE(C:272
cehodii SPEC:273
cehodv QPE(C:274
cehoy SPEC:275
cchovi SPEC:276
cchovii SPE(C:277

celxxviii SPEC:278

Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=false(impl)
Testable=false(impl)
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=true
Testable=false(impl)

Testable=false(impl)

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.3

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Section=PLT.19.4.4

Java™ Portlet Specification, version 2.0 (2008-01-11)

283

cchod SPEC:279 Testable=true
<l SPEC:280 Testable=true
cchood GPE(:281 Testable=true
cchoxil SPEC:282 Testable=true
cehoxiil GPEC:283 Testable=true
cchoodv SPE(C:284 Testable=true
¢l SPEC:285 Testable=true
cehxvi SPEC:286 Testable=true
celxxxvii SPEC:287 Testable=true
cchooviil SPEC:288 Testable=true
cchxix SPEC:289 Testable=true

X SPEC:290 Testable=true

cxi SPEC:291 Testable=false(impl)

coxeil SPEC:292 Testable=false(impl)

coxciil SPE(C:293 Testable=true
cexelvV QPE(C:294 Testable=true
XV SPEC:295 Testable=true
cxVi SPEC:296 Testable=true
cxevil SPR(C:297 Testable=true
coxeviil GPEC:298 Testable=true
XX SPEC:299 Testable=true
“ SPEC:300 Testable=true
«d SPEC:301 Testable=true

“ISPEC:302 Testable=true

Section=PLT.19.4.4

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.4.5

Section=PLT.19.5

Section=PLT.20.2.1

Section=PLT.20.2.1

Section=PLT.20.2.1

Section=PLT.20.2.1

Section=PLT.20.2.2

Section=PLT.20.2.4

Section=PLT.20.2.4

Section=PLT.20.2.4

Section=PLT.20.2.5

Java™ Portlet Specification, version 2.0 (2008-01-11)

284

ceclii SPEC:303
celv SPEC:304
eV SPEC:305
«ViSPEC:306
ceevil GPEC:307
ceevill GPEC:308
cex SPEC:309
X SPEC:310
cexi SPEC:311
ccexii SPEC:312
coexiii SPEC:313
ceexlv QPEC:314
o SPEC:315
ccexvi SPEC:316
ccexvil GPEC:317
ccexviii SPEC:318
ceexix GPEC:319
e SPEC:320
ccexd SPEC:321
ceexdi GPE(C:322
ceexxiii SPE(C:323
ccexxiv SPEC:324
ceoxv QPE(C:325

ccoxvi QPE(:326

Testable=true

Testable=false(impl)

Testable=false(impl)

Testable= false

Testable= false

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable= true

Testable=true

Testable=false

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable=true

Testable= true

Testable=false

Section=PLT.20.2.5

Section=PLT.21.1

Section=PLT.21.2

Section= PLT.23.2

Section=PLT.23.2

Section=PLT.23.5

Section=PLT.23.5(servlet spec)

Section=PLT.24.2

Section=PLT.24.2

Section=PLT.24.2

Section= PLT.24.4

Section=PLT.24.4

Section=PLT.26

Section= PLT.26.1

Section= PLT.26.1

Section=PLT.26.2

Section=PLT.26.2

Section=PLT.26.2

Section= PLT.26.2

Section=PLT.26.2

Section=PLT.26.2

Section=PLT.26.2

Section=PLT.26.2

Section=PLT.26.2

Java™ Portlet Specification, version 2.0 (2008-01-11)

285

ceexxvil SPE(C:327 Testable=false
ceexxviii QPR (328 Testable=false
coexxix GPEC:329 Testable=false
U SPEC:330 Testable=true
ccooxi GPEC:331 Testable=true
cconxdil SPE(C:332 Testable=true
coexxxiil SPEC:333 Testable=true
cexiv SPEC:334 Testable=true
eV SPEC:335 Testable=true
ccoxovi SPEC:336 Testable=true
coexavii SPE(C:337 Testable= true
ceonili SPE(C:338 Testable=false
ccoxxix SPE(C:339 Testable=false
«ex! SPEC:340 Testable=false
ceexli QPEC:341 Testable=false
ceexlii GPEC:342 Testable=true
ccolii SPEC:343 Testable=true
iV SPEC:344 Testable=true
ccexlv SPEC:345 Testable=true
oM SPEC:346 Testable= true
cexlvil GPEC:347 Testable=false
ceexlviii QPR (.348 Testable=false
ceexlix SPEC:349 Testable=true

ceel SPEC:350 Testable=true

Section=PLT.26.2

Section=PLT.26.2

Section=PLT.26.2

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.3

Section=PLT.26.4

Section= PLT.26.4

Section= PLT.26.4

Section= PLT.26.4

Section=PLT.26.4

Section=PLT.26.4

Section=PLT.26.4

Section=PLT.26.5

Section=PLT.26.6

Java™ Portlet Specification, version 2.0 (2008-01-11)

286

i SPEC:351 Testable=false Section=PLT.26.6
i SPEC:352 Testable=true Section= PLT.26.6

<l SPEC:353 Testable=true Section= PLT.26.6

Java™ Portlet Specification, version 2.0 (2008-01-11) 287

